1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

NATTG,

o
R HE

s sy,
D

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Inf Softw Technol. 2014 October 1; 56(10): 1219-1232. doi:10.1016/j.infsof.2014.05.006.

Testing Scientific Software: A Systematic Literature Review

Upulee Kanewala” and James M. Bieman
Computer Science Department, Colorado State University, USA

Abstract

Context—Scientific software plays an important role in critical decision making, for example
making weather predictions based on climate models, and computation of evidence for research
publications. Recently, scientists have had to retract publications due to errors caused by software
faults. Systematic testing can identify such faults in code.

Objective—This study aims to identify specific challenges, proposed solutions, and unsolved
problems faced when testing scientific software.

Method—We conducted a systematic literature survey to identify and analyze relevant literature.
We identified 62 studies that provided relevant information about testing scientific software.

Results—We found that challenges faced when testing scientific software fall into two main
categories: (1) testing challenges that occur due to characteristics of scientific software such as
oracle problems and (2) testing challenges that occur due to cultural differences between scientists
and the software engineering community such as viewing the code and the model that it
implements as inseparable entities. In addition, we identified methods to potentially overcome
these challenges and their limitations. Finally we describe unsolved challenges and how software
engineering researchers and practitioners can help to overcome them.

Conclusions—Scientific software presents special challenges for testing. Specifically, cultural
differences between scientist developers and software engineers, along with the characteristics of
the scientific software make testing more difficult. Existing techniques such as code clone
detection can help to improve the testing process. Software engineers should consider special
challenges posed by scientific software such as oracle problems when developing testing
techniques.

Keywords
Scientific software; Software testing; Systematic literature review; Software quality

© 2014 Elsevier B.V. All rights reserved.

"Corresponding author upuleegk@cs.colostate.edu (Upulee Kanewala), bieman@cs.colostate.edu (James M. Bieman).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 2

1. Introduction

Scientific software is widely used in science and engineering fields. Such software plays an
important role in critical decision making in fields such as the nuclear industry, medicine
and the military [65, 66]. For example, in nuclear weapons simulations, code is used to
determine the impact of modifications, since these weapons cannot be field tested [62].
Climate models make climate predictions and assess climate change [17]. In addition, results
from scientific software are used as evidence in research publications [66]. Due to the
complexity of scientific software and the required specialized domain knowledge, scientists
often develop these programs themselves or are closely involved with the development [60,
47, 69, 7]. But scientist developers may not be familiar with accepted software engineering
practices [69, 65]. This lack of familiarity can impact the quality of scientific software [20].

Software testing is one activity that is impacted. Due to the lack of systematic testing of
scientific software, subtle faults can remain undetected. These subtle faults can cause
program output to change without causing the program to crash. Software faults such as one-
off errors have caused the loss of precision in seismic data processing programs [27].
Software faults have compromised coordinate measuring machine (CMM) performance [1].
In addition, scientists have been forced to retract published work due to software faults [51].
Hatton et al. found that several software systems written for geoscientists produced
reasonable yet essentially different results [28]. There are reports of scientists who believed
that they needed to modify the physics model or develop new algorithms, but later
discovered that the real problems were small faults in the code [18].

We define scientific software broadly as software used for scientific purposes. Scientific
software is mainly developed to better understand or make predictions about real world
processes. The size of this software ranges from 1,000 to 100,000 lines of code [66].
Developers of scientific software range from scientists who do not possess any software
engineering knowledge to experienced professional software developers with considerable
software engineering knowledge.

To develop scientific software, scientists first develop discretized models. These discretized
models are then translated into algorithms that are then coded using a programming
language. Faults can be introduced during all of these phases [15]. Developers of scientific
software usually perform validation to ensure that the scientific model is correctly modeling
the physical phenomena of interest [37, 57]. They perform verification to ensure that the
computational model is working correctly [37], using primarily mathematical analyses [62].
But scientific software developers rarely perform systematic testing to identify faults in the
code [38, 57, 32, 65]. Farrell et al. show the importance of performing code verification to
identify differences between the code and the discretized model [24]. Kane et al. found that
automated testing is fairly uncommon in biomedical software development [33]. In addition,
Reupke et al. discovered that many of the problems found in operational medical systems
are due to inadequate testing [64]. Sometimes this lack of systematic testing is caused by
special testing challenges posed by this software [20].

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 3

This work reports on a Systematic Literature Review (SLR) that identifies the special
challenges posed by scientific software and proposes solutions to overcome these
challenges. In addition, we identify unsolved problems related to testing scientific software.

An SLR is a “means of evaluating and interpreting all available research relevant to a
particular research question or topic area or phenomenon of interest” [41]. The goal of
performing an SLR is to methodically review and gather research results for a specific
research question and aid in developing evidence-based guidelines for the practitioners [42].
Due to the systematic approach followed when performing an SLR, the researcher can be
confident that she has located the required information as much as possible.

Software engineering researchers have conducted SLRs in a variety of software engineering
areas. Walia et al. [77] conducted an SLR to identify and classify software requirement
errors. Engstrom et al. [23] conducted an SLR on empirical evaluations of regression test
selection techniques with the goal of “finding a basis for further research in a joint industry-
academia research project”. Afzal et \ al. [3] carried out an SLR on applying search-based
testing for performing non-functional testing. Their goal is to “examine existing work into
non-functional search-based software testing”. While these SLRs are not restricted to
software in a specific domain, we focus on scientific software, an area that has received less
attention than application software. Further when compared to Engstrom et al. or Afzal et
al., we do not restrict our SLR to a specific testing technique.

The overall goal [42] of our SLR is to identify specific challenges faced when testing
scientific software, how the challenges have been met, and any unsolved challenges. We
developed a set of research questions based on this overall goal to guide the SLR process.
Then we performed an extensive search to identify publications that can help to answer
these research questions. Finally, we synthesized the gathered information from the selected
studies to provide answers to our research questions.

This SLR identifies two categories of challenges in scientific software testing. The first
category are challenges that are due to the characteristics of the software itself such as the
lack of an oracle. The second category are challenges that occur because scientific software
is developed by scientists and/or scientists play leading roles in scientific software
development projects, unlike application software development where software engineers
play leading roles. We identify techniques used to test scientific software including
techniques that can help to overcome oracle problems and test case creation/selection
challenges. In addition, we describe the limitations of these techniques and open problems.

This paper is organized as follows: Section 2 describes the SLR process and how we apply it
to find answer to our research questions. We report the findings of the SLR in Section 3.
Section 4 contains the discussion on the findings. Finally we provide conclusions and
describe future work in Section 5.

2. Research Method

We conducted our SLR following the published guidelines by Kitchenham [41]. The
activities performed during an SLR can be divided into three main phases: (1) planning the

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 4

SLR, (2) conducting the review and (3) reporting the review. We describe the tasks
performed in each phase below.

2.1. Planning the SLR

2.1.1. Research Questions—The main goal of this SLR is to identify specific
challenges faced when testing scientific software, how the challenges have been met, and
any unsolved challenges. We developed the following research questions to achieve our high
level goal:

RQZ1: How is scientific software defined in the literature?

RQ?2: Are there special characteristics or faults in scientific software or its
development that make testing difficult?

RQ3: Can we use existing testing methods (or adapt them) to test scientific
software effectively?

RQ4: Are there challenges that could not be met by existing techniques?

2.1.2. Formulation and validation of the review protocol—The review protocol
specifies the methods used to carry out the SLR. Defining the review protocol prior to
conducting the SLR can reduce researcher bias [43]. In addition, our review protocol
specifies source selection procedures, search process, quality assessment criteria and data
extraction strategies.

Source selection and search process: We used the Google Scholar, IEEE Xplore, and
ACM Digital Library databases since they include journals and conferences focusing on
software testing as well as computational science and engineering. Further, these databases
provide mechanisms to perform key word searches. We did not specify a fixed time frame
when conducting the search. We conducted the search in January 2013. Therefore this SLR
includes studies that were published before January 2013. We did not search for specific
journals/conferences since an initial search found relevant studies published in journals such
as Geoscientific Model Development? that we were not previously familiar with. In
addition, we examined relevant studies that were referenced by the selected primary studies.

We searched the three databases identified above using a search string that included the
important key words in our four research questions. Further, we augmented the key words
with their synonyms, producing the following search string:

(((challenges OR problems OR issues OR characteristics) OR (technique OR
methods OR approaches)) AND (test OR examine)) OR (error OR fault OR defect
OR mistake OR problem OR imperfection OR flaw OR failure) AND (“(scientific
OR numeric OR mathematical OR floating point) AND (Software OR application
OR program OR project OR product)”)

1http://vvvvw.geoscientic—model—development.net/

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

http://www.geoscientic-model-development.net/

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 5

Study selection procedure: We systematically selected the primary studies by applying the
following three steps.

1. We examined the paper titles to remove studies that were clearly unrelated to our
search focus.

2. We reviewed the abstracts and key words in the remaining studies to select relevant
studies. In some situations an abstract and keywords did not provide enough
information to determine whether a study is relevant. In such situations, we
reviewed the conclusions.

3. We filtered the remaining studies by applying the inclusion/exclusion criteria given
in Table 1. Studies selected from this final step are the initial primary studies for
the SLR.

We examined the reference lists of the initial primary studies to identify additional studies
that are relevant to our search focus.

Quality assessment checklist: We evaluated the quality of the selected primary studies
using selected items from the quality checklists provided by Kitchenham and Charters [43].
Table 2 and Table 3 show the quality checklists that we used for quantitative and qualitative
studies respectively. When creating the quality checklist for quantitative studies, we selected
quality questions that would evaluate the four main stages of a quantitative study: design,
conduct, analysis and conclusions [43].

Data extraction strategy: Relevant information for answering the research questions
needed to be extracted from the selected primary studies. We used data extraction forms to
make sure that this task was carried out in a accurate and consistent manner. Table 4 shows
the data extraction from that we used.

2.2. Conducting the review

2.2.1. Identifying relevant studies and primary studies—The key word based
search produced more than 6000 hits. We first examined paper titles to remove any studies
that are not clearly related to the research focus. Then we used the abstract, key words and
the conclusion to eliminate additional unrelated studies. After applying these two steps, 94
studies remained. We examined these 94 studies and applied the inclusion/exclusion criteria
in Table 1 to select 49 papers as primary studies for this SLR.

Further, we applied the same selection steps to the reference lists of the selected 49 primary
studies to find additional primary studies that are related to the research focus. We found 13
studies that are related to our research focus that were not already included in the initial set
of primary studies. Thus, we used a total of 62 papers as primary studies for the SLR. The
selected primary studies are listed in Tables 5 and 6. Table 7 lists the publication venues of
the selected primary papers. The International Workshop on Software Engineering for
Computational Science and Engineering and the Journal of Computing in Science &
Engineering published the greatest number of primary studies.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 6

2.2.2. Data extraction and quality assessment—We used the data extraction form in
Table 4 to extract data from the primary studies. Many primary studies did not answer all of
the questions in the data extraction form. We extracted the important information provided
by the primary studies using the data extraction form. Then, depending on the type of the
study, we applied the quality assessment questions in Table 2 or Table 3 to each primary
study.

We provided ‘yes’ and ‘no’ answers to our quality assessment questions. We used a binary
scale since we were not interested in providing a quality score for the studies [19]. Table 8
shows the results of the quality assessment for quantitative primary studies. All the
quantitative primary studies answered ‘yes’ to the quality assessment question G1 (Are the
study aims clearly stated?). Most of the quantitative primary studies answered ‘yes’ to the
quality assessment questions G2 (Are the data collection methods adequately described) and
G5 (Can the study be replicated?). Table 9 shows the results of the quality assessment for
qualitative primary studies. All of the qualitative primary studies answered ‘yes’ to the
quality assessment question A (Are the study aims clearly stated?) and B (Does the
evaluation address its stated aims and purpose?). Most of the qualitative primary studies
answered ‘yes’ to the quality assessment question D (Is enough evidence provided to
support the claims?).

2.3. Reporting the review

3. Results

3.1. RQ1: Ho

Data extracted from the 62 primary papers were used to formulate answers to the four
research questions given in Section 2.1.1. We closely followed guidelines provided by
Kitchenham [41] when preparing the SLR report.

We use the selected primary papers to provide answers to the research questions.

w is scientific software defined in the literature?

Scientific software is defined in various ways. Sanders et al. [65] use the definition provided
by Kreyman et al. [44]: “Scientific software is software with a large computational
component and provides data for decision support.” Kelly et al. identified two types of
scientific software [39]:

1. End user application software that is written to achieve scientific objectives (e.g.,
Climate models).

2. Tools that support writing code that express a scientific model and the execution of
scientific code (e.g., Automated software testing tool for MATLAB [22]).

An orthogonal classification is given by Carver et al. [8]:
1. Research software written with the goal of publishing papers.

2. Production software written for real users (e.g. Climate models).

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman Page 7

Scientific software is developed by scientists themselves or by multi-disciplinary teams,
where a team consists of scientists and professional software developers. A scientist will
generally be the person in charge of a scientific software development project [53].

We encountered software that helps to solve a variety of scientific problems. We present the
details of software functionality, size and the programing languages in Table 10. None of the
primary studies reported the complexity of the software in terms of measurable unit such as
coupling, cohesion, or cyclomatic complexity.

3.2. RQ2: Are there special characteristics or faults in scientific software or its
development that make testing difficult?

We found characteristics that fall into two main categories 1) Testing challenges that occur
due to characteristics of scientific software, and 2) Testing challenges that occur due to
cultural differences between scientists and the software engineering community. Below we
describe these challenges:

1. Testing challenges that occur due to characteristics of scientific software: These
challenges can be further categorized according to the specific testing activities
where they pose problems.

a. Challenges concerning test case development:

i. ldentifying critical input domain boundaries a priori is
difficult due to the complexity of the software, round-off
error effects, and complex computational behavior. This
makes it difficult to apply techniques such as equivalence
partitioning to reduce the number of test cases [66, 36, 7].

ii. Manually selecting a sufficient set of test cases is
challenging due to the large number of input parameters and
values accepted by some scientific software [76].

iii. When testing scientific frameworks at the system level, it is
difficult to choose a suitable set of test cases from the large
number of available possibilities [63].

iv. Some scientific software lacks real world data that can be
used for testing [55].

v. Execution of some paths in scientific software are dependent
on results of floating point calculations. Finding test data to
execute such program paths is challenging [5].

vi. Some program units (functions, subroutines, methods) in
scientific software contain so many decisions that testing is
impractical [52].

vii. Difficulties in replicating the physical context where the
scientific code is suppose to work can make comprehensive
testing impossible [67].

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 8

b. Challenges towards producing expected test case output values (Oracle
problems): Software testing requires an oracle, a mechanism for checking
whether the program under test produces the expected output when
executed using a set of test cases. Obtaining reliable oracles for scientific
programs is challenging [65]. Due to the lack of suitable oracles it is
difficult to detect subtle faults in scientific code [37]. The following
characteristics of scientific software make it challenging to create a test
oracle:

i. Some scientific software is written to find answers that are
previously unknown. Therefore only approximate solutions
might be available [20, 57, 78, 7, 39].

ii. Itis difficult to determine the correct output for software
written to test scientific theory that involves complex
calculations or simulations. Further, some programs produce
complex outputs making it difficult to determine the
expected output [73, 65, 54, 11, 38, 61, 26, 78, 70].

iii. Due to the inherent uncertainties in models, some scientific
programs do not give a single correct answer for a given set
of inputs. This makes determining the expected behavior of
the software a difficult task, which may depend on a domain
expert’s opinion [1].

iv. Requirements are unclear or uncertain up-front due to the
exploratory nature of the software. Therefore developing
oracles based on requirements is not commonly done [73, 59,
26, 30].

v. Choosing suitable tolerances for an oracle when testing
numerical programs is difficult due to the involvement of
complex floating point computations [61, 36, 40, 12].

c. Challenges towards test execution:

i. Due to long execution times of some scientific software,
running a large number of test cases to satisfy specific
coverage criteria is not feasible [36].

d. Challenges towards test result interpretation:

i. Faults can be masked by round-off errors, truncation errors
and model simplifications [36, 28, 26, 9, 12].

ii. A limited portion of the software is regularly used.
Therefore, less frequently used portions of the code may
contain unacknowledged errors [60, 47].

iii. Scientific programs contain a high percentage of duplicated
code [52].

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 9

2. Testing challenges that occur due to cultural differences between scientists and the
software engineering community: Scientists generally play leading roles in
developing scientific software.

a. Challenges due to limited understanding of testing concepts:

Vi.

Vii.

Scientists view the code and the model that it implements as
inseparable entities. Therefore they test the code to assess the
model and not necessarily to check for faults in the code [38,
47, 66, 65].

Scientist developers focus on the scientific results rather than
the quality of the software [21, 7].

iii. The value of the software is underestimated [70].

Definitions of verification and validation are not consistent
across the computational science and engineering
communities [32].

Developers (scientists) have little or no training in software
engineering [20, 21, 26, 7, 8].

Requirements and software evaluation activities are not
clearly defined for scientific software [69, 71].

Testing is done only with respect to the initial specific
scientific problem addressed by the code. Therefore the
reliability of results when applied to a different problem
cannot be guaranteed [53].

viii. Developers are unfamiliar with testing methods [22, 26].

b. Challenges due to limited understanding of testing process

Management and budgetary support for testing may not be
provided [59, 30, 71].

Since the requirements are not known up front, scientists
may adopt an agile philosophy for development. However,
they do not use standard agile process models [21]. As a
result, unit testing and acceptance testing are not carried out
properly.

Software development is treated as a secondary activity
resulting in a lack of recognition for the skills and
knowledge required for software development [68].

Scientific software does not usually have a set of written or
agreed set of quality goals [52].

Often only ad-hoc or unsystematic testing methods are used
[65, 68].

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman Page 10

vi. Developers view testing as a task that should be done late
during software development [29].

c. Challenges due to not applying known testing methods

i. The wide use of FORTRAN in the scientific community
makes it difficult to utilize many testing tools from the
software engineering community [47, 66, 21].

ii. Unit testing is not commonly conducted when developing
scientific software [79, 18]. For example, Clune et al. find
that unit testing is almost non-existent in the climate
modeling community [12]. Reasons for the lack of unit
testing include the following:

» There are misconceptions about the
difficulty and benefits of implementing
unit tests among scientific software
developers [12].

e The legacy nature of scientific code makes
implementing unit tests challenging [12].

» The internal code structure is hidden [75].

e The importance of unit testing is not
appreciated by scientist developers [72].

iii. Scientific software developers are unaware of the need for
and the method of applying verification testing [65].

iv. There is a lack of automated regression and acceptance
testing in some scientific programs [8].

The following specific faults are reported in the selected primary studies:
e Incorrect use of a variable name [9].
» Incorrectly reporting hardware failures as faults due to ignored exceptions [52].

e One-off errors [27].

3.3. RQ3: Can we use existing testing methods (or adapt them) to test scientific software
effectively?

Use of testing at different abstraction levels and for different testing purposes
—Several primary studies reported conducting testing at different abstraction levels: unit
testing, integration testing and system testing. In addition some studies reported the use of
acceptance testing and regression testing. Out of the 62 primary studies, 12 studies applied
at least one of these testing methods. Figure 1 shows the percentage of studies that applied
each testing method out of the 12 studies. Unit testing was the most common testing method
reported among the 12 studies.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 11

Figure 2 displays the percentage of the number of testing methods applied by the 12 studies.
None of the studies applied four or more testing methods. Out of the 12 studies, 8 (67%)
mention applying only one testing method. Below we describe how these testing methods
were applied when testing scientific software:

1.

Unit testing: Several studies report that unit testing was used to test scientific
programs [33,, 17, 2, 40, 45]. Clune et al. describe the use of refactoring to extract
testable units when conducting unit testing on legacy code [12]. They identified
two faults using unit testing that could not be discovered by system testing. Only
two studies used a unit testing framework to apply automated unit testing [33, 2]
and both of these studies used JUnit2. In addition, Eddins [22] developed a unit
testing framework for MATLAB. We did not find evidence of the use of any other
unit testing frameworks.

Integration testing: We found only one study that applied integration testing to
ensure that all components work together as expected [17].

System testing: Several studies report the use of system testing [33, 24, 64]. In
particular, the climate modeling community makes heavy use of system testing
[12].

Acceptance testing: We found only one study that reports on acceptance testing
conducted by the users to ensure that programmers have correctly implemented the
required functionality [33]. One reason acceptance testing is rarely used is that the
scientists who are developing the software are often also the users.

Regression testing: Several studies describe the use of regression testing to
compare the current output to previous outputs to identify faults introduced when
the code is modified [24, 17, 31, 75]. Further, Smith developed a tool for assisting
regression testing [74]. This tool allows testers to specify the variable values to be
compared and tolerances for comparisons.

Techniques used to overcome oracle problems—Previously we described several
techniques used to test programs that do not have oracles [35]. In addition, several studies
propose techniques to alleviate the oracle problem:

1.

A pseudo oracle is an independently developed program that fulfills the same
specification as the program under test [1, 59, 24, 21, 62, 65, 78, 16, 27]. For
example, Murphy et al. used pseudo oracles for testing a machine learning
algorithm [54].

Limitations: A pseudo oracle may not include some special features/treatments
available in the program under test and it is difficult to decide whether the oracle or
the program is faulty when the answers do not agree [9]. Pseudo oracles make the
assumption that independently developed reference models will not result in the
same failures. But Brilliant et al. found that even independently developed
programs might produce the same failures [6].

2http://junit.org/

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

http://junit.org/

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 12

Solutions obtained analytically can serve as oracles. Using analytical solutions is
sometimes preferred over pseudo oracles since they can identify common
algorithmic errors among the implementations. For example, a theoretically
calculated rate of convergence can be compared with the rate produced by the code
to check for faults in the program [1, 38, 24].

Limitations: Analytical solutions may not be available for every application [9]
and may not be accurate due to human errors [65].

Experimentally obtained results can be used as oracles [1, 38, 59, 62, 65, 45].

Limitations: It is difficult to determine whether an error is due to a fault in the
code or due to an error made during the model creation [9]. In some situations
experiments cannot be conducted due to high cost, legal or safety issues [7].

Measurements values obtained from natural events can be used as oracles.

Limitations: Measurements may not be accurate and are usually limited due to the
high cost or danger involved in obtaining them [38, 66].

Using the professional judgment of scientists [66, 40, 32, 65]

Limitations: Scientists can miss faults due to misinterpretations and lack of data.
In addition, some faults can produce small changes in the output that might be
difficult to identify [32]. Further, the scientist may not provide objective judgments
[65].

Using simplified data that so the correctness can be determined easily [78].

Limitations: It is not sufficient to test using only simple data; simple test cases
may not uncover faults such as round-off problems, truncation errors, overflow
conditions, etc [31]. Further such tests do not represent how the code is actually
used [65].

Statistical oracle: verifies statistical characteristics of test results [49].

Limitations: Decisions by a statistical oracle may not always be correct. Further a
statistical oracle cannot decide whether a single test case has passed or failed [49].

Reference data sets: Cox et al. created reference data sets based on the functional
specification of the program that can be used for black-box testing of scientific
programs [13].

Limitations: When using reference data sets, it is difficult to determine whether
the error is due to using unsuitable equations or due to a fault in the code.

Metamor phic testing (MT) was introduced by Chen et al. [10] as a way to test
programs that do not have oracles. MT operates by checking whether a program
under test behaves according to an expected set of properties known as

metamor phic relations. A metamorphic relation specifies how a particular change
to the input of the program should change the output. MT was used for testing
scientific applications in different areas such as machine learning applications [80,
56], bioinformatics programs [11], programs solving partial differential equations

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 13

[9] and image processing applications [48]. When testing programs solving partial
differential equations, MT uncovered faults that cannot be uncovered by special
value testing [9]. MT can be applied to perform both unit testing and system
testing. Murphy et al. developed a supporting framework for conducting
metamorphic testing at the function level [58]. They used the Java Modeling
Language (JML) for specifying the metamorphic relations and automatically
generating test code using the provided specifications. Satistical Metamorphic
testing (SMT) is a technique for testing non-deterministic programs that lack
oracles [25]. Guderlei et al. applied SMT for testing an implementation of the
inverse cumulative distribution function of the normal distribution [25]. Further,
SMT was applied for testing non-deterministic health care simulation software [57]
and a stochastic optimization program [81].

Limitations: Enumerating a etof metamorphic relations that should be satisfied by
a program is a critical initial task in applying metamorphic testing. A tester or
developer has to manually identify metamorphic relations using her knowledge of
the program under test; this manual process can miss some important metamorphic
relations that could reveal faults. Recently we proposed a novel technique based on
machine learning for automatically detecting metamorphic relations [34].

As noted in Section 3.2, selecting suitable tolerances for oracles is another challenge. Kelly
et al. experimentally found that reducing the tolerance in an oracle increases the ability to
detect faults in the code [36]. Clune et al. found that breaking the algorithm into small steps
and testing the steps independently reduced the compounding effects of truncation and
round-off errors [12].

Test case creation and selection—Several methods can help to overcome the
challenges in test case creation and selection:

1.

Hook et al. found that many faults can be identified by a small number of test cases
that push the boundaries of the computation represented by the code [32].
Following this, Kelly et al. found that random tests combined with specially
designed test cases to cover the parts of code uncovered by the random tests are
effective in identifying faults [36]. Both of these studies used MATLAB functions
in their experiments.

Randomly generated test cases were used with metamorphic testing to automate the
testing of image processing applications [48].

Vilkomir et al. developed a method for automatically generating test cases when a
scientific program has many input parameters with dependencies [76]. Vilkomir et
al. represent the input space as a directed graph. Input parameters are represented
by the nodes in the graph. Specific values of the parameters and the probability of a
parameter taking that value are represented by arcs. Dependencies among input
parameter values are handled by splitting/merging nodes. This method creates a
model which satisfies the probability law of Markov chains. Valid test cases can be
automatically generated by taking a path in this directed graph. This model also

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 14

provides the ability to generate random and weighted test cases according to the
likelihood of taking the parameter values.

4. Bagnara et al. used symbolic execution to generate test data for floating point
programs [5]. This method generates test data to traverse program paths that
involve floating point computations.

5. Meinke et al. developed a technique for Automatic test case generation for
numerical software based on learning based testing (LBT) [50]. The authors first
createda polynomial model as an abstraction of the program under test. Then the
test cases are generated by applying a satisfiability algorithm to the learned model.

6. Parameterized random data generation is a technique described by Murphy et al.
[55] for creating test data for machine learning applications. This method randomly
generates data sets using properties of equivalence classes.

7. Remmel et al. developed a regression testing framework for a complex scientific
framework [63]. They took a software product line engineering (SPLE) approach to
handle the large variability of the scientific framework. They developed a
variability model to represent this variability and used the model to derive test
cases while making sure necessary variant combinations are covered. This
approach requires that scientists help to identify infeasible combinations.

Test coverage information—Only two primary studies mention the use of some type of
test coverage information [33, 2]. Kane et al. found that while some developers were
interested in measuring statement coverage, most of the developers were interested in
covering the significant functionality of the program [33]. Ackroyd et al. [2] used the Emma
tool to measure test coverage.

Assertion checking—Assertion checking can be used to ensure the correctness of plug-

and-play scientific components. But assertion checking introduces a performance overhead.
Dahlgren et al. developed an assertion selection system to reduce performance overhead for
scientific software [15, 14].

Software development process—Several studies reported that using agile practices for
developing scientific software improved testing activities [73, 61, 79]. Some projects have
used test-driven development (TDD), where test are written to check the functionality before
the code is written. But adopting this approach could be a cultural challenge since primary
studies report that TDD can delay the initial development of functional code [29, 2].

3.4. RQ4: Are there any challenges that could not be answered by existing techniques?

Only one primary paper directly provided answers to RQ4. Kelly et al. [39] describes oracle
problems as key problems to solve and the need for research on performing effective testing
without oracles. We did not find other answers to this research question.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman Page 15

4. Discussion

4.1. Principal findings

The goal of this systematic literature review is to identify specific challenges faced when
testing scientific software, how the challenges have been met, and any unsolved challenges.
The principal findings of this review are the following:

1. The main challenges in testing scientific software can be grouped into two main
categories.

e Testing challenges that occur due to characteristics of scientific software.

- Challenges concerning test case development such as a
lack of real world data and difficulties in replicating the
physical context where the scientific code is suppose to
work.

- Oracle problems mainly arise because scientific programs
are either written to find answers that are previously
unknown or they perform complex calculations so that it
is difficult to determine the correct output. 30% of the
primary studies reported the oracle problems as
challenges for conducting testing.

- Challenges towards test execution such as difficulties in
running test cases to satisfy a coverage criteria due to long
execution times.

- Challenges towards test result interpretation such as
round-off errors, truncation errors and model
simplifications masking faults in the code.

» Testing challenges that occur due to cultural differences between scientists
and the software engineering community.

- Challenges due to limited understanding of testing
concepts such as viewing the code and the model that it
implements as inseparable entities.

- Challenges due to limited understanding of testing
processes resulting in the use of ad-hoc or unsystematic
testing methods.

- Challenges due to not applying known testing methods
such as unit testing.

2. We discovered how certain techniques can be used to overcome some of the testing
challenges posed by scientific software development.

» Pseudo oracles, analytical solutions, experimental results, measurement
values, simplified data and professional judgment are widely used as
solutions to oracle problems in scientific software. But we found no

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 16

empirical studies evaluating the effectiveness of these techniques in
detecting subtle faults. New techniques such as metamorphic testing have
been applied and evaluated for testing scientific software in research
studies. But we found no evidence that such techniques are actually used
in practice.

« Traditional techniques such as random test case generation were applied to
test scientific software after applying modifications to consider
equivalence classes. In addition, studies report the use of specific
techniques to perform automatic test case generation for floating point
programs. These techniques were only applied to a narrow set of
programs. The applicability of these techniques in practice needs to be
investigated.

» When considering unit, system, integration, acceptance and regression
testing, very few studies applied more than one type of testing to their
programs. We found no studies that applied more than three of these
testing techniques.

» Only two primary studies evaluated some type of test coverage
information during the testing process.

3. Research from the software engineering community can help to improve the testing
process, by investigating how to perform effective testing for programs with oracle
problems.

4.2. Techniques potentially useful in scientific software testing

Oracle problems are key problems to solve. Research on performing effective testing
without oracles is needed [39]. Techniques such as property based testing and data
redundancy can be used when an oracle is not available [4]. Assertions can be used to
perform property based testing within the source code [35]. Another potential approach is to
use a golden run [46]. With a golden run, an execution trace is generated during a failure
free execution of an input. Then this execution trace is compared with execution traces
obtained when executing the program with the same input when a failure is observed. By
comparing the golden run and the faulty execution traces the robustness of the program is
determined. One may also apply model based testing, but model based testing requires well-
defined and stable requirements to develop the model. But with most scientific software,
requirements are constantly changing, which can make it difficult to apply model based
testing. We did not find applications of property based testing, data redundancy, golden run,
and model based testing to test scientific software in the primary studies. In addition,
research on test case selection and test data adequacy has not considered the effect of the
oracle used. Often perfect oracles are not available for scientific programs. Therefore
developing test selection/creation techniques that consider the characteristics of the oracle
used for testing will be useful.

Metamorphic testing is a promising testing technique to address the oracle problem.
Metamorphic testing can be used to perform both unit and system testing. But identifying

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 17

metamorphic relations that should be satisfied by a program is challenging. Therefore
techniques that can identify metamorphic relations for a program are needed [34].

Only a few studies applied new techniques developed by the software engineering
community to overcome some of the common testing challenges. For example none of the
primary studies employ test selection techniques to select test cases, even though running a
large number of test cases is difficult due to the long execution times of scientific software.
But many test selection techniques assume a perfect oracle, and thus will not work well for
most scientific programs.

Several studies report that scientific software developers used regression testing during the
development process. But we could not determine if regression testing was automated or
whether any test case prioritizing techniques were used. In addition we only found two
studies that used unit testing frameworks to conduct unit testing. Both of these studies report
the use of the JUnit framework for Java programs. None of the primary studies report
information regarding how unit testing was conducted for programs written in other
languages.

One of the challenges of testing scientific programs is duplicated code. Even though a fault
is fixed in a single location, the same fault may exist in other locations and those faults can
go undetected when duplicated code is present. Automatic clone detection techniques would
be useful to find duplicated code especially when dealing with legacy code.

4.3. Strengths and weaknesses of the SLR

Primary studies that provided the relevant information for this literature review were
identified thorough a key word based search on three databases. The search found relevant
studies published in journals, conference proceedings, and technical reports. We used a
systematic approach, including the detailed inclusion/exclusion criteria given in Table 1 to
select the relevant primary studies. Initially both authors applied the study selection process
to a subset of the results returned by the key word based search. After verifying that both
authors selected the same set of studies, the first author applied the study selection process
to the rest of the results returned by the key word based search.

In addition we examined the reference lists of the selected primary studies to identify any
additional studies that relate to our search focus. We found 13 additional studies related to
our search focus. These studies were found by the key word based search, but did not pass
the title based filtering. This indicates that selecting studies based on the title alone may not
be reliable and to improve the reliability we might have to review the abstract, key words
and conclusions before excluding them. This process would be time consuming due to the
large number of results returned by the key word based search. After selecting the primary
studies, we used data extraction forms to extract the relevant information consistently while
reducing bias. Extracted information was validated by both authors.

We used the quality assessment questions given in Table 2 and Table 3 for assessing the
quality of the selected primary studies. All selected primary studies are of high quality. The
primary studies are a mixture of observational and experimental studies.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman Page 18

One weakness is the reliance on the key word based search facilities provided by the three
databases for selecting the initial set of papers. We cannot ensure that the search facilities
return all relevant studies. But, the search process independently returned all the studies that
we previously knew as relevant to our research questions.

Many primary studies were published in venues that are not related to software engineering.
Therefore, there may be solutions provided by the software engineering community for
some of the challenges presented in Section 3.2 such as oracle problems. But we did not find
evidence of wide use of such solutions by the scientific software developers.

4.4. Contribution to research and practice community

To our knowledge, this is the first systematic literature review conducted to identify
software testing challenges, proposed solutions, and unsolved problems in scientific
software testing. We identified challenges in testing scientific software using a large number
of studies. We outlined the solutions used by the practitioners to overcome those challenges
as well as unique solutions that were proposed to overcome specific problems. In addition
we identified several unsolved problems.

Our work may contribute to focusing research efforts aiming at the improvement of testing
of scientific software. This SLR will help the scientists who are developing software to
identify specific testing challenges and potential solutions to overcome those challenges. In
addition scientist developers can become aware of their cultural differences with the
software engineering community that can impact software testing. Information provided
here will help scientific software developers to carry out systematic testing and thereby
improve the quality of scientific software. Further, there are many opportunities for software
engineering research to find solutions to solve the challenges identified by this systematic
literature review.

5. Conclusion and future work

Conducting testing to identify faults in the code is an important task in scientific software
development that has received little attention. In this paper we present the results of a
systematic literature review that identifies specific challenges faced when testing scientific
software, how the challenges have been met and any unsolved challenges.. Below we
summarize the answers to our four research questions

RQ1: How is scientific software defined in literature? Scientific software is
defined as software with a large computational component. Further, scientific
software is usually developed by multidisciplinary teams made up of scientists and
software developers.

RQ2: Are there special characteristics or faults in scientific software or its
devel- opment that make testing difficult? We identified two categories of
challenges in scientific software testing: (1) testing challenges that occur due to
characteristics of scientific software such as oracle problems and (2) testing
challenges that occur due to cultural differences between scientists and the software
engineering community such as viewing the code and model as inseparable entities.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 19

RQ3: Can we use existing testing methods (or adapt them) to test scientific
software effectively? A number of studies report on testing at different levels of
abstraction such as unit testing, system testing and integration testing in scientific
software development. Few studies report the use of unit testing frameworks. Many
studies report the use of a pseudo oracle or experimental results to alleviate the lack
of an oracle. In addition, several case studies report using metamorphic testing to
test programs that do not have oracles. Several studies developed techniques to
overcome challenges in test case creation. These techniques include the
combination of randomly generated test cases with specially designed test cases,
generating test cases by considering dependencies among input parameters, and
using symbolic execution to generate test data for floating point programs. Only
two studies use test coverage information.

RQ4: Are there challenges that could not be met by existing techniques?
Oracle problems are prevalent and need further attention.

Scientific software poses special challenges for testing. Some of these challenges
can be overcome by applying testing techniques commonly used by software
engineers. Scientist developers need to incorporate these testing techniques into
their software development process. Some of the challenges are unique due to
characteristics of scientific software, such as oracle problems. Software engineers
need to consider these special challenges when developing testing techniques for
scientific software.

Acknowledgments

This project is supported by Award Number 1R01GM096192 from the National Institute of General Medical
Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institute of General Medical Sciences or the National Institutes of Health. We thank the reviewers
for their insightful comments on earlier versions of this paper.

References

1.

Abackerli AJ, Pereira PH, Calonego N Jr. A case study on testing CMM uncertainty simulation
software (VCMM). Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2010
Mar.32:8-14.

. Ackroyd K, Kinder S, Mant G, Miller M, Ramsdale C, Stephenson P. Scientific software

development at a research facility. Software, IEEE. 2008 Jul-Aug;25(4):44-51.

. Afzal W, Torkar R, Feldt R. A systematic review of search-based testing for nonfunctional system

properties. Information and Software Technology. 2009; 51(6):957-976.

. Ammann, P.; Offutt, J. Introduction to Software Testing, 1st Edition. New York, NY, USA:

Cambridge University Press; 2008.

. Bagnara, R.; Carlier, M.; Gori, R.; Gotlieb, A. Symbolic path-oriented test data generation for

floating-point programs; Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on; 2013. p. 1-10.

. Brilliant S, Knight J, Leveson N. Analysis of faults in an n-version software experiment. Software

Engineering, IEEE Transactions on. 1990; 16(2):238-247.

. Carver, J.; Kendall, RP.; Squires, SE.; Post, DE. Software development environments for scientific

and engineering software: A series of case studies. Proceedings of the 29th International Conference
on Software Engineering. ICSE ‘07. IEEE Computer Society; Washington, DC, USA. 2007. p.
550-559.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

Page 20

8. Carver, Jeffrey, RBDH.; Hochstein, L. Tech. Rep. SAND2011-2196. Sandia National Laboratories;

2011. What scientists and engineers think they know about software engineering: A survey.

9. Chen, T.; Feng, J.; Tse, TH. Metamorphic testing of programs on partial differential equations: a

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

case study; Computer Software and Applications Conference, 2002. COMP-SAC 2002.
Proceedings. 26th Annual International; 2002. p. 327-333.

10.

Chen, TY.; Cheung, SC.; Yiu, SM. Tech. Rep. HKUST-CS98-01. Hong Kong: Department of
Computer Science, Hong Kong University of Science and Technology; 1998. Metamorphic
testing: a new approach for generating next test cases.

Chen TY, Ho JWK, Liu H, Xie X. An innovative approach for testing bioin-formatics programs
using metamorphic testing. BMC Bioinformatics. 2009; 10

Clune T, Rood R. Software testing and verification in climate model development. Software, IEEE.
2011 Nov-Dec;28(6):49-55.

Cox M, Harris P. Design and use of reference data sets for testing scientific software. Analytica
Chimica Acta. 1999; 380(23):339-351.

Dahlgren, T. Performance-driven interface contract enforcement for scientific components.
Schmidt, H.; Crnkovic, I.; Heineman, G.; Stafford, J., editors. Springer Berlin Heidelberg:
Component-Based Software Engineering. Vol. 4608 of Lecture Notes in Computer Science; 2007.
p. 157-172.

Dahlgren, TL.; Devanbu, PT. Improving scientific software component quality through assertions;
Proceedings of the Second International Workshop on Software Engineering for High
Performance Computing System Applications. SE-HPCS ‘05. ACM; New York, NY, USA. 2005.
p. 73-77.

Davis, MD.; Weyuker, EJ. Pseudo-oracles for non-testable programs; Proceedings of the ACM ‘81
conference. ACM ‘81. ACM; New York, NY, USA. 1981. p. 254-257.

Drake JB, Jones PW, Carr GR Jr. Overview of the software design of the community climate
system model. International Journal of High Performance Computing Applications. 2005 Aug;
19(3):177-186.

Dubois P. Testing scientific programs. Computing in Science & Engineering. 2012 Jul-Aug;14(4):
69-73.

Dyba T, Dingsoyr T, Hanssen G. Applying systematic reviews to diverse study types: An
experience report. Empirical Software Engineering and Measurement, 2007. 2007 Sep.:225-234.
ESEM 2007. First International Symposium on.

Easterbrook, SM. Climate change: a grand software challenge; Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. FOSER ‘10. ACM; New York, NY, USA.
2010. p. 99-104.

Easterbrook SM, Johns TC. Engineering the software for understanding climate change.
Computing in Science & Engineering. 2009 Nov-Dec;11(6):65-74.

Eddins SL. Automated software testing for matlab. Computing in Science & Engineering. 2009;
11(6):48-55.

Engstrom E, Runeson P, Skoglund M. A systematic review on regression test selection techniques.
Information and Software Technology. 2010; 52(1):14-30.

Farrell PE, Piggott MD, Gorman GJ, Ham DA, Wilson CR, Bond TM. Automated continuous
verification for numerical simulation. Geoscientific Model Development. 2011; 4(2):435-449.
Guderlei, R.; Mayer, J. Statistical metamorphic testing testing programs with random output by
means of statistical hypothesis tests and metamorphic testing; Quality Software, 2007. QSIC “07.
Seventh International Conference on; 2007 Oct. p. 404-409.

Hannay, JE.; MacLeod, C.; Singer, J.; Langtangen, HP.; Pfahl, D.; Wilson, G. How do scientists
develop and use scientific software?; Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering. SECSE ‘09. IEEE Computer Society;
Washington, DC, USA. 2009. p. 1-8.

Hatton L. The T experiments: errors in scientific software. Computational Science & Engineering,
IEEE. 1997 Apr-Jun;4(2):27-38.

Hatton L, Roberts A. How accurate is scientific software? Software Engineering, IEEE
Transactions on. 1994 Oct; 20(10):785-797.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Page 21

. Heroux, M.; Willenbring, J. Barely sufficient software engineering: 10 practices to improve your
CSE software; Software Engineering for Computational Science and Engineering, 2009. SECSE
‘09. ICSE Workshop on; 2009. p. 15-21.

Heroux, MA.; Willenbring, JM.; Phenow, MN. Improving the development process for CSE
software; Parallel, Distributed and Network-Based Processing, 2007. PDP “07. 15th
EUROMICRO International Conference on; 2007 Feb. p. 11-17.

Hochstein L, Basili V. The asc-alliance projects: A case study of large-scale parallel scientific code
development. Computer. Mar; 41(3):50-58.

Hook, D.; Kelly, D. Testing for trustworthiness in scientific software; Software Engineering for
Computational Science and Engineering, 2009. SECSE ‘09. ICSE Workshop on; 2009 May. p.
59-64.

Kane DW, Hohman MM, Cerami EG, McCormick MW, Kuhimman KF, Byrd JA. Agile methods
in biomedical software development: a multi-site experience report. BMC Bioinformatics. 2006;
7:273. [PubMed: 16734914]

Kanewala, U.; Bieman, J. Using machine learning techniques to detect metamorphic relations for
programs without test oracles; Software Reliability Engineering (ISSRE), 2013 IEEE 24th
International Symposium on; 2013 Nov. p. 1-10.

Kanewala, U.; Bieman, JM. Techniques for testing scientific programs without an oracle; Proc. 5th
International Workshop on Software Engineering for Computational Science and Engineering.
IEEE; 2013. p. 48-57.

Kelly D, Gray R, Shao Y. Examining random and designed tests to detect code mistakes in
scientific software. Journal of Computational Science. 2011; 2(1):47-56.

Kelly D, Hook D, Sanders R. Five recommended practices for computational scientists who write
software. Computing in Science & Engineering. 2009 Sep-Oct;11(5):48-53.

Kelly, D.; Sanders, R. Assessing the quality of scientific software; First International Workshop on
Software Engineering for Computational Science and Engineering; 2008.

Kelly D, Smith S, Meng N. Software engineering for scientists. Computing in Science &
Engineering. 2011 Sep-Oct;13(5):7-11.

Kelly D, Thorsteinson S, Hook D. Scientific software testing: Analysis with four dimensions.
Software, IEEE. 2011 May-Jun;28(3):84-90.

Kitchenham B. Procedures for performing systematic reviews. Technical report, Keele University
and NICTA. 2004

Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature
reviews in software engineering a systematic literature review. Information and Software
Technology. 2009; 51(1):7-15.

Kitchenham, B.; Charters, S. Technical report. Keele University and University of Durham; 2007.
Guidelines for performing systematic literature reviews Vin software engineering (version 2.3).
Kreyman, K.; Parnas, DL.; Qiao, S. CRL Report no. 368. McMaster University; 1999. Inspection
procedures for critical programs that model physical phenomena.

Lane PC, Gobet F. A theory-driven testing methodology for developing scientific software. Journal
of Experimental & Theoretical Artificial Intelligence. 2012; 24(4):421-456.

Lemos, G.; Martins, E. Specification-guided golden run for analysis of robustness testing results;
Software Security and Reliability (SERE), 2012 IEEE Sixth International Conference on; 2012
Jun. p. 157-166.

L.S. Chin DW, Greenough C. A survey of software testing tools for computational science. Tech.
Rep. RAL-TR-2007-010, Rutherford Appleton Laboratory. 2007

Mayer, J.; Guderlei, R. On random testing of image processing applications; Quality Software,
2006. QSIC 2006. Sixth International Conference on; 2006 Oct. p. 85-92.

Mayer, J.; Informationsverarbeitung, AA.; Ulm, U. On testing image processing applications with
statistical methods; In Software Engineering (SE 2005), Lecture Notes in Informatics; 2005. p.
69-78.

Meinke, K.; Niu, F. A learning-based approach to unit testing of numerical software. In: Petrenko,
A.; Simo, A.; Maldonado, J., editors. Testing Software and Systems. Vol. 6435 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg; 2010. p. 221-235.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 22

. Miller G. A scientist’s nightmare: Software problem leads to five retractions. Science. 2006;
314(5807):1856-1857. [PubMed: 17185570]

Morris, C. Some lessons learned reviewing scientific code. Proc; First International Workshop on
Software Engineering for Computational Science and Engineering; 2008.

Morris, C.; Segal, J. Some challenges facing scientific software developers: The case of molecular
biology; e-Science, 2009. e-Science ‘09. Fifth IEEE International Conference on; 2009 Dec. p.
216-222.

Murphy, C.; Kaiser, G.; Arias, M. An approach to software testing of machine learning
applications; 19th International Conference on Software Engineering and Knowledge Engineering
(SEKE); 2007. p. 167-172.

Murphy, C.; Kaiser, G.; Arias, M. Parameterizing random test data according to equivalence
classes; Proceedings of the 2nd international workshop on Random testing: co-located with the
22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007). RT
‘07. ACM; New York, NY, USA. 2007. p. 38-41.

Murphy, C.; Kaiser, G.; Hu, L.; Wu, L. Properties of machine learning applications for use in
metamorphic testing; Proc. of the 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE); 2008 Jul. p. 867-872.

Murphy, C.; Raunak, MS.; King, A.; Chen, S.; Imbriano, C.; Kaiser, G.; Lee, I.; Sokolsky, O.;
Clarke, L.; Osterweil, L. On effective testing of health care simulation software; Proceedings of
the 3rd Workshop on Software Engineering in Health Care. SEHC * 11. ACM; New York, NY,
USA. 2011. p. 40-47.

Murphy, C.; Shen, K.; Kaiser, G. Using JML runtime assertion checking to automate metamorphic
testing in applications without test oracles; Proceedings of the 2009 International Conference on
Software Testing Verification and Validation. ICST ‘09. IEEE Computer Society; Washington,
DC, USA. 2009. p. 436-445.

Nguyen-Hoan, L.; Flint, S.; Sankaranarayana, R. A survey of scientific software development;
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. ESEM “10. ACM; New York, NY, USA. 2010. p. 12:1-12:10.

Pipitone J, Easterbrook S. Assessing climate model software quality: a defect density analysis of
three models. Geoscientific Model Development. 2012; 5(4):1009-1022.

Pitt-Francis J, Bernabeu MO, Cooper J, Garny A, Momtahan L, Oshorne J, Path-manathan P,
Rodriguez B, Whiteley JP, Gavaghan DJ. Chaste: using agile programming techniques to develop
computational biology software. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences. 2008; 366(1878):3111-3136.

Post DE, Kendall RP. Software project management and quality engineering practices for complex,
coupled multiphysics, massively parallel computational simulations: Lessons learned from ASCI.
International Journal of High Performance Computing Applications. 2004 Winter;18(4):399-416.
Remmel H, Paech B, Bastian P, Engwer C. System testing a scientific framework using a
regression-test environment. Computing in Science & Engineering. 2012 Mar-Apr;14(2):38-45.
Reupke, W.; Srinivasan, E.; Rigterink, P.; Card, D. The need for a rigorous development and
testing methodology for medical software; Engineering of Computer-Based Medical Systems,
1988., Proceedings of the Symposium on the; 1988 Jun. p. 15-20.

Sanders, R.; Kelly, D. The challenge of testing scientific software; Proceedings Conference for the
Association for Software Testing (CAST); 2008 Jul. p. 30-36.

Sanders R, Kelly D. Dealing with risk in scientific software development. Software, IEEE. 2008
Jul-Aug;25(4):21-28.

Segal J. When software engineers met research scientists: A case study. Empirical Software
Engineering. 2005; 10:517-536.

Segal J. Some problems of professional end user developers. Visual Languages and Human-
Centric Computing. 2007:111-118. 2007. VL/HCC 2007. IEEE Symposium on.

Segal, J. Models of scientific software development; 2008 Workshop Software Eng. in
Computational Science and Eng. (SECSE 08); 2008.

Segal, J. In: Buckley, J.; VRooksby, J.; Bednarik, R., editors. Scientists and software engineers: A
tale of two cultures; PPIG 2008: Proceedings of the 20th Annual Meeting of the Pschology of

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Kanewala and Bieman

71.

72.

73.

74.

75.

76.

77.

78.
79.
80.

81.

Page 23

Programming Interest Group. Lancaster University, Lancaster, UK, proceedings: 20th annual
meeting of the Psychology of Programming Interest Group; Lancaster; United Kingdom. 2008
Sep. p. 10-12.2008

Segal J. Software development cultures and cooperation problems: a field study of the early stages
of development of software for a scientific community. Computer Supported Cooperative Work.
2009 Dec; Winter;18(5-6):581-606.

Segal, J. Some challenges facing software engineers developing software for scientists; Software
Engineering for Computational Science and Engineering, 2009. SECSE “09. ICSE Workshop on;
2009 May. p. 9-14.

Sletholt M, Hannay J, Pfahl D, Langtangen H. What do we know about scientific software
development’s agile practices? Computing in Science & Engineering. 2012 Mar; 14(2):24-37.
Smith, B. In: Gaffney, P.; Pool, J., editors. A test harness th for numerical applications and
libraries; Grid-Based Problem Solving Environments. VVol. 239 of IFIP The International
Federation for Information Processing; 2007. p. 227-241.

Smith, MC.; Kelsey, RL.; Riese, JM.; Young, GA. In: Trevisani, DA.; Sisti, AF., editors. Creating
a flexible environment for testing scientific software; Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series. Vol. 5423 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series; 2004 Aug. p. 288-296.

Vilkomir, SA.; Swain, WT.; Poore, JH.; Clarno, KT. Modeling input space for testing scientific
computational software: A case study; Proceedings of the 8th international conference on
Computational Science, Part I11. ICCS *08; 2008. p. 291-300.

Walia GS, Carver JC. A systematic literature review to identify and classify software requirement
errors. Information and Software Technology. 2009; 51(7):1087-1109.

Weyuker EJ. On testing non-testable programs. The Computer Journal. 1982; 25(4):465-470.
Wood W, Kleb W. Exploring xp for scientific research. Software, IEEE. 2003; 20(3):30-36.
Xie X, Ho JW, Murphy C, Kaiser G, Xu B, Chen TY. Testing and validating machine learning
classifiers by metamorphic testing. Journal of Systems and Software. 2011; 84(4):544-558.
[PubMed: 21532969]

Yoo, S. Metamorphic testing of stochastic optimisation; Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International Conference on; 2010. p. 192-201.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Kanewala and Bieman Page 24

70

60

Percentage
w A w
© O O

N
o

(WY
o

: H B

Unit testing System Acceptance Integration Regression
testing testing testing testing

Figure 1.
Percentage of studies that applied different testing methods

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Kanewala and Bieman Page 25

70

60

: B I
. 3 4

Number of testing methods conducted

Percentage
w S u
© ©O O

N
o

[y
o

Figure 2.
Number of testing methods applied by the studies

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Table 1

Inclusion and exclusion criteria

Page 26

Inclusion criteria

Exclusion criteria

1

Papers that describe characteristics of scientific software that impact
testing.

Case studies or surveys of scientific soft-ware testing experiences.

Papers that analyze characteristics of scientific software testing
including case studies and experience reports.

Papers describing commonly occurring faults in scientific software.

Papers that describe testing methods used for scientific software and
provide a sufficient evaluation of the method used.

Experience reports or case studies describing testing methods used for
scientific software.

1

Papers that present opinions without
sufficient evidence supporting the opinion.

Studies not related to the research
questions.

Studies in languages other than English.

Papers presenting results without providing
supporting evidence.

Preliminary conference papers of included
journal papers.

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Table 2

Quality assessment for quantitative studies

Page 27

Survey Case study Experiment
G1: Are the study aims clearly stated?
S1: Was the method for collecting the sample N/A N/A
data specified (e.g. postal, interview, web-
based)?
S2: Is there a control group? N/A E1: Is there a control group?
N/A N/A E2: Were the treatments randomly allocated?

G2: Are the data collection methods adequately described?

G3: Was there any statistical assessment of results?

S3: Do the observations support the claims?

C1: Is there enough evidence provided
to support the claims?

E3: Is there enough evidence provided to
support the claims?

G4: Are threats to validity and/or limitations reported?

G5: Can the study be replicated?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

yduasnuel Joyny Yd-HIN

1duasnuely Joyny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Table 3

Quality assessment for qualitative studies

Quality assessment questions

1

2
3
4
5

A: Are the study aims clearly stated?

B: Does the evaluation address its stated aims and purpose?

C: Is sample design/target selection of cases/documents defined?
D: Is enough evidence provided to support the claims?

E: Can the study be replicated?

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 28

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Data extraction form

Table 4

Search focus | Data Item Description
General Identifier Reference number given to the article
Bibliography Author, year, Title, source
Type of article journal/conference/tech. report
Study aims Aims or goals of the study
Study design controlled experiment/survey/etc.
RQ1 Definition Definition for scientific software
Examples A Examples of scientific software
RQ2 Challenge/problem Challenges/problems faced when testing scientific soft-ware
Fault description Description of the fault found
Causes What caused the fault?
RQ3/RQ4 Testing method Description of the method used

Existing/new/extension

Whether the testing method is new, existing or modification
to an existing method

Challenge/problem

The problem/challenge that it provides the answer to

Faults/failures found

Description of the faults/ failures found by the method

Evidence Evidence for the effectiveness of the method of finding
faults
Limitations Limitations of the method

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 29

Page 30

Kanewala and Bieman

2 2JeMYOS [ealpaw-olq Bulurejurew pue Burieald 1oy saydeoidde Juswdojanap ajibe Jo Apnis aanenend [e€] 92Sd
2 2 2IeMYOS 1411UBIS BUISa) 10} SASED 158 Palda|as A][njaJed Jo Jaquinu |fews e Buisn Jo SsauaAndaya ayl Bunenjens [zel G2Sd
» 8JeM1J0S 92UBI0S [euoneINdWOod 3[eds afiue| aAly JO $$8204d Juswdolanap aI1emyos [1€] ¥2Sd
2 2 Apnis ased e ybnouyy paliuap! swes) Juawdolansp aJemiyos J141UsIdS 10} a1qens sadndeld Buliaaulbus aiemyos [62] £25d
2 108(0.d 8seM1y0S 141UBISS B Ul $80119RId dourInsse Aijenb atemyos BulAjddy [og] 225d

2 31BM]JOS J1J13UBIIS UO Paldnpuod juswiadxa Bujwwrelfold uoisian-N [8z] T2Sd

wiyyiobe awes

, , 3y} Jo suoneuawa|dwi Juapuadapul yum suosiredwod pue sisAjeue d1rels ybnoayl a/emyos J141usIds Jo Aoeinade ayy azAjeue o} sjuswiiadx3 [22] 02Sd
2 YoJeasal 419y Ul a1emyos asn pue dojanap SISRUSIOS Moy AJ13Uap! 01 Palonpuod ASAINS e Jo s)nsay [9z] 6TSd

) SUOITRINWIS [eI1IBWINU JO UOITEII1I8A SNONUIUOD PAJeLLO)Ne 10} YIoMaLRl) [vz] 8TSd
, , sweiBoid gy 1LVIN 104 1omauely Buise) un v [eZ] L118d
) 2 21eMmyy0s dojansp oym SISiUaIds ajewl|d Jo Apnis alydelBouylg [tz] 9TSd
2 juawdojanap weiboid Buljapow ayew|o ul pade) sabusjeyd alemiyos uo uoissnasiq [oz] GTSd

, suoneInWIS ANUAIIS Jo Bunsa) ayy Burtewone 4oy 00} v [s1] ¥1Sd

Y Jopow wialsAs arew|d e Buidojansp uo Apnis ased [21] €1Sd
) $3]98J0 INoyNM swesboud Bunsel 1oy sajoelo-opnasd Buisn [o1] 21Sd
2 Suauodwog a1emyos 131IUBIOS J0) SUOILIASSE JO JUSLLIAJIO0NUS [ellied [a1] T1Sd
2 Sjuauodwiod J141UBIYS 10} S319110d JUBLLSII0LUS JIRIUOD 8IBJISIUI JUBIBHHIP JO SSAUBAIDBHT [¥1] 0TSd
2 21eMOS 91J13UBIS BUISa) 10} S19S BIep dousIajal Buisn [eT] 6Sd
2 2 S|apow ajew!|d 1o} Juswdolanap uaALIp 1531 BulAjdde uo saipnis ase) [zT] 8Sd
, 2 swelboad sonewogulolq o) Bunsay alydioweiaw BuiAjdde uo seipnis aseDd [T1] /Sd
) 2 suoienba [enualayip ented uo swesbold 0y Bunsal alydiowelsw Buikjddy [6] 9Sd
2 2 s1aauibua pue s)snULIAS [euoijeindwod uo AsAINg [8] GSd

2 s109(0.d Juswdolanap a1emyos J1313UBIIS JO SAIPNIS aseD) [2] ¥Sd

2 uoINoaxa a1joquiAs Buisn swresboud Jutod Buiyeoly 1oy uolelauab ased 1sa | [g] £Sd

, JUBWAO[aA3P BJBMIOS I141UBIIS BULINP INO paLiIed syse) Buliaaulbus a/emyos [2] 25d

Y 2 ABojosnaw ul pasn sabexoed asemyos Buisa) uo Apnis ased v [1] TSd
yOY | £Od | 20Y | TOY sn20j Apmis | "ON ‘434 | "ON Apms

NIH-PA Author Manuscript

(T ued) sa1pms Arewid pa1os|ss

G 9lqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

PMC 2015 October 01.

in

available

Inf Softw Technol. Author manuscript

Page 31

Kanewala and Bieman

1 2 Vs asemyyos Buidojanap sisiualds Ag punoy sabusjjeyd 03 suoin|os apincid ued yaleasal Buliaauibus a1emiyos moH [6€] 0£Sd
1 1 aremyos [euoneindwiod dojanap 1eys SISUBINS J0 saonoeld Juswissasse Alend) [8€] 62Sd

1 $S329NS ey OYM SISIUBIOS JO ddusLIadxa ybnoJyl paurelqo s1snusids [euoeindwod Joj sanbiuyds) Bulisauibus a1emiyos [nyasn [2€] 82Sd

, , 9JeMJos J1IUBIIS Ul S)Ney BuoaIap J0j Sased 153} paubisap pue sased 1S3} WOpUeJ JO SSaUBAII8YA 8y} Buledwo) [og] 12Sd

yOd | €O | 20 | TON snooy Apms | oN 4o | oN Apmis

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 32

Kanewala and Bieman

1 8JeM1yos d14nuaIds Buidojanap 1oy ABojopoyiaw uawdojansap paj-luswndop feuonipel) buiAjdde uo Apnis ased v [29] ' 96Sd

Ve Juawdo|anap a1emos J11IUBIAS JO SAIPMIS plaly ajdiy N ybBnoayy pary1uSP! JUBWAO[BASP BIBMIOS J1J1IUSIOS JO [8POW VY [69] §6Sd

2 84n}|nd Juswdojanap Jasn-pua |euolssayold uo salpnis ased [12] ¥5Sd

1 SIS1IUBIDS 10} a1emyyos dojanap oym siaaulbua aremiyos Aq padey sabusjieyd [2] £6Sd

1 SP|914 JUBIBHIP UL SAIPNIS 8sed YBNoIy) palsiuap! Juswdojanap a1emyos d1413UaIdS UISWa|qold [89] 255d

1 3IeM1J0S 2131UB19s dojanap 01 Jayiahol yom siaauibua alemyos pue s1siualds usym Buisie swajqold Jo Apms [o] T16Sd
91eM0Ss

, Ve , 91}13U819S 3SN/dO[BABP OUM SISIIUBIIS I INO PaLLIEI SMBIAIBIUI YBNOJY} paijiiuapl 81emiyos d1413uslos Bunsal usym padey sabusjfeyd [go] 05Sd

2 1 JusWdoanap 8JeMIL0S I1J1IUBIIS JO SI1ISLIBIORIRYD By} AlIuapl 01 ASAINS v [99] 67Sd

2 Buisel pue Juswidojansp a1emiyos [edIpajN [¥a] 87Sd

1 1 Aljigerien abiel yum sydomauely o1313ualds Buisal usym sased 1sa] Bunos|as 104 Buijppow Aljigerien buiAjddy [ea] 1¥Sd

2 s199(04d Juswdolanap a1emyos J1J1IUBIIS WOL) PaUILd| SUOSSST [za] 9%Sd

1 1 alemyyos ABojoiq [euoneindwod Buidojanap oy ssadoid Juswdojansp ajibe BuiAjddy [1o] G¥Sd

1 A31suap 10849p JO SWIB) Ul S|apoW 3yewi|d Jo Aujenb Jo sisAjeuy [o9] ¥Sd

2 2 s1adojanap a1emyos J1311UsIS JO ABAINS [65] £7Sd

2 1 Bunsay alydiowelsw Buisn aremyyos uone nwis ased yieay bunss | [26] 2vSd

2 suolrealjdde Buiures| sulyoew Bunsay 1oy Bunss) alydiowelsw BuiAjddy [9g] T¥Sd

P 2 swypioBe Buiuses| aulydew Bunsal 10y SPOYIBIA [vs] 0¥Sd

1 suonealjdde Buiures) sulyoew Bunsa) 1oy s19s eyep abe| Buiressush Ajwopuel 1o) yiomawel) [ga] 6€Sd

1 ABojo1q Jejndsjow Jo pIaly 8yl Ul SISRUBINS 10} atemijos Buidojanap sisaulbus aremyos Aq padey sebusjjeyd [ga] 8€Sd

swelboud 21313UB19S JO SMaIABL 3p02 YBNo.IY) paules] SUossaT [za] 1€Sd

1 swesBoid [eariswinu 1o} Sased 158 J0 uoijesaual d1jewolne 1oy poysw paseq-Hulures) v [os] 9¢Sd

2 suoireorjdde Buissasoid abewl 1581 0] S3|oRI0 [RoNISIelS Buisn [6] GESd

2 swiesBoud Buissaoold abew Joy Bunsal oydiowrelsw BuiA|ddy [8¥] $£Sd

1 swiesBoad o1yus1os Builsael 1oy ainjoayase Buiisal aAs] aaay) e Buisn uo Apnis ased [sv] £€Sd

1 NWVY1L -4O4 u1 uanim swesbold o131ualds 1oy sjool Bunsay uo Asains v [29] 26Sd

2 2 21eM1J0S J1411UBIDS 01 SanIANe Bunsa) BuiAjdde jo Apnis aseo v [ov] T€Sd

v | €Od | 20y | 1Od snooj Apmis | ‘oN jed | ‘oN Apmis

NIH-PA Author Manuscript

(2 Wed) sa1pms Arewid pa1os|ss

9 9|qel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

PMC 2015 October 01.

in

available

Inf Softw Technol. Author manuscript

Page 33

Kanewala and Bieman

Y , aIemyos 2131ua10s dojanap 01 Bulwwresfold swaiixa BuiAjdde usym ysejo ainnd [62] 29Sd
1 , swelboud ajgeisal-uou Bunsa | [8/] T19Sd
, , sJa1awesed Indul usamag satouspuadap ale 18y} UBYM 8IeMIOS J1J1USIDS JO UOIeIauah ased 1sa) J0) poylaw v [901 09Sd
Vs 1 8JeM1JOS J14NUBIDS Jo Bunsa) uoissaibal Bunonpuod 1oy iomawely Bunss) v [s/] 65Sd
Y swresfold [eouswINU oy ssauley 158} [v2] 8GSd
awdoaAap 81eMOS JIHIUBIIS
, , ur saonoeld a1be Buisn Jo s10a)J8 ay) pue seonoeld a]16k saydlew JUBWAO[BASP S4eMIJOS J1J1IUSIIS MOY UO SAIPNIS 8Sed pue MaIASI ainyelallT] [e21 1GSd
yOd | €O | 20 | TON snooy Apms | oN 4o | oN Apmis

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman Page 34
Table 7
Publication venues of primary studies
Publication venue Type Count | %
International Workshop on Software Engineering for Computational Science and Engineering Workshop 7 11.3
Computing in Science & Engineering Journal 11.3
|EEE Software Journal 5 8.1
BMC Bioinformatics Journal 2 3.2
Geoscientific Model Development Journal 2 3.2
International Conference on Software Engineering and Knowledge Engineering Conference 2 3.2
International Journal of High Performance Computing Applications Journal 2 3.2
Lecture Notes in Computer Science Book chapter 2 3.2
Journal of the Brazilian Society of Mechanical Sciences and Engineering Journal 1 1.6
International Conference on Software Testing, Verification and Validation Conference 1 1.6
International Conference on Software Engineering Conference 1 1.6
Sandia National Laboratories-Technical report Tech. report 1 1.6
Computer Software and Applications Conference Conference 1 1.6
Analytica Chimica Acta Journal 1 1.6
International Workshop on Software Engineering for High Performance Computing System Applications | Workshop 1 16
ACM ‘81 Conference Conference 1 1.6
FSE/SDP Workshop on Future of Software Engineering Research Workshop 1 1.6
IEEE Computational Science & Engineering Journal 1 1.6
IEEE Transactions on Software Engineering Journal 1 16
EUROMICRO International Conference on Parallel, Distributed and Network- Based Processing Conference 1 1.6
IEEE Computer Journal 1 16
Journal of Computational Science Journal 1 1.6
Rutherford Appleton Laboratory-Technical report Tech. report 1 1.6
Journal of Experimental & Theoretical Artificial Intelligence Journal 1 1.6
International Conference on Quality Software Conference 1 1.6
Lecture Notes in Informatics Book chapter 1 1.6
International Conference on e-Science Conference 1 1.6
International Workshop on Random testing Conference 1 1.6
Workshop on Software Engineering in Health Care Workshop 1 1.6
International Symposium on Empirical Software Engineering and Measurement Conference 1 1.6
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Journal 1 1.6
Symposium on the Engineering of Computer-Based Medical Systems Conference 1 1.6
Conference for the Association for Software Testing Conference 1 1.6
Annual Meeting of the Psychology of Programming Interest Group Conference 1 1.6
Symposium on Visual Languages and Human-Centric Computing Conference 1 1.6
Computer Supported Cooperative Work Journal 1 1.6
Empirical Software Engineering Journal 1 1.6

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Page 35

Publication venue Type Count | %
Grid-Based Problem Solving Environments Journal 1 1.6
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Conference 1 1.6
International Conference on Computational Science Conference 1 1.6
The Computer Journal Journal 1 1.6

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 36

Kanewala and Bieman

¢dnoub jonuod e 818yl S| :13 ‘S
¢pary1oads eyep ajdwes ayy Huida]|09 1oy poylsw ayr SepA (TS

¢parels A1ea)d swie Apnis ayl aly 19

seh | ou | w/N | sk | w/N | ou | sehk | w/N | WIN | W/N | W/IN [soh [6.]
sk ou sak | WIN | WIN ou | seA ou sak | W/N | W/N | seh [os]

ou ou 8k | WIN | W/N | s8A | sok ou ou | /N | VIN | sok [82]

ou ou 9k | WIN | W/N | seA | sok ou ou | v/N | VIN | sek [22]
sak | saA | W/N | VIN sak ou | s8h | w/N | W/N ou sohk | sak [92]
sk ou sak | WIN | WIN ou | seA ou sak | W/N | W/N | seA [s]

ou | sehk | w/N | sehk | w/N | ou | sehk | w/N [W/N | W/N | W/IN [soh [6.]
so | ou | w/N | sk | w/N | ou | sek | w/N [WIN | WIN | WIN | sok [e]
soh | sak | w/N | sek | w/N | ou | sek | w/N | WIN | W/N | WIN | soh [t1]
sk ou sak | WIN | WIN ou | seA ou ou | v/N | VIN | sek [81]
sk ou sak | VIN | VIN ou | sak ou sak | W/IN | W/N | seA [vT]
sk ou sak | WIN | WIN ou | seA ou sak | W/N | W/N | seA [z€]
seh | ou | w/N | sk | w/N | ou | sehk | w/N | WIN | WIN | W/IN | soh [e9]
sok | ou | w/N | seA | w/N | ou | sek | w/N | W/IN | WIN | VIN | sk [to]
sak | sA | W/N | VIN sak ou | s8h | w/N | W/N ou sohk | sak [65]
sk ou | vN | WVIN sak | sehk | saA | w/N | W/N ou sok | sok [8]
sok ou sak | VIN | VIN ou | sak ou sak | W/IN | W/N | seA [sT]
sk ou sahk | WIN | W/N | seA | sok ou ou | W/N | VIN | sek [eT]
seh | ou | w/N | sk | w/N | ou|sehk | w/N | WIN | W/N | WIN [soh [1]
soh | sak | w/N | sek | w/N | ou | sek | w/N [WIN | WIN | WIN | sok [09]
sok ou 8k | WIN | W/N | s8A | sok ou sak | W/IN | W/N | seA [9g]
sohk | sok sak | WIN | WIN ou | seA ou ou | W/N | VIN | sek [5s]
sohk | sak sak | VIN | VIN ou | sak ou ou | /N | VIN | sok [26]

ou| ou | wN| seA| wN]| ou| ou|WwN|WN]|WVN]|WVN]|SsK [27]
SO | ¥O €3 70 €S |1 €9 | 2¢O 3 73 Zs TS | 19 | ON 183y

sa1pn)s aAnelnuenb Jo s)jnsal Juswissasse Alend

8 9lqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 37

Kanewala and Bieman

¢paredtjdal ag Apnis ay) ueD GO

¢paniodal suonelwi| Jo/pue AlpIjeA 0] SJealyl aly 79

¢swied ayy yoddns 03 papiaoid aduspias ybnous alayl S| :€3 ‘1D
¢Swire]d sy Loddns suolyenasqo ayy 0q (€S

$SHNSaI 4O JUBLLSSASSE [eaNsIeIS Aue a1ayl Sepn €9

¢PagLIasap Ajarenbape spoylaw UoIIda[|02 Blep 8yl Al 129

¢Pa1eo| e ALIopUES SJUBWYeal) Y} BI8N 123

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 38

Kanewala and Bieman

NIH-PA Author Manuscript

6 dlqel

NIH-PA Author Manuscript

ou | sak | sah | sek | sak [62]
soh | sak | sak | sek | sk [vs]
ou | sak | sah | sek | sak [89]
ou | sak | sah | sek | sk [2]
sah | sak | sah | sok | sak [12]
soh | sak | sak | sek | sk [02]
ou | sak | ou | sek | sak [oT]
soh | sak | sak | sek | sk [6]
sah | sak | sak | sok | sok [1€]
soh | sak | sak | sek | sk [9s]
ou | sak | sah | sek | sak [a¥]
ou | sak | sah | sek | sk [v2]
sah | sak | sak | sok | sok [8T]
ou | sak | ou | sek | sak [zT]
ou | sak | sah | sek | sak [99]
ou | sak | sah | sek | sk [8€]
ou | sak | ou | sek | sak [oz]
ou | sak | ou | sek | sak [2¥]
ou | sak | sah | sek | sak [og]
ou | sak | ou | sek | sak [a2]
ou | sak | sah | sek | sak [6€]
ou | sak | ou | sek | sak [or]
ou | sak | sah | sek | sak [2]
ou | sak | sah | sek | sk [es]
ou | sak | ou | sek | sak [29]
ou | sak | ou | sek | sak [9]
sah | sak | sak | sok | sak [z9]
3 d o) 3| V | ON J3d

Sa1pN1s aAlrelljenb Jo S nsal Juswssasse Alfend

NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

Page 39

Kanewala and Bieman

¢parearjdal aq Apnis ay3 ueD :3

¢swired ayr woddns 01 papinoid souspiAs ybnous s| :a

¢PaUILaP SIUBWINIOP/S3sed JO UoNda|as 18beyubisap ajdwes s| 1D
¢asodind pue swie pajels sH ssaippe UoleNn|eAs ay) seoq g

¢patels Aead swie Apnis ayy a1y

ou | ou | ou | sek | sak [82]
soh | sak | sah | sek | seh [ez]
ou | sak | sah | sek | sok [69]
ou | sak | sah | sek | seh [22]
sah | sak | sak | sek | sok [g9]
ou | ou | ou | sek | sehk [e2]
sah | sak | sak | sek | sok [T2]
soh | sak | sah | sek | seh [za]
ou | sak | ou | sek | sak [€]
ou | sak | sah | sek | seh [v2]
ou | sak | sah | sek | sak [eg]
El d o) 4d V | ON J3d

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman Page 40
Table 10
Details of scientific software listed in primary studies

Ref. No. | Description Programing language | Size

[64] Medical software (e.g. software for blood chemistry analyzer and medical image N/S N/S
processing system)

[62] Nuclear weapons simulation software FORTRAN 500 KLOC

[17, 20] Climate modeling software N/S N/S

[67] Embedded software for spacecrafts N/S N/S

[53] Software developed for space scientists and biologists N/S N/S

[2] Control and data acquisition software for Synchrotron Radiation Source (SRS) Java N/S
experiment stations

[57] Health care simulation software(e.g. discreet event simulation engine and insulin Java, MAT- LAB N/S
titration algorithm simulation)

[55] Machine learning ranking algorithm implementations Perl, C N/S

[60] Climate modeling software FORTRAN, C 400 KLOC

[40] Astronomy software package MAT LAB, C++ 10 KLOC

[1] Software packages providing uncertainty estimates for tri-dimensional measurements | N/S N/S

[75] Implementation of a time dependent simulation of a complex physical system N/S N/S

[15] Implementation of scientific mesh traversal algorithms N/S 38-50 LOC

[30] Implementations of parallel solver algorithms and libraries for large scale, complex, N/S N/S
multi physics engineering and scientific applications

[61] Software for cardiac modeling in computational biology C++, Python 50 KLOC

[24] Numerical simulations in geophysical fluid dynamics N/S N/S

[63] Program for solving partial differential equations C++ 250 KLOC

[12] Calculates the trajectory of the billions of air particles in the atmosphere C++ N/S

[12] Implementation of a numerical model that simulates the growth of virtual snow C++ N/S
flakes

[14] Implementations of mesh traversal algorithms N/S N/S

[48] Image processing application N/S N/S

[11] Bioinformatics program for analyzing and simulating gene regulatory net- works and | N/S N/S
mapping short sequence reads to a reference genome

[55, 54] Implementations of machine learning algorithms N/S N/S

[31] Simulations in solid mechanics, fluid mechanics and combustion C, C++, FOR- TRAN 100-500 KLOC

[79] Program to evaluate the performance of a numerical scheme to solve a model Ruby 25KLOC
advection-diffusion problem

[49] Implementation of dilation of binary images N/S N/S

[71] Infrastructure software for the structural protein community N/S N/S

[7] Performance prediction software for a product that otherwise requires large, FORTRAN, C 405 KLOC
expensive and potentially dangerous empirical tests for performance evaluation

[7] Provide computational predictions to analyze the manufacturing process of C++,C 134 KLOC
composite material products

[7] Simulation of material behavior when placed under extreme stress FORTRAN 200 KLOC

[7] Provide real-time processing of sensor data C++, MAT- LAB 100 KLOC

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Kanewala and Bieman

Page 41

Ref. No. | Description Programing language | Size

[7] Calculate the properties of molecules using computational quantum mechanical FORTRAN 750 KLOC
models

[5] Program for avoiding collisions in unmanned aircrafts C N/S

[29] Numerical libraries to be used by computational science and engineering software N/S N/S

projects

Inf Softw Technol. Author manuscript; available in PMC 2015 October 01.

