Search-Based Automated Testing of Continuous
Controllers: Framework, Tool Support, and Case Studies

Reza Matinnejad, Shiva Nejati, Lionel Briand

SnT center, University of Luxembourg, 4 rue Alphonse Weicker, L-2721 Luxembourg, Luxembourg

Thomas Bruckmann, Claude Poull

Delphi Automotive Systems, Avenue de Luxembourg, L-4940 Bascharage, Luxembourg

Abstract

Context. Testing and verification of automotive embedded software is a major chal-
lenge. Software production in automotive domain comprises three stages: Developing
automotive functions as Simulink models, generating code from the models, and de-
ploying the resulting code on hardware devices. Automotive software artifacts are sub-
ject to three rounds of testing corresponding to the three production stages: Model-in-
the-Loop (MiL), Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) testing.

Objective. We study testing of continuous controllers at the Model-in-Loop (MiL)
level where both the controller and the environment are represented by models and
connected in a closed loop system. These controllers make up a large part of automotive
functions, and monitor and control the operating conditions of physical devices.

Method. We identify a set of requirements characterizing the behavior of continu-
ous controllers, and develop a search-based technique based on random search, adap-
tive random search, hill climbing and simulated annealing algorithms to automatically
identify worst-case test scenarios which are utilized to generate test cases for these
requirements.

Results. We evaluated our approach by applying it to an industrial automotive con-
troller (with 443 Simulink blocks) and to a publicly available controller (with 21 Simulink
blocks). Our experience shows that automatically generated test cases lead to MiL
level simulations indicating potential violations of the system requirements. Further,
not only does our approach generate significantly better test cases faster than random
test case generation, but it also achieves better results than test scenarios devised by
domain experts. Finally, our generated test cases uncover discrepancies between envi-
ronment models and the real world when they are applied at the Hardware-in-the-Loop

Email addresses: reza.matinnejad@uni.lu (Reza Matinnejad), shiva.nejati@uni.lu
(Shiva Nejati), 1ionel.briand@uni. lu (Lionel Briand), thomas.bruckmann@delphi.com
(Thomas Bruckmann), claude.poull@delphi . com (Claude Poull)

Preprint submitted to Information and Software Technology April 28, 2014

(HiL) level.

Conclusion. We propose an automated approach to MiL testing of continuous con-
trollers using search. The approach is implemented in a tool and has been successfully
applied to a real case study from the automotive domain.

Keywords: Search-Based Testing, Continuous Controllers, Model-in-the-Loop
Testing, Automotive Software Systems, Simulink Models

1. Introduction

Modern vehicles are increasingly equipped with Electronic Control Units (ECUs).
The amount and the complexity of software embedded in the ECUs of today’s vehi-
cles is rapidly increasing. To ensure the high quality of software and software-based
functions on ECUs, the automotive and ECU manufacturers have to rely on effective
techniques for verification and validation of their software systems. A large group of
automotive software functions require to monitor and control the operating conditions
of physical components. Examples are functions controlling engines, brakes, seatbelts,
and airbags. These controllers are widely studied in the control theory domain as con-
tinuous controllers [1, 2] where the focus has been to optimize their design for a specific
application or a specific hardware configuration [3, 4, 5]. Yet a complementary and im-
portant problem, of how to systematically and automatically test controllers to ensure
their correctness and safety, has received almost no attention in control engineering
research [1].

In this article, we concentrate on the problem of automatic and systematic test
case generation for continuous controllers. The principal challenges when analyzing
such controllers stem from their continuous interactions with the physical environment,
usually through feedback loops where the environment impacts computations and vice
versa. We study the testing of controllers at an early stage where both the controller
and the environment are represented by models and connected in a closed feedback
loop process. In model-based approaches to embedded software design, this level is
referred to as Model-in-the-Loop (MiL) testing.

Testing continuous aspects of control systems is challenging and is not yet sup-
ported by existing tools and techniques [1, 3, 4]. There is a large body of research on
testing mixed discrete-continuous behaviors of embedded software systems where the
system under test is represented using state machines, hybrid automata, and hybrid petri
nets [6, 7, 8]. For these models, test case generation techniques have been introduced
based on meta-heuristic search and model checking [9, 10]. These techniques, how-
ever, are not amenable to testing purely continuous properties of controllers described
in terms of mathematical models, and in particular, differential equations. A number
of commercial verification and testing tools have been developed, aiming to generate
test cases for MATLAB/Simulink models, namely the Simulink Design Verifier soft-
ware [11], and Reactis Tester [12]. Currently, these tools handle only combinatorial
and logical blocks of the MATLAB/Simulink models, and fail to generate test cases
that specifically evaluate continuous blocks (e.g., integrators) [1].

Contributions. In this article, we propose a search-based approach to automate gen-
eration of MiL level test cases for continuous controllers. We identify a set of common

requirements characterizing the desired behavior of such controllers. We develop a
search-based technique to generate stress test cases attempting to violate these require-
ments by combining explorative and exploitative search algorithms [13]. Specifically,
we first apply a purely explorative random search to evaluate a number of input signals
distributed across the search space. Combining the domain experts’ knowledge and
random search results, we select a number of regions that are more likely to lead to
critical requirement violations in practice. We then start from the worst-case input sig-
nals found during exploration, and apply an exploitative single-state search [13] to the
selected regions to identify test cases for the controller requirements. Our search algo-
rithms rely on objective functions created by formalizing the controller requirements.

We have implemented our approach in a tool, called Continuous Controller Tester
(CoCoTest). We evaluated our approach by applying it to an automotive air compres-
sor module and to a publicly available controller model. Our experiments show that
our approach automatically generates several test cases for which the MiL level sim-
ulations indicate potential errors in the controller model or in the environment model.
Furthermore, the resulting test cases had not been previously found by manual testing
based on domain expertise. In addition, our approach computes test cases better and
faster than a random test case generation strategy. Finally, our generated test cases
uncover discrepancies between environment models and the real world when they are
applied at the Hardware-in-the-Loop (HiL) level.

Organization. This article is organized as follows. Section 2 introduces the indus-
trial background of our research. Section 3 precisely formulates the problem we aim to
address in this article. Section 4 outlines our solution approach and describes how we
cast our MiL testing approach as a search problem. Our MiL testing tool, CoCoTest,
and the results of our evaluation of the proposed MiL testing approach are presented in
Sections 5 and 6, respectively. Section 7 compares our contributions with related work.
Finally, Section 8 concludes the article.

2. MiL Testing of Continuous Controllers: Practice and Challenges

Control system development involves building of control software (controllers) to
interact with mechatronic systems usually referred to as plants or environment [2]. An
abstract view of such controllers and their plant models is shown in Figure 1(a). These
controllers are commonly used in many domains such as manufacturing, robotics, and
automotive. Model-based development of control systems is typically carried out in
three major levels described below. The models created through these levels become
increasingly more similar to real controllers, while verification and testing of these
models becomes successively more complex and expensive.

Model-in-the-Loop (MiL): At this level, a model for the controller and a model for
the plant are created in the same notation and connected in the same diagram. In
many sectors and in particular in the automotive domain, these models are created in
MATLAB/Simulink. The MiL simulation and testing is performed entirely in a virtual
environment and without any need for any physical component. The focus of MiL
testing is to verify the control behavior or logic, and to ensure that the interactions
between the controller and the plant do not violate the system requirements.

Software-in-the-Loop (SiL): At this level, the controller model is converted to code
(either autocoded or manually). This often includes the conversion of floating point

(@ (b)

System Desired
Output Value

; +l o Kpe(t) P +
- E = ¢ .
rror co(gtl;(.:;_l)ler — "> Srror Kr J e(t)dt 1 +

K50 o

output(t) desired(t)

Actual
Value

actual(t)

Plant Model Plant Model

Figure 1: Continuous controllers: (a) A MiL level controller-plant model, and (b) a generic PID formulation
of a continuous controller.

data types into fixed-point values as well as addition of hardware-specific libraries.
The testing at the SiL level is still performed in a virtual and simulated environment
like MiL, but the focus is on controller code which can run on the target platform.
Further, in contrast to verifying the behavior, SiL testing aims to ensure correctness of
floating point to fixed-point conversion and the conformance of code to control models,
especially in contexts where coding is (partly) manual.

Hardware-in-the-Loop (HiL): At this level, the controller software is fully installed
into the final control system (e.g., in our case, the controller software is installed on
the ECUs). The plant is either a real piece of hardware, or is some software (HiL plant
model) that runs on a real-time computer with physical signal simulation to lead the
controller into believing that it is being used on a real plant. The main objective of HiLL
is to verify the integration of hardware and software in a more realistic environment.
HiL testing is the closest to reality, but is also the most expensive among the three
testing levels and performing the test takes the longest at this level.

In this article, among the above three levels, we focus on the MiL level testing.
MiL testing is the primary level intended for verification of the control behavior and
ensuring the satisfaction of their requirements. Development and testing at this level
is considerably fast as the engineers can quickly modify the control model and im-
mediately test the system. Furthermore, MiL testing is entirely performed in a virtual
environment, enabling execution of a large number of test cases. Finally, the MiL level
test cases can later be used at SiL and HiL levels either directly or after some adapta-
tions.

Currently, in most companies, MiL level testing of controllers is limited to running
the controller-plant Simulink model (e.g., Figure 1(a)) for a small number of simula-
tions, and manually inspecting the results of individual simulations. The simulations
are often selected based on the engineers’ domain knowledge and experience, but in a
rather ad hoc way. Such simulations are useful for checking the overall sanity of the
control behavior, but cannot be taken as a substitute for systematic MiL testing. Man-
ual simulations fail to find erroneous scenarios that the engineers might not be aware
of a priori. Identifying such scenarios later during SiL/HiL is much more difficult and
expensive than during MiL testing. Also, manual simulation is by definition limited in
scale and scope.

Our goal is to develop an automated MiL testing technique to verify controller-plant

systems. To do so, we formalize the properties of continuous controllers regarding the
functional, performance, and safety aspects. We develop an automated test case gener-
ation approach to evaluate controllers with respect to these properties. In our work, the
test inputs are signals, and the test outputs are measured over the simulation diagrams
generated by MATLAB/Simulink plant models. The simulations are discretized where
the controller output is sampled at a rate of a few milliseconds. To generate test cases,
we combine two search algorithms: (1) An explorative random search that allows us
to achieve high diversity of test inputs in the space, and to identify the most critical
regions that need to be explored further. (2) An exploitative search that enables us to
focus our search and compute worst-case scenarios in the identified critical regions.

3. Problem Formulation

Figure 1(a) shows an overview of a controller-plant model at the MiL level. Both
the controller and the plant are captured as models and linked via virtual connections.
We refer to the input of the controller-plant system as desired or reference value. For
example, the desired value may represent the location we want a robot to move to,
the speed we require an engine to reach, or the position we need a valve to arrive at.
The system output or the actual value represents the actual state/position/speed of the
hardware components in the plant. The actual value is expected to reach the desired
value over a certain time limit, making the Error, i.e., the difference between the actual
and desired values, eventually zero. The task of the controller is to eliminate the error
by manipulating the plant to obtain the desired effect on the system output.

The overall objective of the controller in Figure 1(a) may sound simple. In re-
ality, however, the design of such controllers requires calculating proper corrective
actions for the controller to stabilize the system within a certain time limit, and fur-
ther, to guarantee that the hardware components will eventually reach the desired state
without oscillating too much around it and without any damage. A controller design
is typically implemented via complex differential equations known as proportional-
integral-derivative (PID) [2]. Figure 1(b) shows the generic (most basic) formulation
of a PID equation. Let e(¢) be the difference between desired(t) and actual(t) (i.e.,
error). A PID equation is a summation of three terms: (1) a proportional term K pe(t),

(2) an integral term K f e(t)dt, and (3) a derivative term K p dfi—(tt). Note that the PID
formulation for real world controllers are more complex than the formula shown in
Figure 1(b). Figure 2 shows a typical output diagram of a PID controller. As shown in
the figure, the actual value starts at an initial value (here zero), and gradually moves to
reach and stabilize at a value close to the desired value.

Continuous controllers are characterized by a number of generic requirements dis-
cussed in Section 3.1. Having specified the requirements of continuous controllers, we
show in Section 3.2 how we define testing objectives based on these requirements, and
how we formulate MiL testing of continuous controllers as a search problem.

3.1. Testing Continuous Controller Requirements

To ensure that a controller design is satisfactory, engineers perform several simula-
tions, and analyze the output simulation diagram (Figure 2) with respect to a number

Desired & Actual Value

------ Desired Value

Actual Value

time

Figure 2: A typical example of a continuous controller output.

of requirements. After careful investigations, we identified the following requirements
for controllers:

Liveness (functional): The controller shall guarantee that the actual value will reach
the desired value within ¢; seconds. This is to ensure that the controller indeed satisfies
its main functional requirement.

Stability (safety, functional): The actual value shall stabilize at the desired value after
to seconds. This is to make sure that the actual value does not divert from the desired
value or does not keep oscillating around the desired value after reaching it.

Smoothness (safety): The actual value shall not change abruptly when it is close to
the desired one. That is, the difference between the actual and desired values shall
not exceed vq, once the difference has already reached v; for the first time. This is to
ensure that the controller does not damage any physical devices by sharply changing
the actual value when the error is small.

Responsiveness (performance): The difference between the actual and desired values
shall be at most vs within t3 seconds, ensuring the controller responds within a time
limit.

The above four requirement templates are illustrated on a typical controller output
diagram in Figure 3 where the parameters t1, to, t3, v1, v2, and vs are represented. The
first three parameters represent time while the last three are described in terms of the
controller output values. As shown in the figure, given specific controller requirements
with concrete parameters and given an output diagram of a controller under test, we can
determine whether that particular controller output satisfies the given requirements.

Having discussed the controller requirements and outputs, we now describe how
we generate input test values for a given controller. Typically, controllers have a large
number of configuration parameters that affect their behaviors. For the configuration
parameters, we use a value assignment commonly used for HiL testing because it en-
ables us to compare the results of MiL and HiL testing. In our approach, we focus
on two essential controller inputs in our MiL testing approach: (1) the initial actual
value, and (2) the desired value. Among these two inputs, the desired value can be
easily manipulated externally. However, since the controller is a closed loop system,
it is not generally possible to modify the initial actual value and start the system from
an arbitrary initial state. In general, the initial actual state, which is usually set to zero,

(a) Liveness (b) Stability

Desired Value

Actual Value

Desired & Actual Values

No Oscilation

C) Smoothness

d) Responsiveness

Desired & Actual Values

te time time

Figure 3: The controller requirements illustrated on the controller output: (a) Liveness, (b) Stability, (c)
Smoothness, and (d) Responsiveness.

depends on the plant model and cannot be manipulated externally. Assuming that the
system always starts from zero is like testing a cruise controller only for positive car
speed increases, and missing a whole range of speed decreasing scenarios.

To eliminate this restriction, we provide a step signal for the desired value of the
controller (see examples of step signals in Figure 3 and Figure 4(a)). The step signal
consists of two consecutive constant signals such that the first one sets the controller at
the initial desired value, and the second one moves the controller to the final desired
value. The lengths of the two signals in a step signal are equal (see Figure 4(a)), and
should be sufficiently long to give the controller enough time to stabilize at each of the
initial and final desired values. Figure 4(b) shows an example of a controller output
diagram for the input step signal in Figure 4(a).

3.2. Formulating MiL Testing as a Search Problem

Given a controller-plant model and a set of controller requirements, the goal of MiLL
testing is to generate controller input values such that the resulting controller output
values violate, or become close to violating, the given requirements. Based on this
description, any MiL testing strategy has to perform the following common tasks: (1) It
should generate input signals to the controller, i.e., step signal in Figure 4(a). (2) It
should receive the output, i.e., Actual in Figure 4(b), from the controller model, and
evaluate the output against the controller requirements. Below, we first formalize the
controller input and output, and then, we derive five objective functions from the four
requirements introduced in Section 3.1. Specifically, we develop one objective function

Desired Value Desired Value

Initial

. Actual Value
Desired Valug=================-===--~ \ beddeccomcomccmacccnnn

Final
Desired Value

T2 T T2 T
time time

Figure 4: Controller input step signals: (a) Step signal. (b) Output of the controller (actual) given the input
step signal (desired).

for each of the liveness, stability and responsiveness requirements, and two objective
functions for the smoothness requirement.

Controller input and output: Let 7 = {0,...,T} be a set of time points during
which we observe the controller behavior, and let min and max be the minimum and
maximum values for the Actual and Desired attributes in Figure 1(a). In our work,
since input is assumed to be a step signal, the observation time 7' is chosen to be
long enough so that the controller can reach and stabilize at two different Desired po-
sitions successively (e.g., see Figure 4(b)). Note that Actual and Desired are of the
same type and bounded within the same range, denoted by [min...max]. As dis-
cussed in Section 3, the test inputs are step signals representing the Desired values
(e.g. Figure 4(a)). We define an input step signal in our approach to be a function
Desired: T — {min,...,max} such that there exists a pair Initial Desired and
Final Desired of values in [min...max] that satisfy the following conditions:

Vt-0<t< L = Desired(t) = Initial Desired \

Vt- L <t <T = Desired(t) = Final Desired

We define the controller output, i.e., Actual, to be a function
Actual : 7 — {min,...,max} that is produced by the given controller-plant model,
e.g., in MATLAB/Simulink environment.

The search space in our problem is the set of all possible input functions, i.e., the
Desired function. Each Desired function is characterized by the pair Initial Desired
and Final Desired values. In control system development, it is common to use float-
ing point data types at MiL level. Therefore, the search space in our work is the set of
all pairs of floating point values for Initial Desired and Final Desired within the
[min...max] range.

Objective Functions: Our goal is to guide the search to identify input functions in the
search space that are more likely to break the properties discussed in Section 3.1. To
do so, we create the following five objective functions:

e Liveness: Let t; be the liveness property parameter in Section 3.1. We define
the liveness objective function Oy, as:
mazy, , y<p{[Desired(t) — Actual(t)|}

That is, Oy, is the maximum of the difference between Desired and Actual
after time ¢, + Z.

e Stability: Let ¢5 be the stability property parameter in Section 3.1. We define

the stability objective function Og; as:

StdDev,, v ,p{Actual(t)}

That is, Ogy is the standard deviation of the values of Actual function between
ta + % and T

e Smoothness: Let v; be the smoothness property parameter in Section 3.1. Let
tc € T be such that tc > % and
[Desired(tc) — Actual(te)| <wv1 A
Vt- L <t <tc= |Desired(t) — Actual(t)| > v;

That is, tc is the first point in time after % where the difference between Actual
and Final Desired values has reached v;. We then define the smoothness ob-
jective function Og,, as:

mazi.<i<7{|Desired(t) — Actual(t)|}

That is, the function Og,, is the maximum difference between Desired and
Actual after tc.

Note that Og,,, measures the absolute value of undershoot/overshoot. We noticed
in our work that in addition to finding the largest undershoot/overshoot scenarios,
we need to identify scenarios where the overshoot/undershoot is large compared
to the step size in the input step signal. In other words, we are interested in
scenarios where a small change in the position of the controller, i.e., a small
difference between Initial Desired and Final Desired, yields a relatively
large overshoot/undershoot. These latter scenarios cannot be identified if we only
use the Og,, function for evaluating the Smoothness requirement. Therefore, we
define the next objective function, normalized smoothness, to help find such test
scenarios.

e Normalized Smoothness: We define the normalized smoothness objective func-
tion Op s, by normalizing the Og,, function:

ON — OSm
" Ogm + |Final Desired — Initial Desired)|

Op s evaluates the overshoot/undershoot values relative to the step size of the
input step signal.

e Responsiveness: Let v be the responsiveness parameter in Section 3.1. We
define the responsiveness objective function O to be equal to ¢r such that tr €
T and tr > % and

[Desired(tr) — Actual(tr)| < wvs A
vt L <t <tr= |Desired(t) — Actual(t)| > vs

That is, Op is the first point in time after % where the difference between Actual
and Final Desired values has reached vs.
We did not use vy from the smoothness and ¢35 from the responsiveness properties
in definitions of Og,, and Or. These parameters determine pass/fail conditions for
test cases, and are not required to guide the search. Further, vy and ¢3 depend on the

specific hardware characteristics and vary from customer to customer. Hence, they are

not known at the MiL level. Specifically, we define Og,,, to measure the maximum
overshoot rather than to determine whether an overshoot exceeds vy, or not. Similarly,
we define Op to measure the actual response time without comparing it with ¢3.

The above five objective functions are heuristics and provide quantitative estimates
of the controller requirements, allowing us to compare different test inputs. The higher
the objective function value, the more likely it is that the test input violates the require-
ment corresponding to that objective function. We use these objective functions in our
search algorithms discussed in the next section.

In the next section, we describe our automated search-based approach to MiL test-
ing of controller-plant systems. Our approach automatically generates input step sig-
nals such as the one in Figure 4(a), produces controller output diagrams for each input
signal, and evaluates the five controller objective functions on the output diagram. Our
search is guided by a number of heuristics to identify the input signals that are more
likely to violate the controller requirements. Our approach relies on the fact that, during
MiL, a large number of simulations can be generated quickly and without breaking any
physical devices. Using this characteristic, we propose to replace the existing manual
MiL testing with our search-based automated approach that enables the evaluation of a
large number of output simulation diagrams and the identification of critical controller
input values.

4. Solution Approach

In this section, we describe our search-based approach to MiL testing of controllers,
and show how we employ and combine different search algorithms to guide and auto-
mate MiL testing of continuous controllers. Figure 5 shows an overview of our auto-
mated MiL testing approach. In the first step, we receive a controller-plant model (e.g.,
in MATLAB/Simulink) and a set of objective functions derived from requirements. We
partition the input search space into a set of regions, and for each each region, com-
pute a value indicating the evaluation of a given objective function on that region based
on random search (exploration). We refer to the result as a HearMap diagram [14].
HeatMap diagrams are graphical 2-D or 3-D representations of data where a matrix
of values are represented by colors. In this paper, we use grayscale 2-D HeatMap di-
agrams (see Figure 6(b) for an example). These diagrams are intuitive and easy to
understand by the users of our approach. In addition, our HeatMap diagrams are di-
vided into equal regions (squares), making it easier for engineers to delineate critical
parts of the input space in terms of these equal and regular-shape regions. Based on
domain expert knowledge, we select some of the regions that are more likely to include
critical and realistic errors. In the second step, we focus our search on the selected
regions and employ a single-state heuristic search to identify, within those regions, the
worst-case scenarios to test the controller. Single-state search optimizers only keep one
candidate solution at a time, as opposed to population-based algorithms that maintain
a set of samples at each iteration [13].

In the first step of our approach in Figure 5, we apply a random (unguided) search
to the entire search space in order to identify high risk areas. The search explores
diverse test inputs to provide an unbiased estimate of the average objective function
values in different regions of the search space. In the second step, we apply a heuristic

10

Objective
Functions
based on

Req ts) List of -
. r % st 2.Single-State Worst-Case
+ 1.Exploration)espp -‘ - .\ e Crlt_lcal -pp Search - Scenarlos
Controller-plant Domain Regions

model HeatMap Expert
Diagram

Figure 5: An overview of our automated approach to MiL testing of continuous controllers.

single-state search to a selection of regions in order to find worst-case test scenarios
that are likely to violate the controller properties. In the following two sections, we
discuss these two steps.

4.1. Exploration

Figure 6(a) shows the exploration algorithm used in the first step. The algorithm
takes as input a controller-plant model M and an objective function O, and produces a
HeatMap diagram (e.g., see Figure 6(b)). Briefly, the algorithm divides the input search
space S of M into a number of equal regions. It then generates a random point p in S
in line 4. The dimensions of p characterize an input step function Desired which is
given to M as input in line 6. The model M is executed in Matlab/Simulink to generate
the Actual output. The objective function O is then computed based on the Desired
and Actual functions. The tuple (p, 0) where o is the value of the objective function
at p is added to P. The algorithm stops when the number of generated points in each
region is at least /N. Finding an appropriate value for [V is a trade off between accuracy
and efficiency. Since executing M is relatively expensive, it is often not practical to
generate many points (large N). Likewise, a small number of points in each region
is unlikely to give us an accurate estimate of the average objective function for that
region.

Input: The exploration algorithm in Figure 6(a) takes as input a controller-plant model
M, an objective function O, and an observation time 7'. Note that the controller model
is an abstraction of the software under test, and the plant model is required to simulate
the controller model, and evaluate the objective functions. The length of simulation
is determined by the observation time 7. Finally, the objective function O is chosen
among the five objective functions described in section 3.2.

Output: The output of the algorithm in Figure 6(a) is a set P of (p, o) tuples where p
is a point in the search space and o is the objective function value for p. The set P is
visualized as a HeatMap diagram [14] where the axes are the initial and final desired
values. In HeatMaps, each region is assigned the average value of the values of the
points within that region. The intervals of the region values are then mapped into dif-
ferent shades, generating a shaded diagram such as the one in Figure 6(b). In our work,
we generate five HeatMap diagrams corresponding to the five objective functions O,
Ost, Osm, Ons and Op discussed in Section 3.2. The HeatMap diagrams generated in
the first step are reviewed by domain experts. They select a set of regions that are more
likely to include realistic and critical inputs. For example, the diagram in Figure 6(b)
is generated based on an air compressor controller model evaluated for the smoothness
objective function Og,,. This controller compresses the air by moving a flap between
its open position (indicated by 0) and its closed position (indicated by 1.0). There are
about 10 to 12 dark regions, i.e., the regions with the highest Og values in Figure 6(b).

11

(a) b)

Algorithm. EXPLORATION

o

Input: A controller-plant model M with input search space S.
An objective function O.

o o
® ©

An observation time 7"
Output: An overview diagram (HeatMap) H M.

o
3

The set P of HM points.

=4
)

Partition S into equal sub-regions

Let P = {}

repeat
Let p = (Initial Desired, Final Desired) be
a random point in S
Let Desired be a step function generated based on p and T"
Run M with the Desired input to obtain the Actual output
o0 = O(Desired, Actual)
P={(po)}UP

until there are at least NV points in each region of S do 0.0

S ¢
~

W=

Final Desired Value
o
(&)

o
w

o
]

0.1

— S0 R W

=

. Return HM and P Initial Desired Value

Figure 6: The first step of our approach in Figure 5: (a) The exploration algorithm. (b) An example HeatMap
diagram produced by the algorithm in (a)

These regions have initial flap positions between 0.5 and 1.0, and final flap positions
between 0.1 and 0.6. Among these regions, domain experts tend to focus on regions
with initial values between 0.8 and 1.0, or final values between 0.8 and 1.0. This is
because, in practice, there is more probability of damage when a closed (or a nearly
closed) flap is being moved, or when a flap is about to be closed.

Search heuristics: Figure 6(a) shows a generic description of our exploration algo-
rithm. This algorithm can be implemented in different ways by devising various heuris-
tics for generating random points in the input search space S (line 4 in Figure 6(a)).
In our work, we use two alternative heuristics for line 4 of the algorithm: (1) a simple
random search, which we call naive random search, and (2) an adaptive random search
algorithm [13]. The naive random search simply calls a random function to generate
points in line 4 in Figure 6(a). Adaptive random search is an extension of the naive
random search that attempts to maximize the euclidean distance between the selected
points. Specifically, it explores the space by iteratively selecting points in areas of the
space where fewer points have already been selected. To implement adaptive random
search, the algorithm in Figure 6(a) changes as follows: Let P; be the set of points se-
lected by adaptive random search at iteration ¢ (line 8 in Figure 6(a)). At iteration 41,
at line 4, instead of generating one point, adaptive random search randomly generates
a set X of candidate points in the input space. The search computes distances between
each candidate point p € X and the points in P;. Formally, for each point p = (v1, v2)
in X, the search computes a function dist(p) as follows:

dist(p) = MIN(u; upyep, (01 = v)2 + (02 — v5)?

The search algorithm then picks a point p € X such that dist(p) is the largest, and
proceeds to the lines 5 to 7. Finally, the selected p together with the value o of objective
function at point p is added to P; to generate F;; in line 8.

The algorithm in Figure 6(a) stops when at least N points have been selected in
each region. We anticipate the adaptive random heuristic reaches this termination con-
dition faster than a naive random heuristic because it generates points that are more

12

Smoothness
— 0.000
0.063

0.125
B

. Create a HeatMap diagram H M based on P 0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1.0

evenly distributed across the entire space. Our work is similar to quasi-random num-
ber generators that are available in some languages, e.g., MATLAB [15]. Similar to
our adaptive random search algorithm, these number generators attempt to minimize
the discrepancy between the distribution of generated points. We evaluate efficiency of
naive random search and adaptive random search in generating HeatMap diagrams in
Section 6.

Note that a simple and faster solution to build HeatMap diagrams could have been
to simply generate equally spaced points in the search space. However, assuming the
software under test might have some regularity in its behavior, such a strategy might
make it impossible to collect a statistically, unbiased representative subset of observa-
tions in each region.

4.2. Single-State Search

Figure 7(a) presents our single-state search algorithm for the second step of the
procedure in Figure 5. The single-state search algorithm starts with the point with the
worst (highest) objective function value among those computed by the random search
in Figure 6(a). It then iteratively generates new points by tweaking the current point
(line 6) and evaluates the given objective function on the newly generated points. Fi-
nally, it reports the point with the worst (highest) objective function value. In contrast
to random search, the single-state search is guided by an objective function and per-
forms a tweak operation. Since the search is driven by the objective function, we have
to run the search five times separately for Oy, Og¢, Ogm, Ons and Og.

At this step, we rely on single-state exploitative algorithms. These algorithms
mostly make local improvements at each iteration, aiming to find and exploit local
gradients in the space. In contrast, explorative algorithms, such as the adaptive random
search we used in the first step, mostly wander about randomly and make big jumps
in the space to explore it. We apply explorative search at the beginning to the entire
search space, and then focus on a selected area and try to find worst case scenarios in
that area using exploitative algorithms.

Input: The input to the single-state search algorithm in Figure 7(a) is the controller-
plant model M, an objective function O, an observation time 7', a HeatMap region r,
and the set P of points generated by exploration algorithm in Figure 6(a). We already
explained the input values M, O and 7T in Section 4.1. Region r is chosen among
the critical regions of the HeatMap identified by the domain expert. The single-state
search algorithm focuses on the input region r to find a worst-case test scenario of the
controller. The algorithm, further, requires P to identify its starting point in r, i.e., the
point with the worst (highest) objective function in 7.

Output: The output of the single-state search algorithm is a worst-case test scenario
found by the search after K iterations. For instance Figure 7(b) shows the worst-case
scenario computed by our algorithm for the smoothness objective function applied to
an air compressor controller. As shown in the figure, the controller has an undershoot
around 0.2 when it moves from an initial desired value of 0.8 and is about to stabilize
at a final desired value of 0.3.

Search heuristics: In our work, evaluating fitness functions takes a relatively long

13

(a) (b)

Algorithm. SINGLESTATESEARCH 1.0

Input: A con.tr()ller—plant model M with input search space S. | Desired Value
A region r. 09 Actual Value
The set P computed by the algorithm in Figure 6(a). 08 | IntialDesied _______

An objective function O.
An observation time 7"
Output: The worst-case test scenario testCase.
P'={(po)eP|per}
Let (p,0) € P’ s.t. forall (p/,0') € P’, we have 0 > o’
worstFound = o
AdaptParameteres(r, P)
for K iterations :
newp = Tweak(p)
Let Desired be a step function generated by newp
Run M with the Desired input to obtain 041 4
the Actual output
9. v = 0O(Desired, Actual) 0.0 T
10. if v > worstFound : 0 1 2
11. worstFound = v time
12. testCase = newp
13. p= Replace(p, newp)
14. return testCase

Final Desired

Desired & Actual Value

undershoot|

P NNk W=

Figure 7: The second step of our approach in Figure 5: (a) The single-state search algorithm. (b) An example
output diagram produced by the algorithm in (a)

time. Each fitness computation requires us to generate a 1’ second simulation of the
controller-plant model. This can take up to several minutes. For this reason, for the
second step of our approach in Figure 5, we opt for a single-state search method in
contrast to a population-based search such as Genetic Algorithms (GA) [13]. Note
that in population-based approaches, we have to compute fitness functions for a set of
points (a population) at each iteration.

The algorithm in Figure 7(a) represents a generic single-state search algorithm.
Specifically, there are two placeholders in this figure: Tweak () at line 6, and Replace()
at line 13. To implement different single-state search heuristics, one needs to define
how the existing point p should be modified (the Tweak() operator), and to determine
when the existing point p should be replaced with a newly generated point newp (the
Replace operator).

In our work, we instantiate the algorithm in Figure 7(a) based on three single-state
search heuristics: standard Hill-Climbing (HC), Hill-Climbing with Random Restarts
(HCRR), and Simulated Annealing (SA). Specifically, the Tweak() operator for HC
shifts p in the space by adding values =’ and 3’ to the dimensions of p. The x’ and
y' values are selected from a normal distribution with mean p = 0 and variance o2.
The Replace operator for HC replaces p with newp, if and only if newp has a worse
(higher) objective function than p. HCRR and SA are different from HC only in their
replacement policy. HCRR restarts the search from time to time by replacing p with
a randomly selected point. Like HC, SA always replaces p with newp if newp has
a worse (higher) objective function. However, SA may replace p with newp even if
newp has a better (lower) objective function. This latter situation occurs only if another
condition based on a random variable (temperature t) holds. Temperature is initialized
to some value at the beginning of the search and decreases over time, meaning that SA
replaces p with newp more often at the beginning and less often towards the end of the

14

a
140.0

Liveness Liveness

— 1.100 — 0.0073
1.150 0.0075
1.200 0.0078

0.0081
0.0084
0.0087
0.0089
0.0092
0.0095

138.0
136.0
134.0

132.0

1.250
1.300
1.350
1.400
k 1.450

130.0

Final Desired
Final Desired

128.0

126.0

124.0

122.0

120.0

00 20 40 60 80 100 120 140 160 180 20.0 080 0.81 0.82 0.83 084 0.85 0.86 0.87 0.88 0.89 0.90
Initial Desired Initial Desired

Figure 8: Diagrams representing the landscape for regular and irregular HeatMap regions: (a) A regular
region with a clear gradient between the initial point of the search and the worst-case point. (b) An irregular
region with several local optima.

search. That is, SA is more explorative during the first iterations, but becomes more
and more exploitative over time.

In general, single-state search algorithms, including HC, HCRR, and SA, have a
number of configuration parameters (e.g., variance o in HC, and the initial temperature
value and the speed of decreasing the temperature in SA). These parameters serve
as knobs with which we can tune the degree of exploitation (or exploration) of the
algorithms. To be able to effectively tune these parameters in our work, we visualized
the landscape of several regions from our HeatMap diagrams. We noticed that the
region landscapes can be categorized into two groups: (1) Regions with a clear gradient
between the initial point of the search and the worst-case point (see e.g., Figure 8(a)).
(2) Regions with a noisier landscape and several local optima (see e.g., Figure 8(b)).
We refer to the regions in the former group as regular regions, and to the regions in
the latter group as irregular regions. As expected, for regular regions, like the region
in Figure 8(a), exploitative heuristics work best, while for irregular regions, like the
region in Figure 8(b), explorative heuristics are most suitable [13].

Note that the number of points generated and evaluated in each region in the first
step (the exploration step) is not sufficiently large so that we can conclusively deter-
mine whether a given region belongs to the regular group or to the irregular group
above. Therefore, in our work, we rely on a heuristic that attempts to predict the re-
gion group based on the information available in HeatMap diagrams. Specifically, our
observation shows that dark regions mostly surrounded by dark shaded regions belong
to regular regions, while dark regions located in generally light shaded areas belong to
irregular regions. Using this heuristic, we determine whether a given region belongs
to a regular group or to an irregular group. For regular regions, we need to use algo-
rithms that exhibit a more exploitative search behavior, and for irregular regions, we
require algorithms that are more explorative. In Section 6, we evaluate our single-state
search algorithms, HC, HCRR and SA, by applying them to both groups of regions,
and comparing their performance in identifying worst-case scenarios in each region

group.

15

5. Tool Support

We have fully automated and implemented our approach in a tool called CoCoTest
(https://sites.google.com/site/cocotesttool/). CoCoTest implements the en-
tire MiL testing process shown in Figure 5. Specifically, CoCoTest provides users with
the following main functions: (1) Creating a workspace for testing a desired Simulink
model. (2) Specifying the information about the input and output of the model under
test. (3) Specifying the number of regions in a HeatMap diagram and the number of test
cases to be run in each region. (4) Allowing engineers to identify the critical regions in
a HeatMap diagram. (5) Generating HeatMap diagrams for each requirement. (6) Re-
porting a list of worst-case test scenarios for a number of regions. (7) Enabling users
to run the model under test for any desired point in the input search space. In addition,
CoCoTest can be run in a maintenance mode, allowing an advanced user to configure
sophisticated features of the tool. This, in particular, includes choosing and configur-
ing the algorithms used for the exploration and single-state search steps. Specifically,
the user can choose between random search or adaptive random search for exploration,
and between Hill-Climbing, Hill-Climbing with Random Restarts and Simulated An-
nealing for single-state search. Finally, the user can configure the specific parameters
of each of these algorithms as discussed in Section 4.2.

As shown in Figure 5, the input to CoCoTest is a controller-plant model imple-
mented in Matlab/Simulink and provided by the user. We have implemented the five
generic objective functions discussed in Section 3.2 in CoCoTest. The user can retrieve
the HeatMap diagrams and the worst-case scenarios for each of these objective func-
tions separately. In addition, the user can specify the critical operating regions of a
controller under test either by way of excluding HeatMap regions that are not of inter-
est, or by including those that he wants to focus on. The worst-case scenarios can be
computed only for those regions that the user has included, or has not excluded. The
user also specifies the number of regions for which a worst-case scenario should be
generated. CoCoTest sorts the regions that are picked by the user based on the results
from the exploration step, and computes the worst-case scenarios for the ones that are
top in the sorting depending on the number of worst-case scenarios requested by the
user. The final output of CoCoTest is five HeatMap diagrams for the five objective
functions specified in the tool, and a list of worst-case scenarios for each HeatMap di-
agram. The user can examine the HeatMap diagram and run worst-case test scenarios
in Matlab individually. Further, the user can browse the HeatMap diagrams, pick any
point in the diagram, and run the test scenario corresponding to that point in Matlab.

CoCoTest is implemented in Microsoft Visual Studio 2010 and Microsoft .NET 4.0.
It is an object-oriented program in C# with 65 classes and roughly 30K lines of code.
The main functionalities of CoCoTest have been tested with a test suite containing 200
test cases. CoCoTest requires Matlab/Simulink to be installed and operational on the
same machine to be able to execute controller-plant model simulations. We have tested
CoCoTest on Windows XP and Windows 7, and with Matlab 2007b and Matlab 2012b.
Matlab 2007 was selected because Delphi Simulink models were compatible with this
version of Matlab. We have made CoCoTest available to Delphi, and have presented it
in a hands-on tutorial to Delphi function engineers.

16

6. Evaluation

In this section, we present the research questions that we set out to answer (Sec-
tions 6.1), relevant information about the industrial case study (Section 6.2), and the
key parameters in setting our experiment and tuning our search algorithms (Section 6.3).
We then provide answers to our research questions based on the results obtained from
our experiment (Section 6.4). Finally, we discuss practical usability of the HeatMap
diagrams and the worst-case test scenarios generated by our approach (Section 6.5).

6.1. Research Questions

RQ1: How does adaptive random search perform compared to naive random search in
generating HeatMap diagrams?

RQ2: How do our single-state search algorithms (i.e., HC, HCRR, and SA) compare
with one another in identifying the worst-case test scenarios? How do these algorithms
compare with random search (baseline)?

RQ3: Does our single-state search algorithm (step 2 in Figure 5) improve the results
obtained by the exploration step (step 1 in Figure 5)?

RQ4: Does our MiL testing approach help identify test cases that are useful in practice?

Any search-based solution should be compared with random search which is a stan-
dard “baseline” of comparison. If a proposed search-based solution does not show
any improvement over random search, either something is wrong with the solution or
the problem is trivial for which a random search approach is sufficient. In RQ1 and
RQ?2, we respectively compare, with random search, our adaptive random search tech-
nique for HeatMap diagram generation, and our single-state search algorithms in find-
ing worst-case test scenarios. In RQ2, in addition to comparing with random search,
we compare our three single-state search algorithms with one another to identify if
there is an algorithm that uniformly performs better than others for all the HeatMap
regions. In RQ3, we argue that the second step of our approach (the search step) is
indeed necessary and improves the results obtained during the exploration step con-
siderably. In RQ4, we compare our best results, i.e., test cases with highest (worst)
objective function values, with the existing test cases used in practice.

6.2. Case Studies

To perform our experiments, we applied our approach in Figure 5 to two case stud-
ies: A simple publicly available case study (DC Motor controller), and a real case study
from Delphi (SBPC). Having one publicly available case study allows other researchers
to compare their work with ours and to replicate our study. This is the main reason we
included the DC Motor case study, even if it is simpler and less interesting than SBPC.

e DC Motor Controller: This case study consists of a Simulink PID Controller
block (controller model) connected to a simple model of a DC Motor (plant
model). The case study is taken from a Matlab/Simulink tutorial provided by
MathWorks [16]. The controller model in this case study essentially controls
the speed of a DC Motor. Specifically, the controller controls the voltage of the

17

Table 1: Size and complexity of our case study models.

DC Motor (M) SBPC (M)
Model features Controller | Plant | Controller | Plant
Blocks 8 13 242 201
Levels 1 1 6 6
Subsystems 0 0 34 21
Input Var. 1 1 21 6
Output Var. 1 2 42 7
LOC 150 220 | 8900 6700

DC Motor so that it reaches a desired angular velocity. Hence, the desired and
actual values (see Figure 1(a)) represent the desired and actual angular velocities
of the motor, respectively. The angular velocity of the DC Motor is a float value
bounded within [0...160].

e Suppercharger Bypass Position Controller: Supercharger is an air compres-
sor blowing into a turbo-compressor to increase the air pressure supplied to the
engine and, consequently, increase the engine torque at low engine speeds. The
air pressure can be rapidly adjusted by a mechanical bypass flap. When the flap
is completely open, supercharger is bypassed and the air pressure is minimum.
When the flap is completely closed, the air pressure is maximum. Supercharger
Bypass Flap Position Controller (SBPC) is a component that determines the po-
sition of the bypass flap to reach to a desired air pressure. In SBPC, the desired
and actual values (see Figure 1(a)) represent the desired and actual positions of
the flap, respectively. The flap position is a float value bounded within [0...1]
(open when 0 and closed when 1.0).

The DC Motor controller, the SBPC controller, and their corresponding plant models
are all implemented in Matlab/Simulink. Table 1 provides some metrics representing
the size and complexity of the Simulink models for these two case studies. The table
shows the number of Simulink blocks, hierarchy levels, subsystems, and input/output
variables in each controller and in each plant model. In addition, we generated C code
from each model using Matlab auto-coding tool [17], and have reported the (estimated)
number of lines of code (excluding comments) generated from each model in the last
row of Table 1.

Note that the desired and actual angular velocities of the DC Motor, and the de-
sired and actual bypass flap positions are among the input and output variables of the
controller and plant models. Recall that desired values are input variables to controller
models, and actual values are output variables of plant models. SBPC models have
several more input/output variables representing configuration parameters.

6.3. Experiments Setup.

Before running the experiments, we need to set the controller requirements param-
eters introduced in Figure 3. Table 2 shows the requirements parameter values, the
observation time 7" used in our experiments, and the actual simulation times of our
case study models. For SBPC, the requirements parameters were provided as part of
the case study, but for DC Motor, we chose these parameters based on the maximum

18

Table 2: Requirements parameters and simulation time for the DC Motor and SBPC case studies

Requirements Parame- | DC Motor SBPC
ters

Liveness t, = 3.6s t1 =0.8s
Stability to = 3.6s | to =0.8s
Smoothness Normalized v =8 v; = 0.05
Smoothness

Responsiveness vy = 4.8 vz = 0.03
Observation Time T =8s T =2s
Actual Simulation Run- 50ms 31s
ning Time on Amazon

Table 3: Parameters for the Exploration step

Parameters for Explo- DC Motor SBPC
ration

Size of search space [0..160] x [0..160] | [0..1] x [0..1]
HeatMap dimensions 8 x 8 10 x 10
Number of points per re- 10 10

gion (N in Figure 6(a))

value of the DC Motor speed. Specifically, 1" is chosen to be large enough so that the
actual value can stabilize at the desired value. Note that as we discussed in Section 3.2,
since we do not have pass/fail conditions, we do not specify v, from the smoothness
and t3 from the responsiveness properties.

We ran the experiments on Amazon micro instance machines which are equal to
two Amazon EC2 compute units. Each EC2 compute unit has a CPU capacity of
a 1.0-1.2 GHz 2007 Xeon processor. A single 8-second simulation of the DC Motor
model and a single 2-second simulation of the SBPC Simulink model (e.g., Figure 7(b))
respectively take about 50 msec and 31 sec on the Amazon machine (See Table 2 last
row).

We now discuss the parameters of the exploration and search algorithms in Fig-
ures 6(a) and 7(a). Table 3 summarizes the parameters we used in our experiment to
run the exploration algorithm. Specifically, these include the size of the search space,
the dimensions of the HeatMap diagrams, and the minimum number of points that are
selected and simulated in each HeatMap region during exploration. Note that the input
search spaces of both case studies are the set of floating point values within the search
spaces specified in Table 3 first row.

We chose the HeatMap dimensions and the number of points per region, i.e., the
value of IV, (lines 2 and 3 in Table 3) by balancing and satisfying the following crite-
ria: (1) The region shades should not change across different runs of the exploration
algorithms. (2) The HeatMap regions should not be so fine grained such that we have
to generate too many points during exploration. (3) The HeatMap regions should not
be too coarse grained such that the points generated within one region have drastically
different objective function values.

For both case studies, we decided to generate at least 10 points in each region during
exploration (N = 10). We divided the search space into 100 regions in SBPC (10 x 10),
and into 64 regions in DC Motor (8 x 8), generating a total of at least 1000 points

19

Table 4: Parameters for the Search step

Single-State Search Parameters DC Motor SBPC
Number of Iterations (HC, HCRR, SA) 100 100
Exploitative Tweak (o) (HC, HCRR, SA) 2 0.01
Explorative Tweak () (HC) - 0.03
Distribution of Restart Iteration Intervals (HCRR) U(20,40) U(20,40)
Liveness 0.3660831 0.0028187
Stability 0.0220653 0.000161
Initial Temperature (SA) Smoothness 12.443589 0.0462921
Normalized 0.08422266 0.1197671
Smoothness
Responsiveness 0.0520161 0.0173561
Liveness 0.0036245851 0.000027907921
Stability 0.0002184 0.0000015940594
Schedule (SA) Smoothness 0.12320385 0.00045833762
Normalized 0.00083388772 0.0011858129
Smoothness
Responsiveness 0.00051501089 | 0.00017184257

and 640 points for SBPC and DC Motor, respectively. We executed our exploration
algorithms a few times for SBPC and DC Motor case studies, and for each of our
five objective functions. For each function, the region shades remained completely
unchanged across the different runs. In all the resulting HeatMap diagrams, the points
in the same region have close objective function values. On average, the variance over
the objective function values for an individual region was small. Hence, we conclude
that our selected parameter values are suitable for our case studies, and satisfy the
above three criteria.

Table 4 shows the list of parameters for the search algorithms that we used in the
second step of our work, i.e., HC, HCRR, and SA. Here, we discuss these parameters
and justify the selected values in Table 4:

Number of Iterations (K): We ran each single-state search algorithm for 100 iter-
ations, i.e., K = 100 in Figure 7(a). This is because the search has always
reached a plateau after 100 iterations in our experiments. On average, iterating
each of HC, HCRR, and SA for 100 times takes a few seconds for DC Motor
and around one hour for SBPC on the Amazon machine. Note that the time for
each iteration is dominated by the model simulation time. Therefore, the time
required for our experiment was roughly equal to multiplying 100 by the time
required for one single simulation of each model identified in Table 2 (50 msec
for DC Motor and 31 sec for SBPC).

Exploitative and Explorative Tweak (c): Recall that in Section 4.2, we discussed
the need for having two Tweak operators: One for exploration, and one for ex-
ploitation. Specifically, each Tweak operator is characterized by a normal dis-
tribution with x4 (mean) and o (variance) values from which random values are
selected. We set © = 0 in our experiment. For an exploitative Tweak, we choose
o = 2.0 for DC Motor, and ¢ = 0.01 for SBPC. As intended, with a probability
of 99% the result of tweaking a point in the center of a HeatMap region stays in-
side that region in both case studies. Obviously, this probability decreases when

20

the point moves closer to the borders. In our search, we discard the result of
Tweak when it generates points outside of the regions, and never generate sim-
ulations for them. In addition, with these values for o, the search tends to be
exploitative. Specifically, the Tweak has a probability of 70% to modify individ-
ual points’ dimensions within a range defined by o.

To obtain an explorative Tweak operator, we triple the above values for 0. Note
that in our work, we use the explorative Tweak option only with the HC algo-
rithm. HCRR and SA are turned into explorative search algorithms using restart
and temperature options discussed below. In addition, in the DC Motor case
study, we do not need an explorative Tweak operator because all the HeatMap
regions belong to regular regions for which an exploitative Tweak is expected to
work best.

Restart for HCRR: HCRR is similar to HC 3except that from time to time it restarts
the search from a new point in the search space. For this algorithm, we need to
determine how often the search is restarted. In our work, the number of itera-
tions between each two consecutive restarts is randomly selected from a uniform
distribution between 20 and 40, denoted by U (20, 40).

Initial Temperature and Schedule: The SA algorithm requires a temperature that is
initialized at the beginning of the search, and is incremented iteratively based on
the value of a schedule parameter. The values for the temperature and schedule
parameters should satisfy the following criteria [13]: (1) The initial value of tem-
perature should be comparable with differences between the objective function
values of pairs of points in the search space. (2) The temperature should con-
verge towards zero without reaching it. We set the initial value of temperature to
be the standard deviation of the objective function values computed during the
exploration step. The schedule is then computed by dividing the initial value of
temperature by 101, ensuring that the final value of temperature after 100 itera-
tions does not become equal to zero.

6.4. Results Analysis

RQ1. How does adaptive random search perform compared to naive random
search in generating HeatMap diagrams? To answer this question, we compare (1)
the HeatMap diagrams generated by naive random search and adaptive random search,
and (2) the time these two algorithms take to generate their output HeatMap diagrams.

For each of our case studies, we compared three HeatMap diagrams randomly gen-
erated by naive random search with three HeatMap diagrams randomly generated by
adaptive random search. Specifically, we compared the region colors and value ranges
related to each color. We noticed that all the HeatMap diagrams related to DC Motor
(resp. SBPC) were similar. Hence, we did not observe any differences between these
two algorithms by comparing their generated HeatMap diagrams.

Figures 9 and 10 represent example sets of HeatMap diagrams generated for DC
Motor and SBPC case studies, respectively. In each figure, there are five diagrams
corresponding to our five objective functions. Note that as we discussed above, because

21

(a) Liveness

Liveness
— 000
040

0.80
120
160

o o w0 @0 o 100 20 ta00

1600

(d) Normalized Smoothness

(b) Stability

(©) Smoothness

1500

stabilty
—0.000
0,025 1400 125

Smoothness

0.050 250
0075 0 ars
0.100 500

NormalizedSmoothness

00 0 w0 w0 w0

100 1200

100

1800

0225
0281
0338
0394
0.450

Responsiveness.

— oo

s 0075

025
1200 075
0225

000 00 100 1600

Figure 9: HeatMap diagrams generated for DC Motor for the (a) Liveness, (b) Stability, (c) Smoothness, (d)
Normalized Smoothness and (e) Responsiveness requirements. Among the regions in these diagrams, we
applied our single-state search algorithms to the region specified by a white dashed circle.

(a) Liveness

% o1 0z 03 04 05 08 o7 os o8

Liveness
— 0.0010
0.0030

0.0050
0.0070
0.0090

0

(d) Normalized Smoothness

(b) Stabiity

(c) Smoothness

'
Stabilly ‘Smoothness

— 000000 oa — o025
000011 0075
000023 08 0125
000034 0175
000045 07 0225

00 o1 0z 03

04

05 05

07

08

0o

NormalizedSmoothness

—0.050
0.150

0.250
0.350
0.450

0

22

05

03

00
08 03 10 00 o1 0z 03 o4 o5 05 o7 o3 o3 10

(e) Responsiveness

Responsiveness
— o010
0.030

0,050
0.070
0,090

o5 07 o o3

Figure 10: HeatMap diagrams generated for SBPC for the (a) Liveness, (b) Stability, (c) Smoothness, (d)
Normalized Smoothness and (e) Responsiveness requirements. Among the regions in these diagrams, we
applied our single-state search algorithms to the two regions specified by white dashed circles.

(a) DC Motor (b) SBPC
1900 - - 3000

1800
2750

1700

1600 - 2500
1500
2250
1400 o

1300 2000

1200

1100

1000

1750

1500 -

1250

Number of generated test cases needed to generate the HeatMap
©
8
8

Number of generated test cases needed to generate the HeatMap

@«
8
3

700 1000
Naive Random Adaptive Random Naive Random Adaptive Random

Figure 11: Comparing execution times of naive random search and adaptive random search algorithms for
HeatMap diagram generation (the Exploration step).

the HeatMap diagrams generated by random search and adaptive random search were
similar, we have shown only one set of diagrams for each case study here.

In order to compare the speed of naive random and adaptive random search algo-
rithms in generating HeatMap diagrams, we ran both algorithms 100 times to account
for their randomness. For each run, we recorded the number of iterations that each
algorithm needed to generate at least IV points in each HeatMap region. Figure 11(a)
shows the distributions of the number of iterations obtained by applying these two al-
gorithms to DC Motor, and Figure 11(b) shows the distributions obtained when the
algorithms are applied to SBPC. As shown in the figures, in both case studies, adaptive
random search was considerably faster (required fewer iterations) than naive random
search. On average, for DC Motor, it took 1244 iterations for naive random search to
generate HeatMap diagrams, while Adaptive random search required 908 iterations on
the same case study. For SBPC, the average number of iterations for naive random
search and adaptive random search were 2031 and 1477, respectively.

Recall from Table 2 that a single model simulation for DC Motor takes about 50
ms. Hence, an average run of adaptive random search is about a few seconds faster
than that of naive random search for DC Motor. This speed difference significantly
increases for SBPC, which is a more realistic case, where the average running time
of naive random search is about five hours more than that of adaptive random search.
Based on results, given realistic cases and under time constraints, adaptive random
search allows us to generate significantly more precise HeatMap diagrams (if needed),
within a shorter time.

RQ2. How do our single-state search algorithms (i.e., HC, HCRR, and SA) com-
pare with one another in identifying the worst-case test scenarios? How do these
algorithms compare with random search (baseline)? To answer this question, we
compare the performance of our three different single-state search algorithms, namely
HC, HCRR, and SA, which we used in the search step of our framework. In addi-

23

@ o — ®)

HCRR +—+
1.46 SA At 1.46 -

144 4

N
&

N
S

S
&

1.43 4

Y
9

1.42 4

B

141

Liveness Objective Function
Liveness Objective Function

N
5

1.40 4

@
8

1.39

1.38 T 4 T T T T T T T 138
0 10 20 30 40 50 60 70 80 90 100 HC HCRR SA Random
Iteration

Figure 12: The result of applying HC, HCRR, SA and random search to a regular region from DC Motor
(specified by a dashed white circle in Figure 9(a)): (a) The averages of the output values (i.e., the highest
objective function values) of each algorithm obtained across 100 different runs over 100 iterations. (b) The
distributions of the output values obtained across 100 different runs of each algorithm after completion, i.e.,
at iteration 100.

tion, we compare these algorithms with random search which is used as a baseline
of comparison for search-based algorithms. Recall that in section 4.2, we identified
two different groups of HeatMap regions. Here, we compare the performance of HC,
HCRR, SA, and random search in finding worst-case test scenarios for both groups of
HeatMap regions, separately. As shown in Figure 7(a) and mentioned in section 4.2,
for each region, we start the search from the worst point found in that region during
the exploration step. This not only allows us to reuse the results from the exploration
step, but also makes it easier to compare the performance of the single-state search al-
gorithms as these algorithms all start the search from the same point in the region and
the same objective function value.

We selected three regions from the set of high risk regions of each one of the
HeatMap diagrams in Figures 9 and 10, and applied HC, HCRR, SA, and random
search to each of these regions. In total, we applied each single-state search algorithm
to 15 regions from DC Motor and to 15 regions from SBPC. For DC Motor, we selected
the three worst (darkest) regions in each HeatMap diagram, and for SBPC case study,
the domain expert chose the three worst (darkest) regions among the critical operating
regions of the SBPC controller.

We noticed that all the HeatMap regions in the DC Motor case study were from
group regular with a clear gradient from light to dark. Therefore, for the DC Motor
regions, we ran our single-state search algorithms only with the exploitative parameters
in Table 4. For the SBPC case study, we ran the search algorithms with the exploitative
parameters for nine regions (regions from smoothness, normalized smoothness, and
responsiveness HeatMap diagrams), and with the explorative parameters for six other
regions (regions from liveness and stability HeatMap diagrams).

Figure 12 shows the results of comparing our three single-state search algorithms
as well as random search using a representative region from the DC Motor case study.
Specifically, the results in this figure were obtained by applying these algorithms to the
region specified by a white dashed circle in Figure 9(a). The results of applying our
algorithms to the other 14 HeatMap regions selected from the DC Motor case study
were similar. As before, we ran each of these algorithms 100 times. Figure 12(a) shows
the averages of the highest (worst) objective function values for 100 different runs of

24

(a) HC = (b)
194 HCRR 1.94
SA AA

Random = = =

193] ==

Smoothness Objective Function
Smoothness Objective Function

0 10 20 30 40 50 60 70 80 90 100 HC HCRR SA Random

(© Iteration e

0.00937 0.00037
HCRR +—+
SA Ape

0.00036 Random = == ¢ 00036 -

0.00935 0.00935 -

0.00934 0.00934 -

0.00933 0.00933 -

0.00932 - E

0.00931 § 0.00931
10 20 30 40 50 60 70 80 9 100 HC HCRR SA Random
Iteration

Liveness Objective Function
Liveness Objective Function

0.00932

Figure 13: The result of applying HC, HCRR, SA and random search to a regular and an irregular region
from SBPC: (a) and (c) show the averages of the output values (i.e., the highest objective function values) of
each algorithm obtained across 100 different runs over 100 iterations. (b) and (d) show the distributions of
the output values obtained across 100 different runs of each algorithm over 100 iterations. Diagrams (a,b)
are related to the region specified by a dashed white circle in Figure 10(c), and Diagrams (c,d) are related to
the region specified by a dashed white circle in Figure 10(a).

each of our algorithms over 100 iterations. Figure 12(b) compares the distributions of
the highest (worst) objective function values produced by each of our algorithms on
completion (i.e., at iteration 100) over 100 runs.

Figure 13 represents the results of applying our algorithms to two representative
HeatMap regions from the SBPC case study. Specifically, Figures 13(a) and (b) show
the results related to a regular region, (i.e., regions with clear gradients from light to
dark), and Figures 13(c) and (d) represent the results related to an irregular region, (i.e.,
regions with several local optima and no clear gradient landscape). The former region
is from Figure 10(c), and the latter is from Figure 10(a). Both regions are specified by
a white dashed circle in Figures 10 (c) and (a), respectively. For the regular region, we
executed HC, HCRR, and SA with the exploitative tweak parameter in Table 4, and for
the irregular region, we used the explorative tweak parameter for HC from the same
table.

Similar to Figure 12(a), Figures 13(a) and (c) represent the averages of the algo-
rithms’ output values obtained from 100 different runs over 100 iterations, and similar
to Figure 12(b), Figures 13(b) and (d) represent the distributions of the algorithms’
output values obtained from 100 different runs. As before, the results in Figures 13(a)
and (b) were representative of the results we obtained from other eight SBPC regular
regions in our experiment, while the results in Figures 13(c) and (d) were representative

25

for the other five SBPC irregular regions.

The diagrams in Figures 12 and 13 show that HC and HCRR perform better than
random search and SA for regular regions. Specifically, these two algorithms require
fewer iterations to find better output values, i.e., higher objective function values, com-
pared to SA and random search. HC performs better than HCRR on the regular region
from DC Motor. As for the irregular region from SBPC, HCRR performs better than
other algorithms.

To statistically compare the algorithms, we performed a two-tailed, student t-test 18]
and other non-parametric equivalent tests, but only report the former as results were
consistent. The chosen level of significance («) was set to 0.05. Applying ¢-test to
the regular region from DC Motor (Figures 12 (a) and (b)) resulted in the following
order for the algorithms, from best to worst, with significant differences between all
pairs: HC, HCRR, random search, and SA. The statistical test for both regular and
irregular regions from SBPC (Figures 13(a) to (d)) showed that the algorithms are di-
vided into two equivalence classes: (A) HC and HCRR, and (B) random search and
SA. The p-values between pairs of algorithms in the same class are above 0.05, and
the p-values between those in different classes are below 0.05. Table 5 provides the p-
values comparing HC with other algorithms for regular regions, and comparing HCRR
with other algorithms for an irregular region from SBPC. In addition, to computing
p-values, we provide effect sizes comparing HC and HCRR with other algorithms for
regular and irregular regions, respectively. In [19], it was noted that it is inadequate to
merely show statistical significance alone. Rather we need to determine whether the
effect size is noticeable. Therefore, in Table 5, we show effect sizes computed based
on Cohen’s d [20]. The effect sizes are considered small for 0.2 < d < 0.5, medium
for 0.5 < d < 0.8, and high for d > 0.8.

To summarize, for regular regions exploitative algorithms work best. Specifically,
HC, which is the most exploitative algorithm, performs better than other algorithms on
regular regions from DC Motor. For the regular region from SBPC, HCRR manages
to be as good as HC because it can reach its plateau early enough before it is restarted
from a different point. Hence, HCRR and HC perform the same on the regular regions
from SBPC.

For irregular regions, search algorithms that are more explorative do better. Specif-
ically, HCRR is slightly better than HC on irregular regions from SBPC. The histogram
diagrams in Figure 14 compare the distributions of the highest objective function values
found by HC and HCRR. Specifically, with 50% probability, HCRR finds an objective
function value larger than 0.00933. If we run HCRR for three times, with a probability
of 87.5%, HCRR finds at least one value around or higher than 0.00933. For HC, how-
ever, the probability of finding an objective function value higher than 0.00933 is less
than 20% in one run, and less than 49% in three runs. That is, even though we do not
observe a statistically significant difference between the results of HC and HCRR for
the irregular region of SBPC, by running these algorithms three times, we have a higher
chance to find a larger value by HCRR than by HC. Finally, even though we chose SA
parameters according to the guidelines in the literature (see Section 6.3, and [13]), on
our case study models, SA is never better than random. This can be due to the fact
that SA merely explores the space at the beginning of its search and becomes totally
exploitative at the end of its search, but the exploitation is not necessarily performed

26

(b) HCRR

o o o
PO 2
5 8 3

Probability
o
8

Probability

°

N

3
°
3

o) e | "]

0.0093 0.00931 0.00932 0.00933 0.00934 0.00935 0.00936 0.00937 0.00938 0.0093 0.00931 000‘932 000‘933 000‘934 0!;0935 00‘0936 00'0937 0.00938
Figure 14: The distribution of the highest objective function values found after 100 iterations by HC and
HCRR related to the region specified by a dashed white circle in Figure 10(a)

Table 5: The p-values obtained by applying ¢-test to the results in Figures 12 and 13 and the effect sizes mea-
suring the differences between these results: Each algorithm is compared with HC (i.e., the best candidate
for regular regions) for the regular DC Motor and SBPC regions, and with HCRR (i.e., the best candidate for
irregular regions) for the irregular SBPC region.

Algorithm DC Motor Reg- | SBPC Regular | SBPC Irregular
ular Region Region Region
HCRR <0.0001(High) 0.2085(Low) -
p-value with HC (effect size) SA <0.0001(High) <0.0001(High) -
Random | <0.0001(High) <0.0001(High) -
HC - - 0.0657(Medium)
p-value with HCRR (effect size) SA - - 0.0105(High)
Random | - - 0.0014(High)

close to a local optimum. However, HCRR periodically spends a number of iterations
improving its candidate solution (exploitation) after each random restart (exploration).
As a result, HCRR is more likely to perform some exploitation in parts of the search
space close to a local optimum.

RQ3. Does our single-state search algorithm (step 2 in Figure 5) improve the re-
sults obtained by the exploration step (step 1 in Figure 5)? To answer this question,
we compare the output of single-state search algorithm with the output of exploration
step for two regular regions from DC Motor and SBPC, and one irregular region from
SBPC. Relying on RQ1 and RQ?2 results, for this comparison, we use the adaptive ran-
dom search algorithm for the exploration step, HC for the single-state search in regular
regions, and HCRR for the single-state search in irregular regions.

Let A be the highest objective function value computed by adaptive random search
in each region, and let B; be the output (highest objective function value) of HC and
HCRR at run ¢ on regular and irregular regions, respectively. We compute the relative
improvement that the search step could bring about over the results of the exploration
step for run ¢ of the search by B’TTA. Figure 15 shows the distribution of these relative
improvements for the three selected regions and across 100 different runs.

The results show that the final test cases computed by our best single-state search
algorithm have higher objective function values compared to the best test cases iden-
tified by adaptive random search during the exploration step. The average relative
improvement, for regular regions, is around 5.5% for DC Motor, and 7.8% for SBPC,
which is a larger and more realistic case study and has a more complex search space.

27

Probability

020 1

0.15 1

0.10

005 4 4 H

0.05 0.051 0.052 0.053 0.(‘754 0.(;55 00‘56 0657 0.058 0.0778 0.078 0.0782 0.0784 0.0786 0.0788 0633 00‘34 0.0‘35 00‘36 0.037 0.(;38 0.0C;Q
Figure 15: The distribution of the improvements of the single-state search output compared to the exploration
output across 100 different runs of the search algorithm: (a) and (b) show the improvements obtained by
applying HC to two regular regions from DC Motor and SBPC, and (c) shows the improvements obtained by
applying HCRR to an irregular region from SBPC. The results are related to the three regions specified by
dashed white circles in Figures 9(a), 10(a), and 10(c), respectively.

This value, for the irregular region form SBPC is about 3.5%.

RQ4. Does our MiL testing approach help identify test cases that are useful in
practice? To demonstrate practical usefulness of our approach, we show that the test
cases generated by our MiL testing approach had not been previously found by man-
ual testing based on domain expertise. Specifically in our industry-strength case study
(SBPC), we were able to generate 15 worst-case test scenarios for the SBPC controller.
Figure 7(b) shows the simulation for one of these test scenarios concerning smooth-
ness. Delphi engineers reviewed the simulation diagrams related to these worst-case
scenarios to determine which ones are acceptable as they exhibit small deviations that
can be tolerated in practice, and which ones are critical and have to be further investi-
gated. Among the 15 worst-case test scenarios, those related to liveness and stability
requirements were considered acceptable by the domain expert. The other nine test
scenarios, however, indicated violations of the controller requirements. None of these
critical test cases had been previously found by manual, expertise-based MiL testing
by Delphi engineers. For example, Figure 7(b) shows an undershoot scenario around
0.2 for the SBPC controller. The maximum undershoot/overshoot for the SBPC con-
troller identified by manual testing was around 0.05. Similarly, for the responsiveness
property, we found a scenario in which it takes 150ms for the actual value to get close
enough to the desired value while the maximum corresponding value in manual testing
was around 50ms.

6.5. Practical Usability

To better understand practical usability of our work, we made our case study results
and tool support available to Delphi engineers through interactive tutorial sessions and
our frequent meetings with them. In general, the engineers believe that our approach
can help them effectively identify bugs in their controller models, and in addition, can
be seen as a significant aid in designing controllers.

To receive feedback on specific output items of our work, we presented HeatMap
diagrams shown in Figure 10 to Delphi engineers. They found the diagrams visually
appealing and useful. They noted that the diagrams, in addition to enabling the iden-
tification of critical regions, can be used in the following ways: (1) The engineers can
gain confidence about the controller behaviors over the light shaded regions of the di-
agrams. (2) The diagrams enable the engineers to investigate potential anomalies in

28

the controller behavior. Specifically, since controllers have continuous behaviors, we
expect a smooth shade change over the search space going from white to black. A
sharp contrast such as a dark region immediately neighboring a light shaded region
may potentially indicate an abnormal behavior that needs to be further investigated.

As discussed in response to RQ4, we identified 15 worst case scenarios (test cases)
for SBPC in total. Nine out of these 15 test cases indicated requirements violations at
the MiL level. According to Delphi engineers, the violations revealed by our nine test
cases could be due to a lack of precision or errors in the controller or plant models.
In order to determine whether these MiL level errors arise in more realistic situations,
Delphi engineers applied these nine test scenarios at the Hardware-in-the-Loop (HiL)
level where the MiL level plant model is replaced with a combination of hardware
devices and more realistic HiL plant models running on a real-time simulator. This
study showed that:

e Three (out of nine) errors that were related to the responsiveness requirement
disappeared at the HiL level. This indicates that the responsiveness MiL level
errors were due to lack of precision or abstractions made in the plant model, as
they do not arise in a more realistic HiL. environment.

e Six (out of nine) errors that were related to the smoothness and normalized
smoothness requirements repeated at the HiL level. Since Delphi engineers were
not able to identify defects in the controller model causing these errors, they
conjecture that these errors might be due to configuration parameters of the con-
trollers, and disappear once the controller is configured with proper parameters
taken from real cars. As discussed in Section 3.1, we do not focus on controller
configuration parameters in this paper.

In addition, we also applied at the HiL level the six test cases out of the original 15
test cases that had passed the MiL testing stage. These six test cases were related to
liveness and stability. The HiL testing results for these test cases were consistent with
those obtained on MiL. That is, these test cases passed the HiL testing stage as well.
To summarize, our approach is effective in finding worst-case scenarios that cannot
be identified manually. Furthermore, such scenarios constitute effective test cases to
detect potential errors in the controller model or in the plant model or in controller
configuration parameters.

7. Related Work

Testing continuous controllers presents a number of challenges, and is not yet fully
supported by existing tools and techniques [4, 3, 1, 21]. There are many approaches to
testing and analysis of MATLAB/Simulink models [21]. We discuss these approaches
and compare them with our work under the following categories:

Formal methods. The modeling languages that have been developed to capture em-
bedded software systems mostly deal with discrete-event or mixed discrete-continuous
systems [6, 22, 8]. Examples of these languages include timed automata [23], hybrid
automata [7, 24], and Stateflow [25]. Automated reasoning tools built for these lan-
guages largely rely on formal methods. Specifically, these tools either exhaustively

29

verify the model under analysis, e.g., using model checkers [4, 26], or generate test
cases from counter-examples produced by model checkers [27, 28, 10]. None of these
tools, however, are directly applicable to Simulink models, and they require a pre-
requisite translation step to convert simulink models into a formal intermediate nota-
tion (e.g., hybrid automata or the SAL notation [29]) [10]. Existing translation mecha-
nisms apply to a subset of the Simulink notation and cannot handle the entire Simulink
blocks [10]. In general, formal methods are more amenable to verification of logical
and state-based behaviors such as invariance and reachability properties. Further, their
scalability to large and realistic systems is still unknown. In our work, we focused on
testing pure continuous controllers which have not previously been captured by any
discrete-event or formal mixed discrete-continuous notation. Moreover, we demon-
strated usefulness and scalability of our approach by evaluating it on a representative
industrial case study.

Search-based approaches. Search-based techniques have been applied to Matlab/Simulink
models for two different purposes:

1. Generation of complex input signals that are as close as possible to real-world
signals, and can be used for testing continuous aspects of Simulink models [30].
Such signals can be generated either by sequencing parameterized base sig-
nals [31, 32], or by modifying parameters of Fourier series [32]. Meta-heuristic
search algorithms are used to build such close-to-real-world signals by compos-
ing simpler input signals where the search objective is to match a user-defined
description of the signal [31] or to satisfy certain signal constraints specified in
temporal logic [33]. This approach does not address generation of test cases with
respect to system requirements. Neither does it provide any insight as to how one
can develop test oracles for the generated input signals. In our work, we focus
on continuous controllers for which step functions are used as input signals. In
addition, we derive test cases and test objectives from system requirements, en-
abling engineers to find worst-case test scenarios and develop test oracles based
on each requirement.

There has been also some approaches to automated signal analysis where simu-
lation outputs of Simulink models are verified against customized boolean prop-
erties implemented via Matlab blocks [34]. Such boolean properties fail to cap-
ture complex requirements such as smoothness or responsiveness. Hence, in our
work, we use quantitative objective functions over controller outputs. In addi-
tion, the signal analysis method in [34] does neither address systematic testing,
nor does it include identification of test cases or formalization of test oracles.

2. Generation of test input data with the goal of maximizing coverage or adequacy
criteria of test suites [35, 36]. Different meta-heuristic search techniques have
been used to maximize coverage or adequacy criteria for MATLAB/Simulink
models [36], e.g., they are used to maximize path coverage of Simulink mod-
els [37, 38], or the number of killed mutants by test cases [39], or coverage of
the Stateflow statecharts [9]. This approach does not take into account system re-
quirements. In addition, the coverage/adequacy criteria listed above do not apply

30

to continuous blocks of MATLAB/Simulink models. Finally, coverage/adequacy
criteria satisfaction alone is a poor indication of test suite effectiveness [40]. Our
work enables generation of test cases based on controller requirements. More-
over, our approach is not limited to MATLAB/Simulink and is applicable to
testing continuous controllers, implemented in any modelling or programming
language.

Control Theory. Continuous controllers have been widely studied in the control theory
domain [2, 5, 41], where the focus has been to optimize the controller behavior for a
specific application by design optimization [42], or a specific hardware configuration
by configuration optimization [5]. Overall existing work in control theory deals with
optimizing the controller design or configuration rather than testing. They normally
check and optimize the controller behavior over one, or a few number of test cases and
cannot substitute systematic testing as addressed by our approach.

Commercial Tools. Finally, a number of commercial verification and testing tools
have been developed, aiming to generate test cases for MATLAB/Simulink models.
The Simulink Design Verifier software [11] and Reactis Tester [12] are perhaps the
most well-known tools but there are a few other competitors as well [43]. To eval-
uate requirements using these tools, the MATLAB/Simulink models need to be aug-
mented with boolean assertions. The existing assertion checking mechanism, however,
handles combinatorial and logical blocks only, and fails to evaluate the continuous
MATLAB/Simulink blocks (e.g., integrator blocks) [22]. As for the continuous be-
haviors, these tools follow a methodology that considers the MiLL models to be the
test oracles [22]. Under this assumption, MiL level testing can never identify the dis-
crepancies between controller-plant models and their high-level requirements. In our
work, however, we rely on controller requirements as test oracles, and are able to iden-
tify requirement violations in the MiL level models. Another major issue about these
commercial tools is a lack of detailed publicly available and research-based documen-
tation [44, 45].

8. Conclusions

Testing and verification of the software embedded into cars is a major challenge
in automotive industry. Software production in the automotive domain typically com-
prises three stages: Developing automotive control functions as Simulink models, gen-
erating C code from the Simulink models, and deploying the resulting code on hard-
ware devices. The artifacts produced at each stage should be sufficiently tested be-
fore moving to the subsequent stage. Hence, automotive software artifacts are subject
to (at least) the following three rounds of testing: Model-in-the-Loop (MiL) testing,
Software-in-the-Loop (SiL) testing, and Hardware-in-the-Loop (HiL) testing. In this
article, we proposed a search-based approach to automate generation of Model-in-the-
loop (MiL) level test cases for continuous controllers. These controllers make up a
large part of automotive functions. We identified and formalized a set of common
requirements for this class of controllers. Our proposed technique relies on a combina-
tion of explorative and exploitative search algorithms, which aim at finding worst-case

31

scenarios in the input space with respect to the controller requirements. Our technique
is implemented in a tool, named CoCoTest. We evaluated our approach by applying it
to an automotive air compressor module and to a publicly available controller model.
Our experiments showed that our approach automatically generates several worst-case
scenarios, which can be used for testing purposes, that had not been previously found
by manual testing based on domain expertise. The test cases indicated potential viola-
tions of the requirements at the MiL level, and were applied by Delphi engineers at the
HiL level to identify potential discrepancies between plant models, and the HiL plant
model and hardware. In addition, we demonstrated the effectiveness and efficiency
of our search strategy by showing that our approach computes significantly better test
cases and is significantly faster than a pure random test case generation strategy.

In future, we plan to perform more case studies with various controllers and from
different domains to demonstrate generalizability and scalability of our work. In addi-
tion, we want to extend our approach to include configuration parameters of continuous
controllers in our test case generation strategy. To do so, we need to find effective and
scalable techniques that can search through large and multi-dimensional search spaces,
and effectively help engineers visualize such spaces. Furthermore, we intend to eval-
uate our tool, CoCoTest, to assess its abilities and performance in bug finding and
fault localization of Simulink models. Extending our search-based testing approach to
other types of embedded Simulink components such as state machine controllers and
components calculating physical properties is another avenue for future work. Finally,
in collaboration with Delphi engineers, we intend to empirically and systematically
evaluate our tool with respect to detecting and localizing real-world faults in Simulink
models.

Acknowledgments

Supported by the Fonds National de 1a Recherche - Luxembourg (FNR/P10/03 and
FNR 4878364), and Delphi Automotive Systems, Luxembourg.

References

[1] J. Zander, 1. Schieferdecker, P. J. Mosterman, Model-based testing for embedded
systems, volume 13, CRC Press, 2012.

[2] N. S. Nise, Control Systems Engineering, 4th ed., John-Wiely Sons, 2004.

[3] E. Lee, S. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems
Approach, http://leeseshia.org, 2010.

[4] T. Henzinger, J. Sifakis, The embedded systems design challenge, in: FM, 2006,
pp- 1-15.

[5] M. Araki, PID control, Control systems, robotics and automation 2 (2002) 1-23.

[6] A.Pretschner, M. Broy, I. Kriiger, T. Stauner, Software engineering for automo-
tive systems: A roadmap, in: FOSE, 2007, pp. 55-71.

[7]1 T. Henzinger, The theory of hybrid automata, in: LICS, 1996, pp. 278-292.

32

[8] T. Stauner, Properties of hybrid systems-a computer science perspective, Formal
Methods in System Design 24 (2004) 223-259.

[9] A. Windisch, Search-based test data generation from stateflow statecharts, in:
Proceedings of the 12th annual conference on Genetic and evolutionary compu-
tation, ACM, 2010, pp. 1349-1356.

[10] S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar, S. Ramesh, Automatic
test case generation from simulink/stateflow models using model checking, Soft-
ware Testing, Verification and Reliability (2013). to appear.

[11] The MathWorks IIIC., Simulink, http://www.mathworks.nl/products/simulink,
2003. [Online; accessed 25-Nov-2013].

[12] Reactive Systems II]C., http://www.reactive-systems.com/
simulink-testing-validation.html, 2010. [Online; accessed 25-NOV-2013]

[13] S. Luke, Essentials of Metaheuristics, Lulu, 2009. nttp://cs.gmu.edu/-sean/book/

metaheuristics/.

[14] G. Grinstein, M. Trutschl, U. Cvek, High-dimensional visualizations, in: 7th
Workshop on Data Mining Conference KDD Workshop, 2001, pp. 7-19.

[15] The MathWorks Inc., Matlab quasi random numbers, nttp://www.mathworks.nl/

help/stats/generating—quasi-random-numbers.html, 2003. [Online; accessed 17-
Mar-2014].

[16] The MathWorks Inc., DC Motor Simulink Model, http://www.mathworks.com/
matlabcentral/fileexchange/11587-dc-motor-model-simulink, 20009. [Online; ac-

cessed 25-Nov-2013].

[17] The MathWorks Inc., Embedded Coder, nttp://www.mathworks.nl/products/
embedded-coder/, 2011. [Online; accessed 25-Nov-2013].

[18] J. Capon, Elementary Statistics for the Social Sciences: Study Guide, Wadsworth
Publishing Company, 1991.

[19] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering, Software Testing, Verification and
Reliability (2012).

[20] J. Cohen, Statistical power analysis for the behavioral sciences (rev, Lawrence
Erlbaum Associates, Inc, 1977.

[21] F. Elberzhager, A. Rosbach, T. Bauer, Analysis and testing of matlab simulink
models: A systematic mapping study, in: Proceedings of the 2013 International
Workshop on Joining AcadeMiA and Industry Contributions to testing Automa-
tion JAMAICA’13), ACM, 2013, pp. 29-34.

[22] P. Skruch, M. Panek, B. Kowalczyk, Model-based testing in embedded automo-
tive systems, Model-Based Testing for Embedded Systems (2011) 293-308.

33

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

R. Alur, Timed automata, in: CAV, 1999, pp. 8-22.

J.-F. Raskin, An introduction to hybrid automata, in: Handbook of networked
and embedded control systems, Springer, 2005, pp. 491-517.

A. Sahbani, J. Pascal, Simulation of hyibrd systems using stateflow, in: ESM,
2000, pp. 271-275.

M. Mazzolini, A. Brusaferri, E. Carpanzano, Model-checking based verification
approach for advanced industrial automation solutions, in: IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), 2010, IEEE, 2010, pp.
1-8.

A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik, K. Shashidhar,
Automotgen: Automatic model oriented test generator for embedded control sys-
tems, in: Computer Aided Verification, Springer, 2008, pp. 204-208.

M. Satpathy, A. Yeolekar, P. Peranandam, S. Ramesh, Efficient coverage of par-
allel and hierarchical stateflow models for test case generation, Software Testing,
Verification and Reliability 22 (2012) 457-479.

Symbolic Analysis Laboratory Homepage, nttp://sal.csl.sri.com, 2001. [On-
line; accessed 25-Nov-2013].

T. E. Vos, F. F. Lindlar, B. Wilmes, A. Windisch, A. 1. Baars, P. M. Kruse,
H. Gross, J. Wegener, Evolutionary functional black-box testing in an industrial
setting, Software Quality Journal 1 (2013) 1-30.

A. Baresel, H. Pohlheim, S. Sadeghipour, Structural and functional sequence test
of dynamic and state-based software with evolutionary algorithms, in: Genetic
and Evolutionary Computation—GECCO 2003, Springer, 2003, pp. 2428-2441.

A. Windisch, N. Al Moubayed, Signal generation for search-based testing of con-
tinuous systems, in: International Conference on Software Testing, Verification
and Validation Workshops, 2009. ICSTW’09., IEEE, 2009, pp. 121-130.

B. Wilmes, A. Windisch, Considering signal constraints in search-based testing
of continuous systems, in: Third International Conference on Software Testing,
Verification, and Validation Workshops (ICSTW), 2010, IEEE, 2010, pp. 202—
211.

J. Zander-Nowicka, Model-based Testing of Real-Time Embedded Systems in
the Automotive Domain, Ph.D. thesis, Elektrotechnik und Informatik der Tech-
nischen Universitat, Berlin, 2009.

Y. Zhan, J. A. Clark, A search-based framework for automatic testing of mat-
lab/simulink models, Journal of Systems and Software 81 (2008) 262-285.

K. Ghani, J. A. Clark, Y. Zhan, Comparing algorithms for search-based test
data generation of matlab simulink models, in: IEEE Congress on Evolutionary
Computation, 2009. CEC’09., IEEE, 2009, pp. 2940-2947.

34

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. Zhan, J. Clark, Search based automatic test-data generation at an architectural
level, in: Genetic and Evolutionary Computation—-GECCO 2004, Springer, 2004,
pp. 1413-1424.

Y. Zhan, J. A. Clark, The state problem for test generation in simulink, in: Pro-
ceedings of the 8th annual conference on Genetic and evolutionary computation,
ACM, 2006, pp. 1941-1948.

Y. Zhan, J. A. Clark, Search-based mutation testing for simulink models, in:
Proceedings of the 2005 conference on Genetic and evolutionary computation,
ACM, 2005, pp. 1061-1068.

M. Staats, G. Gay, M. Whalen, M. Heimdahl, On the danger of coverage di-
rected test case generation, in: Fundamental Approaches to Software Engineer-
ing, Springer, 2012, pp. 409-424.

T. Wescott, PID without a PhD, Embedded Systems Programming 13 (2000)
1-7.

W1k1ped1a, PID controller, http://en.wikipedia.org/wiki/PID_controller, 2004.
[Online; accessed 25-Nov-2013].

Berner and Mattner II’IC., http://www.berner-mattner.com/de/berner-mattner-home/
unternehmen/index.html, 2011. [Online; accessed 25-NOV-2013]

S. Sims, D. C. DuVarney, Experience report: the reactis validation tool, ACM
SIGPLAN Notices 42 (2007).

J. Wegener, P. M. Kruse, Search-based testing with in-the-loop systems, in: 1st
International Symposium on Search Based Software Engineering, 2009, IEEE,
2009, pp. 81-84.

35

