
A framework to identify primitives that represent usability wi th in
Model-Driven Development methods

Jose Ignacio Panach a, , Natalia Juristo b, Francisco Valverde c, Óscar Pastor c

Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València, Avenida de la Universidad, s/n, Burjassot, 46100 Valencia, Spain b Universidad
Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Spain

c Centro de Investigación en Métodos de Producción de Software – ProS, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

a b s t r a c t

Context: Nowadays, there are sound methods and tools which implement the Model-Driven Develop-ment approach (MDD) satisfactorily. However, MDD
approaches focus on representing and generating code that represents functionality, behaviour and persistence, putt ing the interaction, and more specifi­
cally the usability, i n a second place. If we aim to include usability features in a system developed w i th a MDD tool, we need to extend manually the
generated code.
Objective: This paper tackles how to include functional usability features (usability recommendations strongly related to system functionality) i n
MDD through conceptual primitives.
Method: The approach consists of studying usability guidelines to identify usability properties that can be represented in a conceptual model. Next, these
new primitives are the input for a model compiler that generates the code according to the characteristics expressed in them. An empirical study
w i th 66 subjects was conducted to study the effect of including functional usability features regarding end users’ satisfaction and t ime to complete tasks.
Moreover, we have compared the workload of two MDD analysts including usability features by hand in the generated code versus including them
through conceptual primitives according to our approach.

Results: Results of the empirical study shows that after including usability features, end users’ satisfac-tion improves whi le spent t ime does not change
significantly. This justifies the use of usability features in the software development process. Results of the comparison show that the workload required to
adapt the MDD method to support usability features through conceptual primitives is heavy. However, once MDD supports these features, MDD analysts
working w i t h primitives are more efficient than MDD analysts implementing these features manually.
Conclusion: This approach brings us a step closer to conceptual models where models represent not only functionality, behaviour or persistence, but also
usability features.

1 . Introduct ion

The Model-Driven Development (MDD) paradigm [20] states

that all the analysts’ effort must be gathered in the conceptual

model and the system is implemented by means of transformation

rules that can be automated. In other words, the MDD paradigm

distinguishes between conceptual models (where analysts work)

and the code that implements the system (which can be generated

w i th as much automation as possible from the conceptual model).

Nowadays, there are several tools which implement the MDD

paradigm, such as WebRatio [2], UWE [19], NDT [9] and

Corresponding author.
E-mail addresses: joigpana@uv.es (J.I. Panach), natalia@fi.upm.es (N. Juristo),

fvalverde@pros.upv.es (F. Valverde), opastor@pros.upv.es (Ó. Pastor).

OO-Method [29,28], among others. All these tools are very power­

ful to represent and generate the system functionality, behaviour

and persistency by means of conceptual models. However, in most

MDD methods, there is a lack of expressiveness to represent usabil­

ity features [1,24]. Nowadays, if these features are to be included in

systems developed by these MDD methods, the generated code

needs to be changed manually. These manual changes involve

some disadvantages:

• Changes in the code can be inconsistent wi th the characteristics

expressed in the conceptual model.

• Every time we regenerate the code from the conceptual model,

the manual changes to the code must be applied.

• Understanding the code to enhance the system usability can be

difficult for the analyst.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.07.002&domain=pdf
mailto:joigpana@uv.es
mailto:natalia@fi.upm.es
mailto:fvalverde@pros.upv.es
mailto:opastor@pros.upv.es

In order to overcome all these problems, we propose including
usability features in a conceptual model similarly to what it is cur­
rently done wi th functionality, behaviour and persistency in most
MDD methods [18,34]. This proposal is a step forward to incorpo­
rate software systems characteristics not combined to date in MDD
methods. Note that the target audience of our proposal are analysts
that work frequently wi th MDD tools, since they are the persons
that tweak the code to support usability features nowadays. Our
approach does not deal w i th benefits or disadvantages of the
MDD paradigm versus a traditional method or how to improve
the learnability of novice users wi th MDD tools.

In the past, many SE authors considered usability as a non­
functional requirement [7]. Recently, however, some authors have
identified several usability features that are strongly related to
functionality [4,11,16]. We focus on these features, since they
affect not only interface but also the architecture, and are hard to
deal wi th unless they are considered from the early stages of devel­
opment. The contribution of our work is the definition of a process
to represent functional usability features in a conceptual model in
such a way that a model compiler can automatically generate their
code.

The benefits of incorporating functional usability features in a
MDD method through conceptual primitives are [35,36]:

• Unambiguously defined functional usability features. This is an
essential characteristic for performing model-to-model and
model-to-code transformations.

• Reduced development effort w i th respect to including usability
features by hand, since functional usability features are added
to the system code by a model compiler.

• Evolutions of usability requirements need to be applied to the
conceptual model only. Therefore, system wi l l be able to evolve
more easily.

Our proposal to include usability features is valid for any MDD
method. However, it has been necessary to select a specific MDD
method to fully define our proposal. We have chosen OO-Method
[29,28], since it is supported by a commercial tool that is being reg­
ularly used to develop real systems by a company (INTEGRANOVA)
[6]. Such MDD tool generates fully functional systems from a con­
ceptual model. Another advantage of the MDD method used as
benchmark for our research is that its conceptual model is abstract
enough to straightforwardly add new primitives that represent
usability features.

This paper is the ongoing work of two previous publications:
[25,26]. Ref. [25] offers a first draft of the idea to represent func­
tional usability features in a conceptual model. The contribution
of this paper wi th regard to the previous one consists of: (1) A
more detailed definition of the procedure to include functional
usability features in a conceptual model; (2) A proof of concept
wi th different usability features in a real MDD tool. Ref. [26] is a
poster that introduces a short description of an experiment to
analyze the benefits of including functional usability features in a
system. The contribution of this paper wi th regard to the previous
one consists of: (1) an exhaustive description of the design, threats
and results of the experiment to know whether or not users’ satis­
faction and users’ efficiency improves after including functional
usability features in the systems; (2) a comparison of effort to
include functional usability features in a MDD method manually
wi th the effort to include them through conceptual primitives.

The paper is structured as follows. Section 2 introduces the
usability and MDD background necessary to understand our pro­
posal. Section 3 describes our proposal for adding usability features
to a MDD method. Section 4 illustrates the application of our pro­
posal to a specific MDD method. Section 5 discusses an experiment

to evaluate user satisfaction improvement applying our proposal.
Section 6 studies the improvement of the efficiency of analysts
working wi th functional usability features represented as concep­
tual primitives versus including them manually. Section 7 describes
related work. Finally, Section 8 presents some conclusions.

2. Background

The MDD paradigm aims to develop software using a concep­
tual model that abstractly represents the system under develop­
ment [20]. This conceptual model is the input for a model
compiler that generates the code implementing the system. Usu­
ally, this generation is performed by transformation rules that
are applied automatically. A MDD conceptual model is divided into
different views or models. View stands for the set of formal ele­
ments that describe something that has been built for a purpose.
For example, there can be a view to represent the user interaction,
another view to represent system functionality and another view
to represent information persistence. Views are composed of con­
ceptual primitives. Conceptual primitives are modelling elements
that have the capability of abstractly representing an aspect of
the system. Examples of conceptual primitives are class diagram
classes, class attributes and services, etc. The system is generated
from the conceptual model by a model compiler. The level of auto­
mation for code generation is more or less powerful depending on
the MDD method.

Usability is a very broad concept. According to ISO 9241-11
[14], usability is ‘‘the extent to which a product can be used by spec­
ified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specific context of use’’. Human-Computer Interac­
tion (HCI) literature provides many different recommendations to
improve software system usability. HCI recommendations can be
classified into three groups [16]:

• Usability recommendations wi th impact on the user interface
(UI). They refer to presentation issues which imply slight mod­
ifications of the UI design (e.g. buttons, pull-down menus, col­
ours, fonts, layout).

• Usability recommendations wi th impact on the development
process. To follow these advices the development process needs
to be tuned. For example, recommendations designed to reduce
the user cognitive load state that software development should
implicate users.

• Usability recommendations wi th high impact on architectural
design. They involve building certain functionalities into the
software in order to improve user-system interaction. This set
of usability recommendations are referred to as functional
usability features (FUF). Examples of such features are cancel,
undo and feedback facilities. Unless these features are consid­
ered from the early stages of the software development process,
it takes a lot of rework to build them into a software system [4].
We focus our approach on this group of recommendations.

Table 1 shows a summary of FUFs, the mechanisms into which
they are divided and their goals. We have selected four mecha­
nisms to illustrate here our approach (shaded in grey in Table 1).
This choice is based on the usefulness of the mechanisms for the
examples used in this paper.

As shown in [17], a full description and elicitation guidelines for
each and every FUF can be found at http://www.grise.upm.es/sites/
extras/2/. FUFs were derived from interaction patterns described in
the literature as [40,42,31]. FUFs contribute a detailed description
of how usability features affect the system architecture, whereas
interaction patterns only define how usability features affect the
system interface. Another difference between FUFs and interaction

http://www.grise.upm.es/sites/extras/2/
http://www.grise.upm.es/sites/extras/2/

Table 1
List of FUFs and their mechanisms [17].

Usability feature Usability mechanism Goal

Feedback

UndoCancel

User Input Error Prevention

Wizard

User Profile

Help

System Status
Interaction
Progress
Warning

Global Undo
Abort Operation

Structured Text Entry

Step-by-Step

Preferences
Personal Object Space
Favourites

Multilevel Help

To inform users about the internal status of the system
To inform users that the system has registered a user interaction, i.e. that the system has heard users
To inform users that the system is processing an action that wil l take some time to complete
To inform users of any action with important consequences

To undo system actions at several levels

To cancel the execution of an action or the whole application

To help prevent the user from making data input errors

To help users to do tasks that require different steps with user input and correct such input
To record each user’s options for using system functions
To record each user’s options for using the system interface
To record certain sites of interest for the user

To provide different help levels for users

patterns is that FUFs are defined w i th a terminology that can be
understood easily by end users. In contrast, interaction patterns
are usually more oriented for analysts.

FUFs are expected to be incorporated into the development pro­
cess as functional requirements, since usability features that are
properly described in the requirements specification are more
likely to be successfully built into the system [11]. As an aid for
analysts, the FUF definition provides guidelines [17] for capturing
FUFs requirements and designing the system. Once FUFs have been
incorporated into requirements (following guidelines), they are
manually designed and implemented.

3. Incorporating usability functionalit ies in to a Model-Driven
Development method

Our approach for incorporating FUFs into a MDD method is
divided into four steps, as Fig. 1 shows:

1 . Identify the possible modes of use of each usability functionality.
2. Identify the properties that configure each mode of use wi th

regard to usability requirements.
3. Define conceptual primitives to abstractly represent the mode of

use properties.
4. Describe the changes that must be made to the model compiler

to implement the identified properties.

The first and second steps are based on earlier research defining
how to deal w i th FUFs: interaction patterns, usability guidelines,
usability heuristics or any other research defining how to build
usability features into a software development process. The third
and fourth steps depend on a specific MDD method. We focus on
OO-Method [29,28] as illustrative example of MDD method.

Wi th our proposal, an analyst can ensure that functional usabil­
i ty features w i l l be included in systems. What analysts need to do
is select the usability features to include in the system and select
some feature parameters. Note that in the same way as w i th a
manual implementation, our approach based on primitives does
not ensure usability improvements in every system. These
improvements depend on how the analyst models usability fea­
tures according to the context of use. In the following, the four
steps of our approach are explained in detail.

3.1. Identification of modes of use

The first step for incorporating a usability feature into a MDD
method is to identify its modes of use. Each functional usability
feature can achieve its goal by different means, which we have
termed Mode of Use (MoU). Each MoU achieves a specific target,

which is part of the overall goal of the usability feature. Different
MoUs that are part of the same usability feature target the same
overall goal without conflicting each other.

For example, the usability mechanism System Status Feedback
(from the feature Feedback) aims to inform the user about the
internal system state [8,40]. Using the information provided by
interaction patterns, we have identified that this goal can be
achieved by at least three modes of use: (1) Inform about the success
or failure of an execution (MoU1); (2) Display the information stored
in the system (MoU2); (3) Display the state of relevant actions
(MoU3). The first MoU is derived from the interaction pattern
called Modeless Feedback Area [8] , which aims to provide feedback
that the program has accepted the command for every action the
user takes. The second and the third MoUs are derived from the
interaction pattern called Status Display [40]. This pattern aims
to monitor the state of something that changes. Note importantly
that even though the last two MoUs were generated from the same
interaction pattern, the goal of each MoU that we have generated is
different. The second MoU aims to display the state using informa­
tion stored in a repository, whereas the third MoU is designed to
display the state by indicating which actions can be triggered at
any time.

MoUs can be generated from the information contained in the
FUF elicitation guidelines [17]. For each FUF question (a total of
62) we have needed to consider all possible ways of achieving
the usability goal established by the guidelines. We have obtained
22 MoUs valid for incorporating the six FUFs shown in Table 1 into
any MDD method. The 22 MoU can be found in [27] and are easily
accessible at [23].

3.2. Identification of properties

The second step to deal w i th functional usability features
through the MDD paradigm is to configure the identified MoUs.
We refer to the different MoU configuration options for satisfying
usability functionalities as properties. In this second step, we also
identify properties from interaction patterns.

For example, Inform about the success or failure of an execution
(MoU1) is composed of two properties extracted from the Modeless
Feedback Area pattern [8] : (1) Service selection and (2) Message visu­
alization. The first property is derived from the description of the
interaction pattern that states that every action must inform about
its success or failure. The second property is defined because the
pattern also states that how and where the information is to be dis­
played needs to be specified.

In some cases, analysts need to adapt properties to the system
under development. In other cases, properties can be configured
automatically without any intervention by analysts. Therefore,
MoUs have two types of properties:

Fig. 1. The four steps of our proposal.

Configurable properties, which require an analyst to make
decisions about how they are to be configured. Based on user
requirements, the analyst specifies the most suitable configura­
t ion for these properties. For instance, the Message visualization
property from MoU1 is configurable because for a specific sys­
tem the analyst needs to specify how the information w i l l be
displayed according to user preferences. Display the information
stored in the system (MoU2) has three configurable properties
extracted from the interaction pattern called Status Display
[40] : (1) Dynamic information to show, (2) Static information to
show and (3) Message visualization. The first property is derived
from the description of the pattern that states that the system
must display information about the status that is likely to
change over t ime. The second property is derived from the need
of information that remains constant for each interaction. The
third property is defined to allow specifying all the visualization
possibilities claimed in the pattern description. Display the state
of relevant actions (MoU3) has three configurable properties
extracted from pattern Status Display [40] : (1) Actions selection,
(2) Condition to disable and (3) Descriptive text. The first property
is derived from the need of the pattern to specify the actions
that require to display their state. The second property is
defined to specify the condition to disable. The third property
is derived from the description of the pattern that recommends
displaying a descriptive text when the action has been disabled.
Non-configurable properties, which have an unchanging con­
figuration for all systems. For example, the Service selection
property from Inform about the success or failure of an execution
(MoU1) is non-configurable because the ergonomic Immediate
Feedback criterion [5] states that the system must report the
success or failure of an action at the end of each execution. We
propose that the MDD method model compiler is responsible
for including non-configurable properties in generated systems.
This approach improves efficiency since the model compiler
automatically or semi-automatically includes non-configurable
properties in the system without analyst intervention.

As for MoUs, we have had to work out properties from FUF elic-
itation guidelines. We have generated 57 properties valid for any
MDD method. All the 57 properties can be found in [27], and they
are easily accessible through [23]. Of the 57 properties identified
from the FUF list in Table 1 , 50 are configurable and 7 are non-
configurable.

3.3. Definition of conceptual primitives

We propose defining configurable properties through concep­
tual models of a MDD method. The third step of our approach
involves verifying whether or not there are already conceptual
primit ives in the MDD method representing a configurable prop­
erty. If no conceptual primitive has been set up to represent a con­
figurable property or existing conceptual primitives are unable to
represent some configuration options, the conceptual model needs
to be expanded w i th new conceptual primitives that ensure the
required expressiveness. Note that how each configurable property
is represented in the conceptual model depends exclusively on the
chosen MDD method; there are as many conceptual models as
MDD methods.

As illustrative example, Table 2 shows the primitives needed to
represent all the properties derived from the usability mechanism
System Status Feedback. Each primitive is used to specify a system
characteristic.

This step is method dependent and one single solution cannot
be provided for any existent MDD method. For the 50 configurable
properties generated in the second step of the process, we have
identified 68 primitives needed to support all the configurable
properties (accessible through [23]).

3.4. Description of changes in the model compiler

Finally, in fourth step, the model compiler needs to be modi­
fied in order to make i t able to deal w i th new conceptual primitives
and non-configurable properties. This step also depends on the

Table 2
Necessary primitives to represent properties of System Status Feedback.

Modeofuse Property

MoU1 Message Visualization

MoU2 Dynamic informationtoshow
Static information to show
Message visualization

MoU3 Actions selection
Condition to disable
Descriptive text

MDD method since the model compiler is method specific but
again solutions are similar between MDD methods. So the solution
we show here is useful to guide changes for any MDD method. The
changes needed in the model compiler are:

• New conceptual primit ives: the model compiler must have the
capability to recognize and generate the code that implements
the new conceptual primitives (generated in step three) accord­
ing to the configuration represented in the conceptual model.

• Non-configurable properties: although these properties do not
imply changes to the conceptual model, they do affect the
model compiler. The model compiler must build the functional­
ity of non-configurable properties into the generated code wi th­
out analyst participation.

As illustrative example, Table 3 shows an overview of the nec­
essary code to implement all the properties derived from System
Status Feedback. Note that even non-configurable properties, such
as Service selection, involve some lines of code for their
implementation.

Notice that MoUs and properties (steps 1 and 2) can be used for
any MDD method. Changes to the conceptual model and to the
model compiler (steps 3 and 4) are MDD method specific since
every MDD method has its own conceptual primitives and its
own transformation rules. However, solutions provided to one spe­
cific method are analogous to those needed for a different MDD
method. For the 57 properties generated in the second step of
the process, we have identified 68 characteristics to implement
through code (accessible through [23]).

4. Proof of concept

We have selected OO-Method [29,28] as the specific MDD
method to be used to validate our proposal. INTEGRANOVA [6] is
a commercial tool which implements OO-Method that can gener­
ate code in Java, C# and ASP.NET. Code is automatically generated

Table 3
Necessary code to implement properties of System Status Feedback.

Modeofuse Property

MoU1 Service selection
Message Visualization

MoU2 Dynamic informationtoshow
Static information to show
Message visualization

MoU3 Actions selection
Condition to disable
Descriptive text

Needed primitives

– Define an error message text
– Define a success message text
– Define if the message is textual or graphical
– Define the message format
– Define icons that indicate error or success

Define a formula that specifies how to obtain the dynamic information
Define static text
Define the format that displays both dynamic and static information

Define what actions can be disabled
Define the formula that disables an action
Define the text that explains the reason of disabling an action

by INTEGRANOVA from a conceptual model using a model com­
piler. The company INTEGRANOVA makes business using the tool
INTEGRANOVA to develop software systems to be used in the real
life. OO-Method conceptual model is composed of four comple­
mentary models (or views):

• Object model, which specifies the system structure in terms of
classes of objects and their relations. It is modelled as an
extended UML [39] class diagram. A class is based on attributes
and services.

• Dynamic model, which represents the valid sequence of events
for an object. It is modelled as a UML statechart diagram.

• Functional model, which specifies how events change object
states.

• Interaction model, which represents the interaction between
the system and the user. It has two views: (i) the Abstract
Interaction Model [22], which defines the interface without
taking into account definite visualization features, representing
the interface independently of the interaction types and the
platform features; and (ii) the Concrete Interaction Model
[3], which specifies details of the interface in terms of elements
that end users can perceive. The Abstract Interaction Model is
structured through interaction patterns divided into three
levels:

- Level 1 - Hierarchical Action Tree (HAT): organizes the
access to the system functionality.

- Level 2 - Interaction Units (IUs): represent the main interac­
tive operations that can be performed on objects. There are
three types of IUs: Service Interaction Unit (SIU), which repre­
sents a form to execute a service; Population Interaction Unit
(PIU), which represents a query of instances from a class;
Instance Interaction Unit (IIU), which represents details of a
specific object.

- Level 3 - Elementary Patterns (EPs): constitute the building
blocks from which IUs are constructed. Through these
patterns, we can model: masks for text entry fields

Needed code

Report the results after executing an action
– Display an error message when an action fails
– Display a success message when an action finishes
– Display all messages according to the characteristics defined with primitives

Calculate and display the dynamic information
Display static text
Display information according to the characteristics defined with primitives

Allow to disable actions
Disable an action when a condition is satisfied
Display text that describes the reason for disabling an action

http://ASP.NET

(EP Introduction); lists of elements (EP Defined Selection);
groups of widgets (EP Argument Grouping); filter criteria
(EP Filter); set of elements to display in a table (EP Display
Set); order criteria for lists (EP Order Criterion); actions that
the user can trigger (EP Actions); navigations among inter­
faces (EP Navigation).

• The Concrete Interaction Model specifies how the elements that
compose an interface wi l l be displayed. For example, in this
model, the analyst decides the widget to display a Defined Selec­
tion, which can be a list box or a radio button. The Concrete Inter­
action Model is defined through Transformation Templates,
which specify the structure, layout and style of an interface
according to preferences of end-users and the different hardware
and software computing platforms. A Transformation Template
is composed of Parameters wi th associated values which param­
eterize the different design alternatives of interfaces.

In the following, we use Structured Text Entry and Warning
(Table 1) as usability mechanisms to illustrate how our approach
works in OO-Method. Structured Text Entry belongs to the FUF
called User Input Error Prevention, whose goal is to help the user
when the system only accepts inputs in a specific format. Warning
belongs to the FUF called Feedback, whose goal is to inform users
about what is happening in the system. We select both FUFs because
their goals are simple enough for presentation in a couple of pages
and both mechanisms are used in our experiment. Moreover,
Structured Test Entry is partially supported by OO-Method cur­
rently, which is useful to illustrate that some primitives used to
represent configurable properties can be already supported by
the MDD method.

First step of the proposed procedure is identif ication of Modes
of Use. We identify three MoUs for the Structured Text Entry and
one for Warning. These MoUs have been derived from the require­
ments elicitation guidelines of the usability mechanisms [17].

Table 4 shows the elicitation requirements questions from which
the MoUs have been derived, the goal of the MoUs and their names.

Next step is identif ication of properties for each MoU. We
derive properties from FUF requirements elicitation guidelines.
Table 5 shows the properties that we have identified from FUF def­
init ion. They are all configurable properties since analysts need to
specify what setup users would like. These two first steps of our
proposal are independent of the MDD method.

Next step is def ini t ion of conceptual primit ives to identify the
required primitives to abstractly represent every configurable
property. Whether or not each configurable property is already
supported by the MDD method needs to be studied. This task is
MDD method dependent. Let us analyze for INTEGRANOVA the
properties identified for MoU1_STE, MoU2_STE and MoU3_STE.

Type of input widget (P1_MoU1_STE) is not completely supported
by this MDD method. Depending on the argument type, analysts
can choose from a restricted list of widgets. For example, if the
argument type is a numbered list, analysts can choose between a
list box or a text box. However, if the argument is Boolean, the w id ­
get w i l l be directly transformed into a check box. But a radio but­
ton would be better in some contexts. Therefore, to include
P1_MoU1_STE property, the OO-Method conceptual model needs
to be enriched w i th new primitives that represent the different
widget types. These changes affect the Concrete Interaction Model,
which defines visualization features.

Note that the conceptual primitives in the OO-Method Interac­
t ion Model (Abstract and Concrete) are defined textually. However,
INTEGRANOVA facilitates the definition of these primitives that i t
displays as widgets to be filled in by the analyst.

Fig. 2 shows a prototype modelling the Type of input widget
property (P1_MoU1_STE). On the left of the window there is a list
w i th all the Service Interaction Units (SIU) defined in the system.
Arguments are grouped by the service to which they belong. We
select the argument province of Create a client service as an

Table 4
Structured Text Entry and Warning MoUs.

FUF question Goal MoU

Structured Text Entry
Which is the format of input arguments? Specify the format of the input widget to help the user Specify the input widget visualization type

(MoU1_STE)
What guidance should the user receive to enter the input in the Stop the user from entering data that is not in a valid Mask definition (MoU2_STE)

required format? format
What guidance should the user receive to enter the input in the Provide the user with guidance on which format to Default values (MoU3_STE)

required format? usetoenter data

Warning
Which requested services have irreversible consequences? Warn the user about the consequences of executing a Warning message (MoU1_W)

service

Table 5
Properties of MoU1_STE, MoU2_STE, MoU3_STE and MoU1_W.

Question Goal Name

Specify the input widget visualization type (MoU1_STE)
Which is the format of input arguments?

Mask definition (MoU2_STE)
Which widgets require a specific format for their data?
Which is the required format for the widget?

Default values (MoU3_STE)
Which widgets require a default value?
Which is the required default value?

Warning message (MoU1_W)
Which tasks require a confirmation?
When does the system show the confirmation?
Which information is provided to confirm?

Define how the user wil l visualize input arguments

Specify the widgets that need a mask
Define the regular expression that defines the mask

Specify the widgets that need a default value
Define the default value

Specify the services that need a warning before its execution
Define the condition to display the warning message
Define how the user wil l visualize the warning message

Type of input widget (P1_MoU1_STE)

Widget selection (P1_MoU2_STE)
Regular expression (P2_MoU2_STE)

Widget selection (P1_MoU3_STE)
Default value definition (P2_MoU3_STE)

Service selection (P1_MoU1_W)
Condition definition (P2_MoU2_W)
Message visualization (P3_MoU3_W)

Fig. 2. How to model MoU1_P1 with new primitives in the Concrete Interaction Model.

example. On the right of Fig. 2, analysts can choose the type of
widget that w i l l visualize the selected argument (Property
P1_MoU1_STE). The widget types from which analysts can choose
depend on the argument type, which should have been defined
previously in the existent object model (when classes and at tr i ­
butes constituting the business logic are defined). In the example,
the province argument type is a numbered list, but this argument
type can also be represented by a combo box or radio button.

MoU2_STE and MoU3_STE are already supported by OO-Method
conceptual model and do not therefore require new conceptual
primitives. This example is useful to illustrate that some configura­
ble properties can be already supported by the MDD method. In the
following, we show how both MoUs are already modelled in INTE-
GRANOVA wi th existent primitives. The two properties of Mask
definition (MoU2_STE) are modelled in the Abstract Interaction
Model, where analysts specify the elements of the SIU. The Regular
expression (P2_MoU2_STE) property is defined in an existent w in ­
dow like Fig. 3. In this example, the analyst has defined a mask that
accepts a string w i th only five characters to represent a post code.

Next, the analyst has to assign this regular expression to an exist­
ing argument. This assignment is the representation of the Widget
selection property (P1_MoU2_STE).

The Widget selection (P1_MoU3_STE) and Definition of the default
value (P2_MoU3_STE) properties are modelled in the existent object
model (Fig. 4). When analysts specify the attributes in a class, they
can also specify a default value for each attribute. The
P1_MoU3_STE property is specified by selecting one of the argu­
ments on the right side of Fig. 4. After the input argument has been
selected, the P2_MoU3_STE property is defined in the default value
field in Fig. 4. The default value must be compliant w i th the argu­
ment type.

Regarding properties of Warning message (MoU1_W), they are
not supported by INTEGRANOVA yet. The inclusion of Service selec­
tion (P1_MoU1_W) involves specifying what services must display
a warning message before running. We can add a new primitive
wi th in the Object Model to express whether or not each service
of a class needs a warning message. The Object Model already sup­
ports the definition of services (methods of a class), therefore, i t is

Fig. 3. How MoU2_P2 is already modelled in the Abstract Interaction Model.

Fig. 4. How MoU3_P1 and MoU3_P2 are already modelled in the Object Model.

Fig. 5. How to model P1_MoU3_W and P2_MoU3_W with new primitives in the Object Model.

the most suitable model to define all properties regarding services.
The inclusion of Condition definition (P2_MoU1_W) needs a pr imi­
tive to represent when to display a warning message. We propose
including a new primitive in the Object Model to define formulas
that express when to show the message. Fig. 5 shows a prototype
modelling P1_MoU1_W and P2_MoU2_W to define a warning mes­
sage for the service Create reservation. The system warns end users

before running the service if the period of reservation lasts longer
than 30 days.

Message visualization (P3_MoU3_W) is focused on display
options. The inclusion of this property involves new primitives to
represent every visual alternative of the warning message. These
new primitives are added to the Concrete Interaction Model, where
we can model all display options through design templates. Fig. 6

Fig. 6. How to model P3_MoU3_W with new primitives in the Concrete Interaction Model.

shows an example of prototype that configures visualization
alternatives to display the warning message of Create_reservation.
According to this configuration, the message w i l l be displayed
wi th in an obtrusive alert window and the text message w i l l be dis­
played in Arial, size 10 and centred alignment.

Note that the analyst must specify all the primitives that
represent configurable properties before generating the code that
implements them. Each primitive is exclusive of a specific
configurable property derived from a specific MoU. In order to
facilitate the analysts’ work, these conceptual primitives can
have a default value in case analysts do not want to configure
them. Default values should be the most frequently used values.
Analysts can change these default values in case they do not
satisfy user’s requirements.

The solution provided for OO-Method illustrates the type of
solution needed for any MDD method. We have generated 47
new specific conceptual primitives (see [27,23]) to enable OO-
Method to deal w i th MoU configurable properties. The conceptual
model of OO-Method already supported 9 configurable properties
for which no new primitives were required.

The last step in the proposed procedure is to proceed w i th the
changes to the model compiler. Again, this step is method depen­
dent. The only changes to be made to OO-Method model compiler

to support Structured Text Entry are to include Specify the input
widgets visualization type (MoUl_STE), since the other two MoUs
are already supported. The aim of these changes is to generate
the code that implements the type of widget specified by means
of conceptual primitives.

We use UML class diagrams to represent the changes in the
code transformation process. Fig. 7 shows every class that is
affected by the inclusion of MoU1_STE. New software classes
required to implement MoUs are shaded grey, classes extended
wi th new attributes and methods appear wi th a background
crossed by diagonal lines, whereas unchanged classes appear on
a white background. The meaning of each class is as follows:

• OK: This class represents the button that the user uses to trigger
a service.

• Cancel: This class implements a cancel button that goes back to
a previous window.

• Form: This class implements a window where the user must
enter values (SIU). Once the values have been input, the user
can trigger the service that requires the arguments (by means
of the OK button).

• Input arguments: This class represents the arguments required
to execute the service related to the form.

Input arguments

Name: String
Type: String
Value:TValue

Assign_Value(Value:Tvalue)

0..N

0..N

Form

Title: String

Open()

0..N 1

Widget

Name: String
Value:TValue

lnsert_Value (Value:Tvalue)

OK

Trigger_Service
(Service:TService)

Cancel

ExitQ

Fig. 7. Class diagram to represent the implementation of MoU1_STE.

ClassX action

+Check_warning_message(
action:Taction):boolean
+Execute_action(action:Tac
tion)

1..N 1 +lnvoque_action(action:
Taction)
+User_order_execute_action(re

ly:boolean)

Alert manager

+Show_action_message (message: Text,
parameters: TActionFeedbackParameters)

Fig. 8. Class diagram to represent the implementation of MoU1_W.

• Widget: This class represents a widget that is the front-end of
an input argument.

Fig. 8 shows the classes to implement the properties of
Wamingjnessage (MoUl_W). Classes Form, OK and Cancel have
the same meaning as in Fig. 7.

• ClassX action: Each one of these classes represents a class of the
Object Model. These classes must be extended wi th methods to
check the condition of the warning message.

• Service wrapper: This class connects the end user interface to
the system functionality. It must be extended wi th methods
to capture requests of actions that have a warning message
related to them.

• Alert manager: This class shows warning messages to end
users according to visualization alternatives previously defined.

Changes applied to the conceptual model and to the model
compiler need to be MDD method specific. For the 47 new OO-
Method conceptual primitives generated in the third step, we have
generated 94 new attributes, 76 new services and 11 new classes
(see [27,23]). Since OO-Method has a model to represent the whole
system interface (Interaction Model), FUFs can be more easily
included in the method than in most MDD methods that do not
count wi th a model to define all the characteristics of the user
interaction (such as [9]). The level of expressiveness to represent
the interaction within a model depends on the MDD method. For
example, the interaction model of OO-Method already supported
Mask definition (MoU2) and Default values (MoU3) and no change
was required. Since most primitives that represent MoU properties
are related to interaction, the workload for supporting MoUs wi l l
be greater for most MDD methods which have models to represent
the interaction wi th poorer expressiveness than it has been for
INTEGRANOVA.

The process to incorporate FUFs in a MDD method wi l l be car­
ried out only once. This effort is worth since once it has been done,
analysts wi l l be able to incorporate FUFs in their development and
improve the usability of the system by means of abstract primi­
tives. Using these primitives as input, the model compiler auto­
matically wi l l generate the code that implements the MoUs.

5. Laboratory evaluation

The aim of the evaluation we have carried out is to study whether
end users perceive the benefits of including MoUs in the system.
If so, the effort to include MoUs in a MDD method wil l be
worthwhile, since MoUs improve end user’s satisfaction. Most HCI

recommendations (including FUFs) are based on experts’ opinion
and their usability improvement has not been empirically evaluated.

We have carried out a controlled experiment wi th 66 subjects
using a car rental Web application. We divided the experimental
subjects into two sets: subjects that interact wi th the system with­
out MoUs and subjects that interact wi th the system including sev­
eral MoUs. The most common system functionalities are: reserve a
car; pick up a car; return a car; register a new customer; create an
invoice. This Web application has been fully developed using INTE­
GRANOVA [6]. One author of this paper has included manually in
the generated code the MoUs not supported by INTEGRANOVA
(only Mask definition and Default values are currently supported
by the MDD tool).

5.1. Experiment definition

We evaluate two research questions:

• R1: is the satisfaction of users who interact wi th MoUs better
than the satisfaction of users who interact without MoUs?

• R2: do users interacting wi th MoUs record better times than
users interacting without MoUs?

• We identify the following nul l hypotheses related to research
questions R1 and R2:

• H1 0 : satisfaction for users interacting wi th MoUs is the same as
satisfaction for users interacting without MoUs.

• H20: time for users interacting wi th MoUs is the same as time
for users interacting without MoUs.

There are two response variables [15] in the experiment: user
satisfaction level and time to finish the task. User satisfaction level
indicates whether or not the user is satisfied wi th the interaction.
Time to finish the tasl<s measures how long it takes the user to com­
plete the experimental tasks.

We have defined a metric for each response variable:

• M 1 : user satisfaction is measured by means of a five-point Lik-
ert-scale questionnaire. To design the questionnaire, we have
followed HCI recommendations for questionnaires to evaluate
usability [33]. We first identified the usability attributes to
which each MoU is related. To do this, we used the list of usabil­
ity attributes defined in ISO 9126-1 [13], since they are measur­
able entities. Second, we defined a question for each usability
attribute related to the MoUs included in the experiment. Users
have to respond to these questions on a five-point Likert-scale.
For example, the Specify the visualization type of input widgets
(MoU1) MoU is related to three usability attributes: Minimal

Actions, Familiarity of Concepts and Error Prevention. Each
usability attribute results in a question. Two questionnaire
items are generated for each question (a positive and a negative
statement) in order to verify user response reliability. Subjects
are asked to check the box that best represents their opinion
from ‘‘I totally agree wi th the affirmative sentence’’ to ‘‘I totally
agree wi th the negative sentence’’. Besides, general usability
questions are asked after subjects have completed all the tasks.
These questions are: Is the system easy to use? Would you rec­
ommend this system to other people? Are you generally satis­
fied wi th this system?

• M2: time (measured in seconds) to finish the tasks. This time is
measured per task and subject through the implementation of a
hidden timer. The timer starts when the task is shown to the
subject and it stops when the subject indicates that the task is
finished.

There is one factor [15] in the experiment: Use of MoUs. This
factor involves studying the Web application wi th and without
MoUs. There is a blocking variable: Previous experience of applica­
tions generated with INTEGRANOVA. For this variable, we divided the
subjects into experienced INTEGRANOVA application users and
beginners.

The subjects were selected out of convenience. There were a
total of 66 subjects from different backgrounds. All subjects had
interacted wi th Web applications before and were aged from 21
to 56 years. They were volunteers from different countries that
were able to perform the evaluation over the internet as if they
were employees of offices all over the world of a rental car com­
pany. We have classified users depending on their previous expe­
rience wi th Web applications generated wi th INTEGRANOVA,
since usually, users of Web applications are subjects without any
knowledge of computer engineering. Learning how to interact wi th
Web applications generated wi th INTEGRANOVA might add noise
to the evaluation that experienced users do not present. Table 6
shows the design of the experiment.

Table 6
Experimental groups.

Groups Use of MoUs

With MoUs Without MoUs

Experienced in INTEGRANOVA G1 (11) X
G2 (11)

Inexperienced in INTEGRANOVA G3 (22) X
G4 (22)

The instruments used for running the experiment are:

• A demographic questionnaire: this questionnaire gathers
information about subjects’ gender, age, experience of using
Web applications and experience of using applications gener­
ated wi th INTEGRANOVA.

• Tasks: there are four tasks, each aiming at studying different
MoUs. The tasks are the same for all subjects irrespective of
whether they interact wi th or without MoUs. This ensures that
all subjects interact w i th the application in the same way. We
timed all subjects as they performed every task. This timer
implements metric M2.

• User satisfaction questionnaire: after performing each task,
the subjects fill in a questionnaire that captures satisfaction.
The questionnaire includes a question for each usability attri­
bute of the MoUs studied in the task (this questionnaire can
be seen in [23]). This questionnaire implements metric M1.

The instruments were posted on a Web page available over the
internet [41]. We refer to this page as the Guide Page, because it
guides subjects through the experiment. The Guide Page is not to
be confused wi th the rent-a-car system on which the subjects per­
form the tasks.

5.2. Experiment procedure

Fig. 9 shows the experimental process. The experiment starts
wi th the demographic questionnaire. After the subjects have filled
in this questionnaire on the Guide Page, they record their experi­
ence on INTEGRANOVA applications. Depending on their back­
ground knowledge, the Guide Page automatically assigns the
subject to the group of experts or beginners. Next, the Guide Page
alternately assigns subjects to the wi th or without MoUs group.
This procedure ensures that the groups of subjects wi th and wi th­
out MoUs are balanced.

After subjects have been assigned to a group, the Guide Page
shows the first task to be performed using the rent-a-car system
(T1 in Fig. 9). The Guide Page automatically times subjects as they
perform each task. When subjects finish the task, they have to fill
in the satisfaction questionnaire on the Guide Page. This question­
naire includes a question for each usability attribute related to the
MoUs of Task 1 (Q1 in Fig. 9). Next, the Guide Page shows Task 2
(T2 in Fig. 9). This process is repeated for each task. After subjects
have finished all tasks, there is a short questionnaire on the Guide
Page wi th three questions about the general usability of the system
(QF in Fig. 9).

X

X

Fig. 9. Experiment operation.

Table 7
Relationship between experimental tasks and modes of use.

Task Mode of use Mechanisms

Create a car

Create a bank account

Reserve a car for rental

Put up a car for sale

In form about service execution success or fai lure (MoU1_SSF)
Specify the input widgets visualization type (MoU1_STE)
Default values (MoU3_STE)

Mask def in i t ion (MoU2_STE)
Dynamic help (MoU1_MH)

Warning message (MoU1_W)

Show the action state (MoU3_SSF)

System Status Feedback
Structured Text Entry
Structured Text Entry

Structured Text Entry
Mul t i level Help

Warning

System Status Feedback

Table 7 shows the relationship among experimental tasks, MoUs
and usability mechanisms included in the experiment. From 12
usability mechanism and 22 MoUs, 4 usability mechanisms and 7
MoUs were relevant for the car rental system (MoU2_STE and
Mou_STE3 are already supported by INTEGRANOVA). These MoUs
include a total of 16 configurable properties and 1 non-configurable
property. The other 15 MoUs have not been included in the exper­
iment since they are not relevantin the contextofthe car rental sys­
tem. We have discarded MoUs that are derived from usability
mechanisms that are especially useful for systems w i th much input
data (Step by Step), for systems whose actions last for several sec­
onds (Interaction Feedback, Progress Feedback, Abort Operation),
for systems wi th critical actions (Global Undo) and for systems
where end users interact w i th the same system repeatedly during
a long period of time (Preferences, Personal Object Space, Favour­
ites). The application of all these mechanisms is not useful for the
car rental system, where end users provide a few arguments,
actions are simple, actions last for a few milliseconds and end users
do not interact w i th the same system repeatedly.

5.3. Data analysis

We analyzed the data using three methods: comparison of
means, univariate general lineal model, and box and whisker plots.
In the following we detail these three analyses.

The comparison of means is shown in Fig. 10. The y-axis rep­
resents subject satisfaction. The smaller the value, the better satis­
faction is. Value 1 means that the subject is completely satisfied
and value 5 means that the subject is completely dissatisfied.
The x-axis represents the MoUs studied in the experiment (MoU
acronyms were described in Table 7). From Fig. 10, the users that
interact w i th MoUs appear to be more satisfied. This rule does
not hold for MoU3_SSF (Default values).

Fig. 11 shows the average t ime spent on a task. The y-axis rep­
resents minutes and the x-axis represents the four tasks in the
experiment. Experts appear to take less t ime to complete a task
than beginners, which makes sense.

Univariate General Lineal Model (GLM) can only be applied in
these three assumptions: residuals are independent of each other,
residuals must be normally distributed, residuals should have the

4,5

4

3,5

2,5

1,5

MoU_SSF1 MoU_STE1 MoU_STE3 MoU_STE2 MoU_MH1 MoU_W1 MoU_SSF3 GENERAL US.

ExpertsWithMoUs
ExpertsWithoutMoUs

• NoviceWithMoUs
• - NoviceWithoutMoUs

,•

• .*'——• ^ ^ - •v5~^>:.

TASKl TASK2

• E x p e r t s W i t h M o U s

fcExpertsWithoutMoUs

TASK3 TASK4

• NoviceWithMoUs

• - NoviceWithoutMoUs

F i g . 1 1 . A v e r a g e m i n u t e s p e r t a s k .

same variance for all values of the independent variables (homo-
scedasticity assumption). We ensured that all these assumptions
were satisfied. All the residuals obtain a value close to 2 using
the Durbin–Watson tests, which means that residuals are uncorre-
lated. All the residuals obtain a p-value higher than 0.05 w i th K–S
test, which means that residuals are normally distributed. All the
residuals obtain a p-value higher than 0.05 w i th Levene’s test,
which means that residuals have the same variances for each inde­
pendent variable.

Table 8 shows the GLM for User satisfaction level w i th the Use
of MoUs factor. The last column (Sig.) in Table 8 shows that subject
satisfaction strongly depends on the use of MoUs, except for Inform
about service execution success or failure (MoU1_SSF), Show the
action state (MoU3_SSF) and General usability.

Table 9 shows the GLM for Time to finish the tasks w i th the Use
of MoUs factor. We have timed each task and the addition of all of
them. The last column (Sig.) in Table 9 shows that the t ime to finish
the task is not related to the use of MoUs, which might make sense
since not always a higher usability involves making tasks faster.

Table 8
Univariate GLM for User satisfaction level.

Response
variable

MoU1_SSF
MoU1_STE
MoU2_STE
MoU3_STE
MoU1_MH
MoU1_W
MoU3_SSF
General

Type III sum of squares

6.68
44.182

458.727
45.833
94.561

427.636
21.879
2.97

Mean square

6.68
44.182

458.727
45.833
94.561

427.636
21.879
2.97

F

0.911
5.802

50.047
12.77
22.571
41.406

1.822
0.529

Sig.

0.344
0.019
0.000
0.001
0.000
0.000
0.182
0.47

Table 9
Univariate GLM for Time to finish the tasks.

Fig. 10. Average satisfaction per MoU.

Response variable

Time_Task1
Time_Task2
Time_Task3
Time_Task4
Total_Time

Type III sum

23221.879
62930.97
3136.742
858.242

33773.47

of squares Mean square

23221.879
62930.97
3136.742
858.242

33773.47

F

2.402
3.464
1.31
0.076
0.247

Sig.

0.126
0.067
0.718
0.784
0.621

6

5

2

1

0

5

3

:

l

Sometimes the improvement of other usability criteria different
from efficiency (such as learnability or satisfaction) may involve
a decrease in efficiency.

Box and whisker plots illustrate the median and quartile for
both response variables (User satisfaction level and Time to finish
tasks). Fig. 12 shows the plot that compares User satisfaction level
w i th and without Warning message (MoU1_W). The x-axis repre­
sents the use of the MoU1_W factor and the y-axis represents
the sum of all the questions that measure the User satisfaction
level of MoU1_W. According to Fig. 12, there is a sizeable difference
between the medians of subjects that do and do not interact w i th
MoU1_W. The satisfaction value for subjects that interact w i th
MoU1_W is better (the lower the value on the y-axis, the better
satisfaction is). Also, the median for subjects w i th MoU1_W is pos­
itively skewed, whereas the median for subjects without MoU1_W
is negatively skewed. All MoUs have a similar trend, except for
MoU1_SSF, MoU3_SSF and General usability, where the difference
of medians between subjects that do or do not interact w i th MoUs
is not so clear.

Fig. 13 shows the box and whisker plot for Time to finish the
tasks wi th reference to the Use of MoUs factor. The median of
subjects that interact w i th and without MoUs is identical, although
i t is more positively skewed for subjects that interact w i th MoUs.

Fig. 12. Box and whisker plot for User satisfaction level with and without MoU1_W.

Fig. 13. Box and whisker plot for Time to finish the tasks with and without MoUs.

5.4. Results interpretation

We can state that MoUs generally improve user satisfaction
independently of the experience in the use of applications devel­
oped w i th the MDD method. Consequently, we reject hypothesis
H 1 0 (satisfaction for users interacting with MoUs is the same as satis­
faction for users interacting without MoUs).

There are two exceptions: inform about service execution suc­
cess or failure (MoU1_SSF) and show the action state (MoU3_SSF).
An explanation for this result might be that these two MoUs were
not implemented in the best possible way for the type of systems
used in the evaluation. Both MoUs showed a message to explain
whether or not the actions had been completed successfully and
why the actions had been disabled, respectively. After the evalua­
tion, some subjects commented that these messages threw them.

Another finding from the experiment is that the General usabil­
i ty of the system improves very l itt le. It is noteworthy that, unfor­
tunately, there are no studies (in either the HCI field or SE) about
the degree of usability improvement that each specific mechanism,
recommendation, heuristic or guideline provides. Usability bene­
fits are evaluated after applying several improvements (typically
suggested by a usability expert in HCI field). Therefore, there is
no knowledge yet about the specific gain in usability when one
or a small set of features is included in a system. Our experiment
has incorporated 3 out of 6 FUFs, 4 out of 12 mechanisms and only
32% of MoUs. It seems that our approach is promising, since an
improvement of general usability is sti l l appreciated even for such
a small incorporation of usability mechanisms.

Wi th regard to the t ime hypothesis, the analysis shows that
t ime is independent of interaction w i th or without MoUs. More­
over, there is no difference between the t ime taken by experts in
applications developed wi th the MDD method and beginners. Con­
sequently, we accept hypothesis H20 (Time for users interacting with
MoUs is the same as time for users interacting without MoUs). For
some tasks, like Task 2 (Create a bank account), t ime taken by users
that interact w i th MoUs is even worse than t ime taken by users
that interact without MoUs. Notice that users who interact without
MoUs are not notified about mistakes made during the task. We
observed that, very often, they did not take as long to complete
the task because they performed the task incorrectly. For example,
Task 2 forced the user to make a mistake that only subjects who
interacted w i th MoUs noticed. In this task, the user had to insert
a bank account number randomly. This value should have a specific
16-digit format (according to real cards). However, most subjects
that interacted without MoUs inserted the wrong number of digits.
Subjects that interacted w i th MoUs had a mask and a default value
that indicated the correct number of digits. Therefore, these sub­
jects noticed and spent time fixing the mistake. Reviewing the task
outcomes, we can also state that MoUs help to improve user effec­
tiveness (completing the task satisfactorily).

From the results of our experiment we can extract some rele­
vant conclusions. First, end users’ satisfaction improves after
including MoUs in a system. This statement justifies the enhance­
ment of MDD methods to support MoUs. Second, the improvement
of satisfaction does not depend on the level of end users’ experi­
ence, which means that novice users also appreciate an improve­
ment in satisfaction. Third, interaction time is not reduced
significantly through the inclusion of MoUs, which means that
the use of usability features is not suitable to reduce end users’
effort.

5.5. Threats to validity

We have used the classification of threats defined by Wohlin
et al. [43] to identify threats. Next, we discuss how we have dealt
w i th those issues that threaten the validity of the experiment:

Subjects of random heterogeneity: this threat appears when
there are subjects w i th more experience than others. In our exper­
iment, all subjects had lengthy experience in Web applications.
This was confirmed by the demographic questionnaire.

Maturat ion: this is the effect of subjects reacting differently to
treatments as time passes. We dealt w i th this threat by designing
an experiment that takes only 15 min.

Instrumentat ion: even though tasks and questionnaires are the
same for all subjects, these can be interpreted differently by each
subject. In order to minimize this threat, we ran a pilot test w i th
4 subjects. This pilot test was useful for detecting ambiguous and
hard-to-understand instructions and questions. All detected
defects were fixed before carrying out the real experiment.

Hypothesis guessing: this threat accounts for cases where sub­
jects guess the aim of the experiment and act conditionally upon
that goal. This threat has been minimized by concealing the aim.

Interaction of selection and treatment: this is an effect of hav­
ing a subject population that is not representative of the popula­
t ion that we want to generalize. This threat is minimized by
blocking the number of subjects w i th and without experience of
INTEGRANOVA applications. Moreover, we have studied subjects
aged from 21 to 56 years, w i th different professions and from sev­
eral countries.

Next, we describe threats that we did not manage to avoid due
to the characteristics of our experiment:

Mono-MDD tool bias: this is the effect of studying our
approach only w i th one MDD method. The application of our
approach to INTEGRANOVA demonstrates that the proposal can
work w i th a real tool but this fact does not involve that using other
MDD tools, results would be the same. Each MDD method has its
own model to represent the interaction, which hinders the gener­
alization of our results to any other MDD method.

Experiment expectancies: this threat appears when partici­
pants can bias the results unconsciously due to expectations for
specific results. Our experiment suffers from this threat since we
implemented manually unsupported MoUs for the experiment
and we also defined the approach to include MoUs in a MDD
method.

Restricted generalizability: the results of our experiment are
only valid for the car rental system, although the findings might
be a clue for other systems that deal w i th management operations.
To generalize the results to other systems, Web applications from
different domains need to be used. However, our research is not
aiming to gain empirical evidence on usability improvement
through the incorporation of FUFs in a system. HCI recommenda­
tions for improving usability have been routinely followed during
years without experimental evidence. This experiment just aims
to collect some empirical data to illustrate that including usability
features into a MDD method might worth.

6. Manual versus MDD design of usability features

Most MDD methods have mechanisms to represent the interac­
t ion w i th the end user. For example, WebRatio [2] includes a Pre­
sentation Model to express the layout and graphic appearance of
pages, independently of the output device and of the rendition lan­
guage. This model is based on an abstract XML syntax. UWE [19]
enables the definition of the front-end interface by means of a
Hypertext Model. It defines pages and their internal organization
in terms of components for displaying content. This model also
supports the definition of links between pages and content units
that support information location and browsing. Components can
also specify operations; such as, content management or user’s
login/logout procedures. NDT [9] has an abstract interface to repre­
sent the interaction wi th the user. This model is based on a set of
evaluated prototypes, where the analyst and the users must choose

the best one for the developing system. OO-Method [29,28] has
two models to represent the interaction: the Abstract Interaction
Model and the Concrete Interaction Model. The Abstract Model
represents the interface independently of platform features and
the Concrete Model represents the interface for a specific platform.

However, all these MDD methods (among others) do not pro­
vide enough expressiveness in their conceptual models to support
usability features. Nowadays, analysts that work w i th MDD meth­
ods need to enhance manually the generated code to include such
features. Next, we compare the effort of programming usability
features manually versus the effort of modelling them through
conceptual primitives. This comparative is performed using OO-
Method. The object used in the comparison is the software system
used in the laboratory evaluation. The subjects are two of the
authors of this paper, who are experts in OO-Method and INTE-
GRANOVA. These subjects did not participated in the definition
of OO-Method (1992) or in the implementation of INTEGRANOVA
(2002) but they are developing software systems w i th INTEGRA-
NOVA from 2006. The choice of experts is because of our approach
requires analysts that already work w i th MDD methods and aim to
deal w i th usability features through conceptual primitives, in the
same way as they deal w i th functional or behaviour features. Ana-
lyst1 and Analyst2 have a wide experience developing software
systems w i th INTEGRANOVA and they are already familiar w i th
the architecture of the generated code. Moreover, Analyst2 is an
expert in the development of Web applications using programming
languages such as PHP or C#.

As we have commented in the evaluation section, the 5 MoUs
studied in the experiment were implemented manually by Ana-
lyst1, since INTEGRANOVA does not yet support their code gener­
ation. We have considered the effort spent in this implementation
as the data of Analyst1 to manually include usability features in the
code generated from INTEGRANOVA. Analyst2 has replicated the
development of the same system used in the experiment to ana­
lyze possible differences between efforts of both analysts. Table
10 shows effort of Analyst1 (A.1) and Analyst2 (A.2) to manually
implement unsupported MoUs in terms of time and number of
lines of code. Mask definition (MoU2_STE) and Default values
(MoU3_STE) have not been included since they did not require
manual implementation in INTEGRANOVA. Remember that both
MoUs are already supported by INTEGRANOVA and they are mod­
elled using the primitives shown in Figs. 3 and 4. As a result, Ana-
lyst1 needed 14 h and Analyst2 needed 11.5 h to manually
implement the 5 MoUs. This time includes the time taken to debug
the code. The source code of more than three classes was modified
for each MoU, which is an added difficulty for the analyst. The rea­
son why effort (both time and number of lines) obtained w i th Ana-
lyst2 is better than Analyst1 might be due to his great experience
in the development of Web applications.

These data align w i th previous information on FUF design effort
[16]. Table 11 shows this previous information focused on the FUFs
used in our lab evaluation. The table includes information about
the difficulty of implementing FUF functionality, the number of
classes affected by the FUF, the complexity of the new methods
that implement the FUF and the amount of interaction between
new and existing methods. Feedback has the biggest impact on
design even if not many classes are needed. At the other end of
the scale, Help is the easiest FUF to implement since i t does not
require much functionality or many methods. However, i t took
us a long t ime to implement this FUF because i t appears in all
the system interfaces, since each interface has its own help.

Let us move now on measuring the workload of the analyst
working wi th conceptual primitives (MDD approach). The 2 MoUs
that are currently supported by INTEGRANOVA (Mask definition
and Default values) are measured using existing INTEGRANOVA
interfaces (see Figs. 3 and 4). The other 5 MoUs that are not

Table 10
Time taken to implement each MoU manually in INTEGRANOVA.

FUF MoU Time Lines

A. 1

2h
2h
3h

3h

4 h

A.2

2h
5h

1.5 h

1.5 h

1.5 h

A.1

60
26
94

35

108

A.2

12

22
16

22
23

Feedback

User Input Error Prevention

Help

Inform about service execution success or failure (MoU1_SSF)
Show the action state (MoU3_SSF)
Warning message (MoU1_W)

Specify the input widgets visualization type (MoU1_STE)

Dynamic help (MoU1_MH)

Table 11
Difficulty of including FUFs manually [16].

FUF Functionality Class Methods Interac.

Feedback High Low Medium High
User Input Error Prevention Medium Low Medium Low
Help Low Low Low High

supported currently by INTEGRANOVA have been calculated using
interface prototypes (such as Fig. 2). Table 12 shows the number of
clicks and the approximate seconds that Analyst1 (A.1) and Ana-
lyst2 (A.2) needed to model MoUs used in the experiment. Note
that comparing both analysts, we notice that Analyst1 took less
effort (both time and number of clicks) than Analyst2. The reason
might be that Analyst1 is working in the proposal to represent
usability features through conceptual models from the beginning,
and he knows the prototypes perfectly. Data of Table 12 has been
extracted without considering default values in INTEGRANOVA.
These numbers can decrease sharply if the required and default
values match in the interfaces to model MoUs.

Comparing Tables 10 and 11 w i th Table 12, we find that the
workload of the analysts using conceptual primitives to develop
usability features is clearly smaller. Analysts needed around 12 h
to implement modes of use manually while they needed around
10 min to model modes of use through conceptual primitives.

Wi th our proposal, the MDD designer needs to spend time
improving the conceptual model w i th new conceptual primitives
and to change the model compiler in order to incorporate usability
features into the MDD method. However, this is a one-off work­
load. Once the new primitives have been enabled in the MDD
method, analysts find i t straightforward to include MoUs in just
a few clicks.

7. Related work

In the literature, there are many works related to User Interface
Design Patterns (UIDPs) and interaction patterns that propose
solutions for well-known and frequent user interface problems.
The major UIDP libraries include Tidwell [40], Perzel et al. [31]
and van Welie et al. [42]. Tidwell represents UIDPs graphically
in such a way that users can participate in architecture design.

Perzel et al. describe a set of interaction patterns targeting web
environments. Van Welie et al. have defined interaction patterns
focused on the user’s perspective.

A shortcoming of these patterns is that each author defines the
patterns w i th a different notation and a different syntax. There are
as many notations to represent UIDPs as authors working in this
area. Analysts need to be familiar w i th a huge amount of patterns
expressed in different notations in order to take advantage of all of
UIDPs. Some proposals try to overcome this problem by using a
formal notation to represent patterns. Henninger and Ashokkumar
[12] use Semantic Web concepts to formally describe UIDPs in a
way that computers can understand and that can be converted into
a human-readable form.

UIDPs deal only w i th interface visual elements, i.e., a list of ele­
ments or a navigation button. Interface visual elements are not the
only type of usability features, there are usability features strongly
related to system architecture (as Folmer and Bosch [11] and Bass
and John [4] state). This type of usability feature cannot be repre­
sented using UIDPs. For example, a UIDP can specify that a progress
bar is needed in an interface, but this pattern does not deal w i th
the internal services needed to be executed for the progress bar
to work.

There are very few works dealing wi th usability features in a
MDD method. Moreover, when they are discussed, very few precise
details are given. This makes i t difficult to understand how these
approaches could work correctly in practical settings. Tao [38] pro­
poses to model usability by means of state transition diagrams.
Each diagram can be used to represent an interaction between
the system and the user. Paternò et al. [30] have defined a method
for the development of user interfaces for applications based on
Web services. The method starts from a task model and i t is refined
w i th an abstract and a concrete model. In order to guide the ana­
lyst, the process to specify interfaces is supported w i th usability
guidelines. Both state transition diagrams and tasks models are
not able to deal w i th all types of usability subcharacteristics; they
are only able to represent interactions.

Sottet et al. [37] investigate MDD mappings for embedding both
usability description and control. In this research, a user interface
is defined as a graph of models describing the interface from differ­
ent perspectives ranging from user tasks to deployment in the
context of use. Transformations between different abstraction

Table 12
Number of clicks to model each MoU in INTEGRANOVA.

FUF MoU Time (s) Clicks

A.1

300
5

10

7
7
6

A.2

350
8

12

10
12
12

A.1

34
2
8

4
5
6

A.2

36
2
9

5
5
6

Feedback

User Input Error Prevention

Help

Inform about service execution success or failure (MoU1_SSF)
Show the action state (MoU3_SSF)
Warning message (MoU1_W)

Specify the input widgets visualization type (MoU1_STE)
Mask definition (MoU2_STE)
Default values (MoU3_STE)

Dynamic help (MoU1_MH) 280 400 30 32

levels are performed by means of mappings. These mappings
describe and control system usability. Raneburger et al. [32]
propose improving system usability by MDD transformations.
Raneburger’s proposal focuses on minimizing navigation and
scrolling in interfaces for small devices. Both Sottet and Raneburg-
er define usability features inside transformation rules. This
approach requires know-how to define transformations w i th
usability.

There are works focused on measuring usability in conceptual
models. Fernández et al. [10] propose a usability model to evaluate
system usability from conceptual models. According to Fernández,
evaluation performed at the conceptual model level produces a
platform-independent usability report that provides feedback to
the system analysis stage. Molina and Toval [21] propose defining
usability features from the early stages of the MDD development
process. This approach focuses on navigational models provided
by a tool that offers automatic support for all the activities. But most
of the usability features are subjective and cannot be evaluated
automatically without taking into account the user. For instance,
features related to the attractiveness subcharacteristic cannot be
measured by means of conceptual models. Therefore, the result of
early usability evaluation is a prediction of sorts, but i t cannot be
considered trustworthy.

Summarizing, there are some proposals for dealing wi th usabil­
i ty in a MDD method. But few propose modelling usability features
by means of conceptual models, which is a software artefact
strongly related to producing quality systems. Moreover, we found
no work that defines specific conceptual primitives to represent
usability features in a MDD method. Usability is an important fea­
ture of systems, therefore MDD methods should provide a mecha­
nism to abstractly represent this characteristic.

8. Conclusions

We aim to enrich MDD methods w i th enough expressiveness to
support usability features. This paper presents a procedure to
extract properties of existing functional usability features and rep­
resent them wi th conceptual primitives. Next, these primitives can
generate the code that implements the usability features thanks to
a model compiler. Our proposal brings us a step closer to concep­
tual models where the models represent not only functionality,
behaviour or persistence, but also usability features.

In a MDD context, we have found no other research proposing
conceptual primitives to abstractly represent usability features.
Other authors suggest dealing wi th usability by means of models,
but do not define how to build such models. In general, in any
MDD method, usability features are manually implemented once
the system has been generated from a conceptual model.

Our approach needs to be partly independent and partly depen­
dent on the MDD method. The modes of use and properties
obtained in this research are applicable to any MDD method. The
conceptual primitives and the changes to the model compiler are
MDD method dependent, since the conceptual model and model
compiler are exclusive to the MDD method. However, our work
on the OO-Method shows that our approach works and is useful
for guiding designers through the changes that should be made
to other MDD methods. The application of our proposal to other
MDD methods depends on the expressiveness of their conceptual
models. OO-Method has an interaction model, which facilitates
the inclusion of new conceptual primitives to represent interaction
features. However, MDD methods w i th less expressiveness to deal
w i th interaction would require adding more conceptual primitives
to represent MoUs.

By means of an experiment, we have observed that our approach
improves user satisfaction. This means that we are getting better
user satisfaction by incorporating MoUs in a system. We have also

compared the workload required to introduce MoUs by means of
conceptual primitives versus manually. Once the primitives repre­
senting MoUs have been incorporated into the MDD method, there
is a sizeable reduction in analyst workload w i th respect to manual
implementation.

Acknowledgments

This work was developed w i th the support of the Spanish Min ­
istry of Science and Innovation Project SMART ADAPT (TIN2013-
42981-P), TIN2011-23216 and was co-financed by ERDF. It also
has the support of Generalitat Valenciana-funded ORCA Project
(PROMETEO/2009/015) and UV (UV-INV-PRECOMP13-115032).

References

[1] S. Abrahão, E. Iborra, J. Vanderdonckt, Usability evaluation of user interfaces
generated with a model-driven architecture tool, in : E. Law et al. (Eds.),
Maturing Usability, Springer, 2008, pp. 3–32.

[2] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, WebRatio 5: an eclipse-based CASE
tool for engineering web applications, Lect. Notes Comput. Sci. 4607 (2007)
501–505.

[3] N. Aquino, J. Vanderdonckt, F. Valverde, O. Pastor, Using Profiles to Support
Model Transformations in the Model-Driven Development of User Interfaces,
Presented at 7th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI’2008, Albacete, Spain, 2008, pp. 35–46.

[4] L. Bass, B. John, Linking usability to software architecture patterns through
general scenarios, J. Syst. Softw. 66 (2003) 187–197.

[5] J.M. Bastien, D. Scapin, Ergonomic Criteria for the Evaluation of Human–
Computer Interfaces, Rapport Technique de l’INRIA, 1993, pp. 79.

[6] INTEGRANOVA. <http://www.integranova.com>.
[7] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in

Software Engineering, Kluwer Academic Publishing, London, 2000.
[8] T. Coram, L. Lee, A Pattern Language for User Interface Design, 1996. <http://

www.maplefish.com/todd/papers/experiences/Experiences.html>.
[9] M.J. Escalona, G. Aragon, NDT. A model-driven approach for web requirements,

IEEE Trans. Softw. Eng. 34 (2008) 377–390.
[10] A. Fernández, E. Insfrán, S. Abrahão, Integrating a Usability Model into Model-

Driven Web Development Process, Presented at Web Information Systems
Engineering – WISE, 2009, pp. 497–510.

[11] E. Folmer, J. Bosch, Architecting for usability: a survey, J. Syst. Softw. 70 (1)
(2004) 61–78.

[12] S. Henninger, P. Ashokkumar, An Ontology-Based Infrastructure for Usability
Design Patterns, Presented at Semantic Web Enabled Software Engineering
(SWESE), Galway, Ireland, 2005, pp. 41–55.

[13] ISO/IEC 9126-1, Software Engineering – Product Quality – 1 : Quality Model,
2001.

[14] ISO 9241-11, Ergonomic Requirements for Office Work with Visual Display
Terminals – Part 1 1 : Guidance on Usability, 1998.

[15] N. Juristo, A. Moreno, Basics of Software Engineering Experimentation,
Springer, 2001.

[16] N. Juristo, A.M. Moreno, M.I. Sánchez, Analysing the impact of usability on
software design, J. Syst. Softw. 80 (2007) 1506–1516.

[17] N. Juristo, A.M. Moreno, M.I. Sánchez, Guidelines for eliciting usability
functionalities, IEEE Trans. Softw. Eng. 33 (2007) 744–758.

[18] S. Kent, Model Driven Engineering, Presented at the Proceedings of the Third
International Conference on Integrated Formal Methods, 2002, pp. 286–298.

[19] N. Koch, A. Knapp, G. Zhang, H. Baumeister, UML-Based Web Engineering, an
Approach Based on Standards, Web Engineering, Modelling and Implementing
Web Applications, Springer, 2008. pp. 157–191.

[20] S.J. Mellor, A.N. Clark, T. Futagami, Guest editors’ introduction: model-driven
development, IEEE Softw. 20 (2003) 14–18.

[21] F. Molina, A. Toval, Integrating usability requirements that can be evaluated in
design time into model driven engineering of web information systems, Adv.
Eng. Softw. 40 (2009) 1306–1317.

[22] P.J. Molina, S. Meliá, Ó. Pastor, JUST-UI: A User Interface Specification Model,
Presented at Computer Aided Design of User Interfaces (CADUI’2002),
Valenciennes, France, 2002.

[23] List of Changes: <http://hci.dsic.upv.es/FUF/ChangesList.html>.
[24] Y.I. Ormeño, J.I. Panach, Mapping Study About Usability Requirements

Elicitation, Presented at the Proceedings of the 25th International
Conference on Advanced Information Systems Engineering, Valencia, Spain,
2013, pp. 672–687.

[25] J.I. Panach, N. Juristo, O. Pastor, Including Functional Usability Features in a
Model-Driven Development Method Computer Science and Information
Systems (ComSIS), vol. 10, 2013, pp. 999–1024.

[26] J.I. Panach, N. Juristo, O. Pastor, Introducing Usability in a Conceptual
Modeling-Based Software Development Process, Presented at 31st
International Conference on Conceptual Modeling (ER), Lecture Notes in
Computer Science, vol. 7532, Springer, Florence, Italy, 2012, pp. 525–530.

http://refhub.elsevier.com/S0950-5849(14)00156-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0220
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0020
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0020
http://www.integranova.com
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0035
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0035
http://www.maplefish.com/todd/papers/experiences/Experiences.html
http://www.maplefish.com/todd/papers/experiences/Experiences.html
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0045
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0055
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0055
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0075
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0080
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0080
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0085
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0085
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0095
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0100
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0105
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0105
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0105
http://hci.dsic.upv.es/FUF/ChangesList.html

[27] J.I. Panach, Incorporating Usability Mechanisms in MDD Development. PhD
Dissertation, Universidad Politécnica de Valencia, 2010.

[28] O. Pastor, J. Gómez, E. Insfrán, V. Pelechano, The OO-Method approach for
information systems modelling: from object-oriented conceptual modelling to
automated programming, Inf. Syst. 26 (2001) 507–534.

[29] O. Pastor, J. Molina, Model-Driven Architecture in Practice, Springer, 2007.
[30] F. Paternò, C. Santoro, L.D. Spano, Engineering the authoring of usable service

front ends, J. Syst. Softw. 84 (2011) 1806–1822.
[31] K. Perzel, D. Kane, Usability Patterns for Applications on the World Wide Web,

Presented at PloP’99 Conference, 1999.
[32] D. Raneburger, R. Popp, S. Kavaldjian, H. Kaindl, J. Falb, Optimized GUI

Generation for Small Screens, Model-Driven Development of Advanced User
Interfaces, vol. 340, Springer, 2011.

[33] J. Sauro, J.R. Lewis, Quantifying the User Experience. Practical Statistics for
User Research, Morgan Kaufmann, 2012.

[34] C.D. Schmidt, Guest editor’s introduction: model-driven engineering, IEEE
Comput. (2006) 25–31. http://doi.ieeecomputersociety.org/10.1109/MC.2006.58.

[35] B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (2003)
19–25.

[36] S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of
model-driven software development, IEEE Softw. 20 (2003) 42–45.

[37] J.S. Sottet, G. Calvary, J. Coutaz, J.-M. Favre, A Model-Driven Engineering
Approach for the Usability of Plastic User Interfaces, Presented at Engineering
Interactive Systems Joining Three Working Conferences: IFIP WG2.7/13.4 10th
Conference on Engineering Human Computer Interaction, IFIP G 13.2 1st
Conference on Human Centred Software Engineering, DSVIS – 14th Conference
onDesign Specification andVerificationofInteractive Systems,2007,pp. 22–24.

[38] Y. Tao, An Adaptive Approach to Obtaining Usability Information for Early
Usability Evaluation, Presented at International MultiConference of Engineers
and Computer Scientists (IMECS), 2007, pp. 1066–1070.

[39] UML: <http://www.uml.org/>.
[40] J. Tidwell, Designing Interfaces, O’Reilly Media, 2005.
[41] Web used in the experiment: <http://hci.dsic.upv.es/TareasEvaluacion>.
[42] M.v. Welie, H. Traetteberg, Interaction Patterns in User Interfaces, Presented at

7th Pattern Languages of Programs Conference, Illinois, USA, 2000.
[43] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in Software Engineering: An Introduction, Springer, 2012.

http://refhub.elsevier.com/S0950-5849(14)00156-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0145
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0260
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0165
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0165
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0170
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0180
http://www.uml.org/
http://hci.dsic.upv.es/TareasEvaluacion
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0215
http://refhub.elsevier.com/S0950-5849(14)00156-6/h0215

