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Abstract

Context: Software defect prediction plays a crucial role in estimating the most defect-prone components of software, and a large
number of studies have pursued improving prediction accuracy within a project or across projects. However, the rules for making
an appropriate decision between within- and cross-project defect prediction when available historical data are insufficient remain
unclear.
Objective: The objective of this work is to validate the feasibility of the predictor built with a simplified metric set for software
defect prediction in different scenarios, and to investigate practical guidelines for the choice of training data, classifier and metric
subset of a given project.
Method: First, based on six typical classifiers, three types of predictors using the size of software metric set were constructed
in three scenarios. Then, we validated the acceptable performance of the predictor based on Top-k metrics in terms of statistical
methods. Finally, we attempted to minimize the Top-k metric subset by removing redundant metrics, and we tested the stability of
such a minimum metric subset with one-way ANOVA tests.
Results: The study has been conducted on 34 releases of 10 open-source projects available at the PROMISE repository. The findings
indicate that the predictors built with either Top-k metrics or the minimum metric subset can provide an acceptable result compared
with benchmark predictors. The guideline for choosing a suitable simplified metric set in different scenarios is presented in Table
12.
Conclusion: The experimental results indicate that (1) the choice of training data for defect prediction should depend on the specific
requirement of accuracy; (2) the predictor built with a simplified metric set works well and is very useful in case limited resources
are supplied; (3) simple classifiers (e.g., Naı̈ve Bayes) also tend to perform well when using a simplified metric set for defect
prediction; (4) in several cases, the minimum metric subset can be identified to facilitate the procedure of general defect prediction
with acceptable loss of prediction precision in practice.
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1. Introduction

In software engineering, defect prediction can precisely
estimate the most defect-prone software components, and help
software engineers allocate limited resources to those bits of
the systems that are most likely to contain defects in testing
and maintenance phases. Understanding and building defect
predictors (also known as defect prediction models) for a
software project is useful for a variety of software development
or maintenance activities, such as assessing software quality
and monitoring quality assurance (QA).

The importance of defect prediction has motivated numerous
researchers to define different types of models or predictors that
characterize various aspects of software quality. Most studies
usually formulate such a problem as a supervised learning
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problem, and the outcomes of those defect prediction models
depend on historical data. That is, they trained predictors
from the data of historical releases in the same project and
predicted defects in the upcoming releases, or reported the
results of cross-validation on the same data set [16], which
is referred to as Within-Project Defect Prediction (WPDP).
Zimmermann et al. [3] stated that defect prediction performs
well within projects as long as there is a sufficient amount of
data available to train any models. However, it is not practical
for new projects to collect such sufficient historical data. Thus,
achieving high accuracy defect prediction based on within-
project data is impossible in some cases.

Conversely, there are many public on-line defect data sets
available, such as PROMISE1, Apache2 and Eclipse3. Some
researchers have been inspired to overcome this challenge by

1http://promisedata.org
2http://www.apache.org/
3http://eclipse.org
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applying the predictors built for one project to a different one
[3, 17, 65]. Utilizing data across projects to build defect
prediction models is commonly referred to as Cross-Project
Defect Prediction (CPDP). CPDP refers to predicting defects
in a project using prediction models trained from the historical
data of other projects. The selection of training data depends on
the distributional characteristics of data sets. Some empirical
studies evaluated the potential usefulness of cross-project
predictors with a number of software metrics (e.g., static code
metrics, process metrics, and network metrics) [15, 16] and
how these metrics could be used in a complementary manner
[8]. Unfortunately, despite these attempts to demonstrate the
feasibility of CPDP, this method has been widely challenged
because of its low performance in practice [15]. Moreover, it
is still unclear how defect prediction models between WPDP
and CPDP are rationally chosen when limited or insufficient
historical data are provided.

In defect prediction literature, a considerable number of
software metrics, such as static code metrics, code change
history, process metrics and network metrics [10], have been
used to construct different predictors for defect prediction [35].
Almost all existing prediction models are built on the complex
combinations of software metrics, with which a prediction
model usually can achieve a satisfactory accuracy. Although
some feature selection techniques (e.g., principal component
analysis (PCA)) successfully reduce data dimensions [2, 44–
46, 50], they still lead to a time-consuming prediction process.
Can we find a compromise solution that makes a tradeoff

between cost and accuracy? In other words, can we find a
universal predictor built with few metrics (e.g., Lines of Code
(LOC)) that achieves an acceptable result compared with those
complex prediction models?

In addition to the selection of a wide variety of software
metrics, there are many classifiers (learning algorithms) that
have been studied, such as Naı̈ve Bayes, J48, Support Vector
Machine (SVM), Logistic Regression, and Random Tree [24,
27, 29], and defect prediction using these typical classifiers has
achieved many useful conclusions. Currently, some improved
classifiers [26, 54, 65] and hybrid classifiers [30, 31] have
also been proposed to effectively improve classification results.
Menzies et al. [33] advocated that different classifiers have
indiscriminate usage and must be chosen and customized for
the goal at hand.

Figure 1 presents a summary of the state-of-the-art defect
prediction. Complex predictors improve prediction precision
with loss of generality and increase the cost of data acquisition
and processing. On the contrary, simple predictors are
more universal, and they reduce the total effort-and-cost by
sacrificing a little precision. To construct an appropriate
and practical prediction model, we should take into overall
consideration the precision, generality and cost according to
specific requirements. Unlike the existing studies on complex
predictors, in our study, we focus mainly on building simple
prediction models with a simplified metric set according to
two assumptions (see the contents with a gray background in
Figure 1), and seek empirical evidence that they can achieve
acceptable results compared with the benchmark models. Our

contributions to the current state of research are summarized as
follows:

• We proposed an easy-to-use approach to simplifying the
set of software metrics based on filters methods for feature
selection, which could help software engineers build
suitable prediction models with the most representative
code features according to their specific requirements.

• We also validated the optimistic performance of the
prediction model built with a simplified subset of metrics
in different scenarios, and found that it was competent
enough when using different classifiers and training data
sets from an overall perspective.

• We further demonstrated that the prediction model
constructed with the minimum subset of metrics can
achieve a respectable overall result. Interestingly, such a
minimum metric subset is stable and independent of the
classifiers under discussion.

With these contributions, we complement previous work
on defect prediction. In particular, we provide a more
comprehensive suggestion on the selection of appropriate
predictive modeling approaches, training data, and simplified
metric sets for constructing a defect predictor according to
different specific requirements.

The rest of this paper is organized as follows. Section 2 is
a review of related literature. Sections 3 and 4 describe the
approach of our empirical study and the detailed experimental
setups, respectively. Sections 5 and 6 analyze and discuss
the primary results, and some threats to validity that could
affect our study are presented in Section 7. Finally, Section
8 concludes the paper and presents the agenda for future work.

2. Related Work

Defect prediction is an important topic in software
engineering, which allows software engineers to pay more
attention to defect-prone code with software metrics, thereby
improving software quality and making better use of limited
resources.

2.1. Within-Project Defect Prediction
Catal [28] investigated 90 software defect prediction papers

published between 1990 and 2009. He categorized these papers
and reviewed each paper from the perspectives of metrics,
learning algorithms, data sets, performance evaluation metrics,
and experimental results in an easy and effective manner.
According to this survey, the author stated that most of the
studies using method-level metrics and prediction models were
mostly based on machine learning techniques, and Naı̈ve Bayes
was validated as a robust machine learning algorithm for
supervised software defect prediction problems.

Hall et al. [22] investigated how the context of models,
the independent variables used, and the modeling techniques
applied affected the performance of defect prediction models
according to 208 defect prediction studies. Their results showed
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Figure 1: A summary of the state-of-the-art defect prediction.

that simple modeling techniques, such as Naı̈ve Bayes or
Logistic Regression, tended to perform well. In addition,
the combinations of independent variables were used by those
prediction models that performed well, and the results were
particularly good when feature selection had been applied to
these combinations. The authors argued that there were a lot of
defect prediction studies in which confidence was possible, but
more studies that used a reliable methodology and that reported
their detailed context, methodology, and performance in the
round were needed.

The vast majority of these studies were investigated in the
above two systematic literature reviews that were conducted
in the context of WPDP. However, they ignored the fact that
some projects, especially new projects, usually have limited
or insufficient historical data to train an appropriate model for
defect prediction. Hence, some researchers have begun to divert
their attention toward CPDP.

2.2. Cross-Project Defect Prediction

To the best of our knowledge, the earliest study on CPDP
was performed by Briand et al. [17], who applied models built
on an open-source project (i.e., Xpose) to another one (i.e.,
Jwriter). Although the predicted defect detection probabilities
were not realistic, the fault-prone class ranking was accurate.
They also validated that such a model performed better than
the random model and outperformed it in terms of class size.
Zimmermann et al. [3] conducted a large-scale experiment on
data vs. domain vs. process, and found that CPDP was not
always successful (21/622 predictions). They also found that
CPDP was not symmetrical between Firefox and IE.

Turhan et al. [18] analyzed CPDP using static code features
based on 10 projects also collected from the PROMISE
repository. They proposed a nearest-neighbor filtering
technique to filter out the irrelevancies in cross-project data.

Moreover, they further investigated the case where models
were constructed from a mix of within- and cross-project data,
and checked for any improvements to WPDP after adding the
data from other projects. They concluded that when there was
limited project historical data (e.g., 10% of historical data),
mixed project predictions were viable, as they performed as
well as within-project prediction models [20].

Rahman et al. [15] conducted a cost-sensitive analysis of
the efficacy of CPDP on 38 releases of nine large Apache
Software Foundation (ASF) projects, by comparing it with
WPDP. Their findings revealed that the cost-sensitive cross-
project prediction performance was not worse than the within-
project prediction performance, and was substantially better
than random prediction performance. Peters et al. [14]
introduced a new filter to aid cross-company learning compared
with the state-of-the-art Burak filter. The results revealed that
their approach could build 64% more useful predictors than
both within-company and cross-company approaches based
on Burak filters, and demonstrated that cross-company defect
prediction was able to be applied very early in a project’s
lifecycle.

He et al. [16] conducted three experiments on the same data
sets used in this study to validate the idea that training data
from other projects can provide acceptable results. They
further proposed an approach to automatically selecting
suitable training data for projects without local data. Towards
training data selection for CPDP, Herbold [21] proposed
several strategies based on 44 data sets from 14 open-source
projects. Parts of their data sets are used in our paper. The
results demonstrated that their selection strategies improved
the achieved success rate significantly, whereas the quality of
the results was still unable to compete with WPDP.

The review reveals that prior studies have mainly investigated
the feasibility of CPDP and the choice of training data from
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other projects. However, relatively little attention has been
paid to empirically exploring the performance of a predictor
based on a simplified metric set from the perspectives of
effort-and-cost, accuracy and generality. Moreover, very little
is known about whether the predictors built with simplified
or minimum software metric subsets obtained by eliminating
some redundant and irrelevant features are able to achieve
acceptable results.

2.3. Software Metrics

A wide variety of software metrics treated as features have
been used for defect prediction to improve software quality. At
the same time, numerous comparisons among different software
metrics have also been made to examine which metric or
combination of metrics performs better.

Shin et al. [37] investigated whether source code and
development histories were discriminative and predictive of
vulnerable code locations among complexity, code churn, and
developer activity metrics. They found that 24 of the 28
metrics were discriminative for both Mozilla Firefox and Linux
kernel. The models using all the three types of metrics
together predicted over 80% of the known vulnerable files
with less than 25% false positives for both projects. Marco
et al. [34] conducted three experiments on five systems with
process metrics, previous defects, source code metrics, entropy
of changes, churn, etc. They found that simple process metrics
were the best overall performers, slightly ahead of the churn of
source code and the entropy of source code metrics.

Zimmermann and Nagappan [2] leveraged social network
metrics derived from dependency relationships between
software entities on Windows Server 2003 to predict which
entities were likely to have defects. The results indicated that
network metrics performed significantly better than source
code metrics with regard to predicting defects. Tosun et al.
[19] conducted additional experiments on five public data sets
to reproduce and validate their results from two different levels
of granularity. The results indicated that network metrics were
suitable for predicting defects for large and complex systems,
whereas they performed poorly on small-scale projects. To
further validate the generality of the findings, Premraj and
Herzig [8] replicated Zimmermann and Nagappan’s work on
three open-source projects, and found that the results were
consistent with the original study. However, with respect to the
collection of data sets, code metrics might be preferable for
empirical studies on open-source software projects.

Recently, Radjenović et al. [35] classified 106 papers on
defect prediction according to metrics and context properties.
They found that the proportions of object-oriented metrics,
traditional source code metrics, and process metrics were 49%,
27%, and 24%, respectively. Chidamber and Kemerer’s (CK)
suite metrics are most frequently used. Object-oriented and
process metrics have been reported to be more successful than
traditional size and complexity metrics. Process metrics appear
to be better at predicting post-release defects than any static
code metrics. For more studies, one can refer to the literature
[26, 36, 38, 40].

The simplification of software metric set could improve
the performance and efficiency of defect prediction. Feature
selection techniques have been used to remove redundant or
irrelevant metrics from a large number of software metrics
available. Prior studies [50–53] lay a solid foundation for our
work.

3. Problem and Approach

3.1. Analysis of Defect Prediction Problem

Machine learning techniques have emerged as an effective
way to predict the existence of a bug in a change made to a
source code file [45]. A classifier learns using training data, and
it is then used for test data to predict bugs or bug proneness.
During the learning process, one of the easiest methods is to
directly train prediction models without the introduction of any
attribute/feature selection techniques (see Figure 2). However,
this treatment will increase the burden on features analysis and
the process of learning. Moreover, it is also easy to generate
information redundancy and increase the complexity of the
prediction models. For a large feature set, on one hand, the
computation complexity of some feature values may be very
high, and the cost of data acquisition and processing is far more
than their contributions to a predictor; on the other hand, the
addition of many useless or correlative features is harmful to
a predictor’s accuracy, and high complexity of a predictor will
affect its generalization capability.

A reasonable method to deal with large feature set is to
perform a feature selection process, so as to identify that a
subset of features can provide the best classification result.
Feature selection can be broadly classified as feature ranking
and feature subset selection, or be categorized as filters and
wrappers. Filters are algorithms in which a subset of features
is selected without involving any learning algorithm, whereas
wrappers are algorithms that use feedback from a classification
learning algorithm to determine which feature(s) to include in
constructing a classification model. In the literature [45, 50–
52], many approaches have been proposed to discard less
important features in order to improve defect prediction. The
more refined a feature subset becomes, the more stable a feature
selection algorithm is.

Feature selection substantially reduces the number of
features, and a reduced feature subset permits better and faster
bug predictions. Despite this result, the stability of feature
selection techniques depends largely on the context of defect
prediction models. In other words, a feature selection
technique can perform well in a data set, but perhaps, the effect
will become insignificant when crossing other data sets.
Moreover, the generality of the obtained feature subset is very
poor. To our knowledge, each successful prediction model in
prior studies usually uses no more than 10 metrics [13]. In this
study, first, we record the number of occurrences of different
metrics in each prediction model, and then use the Top-k
representative metrics as a universal feature subset to predict
defect for all projects. This approach will be more suitable for
projects without sufficient historical data for WPDP because of
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Figure 2: Simplified metric set building process.

its generality. The greater the prediction models training, the
more general the Top-k feature subset is.

However, there are still some strong correlations among the
Top-k metrics obtained according to the number of occurrences.
Hence, another desirable method is to minimize such a feature
subset by applying some reduction criteria, for example,
discarding the metric that has strong correlations with other
metrics within the Top-k subset. To the best of our knowledge,
the simple static code metric such as LOC has been validated
to be a useful predictor of software defects [9]. Furthermore,
there is a sufficient amount of data available for these simple
metrics to train any prediction models. Whether there is a
simplified (or even minimum) feature subset that performs well
both within a project and across projects as long as there is a
sufficient number of training models. As depicted in Figure
2, we define this progressive reduction on the size of feature
set as metric set simplification, which represents the primary
contribution throughout our study.

3.2. Research Questions

According to the review of existing work related to (1) the
trade-off between WPDP and CPDP, and (2) the choice of
software metrics and classifiers, we attempt to find empirical
evidence that addresses the following four research questions
in our paper:

• RQ1: Which type of defect prediction models is more
suitable for a specific project between WPDP and CPDP?
Prediction accuracy depends not only on the learning
techniques applied, but also on the selected training data
sets. It is common sense that training data obtained from
the same project will perform better than those collected

from other projects. To our surprise, He et al. [16] found
the opposite result that the latter is better than the former.
We thus further validate the hypothesis that the former
will be more suitable when emphasizing the precision as a
result of the authenticity of the data, and the latter in turn
will be more preferable when emphasizing the recall and
F-measure with sufficient information.

• RQ2: Does the predictor built with a simplified metric set
work well?
In practice, software engineers have to make a trade-off

between accuracy and effort-and-cost in software quality
control processes. There is no doubt that more effort-
and-cost must be paid for data acquisition and processing
when taking more metrics into account in a prediction
model, although including more information may improve
prediction accuracy to some extent. For this question,
we would like to validate whether a predictor based on
few representative metrics can still achieve acceptable
prediction results. If so, the generality of the procedure
for defect prediction will be remarkably improved.

• RQ3: Which classifier is more likely to be the choice of
defect prediction with a simplified metric set?
Prior studies suggest that easy-to-use classifiers tend
to perform well, such as Naı̈ve Bayes and Logistic
Regression [22]. Does this conclusion still hold when
using simplified metric set for defect prediction? In
addition, is the stability of results obtained from our
approach with different classifiers statistically significant?

• RQ4: Is there a minimum metric subset that facilitates the
procedure for general defect prediction?
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It is well-known that you cannot have your cake and
eat it too. Eliminating strong correlations between the
metrics within the Top-k metric subset leads to more
generality, which might result in a loss of precision. What
we would like to discuss is the existence of a minimum
metric subset, which facilitates the procedure of general
defect prediction with regard to the practicable criteria for
acceptable results. For instance, recall > 0.7 and precision
> 0.5 [16].

3.3. Simplification of Metric Set
3.3.1. Top-k Feature Subset

As shown in Figure 2, we constructed four combinations
of software metrics as experimental subjects to carry out our
experiments. ALL indicates that no feature selection techniques
are introduced when constructing defect prediction models in
our experiments, and FILTER indicates that a feature selection
technique with a CfsSubsetEval evaluator and GreedyStepwise
search algorithm in Weka4 is introduced to select features from
original data sets automatically. The CfsSubsetEval evaluator
evaluates the worth of a subset of attributes by considering
the individual predictive ability of each feature along with the
degree of redundancy between them. The GreedyStepwise
algorithm performs a greedy forward or backward search
through the space of attribute subsets, which may start with
no/all attributes or from an arbitrary point in the space and stops
when the addition/deletion of any remaining attributes results in
a decrease in the evaluation. It is worthwhile to note that filters
are usually less computationally intensive than wrappers, which
depend largely on a specific type of predictive models.

On the basis of feature selection techniques, we use TOPK
to represent the Top-k metrics determined by the number of
occurrences of different metrics in the obtained filtering models.
To identify the optimal K value of the TOPK metric subset,
we introduce a Coverage index, which is used to measure the
degree of coverage between two groups of metrics from the
same data set (i.e., FILTER vs. TOPK). In this paper, we
use the Coverage index because it takes the representativeness
of selected metrics into consideration. Suppose Filteri is the
metric subset selected automatically from data set i and Topk

is the k most frequently occurring metrics, we compute the
Coverage value between two groups of metrics as follows:

Coverage(k) =
1
n

n∑
i

Filteri
⋂

Topk

Filteri
⋃

Topk
, (1)

where n is the total number of data sets, and 0 ≤ Coverage(k) ≤
1. It is proportional to the intersection between the top k
frequently occurring metrics and the subset of metrics obtained
by the feature selection technique, and is inversely proportional
to their union. If these two groups of metrics are the same,
the measure is 1. The greater the measure becomes, the more
representative the TOPK is.

The range of parameter k depends not only on the number of
occurrences of each metric, but also on the size of the subset

4http://www.cs.waikato.ac.nz/ml/weka/

of the metrics selected with Weka. The optimal k value is
determined by the index Coverage of each TOPK combination.
For example, for the data sets in this study, the number of
occurrences of the top 5 metrics is more than 17 compared with
the total number of occurrences 34: CBO (21), LOC (20), RFC
(20), LCOM (18), and CE (17) (see Figure 3(a)). Meanwhile,
the feature subsets of most releases analyzed have no more
than 10 metrics (see Figure 3(b)), and the value of Coverage(5)
reaches a peak (0.6) (see Figure 3(c)).

3.3.2. Minimum Feature Subset
Although the TOPK metric subset largely reduces the

dimension of the original data, there are still strong correlations
amongst the metrics within this subset. In order to alleviate
information redundancy or remove redundant metrics, we
further screen the metric set to determine the minimum subset
by the following three setups:

(1) Constructing all possible combinations C among the Top-
k metrics, C = {C1,C2, · · · ,Cp} (p = 2k − 1), and
Ch={m1,m2, · · · ,mi} (mi ∈ TOPK, i ≤ k, h ≤ p). Take
the top 5 metrics as an example, {CBO, LOC} is one of
the C2

5 combinations. For convenience, the {CBO, LOC}
combination is symbolized as CBO+LOC.

(2) Calculating correlation coefficient matrix Rk×k. If the
element ri j in R is larger than ϕ, excluding all
combinations Ch that include the metrics mi and m j from
C, and returning the remaining metric subset
C′(|C′| ≤ |C|).

(3) Finally, determining the minimum metric subset by the
Coverage index. That is, replacing Topk with C

′

h(C
′

h ∈ C′)
in Equation (1).

In setup (2), the element ri j is the correlation coefficient
between the ith metric and the jth metric. In general, ri j > 0
indicates a positive correlation between two metrics, ri j < 0
indicates a negative correlation, whereas ri j = 0 indicates no
correlation. The closer to 1 the absolute value of r is, the
greater the strength of the correlation between metrics becomes.
Although there is no clear boundary for the strength of
correlations, as a rule of thumb, the guideline in Table 1 is often
useful. In our study, the greater the strength of the correlation
between two metrics becomes, the more redundant the existing
information is. For example, if the correlation coefficient
r between CBO and CE is larger than ϕ, all combinations
that contain these two metrics have to be excluded, such as
CBO+CE, CBO+CE+LOC, CBO+CE+RFC, and so on.

In setup (3), we compute the Coverage values of remaining
combinations again. Besides, we further validate the results
of the minimum metric subset based on the corresponding
thresholds of Recall, Precision and F-measure. There is
also no unified standard for judging whether the result of
a defect prediction model is successful. Different studies
may use different thresholds to evaluate their results. For
example, Zimmermann et al. [3] judged their results with
all Recall, Precision, and Accuracy values greater than 0.75.
Nevertheless, He et al. [16] made predictions with Recall
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Figure 3: The determination of the optimal k value.

Table 1: The strength of correlations.

Absolute Value of r Strength
0.8-1 Very Strong

0.6-0.8 Strong
0.4-0.6 Moderate
0.2-0.4 Weak
0.0-0.2 None or very weak

greater than 0.7 and Precision greater than 0.5 with regard to
good engineering practices. Hence, the thresholds used rely
on the previous studies of some other researchers and our own
research experience on defect prediction.

4. Experimental Setup

4.1. Data Collection

In our study, 34 releases of 10 open-source projects available
at the PROMISE repository are used for validation, a total of 34
different defect data sets. Detailed information on the 34 data
sets is listed in Table 2, where #Instances and #De f ects are
the number of instances and the number of defects respectively.
The last column is the ratio of buggy classes to all classes.
Each instance in these public data sets represents a class file
of a release and consists of two parts: independent variables
including 20 static code metrics (e.g., CBO, WMC, RFC,
LCOM, etc.) and a dependent variable labeling how many bugs
are in this class. Table 3 presents all of the variables involved
in our study.

Note that, there is a preprocessing that transforms the bug
attribute into a binary classification before using it as the
dependent variable in our context. The reason why we use
such a preprocessing consists in two regions. On one hand,
the majority of class files in the 34 data sets have no more than
3 defects. On the other hand, the ratio of the instances with
more than 10 defects to the total instances is less than 0.2%
(see Figure 4). Furthermore, the preprocessing has been used in
several prior researches, such as [14, 16, 18, 20, 21], to predict
defect proneness. In a word, a class is non-buggy only if the
number of bugs in it is equal to 0. Otherwise, it is buggy.
A defect prediction model typically labels each class as either
buggy or non-buggy.

Table 2: Details of the 34 data sets, including the number of instances
(files), defects and defect-proneness.

No. Releases #Instances(Files) #Defects %Defects
1 Ant-1.3 125 20 16.0
2 Ant-1.4 178 40 22.5
3 Ant-1.5 293 32 10.9
4 Ant-1.6 351 92 26.2
5 Ant-1.7 745 166 22.3
6 Camel-1.0 339 13 3.8
7 Camel-1.2 608 216 35.5
8 Camel-1.4 872 145 16.6
9 Camel-1.6 965 188 19.5

10 Ivy-1.1 111 63 56.8
11 Ivy-1.4 241 16 6.6
12 Ivy-2.0 352 40 11.4
13 Jedit-3.2 272 90 33.1
14 Jedit-4.0 306 75 24.5
15 Lucene-2.0 195 91 46.7
16 Lucene-2.2 247 144 58.3
17 Lucene-2.4 340 203 59.7
18 Poi-1.5 237 141 59.5
19 Poi-2.0 314 37 11.8
20 Poi-2.5 385 248 64.4
21 Poi-3.0 442 281 63.6
22 Synapse-1.0 157 16 10.2
23 Synapse-1.1 222 60 27.0
24 Synapse-1.2 256 86 33.6
25 Velocity-1.4 196 147 75.0
26 Velocity-1.5 214 142 66.4
27 Velocity-1.6 229 78 34.1
28 Xalan-2.4 723 110 15.2
29 Xalan-2.5 803 387 48.2
30 Xalan-2.6 885 411 46.4
31 Xerces-init 162 77 47.5
32 Xerces-1.2 440 71 16.1
33 Xerces-1.3 453 69 15.2
34 Xerces-1.4 588 437 74.3
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Figure 4: The distribution of defects in the data sets.

Given the skew distributions of the value of independent
variables in most data sets, it is useful to apply a “log-filter”
to all numeric values v with ln(v) (to avoid numeric errors with
ln(0), all numbers ln(v) are replaced with ln(v + 1)) [38, 48].
In addition, there are many other commonly-used methods in
machine learning literature, such as min-max and z-score [47].

4.2. Experiment Design

When you conduct an empirical study on defect prediction,
many decisions have to be made regarding the collection of
representative data sets, the choice of independent and
dependent variables, modeling techniques, evaluation methods
and evaluation criteria. The entire framework of our
experiments is illustrated in Figure 5.

First, to make a comparison between WPDP and CPDP, three
scenarios were considered in our experiments. (1) Scenario
1 (WPDP-1) uses the nearest release before the release in
question as training data; (2) Scenario 2 (WPDP-2) uses all
historical releases prior to the release in question as training
data; (3) Scenario 3 (CPDP) selects the most suitable releases
from other projects in terms of the method in [16] as training
data. For Scenario 1 and Scenario 2, the first release of each
project is just used as training data for the upcoming releases.
Thus, there are 24 (34 − 10 = 24) groups of tests among all the
34 releases of 10 projects. In order to ensure the comparability
of experimental results of WPDP and CPDP, we selected 24
groups of corresponding tests for CPDP, though there is a
total of 34 test data sets. For Scenario 3, the most suitable
training data from other projects are generated by an exhaustive
combinatorial test, rather than the three-step approach proposed
in that paper. Specifically speaking, all the combinations of
training data in their experiments consist of no more than three
releases. For more details, please refer to the section 4.1 in [16].

Second, we applied six defect prediction models built with
typical classifiers to 18 cases (3 × 6 = 18), and compared the
prediction results of three types of predictors based on different
numbers of metrics.

Third, on the basis of the TOP5 metric subset, we further
sought the minimum metric subset and tested the performance
of the predictor built with such a minimum metric subset.

After this process is completed, we will discuss the answers
to the four research questions of our study.

Table 3: Twenty independent variables of static code metrics and one
dependent variable in the last row.

Variable Description
CK suite (6)

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree

LCOM Lack of Cohesion in Methods
RFC Response for a Class
CBO Coupling between Object classes
NOC Number of Children

Martins metric (2)
CA Afferent Couplings
CE Efferent Couplings

QMOOM suite (5)
DAM Data Access Metric
NPM Number of Public Methods
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods
MOA Measure Of Aggregation

Extended CK suite (4)
IC Inheritance Coupling

CBM Coupling Between Methods
AMC Average Method Complexity

LCOM3 Normalized version of LCOM
McCabe’s CC (2)

MAX CC Maximum values of methods in the same class
AVG CC Mean values of methods in the same class

LOC Lines Of Code
Bug non-buggy or buggy

4.3. Variables
Independent Variables. The independent variables

represent the inputs or causes, and are also known as predictor
variables or features. It is usually what you think will affect the
dependent variable. In our study, there are 20 commonly-used
static code metrics, including CK suite (6), Martin’s metrics
(2), QMOOM suite (5), Extended CK suite (4), and McCabe’s
CC (2) as well as LOC. Each one exploits a different source of
code information (see Table 3). For example, the value of the
WMC is equal to the number of methods in a class (assuming
unity weights for all methods) [11].

Dependent Variable. The dependent variable represents the
output or effect, and is also known as response variable. In
mathematical modeling, the dependent variable is studied to see
if and how much it varies as the independent variables vary.
The goal of defect prediction in our experiments is to identify
defect-prone classes precisely for a given release. We deem the
defect-proneness as a binary classification problem (i.e., buggy
vs. non-buggy). That is to say, a class is non-buggy only if the
number of bugs in it is equal to 0; otherwise, it is buggy.

4.4. Classifiers
In general, an algorithm that implements classification,

especially in a concrete implementation, is known as a
classifier. There are inconsistent findings regarding the
superiority of a particular classifier over others [39]. In this
study, software defect prediction models are built with six
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Figure 5: The framework of our approach—an example of release Ant-1.7.

well-known classification algorithms used in [16], namely,
J48, Logistic Regression (LR), Naı̈ve Bayes (NB), Decision
Table (DT), Support Vector Machine (SVM) and Bayesian
Network (BN). All classifiers were implemented in Weka. For
our experiments, we used the default parameter settings for
different classifiers specified in Weka unless otherwise
specified.

J48 is an open source Java implementation of the C4.5
decision tree algorithm. It uses the greedy technique for
classification and generates decision trees, the nodes of which
evaluate the existence or significance of individual features.
Leaves in the tree structure represent classifications and
branches represent judging rules.

Naı̈ve Bayes (NB) is one of the simplest classifier based
on conditional probability. The classifier is termed as “naı̈ve”
because it assumes that features are independent. Although the
independence assumption is often violated in the real world,
the Naı̈ve Bayes classifier often competes well with more
sophisticated classifiers [64]. The prediction model constructed
by this classifier is a set of probabilities. Given a new class, the
classifier estimates the probability that the class is buggy based
on the product of the individual conditional probabilities for the
feature values in the class.

Logistic Regression (LR) is a type of probabilistic statistical
regression model for categorical prediction by fitting data to a
logistic curve [63]. It is also used to predict a binary response
from a binary predictor, used for predicting the outcome of a
categorical dependent variable based on one or more features.
Here, it is suitable for solving the problem in which the

dependent variable is binary, that is to say, either buggy or non-
buggy.

Decision Table (DT), as a hypothesis space for supervised
learning algorithm, is one of the simplest hypothesis spaces
possible, and it is usually easy to understand [55]. A decision
table has two components: a schema, which is a set of features,
and a body, which is a set of labeled instances.

Support Vector Machine (SVM) is a supervised learning
model with associated learning algorithms that is typically used
for classification and regression analysis by finding the optimal
hyper-plane that maximally separates samples in two different
classes. A prior study conducted by Lessmann et al. [39]
showed that the SVM classifier performed equally with the
Naı̈ve Bayes classifier in the context of defect prediction.

Bayesian Network (BN) is a graphical representation that
presents the probabilistic causal or influential relationships
among a set of variables of interest. Because BNs can model
the intra-relationship between software metrics and allow one
to learn about causal relationships, the BN learning algorithm
is also a comparative candidate for building prediction models
for software defects. For more details, please refer to [41].

4.5. Evaluation Measures

In this study, we used a binary classification technique to
predict classes that are likely to have defects. A binary classifier
can make two possible errors: false positives (FP) and false
negatives (FN). In addition, a correctly classified buggy class
is a true positive (TP) and a correctly classified non-buggy
class is a true negative (TN). We evaluated binary classification
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results in terms of Precision, Recall, and F-measure, which are
described as follows:

• Precision addresses how many of the classes returned by
a model are actually defect-prone. The best precision
value is 1. The higher the precision is, the fewer
false positives (i.e., non-defective elements incorrectly
classified as defect-prone one) exist:

Precision =
T P

T P + FP
. (2)

• Recall addresses how many of the defect-prone classes are
actually returned by a model. The best recall value is 1.
The higher the recall is, the lower the number of false
negatives (i.e., defective classes missed by the model) is:

Recall =
T P

T P + FN
. (3)

• F-measure considers both Precision and Recall to compute
the accuracy, which can be interpreted as a weighted
average of Precision and Recall. The value of F-measure
ranges between 0 and 1, with values closer to 1 indicating
better performance for classification results.

F − measure =
2 ∗ Precise ∗ Recall

Precise + Recall
. (4)

To answer RQ4 in the following sections, we also introduced
a Consistency index to measure the degree of stability of the
prediction results generated by the predictors in question.

Consistency =
dn − k2

k(n − k)
(Consistency ≤ 1), (5)

where d is the number of actually defect-prone classes returned
by a model in each data set (d = T P ); k is the total of actually
defect-prone classes in the data set (k = T P + FN ); n is the
total number of instances. If TP = TP + FN, the Consistency
value is 1. The greater the Consistency index becomes, the
more stable a model is. Note that, Equation (5) is often used to
measure the stability of feature selection algorithms [23]. We
introduced this equation to our experiments because of the same
implication.

5. Experimental Results

In this section, we report the primary results so as to answer
the four research questions formulated in Section 3.2.

5.1. RQ1: Which type of defect prediction models is more
suitable for a specific project between WPDP and CPDP?

For each prediction model, Figure 6 shows some interesting
results. (1) The precision becomes higher when using training
data within the same project, whereas CPDP models receive
high recall and F-measure in terms of median value, implying
a significant improvement in the accuracy. For example, for the
TOP5 metric subset, in Scenario 1, the median precision, recall

and F-measure of J48 are 0.504, 0.385 and 0.226, respectively,
and in Scenario 3, they are 0.496, 0.651 and 0.526, respectively.
(2) For WPDP, there is no significant difference in the accuracy
between Scenario 1 and Scenario 2. For example, for the TOP5
metric subset, Scenario 1 vs. Scenario 2 turn out to be relatively
matched in terms of the above measures for J48 (i.e., 0.504
vs. 0.679, 0.385 vs. 0.304, and 0.226 vs. 0.20). That is,
the quantities of training data do not affect prediction results
remarkably.

WPDP models generally capture higher precision than
CPDP models, which, in turn, achieve high recall for two
reasons. First, training data from the same project represent
the authenticity of the project data and can achieve a higher
precision based on historical data. Second, existing release
sets of other projects may be not comprehensive enough to
represent the global characteristics of the target project. In
other words, training data from other projects may be more
preferable because the rich information in the labeled data leads
to the identification of more actually defect-prone classes. As
opposed to our expectation, there is no observable improvement
in the accuracy when increasing the number of training datasets
in WPDP. This happens because the values of some metrics
are identical among different releases. As shown in Figure 6,
increasing the quantity of training data does not work better
and even reduces the recall because of information redundancy.

The results also validate the idea that CPDP may be feasible
for a project with insufficient local data. In addition, Figure 6
shows a tendency that the TOP5 metric subset simplified by
our approach appears to provide a comparable result to the
other two cases. However, until now, we just analyzed the
comparison of training data between WPDP and CPDP with
six prediction models, without examining whether the predictor
with a simplified metric set works well. For example, it might
be possible that a predictor built with few metrics ( e.g., TOPK)
can provide a satisfactory prediction result with the merits of
less effort-and-cost. This analysis is the core of our work and
will be investigated in the upcoming research questions.

5.2. RQ2: Does the predictor built with a simplified metric set
work well?

5.2.1. The Definition of Acceptable Result
The balance of defect prediction between a desire for

accuracy and generalization capability is an open challenge.
The generalization capability of a defect prediction model is
deemed a primary factor of prediction efficiency, while the
accuracy achieved by a defect prediction model is a critical
determinant of prediction quality. The trade-off between
efficiency and accuracy requires an overall consideration of
multiple factors. Hence, we defined two hypotheses as the
acceptable condition in our study: on one hand, the results
of a predictor based on few metrics are not worse than a
benchmark predictor, or the overall performance ratio of the
former to the latter is greater than 0.9 (in such a case, the
overall performance of a predictor is calculated in terms of
median value of evaluation measures); on the other hand, the
distributions of their results have no statistically significant
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Figure 6: The standardized boxplots of the performance achieved by different predictors based on J48, Logistic Regression, Naı̈ve Bayes,
Decision Table, SVM and Bayesian Network in different scenarios, respectively. From the bottom to the top of a standardized box plot:
minimum, first quartile, median, third quartile, and maximum. Any data not included between the whiskers is plotted as a small circle.
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Table 4: The performance of the predictors built with ALL and TOP5 metrics and the comparison of the distributions of their results in
terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined numbers in the Median TOP5/ALL column represent that

the result of TOP5 is better, and those in the ALL vs. TOP5 column represent that one can reject the null hypothesis; the negative numbers in bold
represent that the result of TOP5 is better.

Median ALL value Median TOP5/ALL ALL vs. TOP5 (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.543 0.372 0.355 0.928 1.04 0.638 0.485(-0.003) 0.548(0.083) 0.058(0.142)
LR 0.532 0.372 0.282 1.14 0.815 0.808 0.465(-0.009) 0.089(0.106) 0.015(0.142)
NB 0.490 0.588 0.496 1.04 1.01 0.819 0.009(-0.066) 0.092(0.063) 0.71(0.031)
DT 0.543 0.331 0.284 0.992 0.960 0.904 0.959(0.009) 0.076(0.095) 0.022(0.083)

SVM 0.571 0.298 0.197 0.999 0.943 1.43 0.546(0.016) 0.709(-0.016) 0.289(-0.049)
BN 0.467 0.470 0.397 1.04 0.992 1.12 0.765(0.031) 0.573(-0.012) 0.575(0.023)

Scen. 2

J48 0.564 0.287 0.301 1.20 1.06 0.663 0.064(-0.149) 0.563(0.12) 0.114(0.189)
LR 0.557 0.259 0.280 1.24 0.993 0.853 0.024(-0.257) 0.116(0.132) 0.021(0.177)
NB 0.504 0.629 0.487 1.06 0.934 0.906 0.002(-0.118) 0.005(0.142) 0.116(0.066)
DT 0.597 0.224 0.235 0.988 1.17 1.16 0.520(0.007) 0.936(0.0) 0.421(-0.009)

SVM 0.596 0.168 0.197 1.17 1.01 1.01 0.279(-0.08) 0.639(0.026) 0.685(0.021)
BN 0.471 0.537 0.466 1.01 0.868 0.953 0.305(-0.026) 0.370(0.042) 0.244(0.068)

Scen. 3

J48 0.399 0.570 0.482 1.24 1.14 1.09 0.037(-0.122) 0.137(-0.224) 0.103(-0.08)
LR 0.457 0.538 0.431 1.0 1.11 1.19 0.738(-0.033) 0.295(-0.092) 0.831(-0.012)
NB 0.471 0.634 0.548 0.948 1.09 0.957 0.179(0.021) 0.304(-0.09) 0.475(-0.01)
DT 0.549 0.674 0.558 0.891 0.959 0.916 0.001(0.177) 0.761(-0.009) 0.016(0.13)

SVM 0.530 0.626 0.521 0.895 1.04 1.04 0.153(0.040) 0.498(0.047) 0.136(0.054)
BN 0.449 0.621 0.524 0.986 1.07 1.01 0.290(-0.024) 0.951(-0.009) 0.137(-0.028)

Table 5: The performance of the predictors built with FILTER and TOP5 metrics and the comparison of the distributions of their results in
terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined numbers and the negative numbers in bold represent the same

meaning as in Table 4.

Median FILTER value Median TOP5/FILTER FILTER vs. TOP5 (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.588 0.238 0.238 0.856 1.62 0.953 0.267(0.085) 0.306(-0.036) 0.983(0.016)
LR 0.6 0.268 0.219 1.01 1.13 1.04 0.664(0.017) 0.823(0.005) 0.362(0.042)
NB 0.536 0.535 0.424 0.95 1.11 0.959 0.563(0.04) 0.277(-0.049) 0.503(-0.024)
DT 0.554 0.360 0.284 0.973 0.884 0.904 0.948(0.007) 0.136(0.064) 0.03(0.086)

SVM 0.555 0.234 0.218 1.03 1.20 1.29 0.911(-0.019) 0.809(-0.010) 0.881(-0.009)
BN 0.475 0.408 0.397 1.02 1.14 1.12 0.881(0.024) 0.845(-0.035) 0.765(-0.014)

Scen. 2

J48 0.578 0.253 0.283 1.17 1.20 0.697 0.446(-0.054) 0.647(0.014) 0.248(0.056)
LR 0.630 0.253 0.226 1.09 1.02 1.06 0.449(-0.09) 0.476(0.04) 0.199(0.09)
NB 0.489 0.597 0.454 1.097 0.984 0.973 0.91(0.01) 0.455(0.003) 0.306(0.047)
DT 0.617 0.284 0.272 0.955 0.924 1.0 0.717(0.063) 0.717(0.031) 0.198(0.052)

SVM 0.662 0.180 0.218 1.05 0.941 0.916 0.741(-0.076) 0.042(0.054) 0.012(0.075)
BN 0.475 0.499 0.418 1.01 0.933 1.06 0.322(0.009) 0.566(0.007) 0.987(0.043)

Scen. 3

J48 0.476 0.601 0.499 1.04 1.08 1.05 0.44(-0.08) 0.679(-0.08) 0.819(0.0)
LR 0.473 0.594 0.488 0.966 1.01 1.05 0.831(-0.02) 0.338(-0.071) 0.927(-0.003)
NB 0.474 0.66 0.54 0.941 1.05 0.972 0.819(0.01) 0.449(-0.009) 0.265(-0.014)
DT 0.549 0.702 0.588 0.891 0.921 0.916 0.007(0.151) 0.592(0.036) 0.016(0.127)

SVM 0.507 0.564 0.512 0.936 1.16 1.06 0.003(0.069) 0.758(-0.038) 0.058(0.049)
BN 0.470 0.686 0.529 0.942 0.965 0.996 0.493(-0.028) 0.076(0.139) 0.493(0.026)
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difference. We believe that the value of such a threshold can
be acceptable according to software engineering practices.

Concerning the prediction results of the six prediction
models in different contexts, Figure 6 roughly suggests that
such a simplified method can provide an acceptable prediction
result compared with those more complex ones, especially in
Scenario 3. For example, in Scenario 3, for the Naı̈ve Bayes
classifier with the top five metrics, the median precision, recall
and F-measure values are 0.446, 0.694 and 0.525, respectively.
Moreover, their maximal values of the three metric sets with
the Naı̈ve Bayes classifier are just 0.474, 0.694 and 0.548,
respectively.

5.2.2. The Comparison of Prediction Results
To further validate the preferable prediction performance and

practicability of the predictor built with a simplified metric
set described above, we compared the performance of TOP5
against both ALL and FILTER in terms of a ratio of the former’s
median to the latter’s median. The comparisons between TOP5
and ALL shown in Table 4 (see the Median TOP5/ALL column)
present that more than 80 percent of the ratios are greater
than 0.9, and some of them are labeled with an underline
because their values are greater than 1. These results indicate
that—compared with complex defect prediction models—the
predictor built with the five frequently-used metrics in our data
sets can achieve an acceptable result with little loss of precision.
Similarly, the comparisons between TOP5 and FILTER in Table
5 (see the Median TOP5/FILTER column) also present an
acceptable result based on the same evidence. However, we
have to admit that the prediction results of different classifiers
with the TOP5 metric subset in both Scenario 1 and Scenario
2 have several unacceptable cases, for example, the values of
F-measure for J48 are under 0.7.

In addition to CPDP, WPDP using a simplified metric set
(i.e., TOP5) is still able to achieve a relatively high median
precision (not less than 0.5, see Table 4 and Table 5). The
recall and F-measure for different predictors are stable except
the Naı̈ve Bayes model, which shows a sharp improvement in
these two measures (see Figure 6). The significant increase
indicates that more defect-prone classes can be identified by the
Naı̈ve Bayes learning algorithm. Therefore, the Naı̈ve Bayes
model appears to be more suitable for defect prediction when
an engineer wants to use few metrics.

Figure 6 only shows the standardized boxplots of the
prediction results. In Table 4 and Table 5, the performance
of the predictor built with a simplified metric set is examined,
whereas the last three columns of these two tables show
the results of the Wilcoxon signed-rank test (p-value) and
Cliff’s effect size (d) (i.e., d is negative if the right-hand
measure is higher than the left-hand one) [67]. Based on the
null hypothesis that two samples are drawn from the same
distribution (i.e., µ1 − µ2 = 0), the test is executed with an
alternative hypothesis µ1 , µ2. The test yields a p-value used to
reject the null hypothesis in favor of the alternative hypothesis.
If the p-value is more than 0.01 (i.e., there is no significant
difference between the predictors under discussion), one cannot
reject the null hypothesis that both samples are in fact drawn

from the same distribution. In our study, we considered the
results of TOP5 as a target result, and thus, the statistical
analyses were performed for ALL vs. TOP5 and FILTER vs.
TOP5.

In Table 4, the Wilcoxon signed-rank test highlights that
there are no significant differences between ALL and TOP5,
indicated by the majority of p > 0.01 for the classifiers
evaluated with the three measures, although four exceptions
exist in Scenario 1 and Scenario 2. Additionally, note that for
the effect size d, the predictor built with the TOP5 metric subset
appears to be the choice that is more suitable for CPDP, as it
is the only one that achieves the largest number of negative
d for different classifiers with “no significant difference”.
Compared with ALL metrics, the simplified metric set (i.e.,
TOP5) achieves an improvement in Precision for WPDP and an
improvement in Recall or F-measure for CPDP. In short, with
respect to the cost of computing twenty metrics, the simplified
approach (e.g., TOP5 (25% efforts)) is more practical under the
specified conditions.

In Table 5, there are also no significant differences between
FILTER and TOP5, as indicated by the same evidence. Only
two cases of Precision in Scenario 3 present p < 0.01 when
using Decision Table and SVM. The predictor built with the
TOP5 metric subset also appears to be the choice that is more
suitable for CPDP because of the majority of negative d for
different classifiers. However, the improvement in Precision
for WPDP is less significant in Table 5, but the improvement in
Recall or F-measure is still supported for CPDP.

5.2.3. Comparison with Existing Approaches
To evaluate the usefulness of the proposed simplified

approach, we built defect prediction models using two existing
feature selection approaches (i.e., max-relevance (MaxRel) and
minimal-redundancy-maximal-relevance (mRMR) [53]) and
performed experiments on all data sets in question. Then, we
compared the results of our approach with the related methods
according to the evaluation method used in the subsection
5.2.2.

In Table 6, the majority of values greater than 0.9 in
the median TOP5/MaxRel column present their comparative
performance between TOP5 and MaxRel. Furthermore, for
WPDP, it is clear that there is an improvement in the precision
by our approach, as a result of the majority of underlined
median TOP5/MaxRel values and negative d values. For CPDP,
our approach is obviously better than MaxRel in terms of
Recall. What is more, compared with mRMR in Table 7, the
advantage of our approach is especially obvious according to
the values in the median TOP5/mRMR column and the mRMR
vs. TOP5 column. On one hand, all the ratios of the three
measures are larger than 0.9 and most of them are larger than
1. On the other hand, in three scenarios, additional evidence is
the large number of negative d values besides the majority of
p > 0.01 for the classifiers evaluated with the three measures.

With the evidence provided by the above activities, the
proposed simplified approach is validated to be suitable for both
WPDP and CPDP. We will further discuss the effectiveness of
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Table 6: The performance of the predictors built with MaxRel and TOP5 metrics and the comparison of the distributions of their results in
terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined numbers and the negative numbers in bold represent the same

meaning as in Table 4.

Median MaxRel value Median TOP5/MaxRel MaxRel vs. TOP5 (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.454 0.339 0.246 1.108 1.137 0.919 0.267(-0.089) 0.068(-0.069) 0.215(-0.071)
LR 0.657 0.289 0.276 0.921 1.050 0.828 0.370(0.101) 0.748(-0.021) 0.249(0.033)
NB 0.573 0.528 0.424 0.888 1.126 0.960 0.039(-0.052) 0.709(-0.021) 0.627(0.002)
DT 0.450 0.360 0.284 1.198 0.883 0.904 0.619(-0.052) 0.149(0.075) 0.049(0.063)

SVM 0.549 0.264 0.208 1.037 1.065 1.352 0.913(-0.023) 0.616(-0.049) 0.099(-0.095)
BN 0.465 0.478 0.418 1.044 0.976 1.064 0.085(-0.010) 0.210(0.021) 0.586(0.017)

Scen. 2

J48 0.522 0.237 0.207 1.300 1.285 0.966 0.044(-0.141) 0.500(0.016) 0.913(0.002)
LR 0.677 0.240 0.224 1.019 1.069 1.066 0.903(-0.002) 0.555(0.030) 0.089(0.054)
NB 0.519 0.663 0.430 1.033 0.887 1.027 0.089(-0.040) 0.028(0.095) 0.171(0.069)
DT 0.408 0.249 0.248 1.446 1.053 1.096 0.510(-0.099) 0.300(-0.050) 0.470(-0.057)

SVM 0.650 0.148 0.208 1.069 1.142 0.959 0.777(-0.076) 0.232(-0.035) 0.434(-0.033)
BN 0.498 0.528 0.459 0.958 0.882 0.967 0.378(0.056) 0.000(-0.422) 0.001(-0.441)

Scen. 3

J48 0.504 0.647 0.531 0.984 1.007 0.990 0.884(-0.019) 0.614(-0.002) 0.709(0.024)
LR 0.508 0.598 0.530 0.900 1.002 0.963 0.784(0.024) 0.601(-0.024) 0.693(0.021)
NB 0.469 0.674 0.551 0.950 1.030 0.951 0.886(0.003) 0.465(-0.049) 0.627(-0.007)
DT 0.523 0.677 0.532 0.936 0.955 1.012 0.277(0.059) 0.131(-0.085) 0.291(-0.003)

SVM 0.518 0.623 0.539 0.916 1.048 1.002 0.007(0.075) 0.322(0.012) 0.008(0.050)
BN 0.480 0.661 0.530 0.924 1.002 0.994 0.241(-0.035) 0.879(-0.007) 0.097(-0.030)

Table 7: The performance of the predictors built with mRMR and TOP5 metrics and the comparison of the distributions of their results in
terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined numbers and the negative numbers in bold represent the same

meaning as in Table 4.

Median mRMR value Median TOP5/mRMR mRMR vs. TOP5 (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.525 0.205 0.197 0.959 1.881 1.150 0.546(-0.052) 0.018(-0.106) 0.030(-0.123)
LR 0.634 0.280 0.253 0.955 1.083 0.903 0.114(0.098) 0.935(0.024) 0.072(0.061)
NB 0.491 0.428 0.378 1.035 1.389 1.075 0.668(0.038) 0.000(-0.253) 0.001(-0.186)
DT 0.289 0.245 0.203 1.867 1.296 1.269 0.295(-0.179) 0.064(-0.089) 0.218(-0.075)

SVM 0.591 0.199 0.171 0.964 1.412 1.647 0.107(-0.097) 0.167(-0.071) 0.100(-0.099)
BN 0.450 0.353 0.241 1.078 1.321 1.847 0.136(-0.134) 0.113(-0.104) 0.117(-0.116)

Scen. 2

J48 0.394 0.176 0.203 1.723 1.728 0.981 0.073(-0.226) 0.048(-0.095) 0.394(0.076)
LR 0.690 0.250 0.243 1.001 1.028 0.981 0.732(-0.059) 0.758(0.049) 0.241(0.069)
NB 0.522 0.377 0.376 1.027 1.559 1.174 0.841(0.049) 0.000(-0.226) 0.002(-0.196)
DT 0.312 0.093 0.138 1.889 2.825 1.971 0.159(-0.255) 0.019(-0.149) 0.039(-0.175)

SVM 0.621 0.098 0.137 1.119 1.727 1.455 0.230(-0.130) 0.112(-0.113) 0.108(-0.128)
BN 0.472 0.266 0.312 1.01 1.755 1.42 0.178(-0.170) 0.005(-0.224) 0.028(-0.198)

Scen. 3

J48 0.415 0.513 0.423 1.195 1.270 1.242 0.301(-0.085) 0.099(-0.191) 0.083(-0.116)
LR 0.403 0.552 0.456 1.132 1.086 1.121 0.543(-0.118) 0.153(-0.094) 0.429(-0.056)
NB 0.469 0.447 0.459 0.951 1.550 1.152 0.230(0.035) 0.000(-0.530) 0.002(-0.215)
DT 0.471 0.551 0.492 1.038 1.174 1.094 0.440(-0.038) 0.009(-0.161) 0.016(-0.104)

SVM 0.482 0.525 0.461 0.984 1.245 1.172 0.475(0.017) 0.207(-0.137) 0.587(-0.087)
BN 0.440 0.585 0.496 1.006 1.132 1.062 0.886(0.028) 0.170(-0.080) 0.361(-0.076)
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different classifiers and whether the existence of the minimum
subset of metrics is substantiated.

5.3. RQ3: Which classifier is more likely to be the choice of
defect prediction with a simplified metric set?

Among all the predictors based on the six classifiers we
studied, as shown in Figure 6, the Naı̈ve Bayes classifier
provides the best median recall and F-measure in Scenarios 1
and 2. Although the precision presents a decreasing trend, it
is rational to deem Naı̈ve Bayes as the most suitable classifier
for WPDP in terms of Recall or F-measure. However, Logistic
Regression or SVM is more likely to be the preferable choice
for prediction models focusing on Precision. In regard to CPDP,
Decision Table appears to be the best classifier because of high
recall, whereas Naı̈ve Bayes is another suitable classifier.

Furthermore, for the simplified metric sets obtained by other
feature selection methods, Table 6 and Table 7 indicates that
the Naı̈ve Bayes classifier also tends to have greater measure
values on the whole, and Bayesian Network shows comparable
results in different scenarios. As we expected, Decision Table
is also a preferable classifier for CPDP compared with Naı̈ve
Bayes and Bayesian Network classifiers; SVM is preferred for
WPDP with respect to Precision.

5.4. RQ4: Is there a minimum metric subset that facilitates the
procedure for general defect prediction?

5.4.1. Minimizing the Top 5 metric subset
In RQ2, we validated that the TOP5 metric subset performs

well according to the great representativeness and approximate
comparability. However, there are still some strong correlations
among the top five metrics. It is necessary to minimize the
feature subset by eliminating the metrics that have a strong
correlation with the others. According to the guideline shown
in Table 1, a strong correlation between two metrics is identified
as long as the correlation coefficient r is greater than 0.6. Thus,
ϕ = 0.6 is selected as the threshold in the following experiment.
Table 8 presents three correlation coefficient matrices in which
four pairs of metrics have strong correlations, for example,
the correlation between CBO and CE, and the correlations
between RFC and LCOM, CE, and LOC. In particular, the
correlation coefficient between RFC and LOC is greater than
0.9 in Scenario 1 and Scenario 2. Note that, we calculate
the correlation coefficients between the top 5 metrics for the
training data of each target release, and use their corresponding
median values in our experiment.

For the purpose of minimizing the simplified metric set, we
eliminated any combinations that include those metrics with
strong correlations from the possible combinations (C1

5 + C2
5 +

C3
5 + C4

5 + C5
5 = 31 ), and the C5

5 combination is excluded
because it is identical to the TOP5 case. Considering the strong
correlations, such as CBO vs. CE, RFC vs. LCOM, RFC vs.
CE, and RFC vs. LOC, only thirteen of thirty combinations are
remained when eliminating those combinations that contain at
least one of the four pairs of metrics. Interestingly, most of
the results calculated by the MaxRel and mRMR approaches
are included in the 13 combinations after removing those

Table 8: The correlation coefficient matrix Rk×k, and the strong
correlations are underlined.

Scenario1 CBO RFC LCOM CE LOC
CBO 1 0.487 0.395 0.622 0.379
RFC - 1 0.616 0.682 0.909

LCOM - - 1 0.375 0.49
CE - - - 1 0.587

LOC - - - - 1
Scenario2 CBO RFC LCOM CE LOC

CBO 1 0.483 0.390 0.617 0.375
RFC - 1 0.611 0.687 0.910

LCOM - - 1 0.373 0.487
CE - - - 1 0.592

LOC - - - - 1
Scenario3 CBO RFC LCOM CE LOC

CBO 1 0.473 0.348 0.640 0.352
RFC - 1 0.601 0.666 0.879

LCOM - - 1 0.337 0.423
CE - - - 1 0.544

LOC - - - - 1

Figure 7: The Coverage values of the remaining combinations.

metrics with strong correlations. At last, we calculate their
Coverage values to determine the suitable minimum metric
subset. In Figure 7, the Coverage values of those combinations
that contain multiple metrics are obviously larger than that
of one single metric, in particular, the combinations such
as CBO+LOC, LOC+LCOM+CE and CBO+LOC+LCOM.
To validate the existence of the minimum metric subset, the
combination CBO+LOC+LCOM will be minutely explored in
the following paragraphs.

5.4.2. Prediction results of the predictor based on the minimum
metric subset

First, we have to determine the corresponding thresholds
of Recall, Precision and F-measure that are to be adopted to
evaluate the minimum subset. Like the literature [16], in our
study, the thresholds 0.5 and 0.7 were selected for Precision
and Recall respectively. As a weighted average of Precision
and Recall, a value of 0.583 is used for F-measure. Thus,
we compared the results for different combinations with the
six classifiers under four types of evaluation conditions based
on the given thresholds (see Figure 8). #Precision, #Recall,
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Figure 8: The results of TOP5 and minimum metric subset under four conditions: Precision > 0.5, Recall > 0.7,
F-measure> 0.583, and Precision > 0.5 & Recall > 0.7. The Y-axis is the number of results under the given condition.
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Table 9: The performance of the predictors built with TOP5 and CBO+LOC+LCOM (abbreviated as CLL) metrics and the comparison of the
distributions of their results in terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined numbers in the Median

CLL/TOP5 column represent that the result of CLL is better, and those in the TOP5 vs. CLL column represent that one can reject the null
hypothesis; the negative numbers in bold represent the result of CLL is better.

Median CLL value Median CLL/TOP5 TOP5 vs. CLL (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.524 0.342 0.264 1.041 0.888 1.164 0.709(0.007) 0.351(0.045) 0.903(0.005)
LR 0.654 0.209 0.189 1.08 0.687 0.830 1.000(-0.052) 0.023(0.069) 0.100(0.063)
NB 0.597 0.430 0.338 1.173 0.732 0.832 0.189(-0.063) 0.000(0.189) 0.001(0.181)
DT 0.413 0.342 0.285 0.766 1.076 1.108 0.388(0.149) 0.701(0.019) 0.650(0.032)

SVM 0.607 0.244 0.202 1.066 0.869 0.718 0.695(-0.043) 0.151(0.017) 0.289(0.017)
BN 0.500 0.377 0.343 1.03 0.810 0.771 0.877(0.031) 0.177(0.057) 0.163(0.085)

Scen. 2

J48 0.532 0.225 0.223 0.784 0.738 1.118 0.355(0.158) 0.968(0.043) 0.664(0.031)
LR 0.700 0.184 0.195 1.015 0.715 0.817 0.958(0.068) 0.013(0.078) 0.082(0.073)
NB 0.560 0.420 0.376 1.04 0.715 0.851 0.028(-0.104) 0.000(0.241) 0.000(0.205)
DT 0.351 0.319 0.257 0.595 1.216 0.946 0.239(0.189) 0.937(0.030) 0.875(0.043)

SVM 0.646 0.122 0.182 0.930 0.719 0.914 0.332(0.115) 0.446(0.052) 0.411(0.073)
BN 0.552 0.372 0.321 1.158 0.798 0.725 0.794(0.028) 0.017(0.203) 0.010(0.191)

Scen. 3

J48 0.472 0.630 0.532 0.952 0.968 1.011 0.503(0.069) 0.648(0.043) 0.627(0.009)
LR 0.453 0.573 0.500 0.991 0.957 0.979 0.584(0.080) 0.259(0.030) 0.201(0.024)
NB 0.501 0.622 0.535 1.124 0.897 1.020 0.230(-0.052) 0.223(0.104) 0.886(0.017)
DT 0.494 0.674 0.538 1.009 1.042 0.999 0.715(0.002) 0.885(-0.050) 0.664(-0.012)

SVM 0.484 0.595 0.531 1.021 0.911 0.982 0.668(0.000) 0.256(0.069) 0.253(0.038)
BN 0.493 0.710 0.532 1.114 1.072 1.009 0.429(-0.016) 0.230(-0.118) 0.543(-0.043)

#F-measure and #Total indicate the number of results for a
combination that meet the given threshold of their respective
evaluation condition.

For Scenario 1, compared with the TOP5 metric subset,
there is a non-decreasing trend in the number of results for
CBO+LOC+LCOM under the given condition of Precision
except the Decision Table case. Four out of six cases still have
equal #Recall, though minimizing metric set causes a decrease
in #Recall for the cases of Logistic Regression and Naı̈ve
Bayes. #F-measure exhibits a slight upward trend except the
Naı̈ve Bayes case, especially for the cases of J48 and Bayesian
Network. Moreover, the improvement is more optimistic when
considering the precision greater than 0.5 and the recall greater
than 0.7 together, indicated by an increase in the number of the
results that meet both of the conditions. Generally, the results
for the minimum metric subset are approximately equal to the
TOP5 metric subset.

For Scenario 2, a similar phenomenon of the results under
the given condition of F-measure when using all the historical
data is shown in Figure 8, but the fluctuation of the precision
presents a different result compared with using the nearest
historical data. At the same time, the results confirm our
previous finding obtained in RQ1: the quantities of training data
do not remarkably affect the prediction results; on the contrary,
a slightly worse trend under the given condition of Recall is
presented in this scenario. Additionally, we also find that the
minimum metric subset (i.e., CBO+LOC+LCOM) could be
selected as an alternative choice because of the comparative
results under the given conditions of F-measure and Total.

Interestingly, for Scenario 3, some results observed in
the other two scenarios are confirmed again. For example,
compared with the TOP5 metric subset, there is a non-

decreasing trend in the number of results under the given
condition of Precision except one case. In particular, the results
under the given condition of Total still maintain competitive
for CPDP. This scenario also presents several significant
differences in terms of the number of results under the given
conditions. For example, compared with WPDP, there is an
obvious increase in #Recall, #F-measure and #Total for CPDP.
However, in regard to #Precision, Scenario 3 exhibits a clear
downward trend in comparison with Scenario 2, especially for
the cases of J48 and Logistic Regression. The findings indicate
that the minimum metric subset is also appropriate for CPDP
with little loss of precision.

In addition, Figure 9 presents the similar prediction results
achieved by the predictors built with TOP5 and the minimum
metric subset CBO+LOC+LCOM based on six typical
classifiers in different scenarios, respectively. As another
evidence, Table 9 further shows a comparison between them in
terms of the Wilcoxon signed-ranked test and Cliff’s effect
size. The results suggest that we cannot reject the null
hypothesis on the whole, implying that there is no statistically
significant difference between them. However, we have to
admit that, for WPDP based on the Naı̈ve Bayes classifier, the
recall and F-measure of the minimum metric subset do not
appear to be as good as the TOP5 metric subset, whereas the
former outperforms the latter in terms of the precision.

CBO+LOC+LCOM is, by far, empirically validated to be
a basic metric set for defect prediction both within a project
and across projects. An explanation of our finding can be
underpinned by the facts that (1) the Pareto principle of defect
distribution, (i.e., a small number of modules account for
a large proportion of the defects found [57–59]); (2) larger
modules tend to have more defects (i.e., a strong positive
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correlation exists between LOC and defects [9]); (3) as the
representative complexity metrics, both CBO and LCOM are
important indicators for fault-prone classes in terms of software
coupling and cohesion, which have been commonly used to
defect-proneness prediction [60–62].

5.4.3. Stability of the minimum metric subset
To understand the stability of prediction results of the

predictor built with the minimum metric subset, we performed
ANalysis Of VAriance (ANOVA) [49] to statistically validate
the robustness (i.e., consistency) of such a predictor. An n-
way ANOVA can be used to determine whether a significant
impact on the mean in a set of data is developed by multiple
factors. In this study, we used one-way ANOVA with a
single factor, which is the choice among the six classifiers.
For this ANOVA, we first calculated the Consistency value of
each classifier with the TOP5 metric subset, CBO+LOC (see
RQ4 in the section of discussion) and the minimum metric
subset according to Equation (5), which was defined in Section
4.5. Then, ANOVA was used to examine the hypothesis that
the Consistency values of simplified metric subsets for all
classifiers are equal against the alternative hypothesis that at
least one mean is different. The test of statistical significance
in this section utilized a significance level of p < 0.05, and the
whole test was implemented in IBM SPSS Statistics.

The ANOVA results are presented in Table 10. The p values
are greater than 0.1, which indicates that there is no significant
difference of the average Consistency values among these six
classifiers. That is, the minimum metric subset is relatively
stable and can be independent of classifiers. Note that, the
good stability of the minimum metric subset dose not contradict
the finding that the Naı̈ve Bayes classifier is more likely to be
the choice of defect prediction with a simplified metric subset
obtained in RQ3.

5.5. A Summary of the Results

In summary, the goal of this study is to investigate a
simplified approach that can make a trade-off between
generality, performance, and complexity. The primary issues
that we focus on are (1) how to select training data sets for
defect prediction, (2) how to determine the suitable simplified
feature subset for defect prediction, and (3) whether or not
simple learning algorithm tends to perform well in this
context. Our analysis empirically validates the idea that there
are certain guidelines available for reference to answer the
proposed research questions. We particularly emphasize that
our analysis supports the hypothesis that a predictor built with
a simplified metric set, in different scenarios, is feasible and
practical to predict defect-prone classes.

Table 11 summarizes the results of our study. WPDP models
generally capture high precision, whereas CPDP models always
achieve higher recall and F-measure. The difference is
significantly discriminated by the F-measure. For example, the
median F-measure is either high or medium in CPDP, while the
median values of this measure do not exceed the middle level in
WPDP. In addition, in WPDP, using a simple classifier (Naı̈ve

Bayes) can improve the recall and maintain an appropriate level
of precision. A simple classifier (e.g., Logistic Regression and
Naı̈ve Bayes) also performs well in CPDP with respect to the
overall performance. In other words, in WPDP, Naı̈ve Bayes
provides high recall and Decision Table maintains stable results
for different metric sets. In CPDP, Naı̈ve Bayes and Bayesian
Network are relatively stable for different metric sets, and
Decision Table and SVM become suitable as selections for high
F-measure values. Note that, the “Times” column represents
the number of occurrences of each combination of the three
measures in Figure 6. For instance, in Scenario 1, the frequency
of the first combination (H, H, M) is 2. In other words, there
are two prediction results that meet the specific performance
requirement in this scenario. This is also the reason why there
are several rows per scenario. The “Predictors” column is
used to characterize the condition which classifiers and types of
metric sets are available for a specific performance requirement.

Considering the advantages of simple classifiers as
mentioned in RQ3, Table 12 further summarizes a guideline
for choosing the suitable metric sets to facilitate defect
prediction with them such as Naı̈ve Bayes. Software engineers
have three choices to determine which metric subsets are
suitable for implementing the specific requirements. For
instance, if only appropriate precision (e.g., Precision is
around 0.5) is required for WPDP, he/she can select the
metrics determined by the default feature selection technique
in Weka. If both appropriate precision and high recall are
required at the same time, TOPK is preferentially
recommended. Furthermore, if higher precision is required
under the above conditions, the minimum metric subset (e.g.,
CBO+LOC +LCOM) is suggested as the best choice for
engineers. Additionally, for CPDP, one can select the FILTER
metric subset determined by Weka when only high recall is
required. If higher recall and high F-measure are required
together, TOPK is preferentially recommended. Finally, the
minimum metric subset will be recommended if appropriate
precision or high F-measure is required.

6. Discussion

RQ1: Our experimental results described in the previous
section validate that CPDP is feasible for a project with limited
data sets, and it even performs better than WPDP in terms of
Recall and F-measure. For CPDP, we must state that, in this
paper, the combinations of the most suitable training data from
other projects are selected based on the approach proposed in
[16] in an exhaustive way. All the combinations of data sets
used to train prediction models consist of no more than three
releases from other projects. One reasonable explanation is that
almost all projects in question have no more than four releases.
For a more detailed description of the method that uses the most
suitable training data from other projects, please refer to [16].

Defect prediction performs well as long as there is a sufficient
amount of data available to train any models [3], whereas it does
not mean that more data must lead to more precise prediction
models. We find that there is no observable improvement when
increasing the number of training data sets in WPDP. Therefore,
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Figure 9: The standardized boxplots of the performance achieved by the predictors built with TOP5 and minimum metric subset based on six
classifiers in different scenarios, respectively. From the bottom to the top of a standard box plot: minimum, first quartile, median, third quartile,

and maximum. Any data not included between the whiskers is plotted as a small circle.

Table 10: ANalysis Of VAriance for Consistency results among different classifiers.

Scenario Combination Sum of Squares d.f. Mean Square F p-value

1
TOP5 1.373 5 0.275 0.445 0.816

CBO+LOC 0.145 5 0.029 0.038 0.999
CBO+LOC+LCOM 0.309 5 0.062 0.091 0.994

2
TOP5 2.160 5 0.432 0.690 0.632

CBO+LOC 0.198 5 0.405 0.054 0.998
CBO+LOC+LCOM 0.531 5 0.106 0.167 0.974

3
TOP5 0.082 5 0.016 0.164 0.975

CBO+LOC 0.261 5 0.052 0.414 0.839
CBO+LOC+LCOM 0.756 5 0.151 0.1.601 0.164
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Table 11: A summary of the selection of training data, classifiers and software metric sets. High(median > 0.5),
Medium(0.5 ≥ median > 0.3), and Low(median ≤ 0.3) are used to represent the requirement of performance,

and the initial A, F, and T represent the corresponding metric set ALL, FILTER, and TOP5, respectively.

Scen. Training data
Performance Measures Predictors

Precision Recall F-measure Times J48 LR NB DT SVM BN

1
From the latest

release

H H M 2 F/T
H M M 1 A
H M L 6 T A/T A/F/T
H L L 5 F F A/F/T
M H M 1 A
M M M 3 A/F/T

2
From the existing

releases

H H M 2 A/T
H M L 1 T
H L M 1 A
H L L 10 F A/F/T A/F/T A/F/T
M H M 2 F A
M M M 2 F/T

3
From other

projects

H H H 4 A/F A/F
M H H 10 T T A/F/T T T A/F/T
M H M 4 A/F A/F

∗ The Times column represents the number of occurrences of the corresponding combination of the three measures in Figure 6.

Table 12: A guideline for choosing the suitable metric subset in different scenarios (ref. Figure 6 and Figure 9).

Scen. Training data Performance Requirements FILTER TOP K Minimum

Appropriate precision and high recall
are required (e.g., (0.509, 0.594)). � support

(e.g., TOP5) �

1
From the latest

release
High precision is required

(e.g., 0.535). support � �

Higher precision is required
(e.g., 0.597). � � support

(e.g., CBO+LOC+LCOM)
Appropriate precision is required

(e.g., 0.494). weakly support � �

2
From historical

releases
High precision and recall are required

(e.g., (0.536, 0.587)). � support
(e.g., TOP5) �

Higher precision is required
(e.g., 0.560). � � support

(e.g., CBO+LOC+LCOM)
Appropriate precision (e.g., 0.501)

or high F-measure is required (e.g., 0.535). � � support
(e.g., CBO+LOC+LCOM)

3
From other

projects
High recall is required

(e.g., 0.66). support � �

Higher recall and high F-measure are
required (e.g., (0.694, 0.525)). � support

(e.g., TOP5) �
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Table 13: The performance of the predictors built with CBO+LOC (abbreviated as CL) and CBO+LOC+LCOM (abbreviated as CLL) metrics
and the comparison of the distributions of their results in terms of the Wilcoxon signed-rank test and Cliff’s effect size (d): the underlined

numbers and the negative numbers in bold represent that the result of CL is better.

Median CL value Median CL/CLL CLL vs. CL (S ig.p < 0.01 (d))
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Scen. 1

J48 0.424 0.365 0.285 0.808 1.068 1.079 0.158(0.144) 0.551(0.043) 0.551(0.067)
LR 0.641 0.169 0.163 0.980 0.812 0.863 0.603(-0.005) 0.586(0.010) 0.349(0.028)
NB 0.618 0.315 0.247 1.036 0.733 0.731 0.401(0.005) 0.295(0.083) 0.068(0.153)
DT 0.319 0.383 0.292 0.774 1.120 1.024 0.398(0.072) 0.116(-0.049) 0.310(-0.009)

SVM 0.640 0.184 0.208 1.053 0.753 1.029 0.526(0.083) 0.526(0.080) 0.149(0.094)
BN 0.319 0.342 0.292 639 0.906 0.851 0.477(0.128) 0.534(0.036) 0.286(0.071)

Scen. 2

J48 0.431 0.248 0.262 0.809 1.105 1.174 0.279(0.109) 0.701(-0.021) 0.600(-0.014)
LR 0.690 0.172 0.213 0.986 0.936 1.093 0.542(-0.023) 0.177(0.040) 0.177(0.030)
NB 0.618 0.231 0.238 1.104 0.551 0.633 0.527(-0.021) 0.030(0.205) 0.010(0.273)
DT 0.058 0.112 0.102 0.165 0.350 0.397 0.169(0.226) 0.066(0.102) 0.022(0.142)

SVM 0.552 0.116 0.147 0.855 0.956 0.809 0.876(0.082) 0.744(0.095) 0.543(0.083)
BN 0.215 0.274 0.223 0.390 0.738 0.693 0.124(0.262) 0.191(0.121) 0.078(0.191)

Scen. 3

J48 0.461 0.624 0.538 0.977 0.990 1.011 0.795(0.009) 0.352(-0.012) 0.831(0.002)
LR 0.423 0.597 0.517 0.935 1.043 1.033 0.543(0.005) 0.351(-0.031) 0.768(-0.019)
NB 0.452 0.599 0.530 0.902 0.963 0.992 0.265(-0.045) 0.966(-0.014) 0.587(0.000)
DT 0.494 0.666 0.540 1.000 0.988 1.004 0.091(-0.057) 0.075(0.050) 0.182(0.049)

SVM 0.482 0.649 0.549 0.995 1.090 1.035 0.241(-0.035) 0.181(-0.095) 0.052(-0.080)
BN 0.462 0.674 0.534 0.936 0.949 1.004 0.041(-0.047) 0.041(0.066) 0.100(0.019)

the quality of the training data is more important than the
amount during defect prediction.

RQ2: To the best of our knowledge, there is no widely
accepted standard for judging the desired generalization and
accuracy of different prediction models. We used statistical
methods to examine whether there is a significant difference
between the predictor built with a simplified metric set and a
benchmark predictor in terms of evaluation measures.
Although this treatment may be subjective to determine what
is acceptable, the thresholds of median ratio 0.9 and
nonparametric test (the Wilcoxon signed-rank test and Cliff’s
effect size) are meaningful and reliable in practice.

Either the method without using feature selection techniques
or the approach based on filters is commonly used to build
defect predictors. Considering the simple pursuit of prediction
precision, these methods are not the best reference models.
However, their primary merit is independent of specific learning
algorithms, suggesting that they are repeatable, versatile, and
easy to use. Thus, we argue that they are suitable references for
our empirical study from an overall viewpoint of performance.
In addition, we used the top five metrics to build the third
predictor (TOPK) with regard to the three factors, and the
comparison of different lengths K for Coverage values is
presented in Figure 3. In this figure, we can observe that the
Coverage value reaches a peak when K = 5. A proper size is
very important to simplify the metric set for defect prediction.

RQ3: We find that simple classifiers (e.g., Naı̈ve Bayes)
tend to perform better on the whole when using a simplified
metric set for defect prediction in all three scenarios. The
result is completely consistent with the conclusions proposed
in the literature [22, 28]. Specifically, Naı̈ve Bayes is a
robust machine learning algorithm for supervised software
defect prediction problems in both WPDP and CPDP. However,

we have to admit that it is not suitable for some specific
performance requirements. For example, for WPDP, SVM
outperforms Naı̈ve Bayes with respect to Precision.

RQ4: LOC, CBO, and LCOM are considered to be suitable
components of the minimum metric subset, which is largely
consistent with the results of several prior studies. For
LOC, Zhang [9] has performed a detailed investigation of the
relationship between LOC and defects. Their study confirmed
that a simple static code attribute, such as LOC, could be a
useful predictor of software quality. CBO measures the degree
of coupling between object classes and LCOM measures how
well the methods of a class are related to each other. High
cohesion and low coupling are two basic principles of software
engineering. These three metrics may be appropriate features
for defect prediction in our context.

Interestingly, the metric subset CBO+LOC, as a subset
of CBO+LOC+LCOM, not only has the highest Coverage
value among the combinations with two metrics, but also can
achieve a similar result that has no statistically significant
difference compared with CBO+LOC+LCOM in terms of the
Wilcoxon signed-rank test (see Table 13). According to Table
13, CBO+LOC seems to perform well in Scenario 3, but the
effect is mediocre in the other two scenarios. On the other
hand, Table 10 also shows that the metric subset CBO+LOC
is relatively stable for different classifiers. Therefore, the
metric subset CBO+LOC could be an alternative choice of
the minimum metric subset for CPDP from a practical point
of view, even though the combination CBO+LOC+LCOM has
been validated as the minimum metric subset from a theoretical
point of view.

As an alternative to handling several metrics, a simplified
approach to predicting defectiveness, which is practical and
easy, could determine the subset of metrics that are cardinal
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and determine the correct organization [41]. This approach
was validated using the Wilcoxon signed-rank test and Cliff’s
effect size (d) in both WPDP and CPDP (see Table 4, Table 5,
and Table 9). The implications of using a simplified metric set
for defect prediction are effective reduction of the cost of data
acquisition and processing by sacrificing a little performance.
According to our study, the results indicate that the advantages
of this approach outweigh the disadvantages.

7. Threats to Validity

In this study, we obtained several significant results to answer
the four research questions proposed in Section 3.2. However,
potential threats to the validity of our work still remain.

Threats to construct validity concern the relationship
between theory and observation. These threats are primarily
related to the static code metrics we used. All the data sets
were collected by Jureczko and Madeyski [11], and Jureczko
and Spinellis [12] with the help of two existing tools (BugInfo
and Ckjm). According to the authors, errors inevitably existed
in the process of defect identification. Unfortunately, there
may be missing links based on incomplete links between the
bug database and source code repositories as illustrated in
some studies [42, 43]. However, these data sets collected from
the PROMISE repository have been validated and applied to
several prior studies. Therefore, we believe that our results are
credible and suitable for other open-source projects.

Another construct threat is that, we compared the
performance obtained from the predictors built with ALL,
FILTER and TOP5 metric set for RQ2. We recognize that this
may be biased because other combinations of metrics could
also achieve the best precision results. Nevertheless, the usage
of these metrics, available as an oracle for comparison, is
feasible because some prior studies have used these metrics to
predict defect-prone classes based on the same data sets [16].

Threats to internal validity concern any confounding factor
that could influence our results, and they are mainly related
to various measurement settings in our study. For our
experiments, we choose the Top 5 metrics to build a predictor
based on Equation (1) and the results of the feature selection
technique in Weka. However, we are aware that the results
would change if we use a different k length.

Threats to conclusion validity concern the relationship
between treatment and outcome, where we appropriately used
a non-parametric statistical test (the Wilcoxon signed-rank)
and one-way ANOVA to show statistical significance for the
obtained results in RQ2 and RQ4, respectively. Typically, one-
way ANOVA is used to test for the difference among at least
three groups because the two-group case can be covered by
a t-test. In Table 10, we analyzed the TOP5 metric subset
and the minimum metric subset in each scenario to prove that
our experiment is reliable. Additionally, it has been shown
that quantitative studies aiming at statistics should test at least
20 samples to obtain statistically significant numbers; tight
confidence intervals require larger samples [56]. Fortunately,
we conducted a non-parametric test on 24 data sets and

validated that the null hypothesis in our experiments could not
be rejected in most cases.

The selection of the thresholds of recall and precision is
actually based on some previous studies in this field, and we
have to admit that it is not a strict criterion compared with
the one used in [3]. The choice of evaluation criteria depends
largely on the defect data sets at hand. In general, the data sets
used in our study are similar to those used in previous studies
[9, 16]. Due to the difference on software metrics between the
defect data sets, the criterion used in [3] may be unsuitable for
our study. On the other hand, Menzies et al. [33] argue that
defect predictors learned from static code metrics will reach
the upper limit of performance since the information provided
by static code metrics is limited. That is, it is hard for the
predictors built in our context to achieve very high performance.
Therefore, a simple comparison of high performance between
different methods regardless of defect data sets does not make
much sense.

Threats to external validity concern the generalization of
the results obtained. The main threat could be related to the
selected data sets—in addition to the PROMISE repository—to
validate the results of the proposed research questions. The
releases are chosen from a very small subset of all projects, and
there are many other public on-line data sets used for defect
prediction, such as Apache and Mozilla. However, similar
trends have been shown in prior studies, which used the data
sets from several code repositories. Nevertheless, we believe
that our results can be reproduced using other data sets.

Another threat to external validity concerns the choice of
software metrics used to construct predictors. Although we
used only static code metrics available in the literature [2,
8, 19, 36, 37], we are aware that other types of software
metrics could exhibit different results. However, our main
goal is to investigate the contribution of a simplified metric
set to defect prediction from a perspective of the trade-off

between generality, cost and accuracy, rather than to compare
the performance of predictors built with different types of
software metrics.

Last but not the least, we selected only 10 Java open-source
projects, of which nine projects are developed and maintained
by the Apache Software Foundation. We selected Java open-
source projects because we have expertise in Java language
and acknowledge the limitation of well-recognized data sets
available on the Internet. The comparison of the performance
of different types of software has been previously reported
[3, 19, 33].

8. Conclusion

This study reports an empirical study aimed at investigating
how a predictor based on a simplified metric set is built and used
for both WPDP and CPDP. The study has been conducted on 34
releases of 10 open-source projects available at the PROMISE
repository and consists of (1) a selection of training data sets
within a project and across projects, (2) a simplification of
software metric set, and (3) a determination of the ability of
the predictor built with the simplified metric set to provide

22



acceptable prediction results compared with other predictors
with higher complexity.

The results indicate that WPDP models capture higher
precision than CPDP models, which, in turn, achieve high recall
or F-measure. Specifically, the choice of training data should
depend on the specific requirement of accuracy. The predictor
built with a simplified metric set performed well, and there
were no significant differences between our predictor and other
benchmark predictors. In addition, our results also show that
simple classifiers such as Naı̈ve Bayes are more suitable to
be the classifier for defect prediction with a simple predictor.
Based on the specific requirements for complexity, generality
and accuracy, the minimum metric subset is ideal because of its
ability to provide good results in different scenarios and being
independent of classifiers.

In summary, our results show that a simplified metric set for
defect prediction is viable and practical. The prediction model
constructed with a simplified or minimum subset of software
metrics can provide a satisfactory performance. We believe that
our metric set can be helpful for software engineers when fewer
efforts are required to build a suitable predictor for their new
projects. We expect some of our insightful findings to improve
the development and maintenance activities.

Our future work will focus primarily on two aspects: (1)
collect more open-source projects, as stated previously, to
validate the generality of our approach; (2) consider the number
of defects to provide an effective method for defect prediction.
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