
ACon: A Learning-Based Approach to Deal with Uncertainty in Contextual
Requirements at Runtime

Alessia Knauss, Daniela Damian, Xavier Francha, Angela Rook, Hausi A. Müller, Alex Thomo
Department of Computer Science, University of Victoria, Victoria BC, Canada

{alessiak, arook}@uvic.ca, {danielad, hausi, thomo}@cs.uvic.ca, franch@essi.upc.edu

aSoftware Engineering for Information, Systems research group (GESSI)
Universitat Politècnica de Catalunya (UPC), Barcelona, Catalunya, Spain

Abstract

Context: Runtime uncertainty such as unpredictable operational environment and failure of sensors that gather envi-
ronmental data is a well-known challenge for adaptive systems.
Objective: To execute requirements that depend on context correctly, the system needs up-to-date knowledge about
the context relevant to such requirements. Techniques to cope with uncertainty in contextual requirements are cur-
rently underrepresented. In this paper we present ACon (Adaptation of Contextual requirements), a data-mining
approach to deal with runtime uncertainty a↵ecting contextual requirements.
Method: ACon uses feedback loops to maintain up-to-date knowledge about contextual requirements based on current
context information in which contextual requirements are valid at runtime. Upon detecting that contextual require-
ments are a↵ected by runtime uncertainty, ACon analyzes and mines contextual data, to (re-)operationalize context
and therefore update the information about contextual requirements.
Results: We evaluate ACon in an empirical study of an activity scheduling system used by a crew of 4 rowers in a
wild and unpredictable environment using a complex monitoring infrastructure. Our study focused on evaluating the
data mining part of ACon and analyzed the sensor data collected onboard from 46 sensors and 90,748 measurements
per sensor.
Conclusion: ACon is an important step in dealing with uncertainty a↵ecting contextual requirements at runtime
while considering end-user interaction. ACon supports systems in analyzing the environment to adapt contextual re-
quirements and complements existing requirements monitoring approaches by keeping the requirements monitoring
specification up-to-date. Consequently, it avoids manual analysis that is usually costly in today’s complex system
environments.

Keywords: requirements engineering, self-adaptive systems, contextual requirements, operationalization, machine
learning

1. Introduction

Self-adaptive systems (also referred to as dynami-
cally adaptive systems [1]) are able to adjust their be-
haviour in response to changes in their environment and
the system itself [2]. Their operating environment in-
cludes end-user input, external hardware devices, sen-
sors, and program instrumentation [3].

While self-adaptivity promises to decrease the cost of
handling the complexity of software systems at runtime
[3], it challenges current software engineering practices,
particularly the activities of requirements definition and
satisfaction for systems that operate in uncertain envi-

ronments [4]. Examples of such systems include soft-
ware systems for smart cities that are interacting with
thousands of individuals in a highly dynamic environ-
ment [5, 6], and intelligent vehicle systems that have to
deal with unforeseen tra�c and weather conditions, as
well as obstacles that have to be detected and avoided.
In this paper, we use the intelligent vehicle system as
the running example to illustrate our concepts1.

In such uncertain environments, runtime uncertainty
[4] and unpredictability arise due to: (1) the environ-

1Note that we have implemented a proof-of-concept of ACon for
this example as a tool demo [7]

Preprint submitted to Information and Software Technology September 21, 2015

montse aragues
Texto escrito a máquina
© 2015 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

ment and the resulting limitations in accounting for all
possible environmental conditions at design time, and 2)
the monitoring infrastructure (e.g., sensor imprecision,
sensor noise, and sensor failures).

Contextual requirement

Context (Expected)
Behaviour

Context opera-
tionalization

…

Sensors

Environment

composed-of

operationalized-by

composed-of

observed-by

…

Conditions

in-terms-of

Figure 1: Runtime uncertainty a↵ecting the context operationalization
of contextual requirements.

In this paper we address the impact that unpredictable
environments have on a particular type of requirements,
namely contextual requirements. Defined as require-
ments that are valid only in a specific context [8, 9, 10],
contextual requirements rely on measurable properties
of the context state for a particular expected behaviour.
In our example, consider the contextual requirement
”support lane keeping when driver is sleeping“. In or-
der for the system to be able to satisfy such a contex-
tual requirement, the context ”driver is sleeping“ has to
be detected by the system at runtime. Therefore, the
system needs to have an operationalization consisting
of di↵erent conditions representing the context and able
to be measured by available sensors (e.g., a camera in-
stalled in the car or some wearable devices). We depict
the relationship between a contextual requirement, the
environment and the context operationalization in terms
of the observed environment in Figure 1.

Unpredictability in the environment due to events or
conditions that were unforeseeable at design time result
in conditions not considered for a certain context for a
contextual requirement [4]. In our example, the condi-
tion of the street being wet and the sun shining results
in the user squinting his eyes. Such conditions would
usually be recognized by the system as end-user sleep-
ing, but should not. Changes to the monitoring infras-
tructure may a↵ect the system’s ability to recognize the
context in which contextual requirements are valid. In
our example, the camera fails to record, resulting in sys-
tem’s inability to monitor the status of user’s eyes. Both
conditions result in the system not being able to satisfy
contextual requirements and thus provide the expected
system behaviour. Overcoming this limitation calls for

runtime support for the adaptation of contextual require-
ments [11] (i.e., adapting the requirements’ context to
changes in the environment or in the monitoring infras-
tructure). To the best of our knowledge there are no
approaches that address runtime uncertainty by ensur-
ing an up-to-date knowledge of the relevant context for
contextual requirements.

To address this problem we describe our approach,
ACon (Adaptation of Contextual requirements), in
which we take the position that self-adaptive systems,
in order to respond to unpredictable changes in their
operating environment, need to learn from the environ-
mental data that they have available at runtime and exe-
cute the adaptation of their contextual requirements ac-
cordingly. ACon uses a feedback loop to maintain up-
to-date knowledge about contextual requirements based
on current information about the context in which con-
textual requirements are valid at runtime. Upon detect-
ing that contextual requirements are a↵ected by runtime
uncertainty, ACon integrates data mining algorithms
that analyze contextual data to determine the context in
which contextual requirements are valid, thus adapting
the context in which contextual requirements are valid.
ACon includes the interaction with end-users as part of
a semi-automatic approach in which the human is in the
loop.

We conducted an evaluation of ACon through an ap-
plication of its feedback loop and data mining algo-
rithms on a large dataset collected from the use of an
activity scheduling system that operated in extremely
demanding situations in wild and unpredictable envi-
ronments with a complex monitoring infrastructure.

Our paper is structured as follows. In the following
section we introduce and discuss background and re-
lated work that is relevant to the development of our
ACon approach. Section 3 defines the formal frame-
work for the ACon approach. With this background,
ACon and its feedback loop for adaptation is described
fully in Section 4. Section 5 details our evaluation of
ACon. Finally, we discuss our results and its applicabil-
ity in Section 6 and conclude the paper in Section 7.

2. Background and Related Work

Before we describe ACon in detail, we review here
related work and the background terms necessary to un-
derstand our approach. Table 1 characterizes and com-
pares research related to ACon.

According to Qureshi et al. [19], it is important that
the engineering of self-adaptive systems distinguishes
between requirements engineering activities at design

2

Table 1: Comparing characteristic properties of selected approaches related to ACon.

Work by Type of Purpose of usage Consider Triggers Lifecycle Automatic Techniques
requirement in system uncertainty changes execution applied

Souza et al. [12] Evolution Requirements No Yes Feedback Yes, predefined Event-Cond.-
requirements evolution loop at design time Action

Inverardi and Mori Context Evolution of Yes Yes N/A Yes, predefined Model
[10] requirements context variations at design time or checking

user specified

Ali et al. [8] Contextual Adaptation No No N/A No Reasoning
requirements to context

Ramirez et al. [13] Uncertainty- Goal Yes No N/A Yes Genetic
aware req. relaxation algorithms

Oriol et al. [14] Monitoring Monitor No No Feedback No Event-Cond.-
requirements adaptation Loop Action

Qureshi et al. [15] Adaptive Capturing Yes No N/A No Variability
requirements adaptation modeling

Canavera et al. [16] N/A Determine right time Yes N/A N/A Yes Data
for adaptation mining

Gullapalli et al. N/A Self-management of Yes N/A N/A N/A Data
[17] adaptive controllers mining

Esfahani et al. [18] Features Feature-oriented Yes Yes Feedback Yes Machine
adaptation loop learning

ACon Contextual Adaptation of Yes Yes Feedback Yes Machine learning,
requirements contextual req. loop data mining

time and runtime. In traditional requirements engineer-
ing, the analyst is typically responsible for specifying
requirements at design time. Self-adaptive systems are
aware of their requirements and thus able to execute
basic requirements engineering activities themselves to
cope with changing conditions that appear at runtime.
This demands requirements engineering to predict what
can change at runtime during the design of self-adaptive
systems. Therefore, implementation of such abilities for
reflection of self-adaptive systems depends on a solid
understanding of the runtime environment already at de-
sign time [20].

To deal with changing requirements and uncertainty
in the operational environment, self-adaptive software
systems have to evolve at runtime [11]. Indeed, self-
adaptivity is linked to the process of software evolution
[3]. Therefore, we consider related work on evolution
of requirements. Souza et al. introduce evolution re-
quirements for the purposes of requirements evolution
(cf. first row in Table 1 for the characteristics of this
concept) [12]. Evolution requirements define how re-
quirements can change at runtime and under which con-
ditions. When identifying such conditions at runtime,
the system can enact the (predefined) evolution on its
own.

The application of evolution requirements is re-
stricted in uncertain environments that cannot be com-
pletely predicted at design time. In fact, uncertainty is
the main reason that we cannot fully specify our knowl-
edge of requirements and environment of a system dur-
ing design time [4]. Due to uncertainty, self-adaptive
systems need to evolve and even consider unforeseeable
changes at runtime [11].

Inverardi and Mori present a framework on how to
deal with unforeseen evolution [10]. Their framework
is centred around features, which consist of three ele-
ments – a requirement, a context entity, and the service
implementing this feature. Their framework considers a
"subset of constraint requirements which are expressed
in terms of context entities". A similar concept of con-
textual requirements is presented by Ali et al. through
the introduction of contextual requirement models to
specify requirements and their context at runtime [8].
In their work they describe contextual requirements as
the interplay of two elements – requirements and con-
text – and focus on the modelling of the variability of
both context and requirements, and the detection of er-
rors in contextual requirements models [21].

In building on this related work where the execution
of requirements depends on the context, we use the fol-

3

lowing definition for contextual requirements:

A contextual requirement consists of a 2-tuple
of the expected system behaviour and the specific
context within which this expected behaviour is
valid.

Existing approaches to deal with uncertainty in re-
quirements include new languages with dedicated fea-
tures. Among them, the RELAX language stands out
[22]. RELAX is a fuzzy logic-based specification lan-
guage to be used in goal-oriented approaches that sup-
ports the explicit expression of uncertainty in require-
ments by means of temporal and ordinal operators (e.g.,
"as early as possible", "as many as possible"). Sev-
eral methods have been proposed to exploit the capa-
bilities of RELAX. We mention AutoRELAX [13], an
automated approach that relaxes goal models that con-
tain RELAX expressions with the objective of satisfying
their functional requirements while reducing the num-
ber of necessary adaptations.

An adaptive system adapts to certain context condi-
tions by monitoring the current operating environment
(through sensors) to decide which actions it has to per-
form to fulfil system goals [2, 23]. Qureshi et al. [15]
introduce adaptive requirements that contain variation
points together with a monitoring specification, so that
the system can make its own decision on how to best re-
act to a particular goal with such variation points. Oriol
et al. [14] argue that a monitoring specification (op-
erationalization of context) is a prerequisite to design-
ing requirements monitoring feedback loops to adapt to
a certain goal, and derive this monitoring specification
manually. Franch et al. [24] extend this work to inte-
grate (again, manually) monitoring into an approach of
goal-driven adaptation.

Even when using RELAXation of requirements and
adaptive requirements, it is still challenging to detect
certain context conditions in an uncertain operational
environment. It can be impossible to define the moni-
toring specification, as context operationalization is not
trivial and requires a full understanding of relevant con-
text, which might not be possible at design time. Even
if context conditions can be operationalized, assump-
tions might become invalid at runtime [25]. To address
this challenge, we investigate how to update the mon-
itoring specification of one (contextual) variation point
automatically at runtime with the help of machine learn-
ing. In our previous work we obtained promising re-
sults when using data mining algorithms to make run-
time context conditions measurable [26].

Related work shows that machine learning techniques
are valuable for the development of self-adaptive mech-
anisms, where often great volumes of data is produced
over time and can be used to derive decisions on self-
adaptation. In this way, machine learning has been used
successfully in di↵erent research areas on self-adaptive
systems: Canavera et al. use data mining to deter-
mine the right time for system adaptation with the goal
to avoid inconsistencies and system disruptions during
and after adaptation [16]. They focus on situations
(to which they refer to as ”uncertainty factor“) where
the dependencies of system components are not cap-
tured in a model. They mine the execution history of
a software system to infer a stochastic component de-
pendency model, which represents interactions among
the system’s components and use this model to infer
the right time for adaptation of a system component.
Gullapalli et al. apply data mining to adaptive control
in order to adapt feedback control based solutions to
changes in the environment [17]. Their goal is to pro-
vide accurate decisions in tuning the control parameters
in order to self-regulate distributed computing systems
based on a time-series-analysis algorithm. Esfahani et
al. use machine learning on a feature selection space
to support system adaptation of features [18]. They fo-
cus on feature adaptation and suggest to treat the system
as a blackbox. Thus, they do not base adaptation deci-
sions on the managed system’s internal structure. In-
stead, by defining a feature solution space, they are able
to use machine learning to asses and reason about adap-
tation decisions. They map features to metrics that con-
sider contextual factors to allow automatic learning of
feature-oriented adaptation. While Esfahani et al. con-
centrate on making decisions on the adaptation of all
possible features, we concentrate on only one particular
system behaviour to adapt the context operationaliza-
tion.

Feedback loops are a key aspect of engineering self-
adaptation [27]. Kephart and Chess introduced the no-
tion of an autonomic element with its famous MAPE-K
loop (cf. Figure 2), which culminated in IBM’s archi-
tectural blueprint for autonomic computing and the Au-
tonomic Computing Reference Architecture (ACRA)
[28, 29]. These are key architectural elements of mod-
ern self-adaptive systems. Several autonomic elements
can be composed to fulfill a common system goal.

Each autonomic element consists of an autonomic
manager, and one or more managed elements. The au-
tonomic manager implements two manageability inter-
faces – sensors and e↵ectors. Through sensors the au-
tonomic manager gathers information from the environ-
ment or other autonomic elements. Through e↵ectors

4

Managed'element!

Autonomic element

 Analyze Plan

 Execute
Knowledge'

Base'

Symptom'

Request'for'
Change'

Change'Plan'

Monitor

Effectors'Sensors'

Effectors'Sensors'

Policy!

Autonomic
manager

Figure 2: IBM’s autonomic element consisting of an autonomic man-
ager and a managed element with a MAPE-K feedback loop at its core
[28, 29].

the autonomic manager adjusts the managed element as
needed. An autonomic element itself can be a managed
element, therefore consisting of sensors and e↵ectors at
the top of the autonomic manager. Through the e↵ectors
at the top the autonomic manager can receive policies
that drive the adaptation and evolution of the system.

The autonomic manager implements a feedback loop
that is known as the MAPE-K loop because of the four
components monitor, analyze, plan, and execute and
the knowledge base. The knowledge base represents
the major communication mechanism between the four
components of the autonomic manager. The monitor
senses the managed element and the context, filters the
collected sensor data, and decides on relevant events
that can indicate the need for an action of the autonomic
manager. These symptoms are communicated to the an-
alyzer for further analysis [30]. The analyzer correlates
the received symptoms and in case it decides about the
need to adapt the managed element it sends a request for
change. The planner defines the activity to execute by
considering the policy and creates a change plan. The
executor adapts or evolves the system accordingly fol-
lowing the change plan [11].

In comparison to these proposals (cf. Table 1), our
approach ACon uses machine learning to mine contex-
tual data at runtime so that the system can continuously
adapt its contextual requirements. Similarly to the ap-
proaches from Inverardi and Mori [10] and Ali et al.
[8], ACon focuses on requirements that depend on con-
text. The purpose of the usage of ACon in the sys-
tem is the adaptation of the context operationalization in
which contextual requirements are valid. Inverardi and
Mori focus on the evolution of context variations to deal
with uncertainty by using model checking to execute ei-
ther predefined evolution or by letting users specify the

evolution needs. They do not support automatic evolu-
tion. The approach by Ali et al. concentrates on reason-
ing about system adaptation to varying context. They
do not deal with requirements uncertainty at runtime.
Related work on uncertainty proposes to use goal re-
laxation in the sense of uncertainty-aware requirements
[13] as well as adaptive requirements that capture points
of adaptation [15]. ACon uses a MAPE-K feedback
loop [28] to trigger adaptation of context operational-
ization concerning contextual requirements to deal with
runtime uncertainty. From the related approaches feed-
back loops are used by Souza et al. to trigger the execu-
tion of evolution requirements [12]. In their work evo-
lution requirements are predefined and therefore they do
not deal with requirements uncertainty at runtime. Oriol
et al. use feedback loops to monitor the context and
provide system adaptation to current context conditions
by using a monitoring specification [14]. They do not
consider the adaptation of the monitoring specification.
Three approaches by Canavera et al. [16], Gullapalli et
al. [17], and Esfahani et al. [18] use machine learning
(data mining) to support system adaptation. Only one
of these approaches concentrates on the integration of
requirements through the focus on features [18]. They
concentrate on making decisions on the adaptation on
all possible features, while we only concentrate on the
adaptation of the context in which one system behaviour
is valid.

3. The ACon Framework: Fundamentals

This section formalizes the ACon framework by
defining di↵erent functions over the domains introduced
in Figure 1 and specified in Figure 3.

cr1

…

Env

Environment

Oper

e1

en

Contextual
requirements

Contexts
(Expected)
Behaviour

Context ope-
rationalization

crm cr2 …

c1 cm … b1 bm …

exp1 expm …

Oper

…OR…

T(Env)

cond1

condk

Figure 3: Variables and functions defined in ACon framework.

3.1. Definition of a System State

At any time t, the self-adaptive system will be in
a given state concerning the requirements, the opera-
tionalization of their context and their satisfactibility.
The state includes:

5

1. A set CR of m contextual requirements,

CR = {cri = (ci, bi) | 0 < i  m},

where ci is the context and bi the expected system
behaviour for a particular contextual requirement
i.
In our example, we have two contextual require-
ments cr1 = (driver is sleeping, support lane keep-
ing) and cr2 = (it is raining, activate windshield
wiper).

2. ContextsCR and BehavCR are the sets of all contexts
and expected behaviours of CR,

ContextsCR = {ci | 0 < i  m},

BehavCR = {bi | 0 < i  m}.

In our example, ContextsCR = {driver is sleeping,
it is raining}, BehavCR = {support lane keeping,
activate windshield wiper}.

3. A set Env of typed variables that represents the en-
vironment measured through sensors,

Env = {ei | 0 < i  n}.

The value of these variables is characterized by the
measurement function

Meas : Env! Ob ject,

where Object is a supertype of all possible measure
types.
In our example, e1 = BlinkOfEye, e2 =
PositionOfHead, Meas(BlinkOfEye) = 0.19,
Meas(PositionOfHead) = 0.56, etc.

4. The function Oper assigns to requirements’ con-
texts their operationalization in terms of the envi-
ronment variables,

Oper : ContextsCR ! T (Env),

where T(Env) is the term algebra formed from
variables from Env combined by expression
operators (i.e., relational, arithmetic, and logical).
Each operationalization in T (Env) is of the form
cond1 OR ... OR condk, where every cond is
a condition which can be measured by sensors.
vars(Oper(c)) denotes the set of variables involved
in the operationalization of c, c 2 ContextsCR.
In our example, cond1 = ((BlinkOfEye
<= 0.9) and (PositionOfHead <= 0.85) and
(PositionOfHead >= 0.75))

We assume the following:

a. The contextual requirements in CR are elicited at de-
sign time and cannot change, which means that no
unexpected system behaviour may emerge and also
that contexts cannot change, only their operational-
ization (represented by the Oper function) is allowed
to change.

b. Variables in Env are fixed too, meaning that sensors
are deployed at design time.

c. Meas is a partial function, to reflect the fact that a
particular sensor may become unavailable at a cer-
tain interval of time.

d. Oper is a partial function, meaning that at some
points, the operationalization of a context is not yet
known (typically because it is not known at design
time and not yet determined at runtime).

e. Even if a context is operationalized, it may (in parts)
be not evaluable because some of the variables in-
volved represent a sensor that is currently unavail-
able. To facilitate the detection of this situation, we
introduce a predicate evaluable on contexts defined
as: evaluable(c) = 8e : e 2 vars(Oper(c)) : e 2
dom(Meas), where dom is the actual domain of the
specified function at a given point of time.

f. Even if the sensor is available, it may be sending
wrong data. To detect such situations, we introduce
a predicate

outlier : Env! Bool.

over environment variables which returns true if the
current value of the variable is considered to be
wrong.

g. At design time, an initial operationalization OperI of
the defined contexts will be determined with all the
operationalizations that are known beforehand.

3.2. Satisfaction of Contextual Requirements
The ultimate goal is to maximize the satisfaction of

contextual requirements under uncertainty. With this
objective, we introduce selected evaluation functions to
the ACon framework:

1. EvalContext, a function to evaluate the current oper-
ationalization of a context,

EvalContext : ContextsCR ! Bool,

6

defined as

EvalContext(ci) = evaluation(Oper(ci)),

where evaluation is a function that evaluates the
operationalization of the context in some given
logics that interprets the expressions formed with
the term algebra T(Env) previously chosen.

2. EvalBehav, a function to evaluate the satisfaction of
a given system behaviour,

EvalBehav : BehavCR ! Bool.

3. EvalCR, a function to evaluate the satisfaction of a
contextual requirement,

EvalCR : CR! Bool.

We define EvalCR((ci, bi)) in the following manner:

• if ci < dom(Oper), then the context is not
operationalized, therefore it cannot be evalu-
ated. In this case, we consider that the con-
textual requirements is not satisfied
• if ¬evaluable(ci), the contextual requirement

is considered not satisfied since the current
context operationalization cannot be evalu-
ated due to some sensor malfunctioning (un-
availability or outliers). Note that even if
some of the rules could be evaluated, our
data-mining based approach is still requiring
reoperationalization for an automatization.
• if ¬ci, the contextual requirement is consid-

ered satisfied since the context acts as guard
when evaluating the satisfaction
• if ci and bi, this means that both the context

and the behaviour are satisfied, yielding thus
to the satisfaction of the contextual require-
ment
• if ci and ¬bi, this yields clearly to insatisfac-

tion of the contextual requirement

Given this, we define:

EvalCR((ci, bi)) = (ci 2 dom(Oper))
^ evaluable(ci) ^ (ci) bi)

Note that, in order to make ACon as generic as pos-
sible, we leave the choice of formal framework both
for expressing and evaluating contexts and requirements
open. These formalisms do not impact the design of
ACon as long as the three required satisfaction functions
are provided.

3.3. ACon objective function

ACon aims at reacting to changes that make require-
ments unsatisfied. In the case of contextual require-
ments, the particular situation to avoid is having require-
ments whose context is not operationalized or is not sat-
isfied while the behaviour is, which are the two cases
that violate the notion of satisfaction of contextual re-
quirements. This objective can be formalized in the fol-
lowing way:

minimise cri : 0 < i  m : ¬EvalCR(cri)

In order to accomplish this goal, ACon will continu-
ously try to operationalize contexts not yet operational-
ized, and will react as soon as possible to unpredictable
environment changes and monitoring problems.

4. Adaptation of Contextual Requirements to Deal
with Uncertainty

Since ACon intends to support systems in self-
adaptation, we adopt a feedback loop-based approach as
an essential part to realize the adaptation. The feedback
loop, which we call Adaptation of Contextual Require-
ments Feedback Loop (short: ACRFL), identifies condi-
tions in which contextual requirements are a↵ected by
uncertainty and adapts the context operationalization for
such contextual requirements.

In Figure 4 we illustrate the relationship of ACon
to requirements monitoring approaches (e.g., [14]). In
the requirements monitoring feedback loop, the sys-
tem monitors current incoming sensor data and deter-
mines based on the operationalization which contextual
requirements have to be satisfied. Contextual require-
ments, their operationalization, as well as the satisfac-
tion of contextual requirements are stored in the knowl-
edge base. As soon as context conditions are detected
that fulfill the stored operationalization, the correspond-
ing contextual requirement is satisfied – the system ex-
ecutes the system behaviour of the contextual require-
ment. ACon adapts contextual requirements (Adap-
tation of Contextual Requirements Feedback Loop in
Figure 4) to provide an up-to-date context operational-
ization and which represents the monitoring specifica-
tion described by Oriol et al. [14]. For this purpose,
ACon monitors the sensor data as well as the satisfac-
tion of contextual requirements to determine contextual
requirements a↵ected by runtime uncertainty. When it

7

Fullest

Sensors

Adaptation of Contextual
Requirements Feedback Loop
1a. Monitors satisfaction of contextual
req.
1b. Monitors sensor data for runtime
uncertainty
2. Uses data mining
3. Updates context operationalization

Environment

… observed-by

1. Monitors sensor data
2. Uses sensor data to

check for conditions
described in the
operationalization of
contextual
requirements

3. Satisfies contextual
requirements
(executes system
behaviour)

Adaptable System (e.g., Requi-
rements Monitoring FL [13])

Monitor

Analyze

Plan

Execute

!
!
!
!
!
!
!
!
!!

Execute

Plan Analyze

Monitor

 Included:
 1.Cont. req.
& operationalization
2.Sensor data
3.Satisfaction of
contextual requirements

Knowledge
Base

Figure 4: In a feedback loop, ACon updates the context of validity
in contextual requirements with an up-to-date operationalization. A
requirements monitoring feedback loop as described by Oriol et al.
[14] uses the operationalization to detect context conditions, in which
a certain system behaviour (represented in contextual requirements) is
provided by the system.

detects such contextual requirements, it uses historical
sensor data as well as the information about the satis-
faction of contextual requirements from the knowledge
base to determine an up-to-date context with the help of
data mining.

Managed'element:'contextual'requirements!

 Analyze:
Determine
 affected contextual
 requirements
 and mine
 contextual
 data

 Plan:
Compare actual
characteristics
of results
towards
policy

 Execute:
 Update
 operationali-
zation

Knowledge'
Base'

Symptom:''
Indica(on!for!
uncertainty!

Request'for'Change:'
Classifica(on!results!per!
contextual!requirement!

Change'Plan:'
Opera(onaliza(on!
for!contextual!
requirements!

Monitor:
1.  Sensor

data
2.  Satisfaction of
 contextual
 requirements

Effectors'Sensors'

Effectors'Sensors'

Policy:'Desired!
characteris(cs!
of!results!

Figure 5: ACon responsible for the adaptation of contextual require-
ments.

Figure 5 gives an overview of the elements and activ-
ities taking place in ACRFL. The autonomic manager
keeps track of the managed elements – all contextual re-
quirements. The monitor senses the managed elements.
At every time interval tint, the monitor executes two
main tasks: 1) evaluating the satisfaction of contextual
requirements, and 2) collecting available sensor data re-

lated. After filtering the sensed data, the monitor stores
symptoms in the knowledge base: every requirements
violation and sensor relevant change (i.e., indications of
potential uncertainty). A symptom contains relevant in-
formation for the indication on uncertainty so that the
analyzer can analyze the situation and make a decision
on whether to act on the indications or not. If the ana-
lyzer decides to act on it, the analyzer uses data mining
on the collected sensor data to determine an appropri-
ate operationalization. The planner decides whether the
results of the data mining algorithm are good enough
and generates a change plan. The change plan contains
the rules produced by the data mining algorithms repre-
senting a new operationalization. The execution engine
reads info from the knowledge base (e.g., a script com-
puted and generated by the planner) and actuates, or ef-
fects (i.e., e↵ects changes in the managed element) the
managed element.

We describe the tasks of the knowledge base as well
as of the four components of ACRFL step by step in
the remainder of this section, with an emphasis on the
monitor and analyzer as the two engines in which the
automation takes place.

4.1. Knowledge Base

The knowledge base stores everything that belongs or
is required for decision making in an autonomic man-
ager. The knowledge base is an important part of ACon
and stores relevant information about 1) contextual re-
quirements, and 2) sensor data as preparation to apply
data mining on.

4.1.1. Information Related to Contextual Requirements
For simplicity we store all information about the set

of contextual requirements in the knowledge base. Ev-
ery requirement is stored as a 2-tuple (context, expected
behaviour). Table 2 shows the knowledge base contain-
ing two contextual requirements from the intelligent ve-
hicle example. For the first contextual requirement the
expected behaviour (b1) is support lane keeping in the
context (c1) of driver is sleeping. To be able to satisfy
this contextual requirement the system has to identify
when a driver is sleeping using the sensors or cameras
installed in a car. We illustrate a possible operational-
ization (represented through sensors and their values) of
cr1 by detailing two conditions:

Condition 1 (cond1) : (BlinkOfEye <= 0.9) and (Posi-
tionOfHead <= 0.85) and (PositionOfHead >=
0.75)

8

Table 2: Each contextual requirement is stored as a 2-tuple of context and expected system behaviour together with the operationalization (rules)
produced by data mining in the knowledge base.

Contextual requirements knowledge base

cri 2 CR Context (ci) Exp. Behaviour (bi) Operationalization of context (Oper(ci)) Sensors involved (vars(Oper(ci)))

cr1 Driver is Support lane keeping ((BlinkOfEye <= 0.9) and (PositionOfHead <= 0.85) BlinkOfEye, PositionOfHead,
sleeping and (PositionOfHead >= 0.75)) or

((RightArmO↵Steeringwheel = 1) and (LeftArmO↵- RightArmO↵Steeringwheel, LeftArm-
Steeringwheel = 1)and (PositionOfHead > 0.95)) O↵Steeringwheel, PositionOfHead

cr2 It is raining Activate windshield
wiper

Condition 2 (cond2) : (RightArmO↵Steeringwheel
= 1) and (LeftArmO↵Steeringwheel = 1) and
(PositionOfHead > 0.95)

The operationalization contains both conditions (i.e.,
Oper(cr1) = cond1 OR cond2)), but only one con-
dition is su�cient at runtime to trigger the satisfac-
tion for cr1. The first condition describes a sit-
uation in which the eyes of the driver are almost
closed (BlinkOfEye <= 0.9), and the head directed
to the left side ((PositionOfHead <= 0.85) and
(PositionOfHead >= 0.75)). The second condition de-
picts a situation in which both hands of the user are o↵
steering wheel ((RightArmO↵Steeringwheel = 1) and
(LeftArmO↵Steeringwheel = 1)), and the head turned
to the left back side (PositionOfHead > 0.95). The two
conditions are measurable by the sensors BlinkOfEye,
PositionOfHead, RightArmO↵Steeringwheel, and Left-
ArmO↵Steeringwheel.

The di↵erent operationalizations created along time
for the requirement are stored in the operationalization
column in the knowledge base. We introduce the func-
tion

f ormer�operationalizations :
ContextsCR ! S et(T (Env))

which returns the set of such existing operationaliza-
tions.

4.1.2. Information Related to Sensor Data for Data
Mining

Typically, the data used for data mining will come
from sensors of di↵erent types. Before data mining can
be applied on the sensor data, the incoming raw sen-
sor data from the available sensors has to be prepro-
cessed. Preprocessing of the contextual data depends on
the characteristics of the sensors and data collected. The
frequency of sensor readings that are taken into account
for the operationalization has to be determined and can

Table 3: Sensor data and related information are stored in the knowl-
edge base.

Sensor data in knowledge base

Time IA for IA for IA for ... e1 e2 ...
cr1 cr2 cr3

...
t � 1 true true false ... 0.34 0.8 ...
t false true false ... 0.34 0.7 ...
t + 1 false true false ... 0.34 0.7 ...
...

change at runtime (the time t, t + 1, t + 2 that is used
in ACon). For some sensors, especially if the sensors
are existing sensors (like sensors integrated in other de-
vices) and reused for the purpose of system adaptation,
the readings might be less often than the defined time
interval tint. In such cases missing data for these less
frequent readings has to be determined for example by
keeping the value of the last reading till the next read-
ing. Finally, the sensor data has to be normalized to lay
within a range between 0 and 1 so that data mining al-
gorithms that rely on Euclidian distance can be applied
for operationalization.

After preprocessing of sensor data, another step is
necessary to prepare the contextual data for data mining.
An additional attribute, the indicator attribute (short:
IA), is stored together with the sensor data in the knowl-
edge base (see Table 3) and is needed for the application
of data mining to determine the operationalization of the
context in which a contextual requirement is valid. Ev-
ery time the expected system behaviour was satisfied it
stores the current context together with a value true for
the indicator attribute, false otherwise.

In our example, for the initial operationalization of
the "driver is sleeping" context the driver might help by
manually activating the lane keeping feature when he
has the feeling to fall asleep soon. Tracking these situa-
tions allows to exactly define conditions which indicate

9

that the driver is falling asleep and in which the expected
behaviour of supporting lane keeping is needed. When
the system starts executing the lane keeping feature on
its own, the system monitors the actions of the driver.
Slow actions might indicate that the driver is sleeping.
In addition this kind of end-user feedback can be used
to determine whether the action was right or wrong.

ACon uses the evaluation function of the system be-
haviour (EvalBehav(b) for cr = (c, b)) as the indicator
attribute. EvalBehav(b) = true marks contextual data in
which the expected system behaviour is linked to the
contextual requirement. EvalBehav(b) = f alse marks
contextual data in which the expected behaviour is not
needed. Note that we expect the user correct the sys-
tem if the executed behaviour is not correct for exam-
ple by terminating the system behaviour. The indicator
attribute together with the contextual data define the in-
put for data mining algorithms to identify patterns that
show correlation between contextual conditions with
EvalBehav(b) = true.

4.2. Monitor State of the System
In the monitor, ACon keeps track of the satisfaction

of contextual requirements in certain intervals of time.
We define the time interval tint between two measure-
ments t and t + 1 of the monitor. ACon considers four
di↵erent cases that can point to uncertainty a↵ecting
the satisfaction of contextual requirements (Table 4.1.2,
case 1 - case 4).

4.2.1. Case 1: No operationalized context
This case will arise typically when the context has not

been operationalized at design time and still there is not
enough data for the data mining algorithm to propose a
context at runtime. Eventually, it also may happen that
a context becomes unoperationalized at runtime since
no feasible operationalization can be found at a certain
moment.
A↵ected requirements: {cr = (c, b) 2 CR | c <
dom(Oper)}

In our example, for each new car which does not in-
clude the sensor PositionOfHead, the analyst does not
know how to operationalize the context driver is sleep-
ing. As a consequence, the operationalization is left to
runtime, expecting than the ACon approach will be able
to discover other ways to operationalize the context.

4.2.2. Case 2: An unpredictable monitoring framework
state

When the context is operationalized, some of the sen-
sors might become unavailable temporarily or perma-
nently. Even if the signal is not lost, the data may be

incorrect because the sensor requires recallibration. In
any case, the system will not be able to satisfy contex-
tual requirements which contain the sensor that is mal-
functioning in their operationalization. To identify this
situation, all sensors that are part of the current oper-
ationalized context for the contextual requirements are
monitored.

Three situations are possible:

a) The sensor stops sending data.
A↵ected requirements: {cr = (c, b) 2 CR | c 2
dom(Oper) ^ (9e : e 2 vars(Oper(c)) : e <
dom(Meas))}

b) The sensor is sending wrong data.
A↵ected requirements: {cr = (c, b) 2 CR | c
2 dom(Oper) ^ (9e : e 2 vars(Oper(c)) : e 2
dom(Meas) ^ outlier(e))}

c) The sensor regains a correct state. Either be-
cause it gets recallibrated or comes back into
operation again. Requirements that have this
sensor in their operationalization are a↵ected,
as well as all other requirements that had it at
some moment in their history. This second type
includes both requirements whose context is not
currently operationalized as well as others that
are operationalized because it may happen that
the current operationalization does not behave as
well as the one involving the recovered sensor. To
detect conditions that trigger this case we define
correctS ensor(e) = e 2 dom(Meas) ^ ¬outlier(e).

A↵ected requirements: {cr = (c, b) 2 CR
| (e 2 vars(Oper(c)) _ (9 op 2 former-
operationalizations(c): e 2 vars(op)))^ at
time t, correctS ensor(e) ^ at time t � 1,
¬correctS ensor(e)}

Example for case a: Consider a driver that is sud-
denly wearing sunglasses. So far the eye tracking sen-
sor was the most accurate sensor to measure when a
driver is sleeping. After wearing sunglasses, the sensor
shows an error in capturing the sensor values. Hence,
the monitor will communicate this loss of sensor. Later
in the cycle, all other available sensors will be used for
re-operationalization for "driver is sleeping" context so
that the system can continue monitoring the satisfaction
of this contextual requirement.

4.2.3. Case 3: Contextual requirement not satisfied
This situation may occur in two completely di↵erent

circumstances. First, it may happen that the context

10

Table 4: Monitoring of requirements a↵ected by runtime uncertainty.

Cases Detection of uncertainty Condition on context (c) Condition on behaviour (b)

Case 1 No operationalized context. c < dom(Oper)

Case 2 a) Sensor lost 9e 2 vars(Oper(c)) : e < dom(Meas)
Case 2 b) Sensor decallibrated 9e 2 vars(Oper(c)) : outlier(e)
Case 2 c) Sensor up 9e 2 vars(Oper(c)) :

Time t � 1 : ¬correctS ensor(e)
Time t : correctS ensor(e)

Case 3 Violation EvalContext(c) =true EvalBehav(b) =false

Case 4 Potentially wrong context EvalContext(c) =false EvalBehav(b) =true

has been operationalized in an incorrect or inaccurate
way (e.g., because the data mining algorithms have not
learned enough yet or because the context has been re-
operationalized recently due to some malfunctioning in
a sensor of the previous operationalization) or because
the action that leads to the satisfaction of the behaviour
has not been executed yet.

A↵ected requirements: {cr = (c, b) 2 CR |
EvalContext(c) = true ^ EvalBehav(b) = f alse}

In our example, imagine that the car was mostly used
for daily trips where the driver is quite awake, train-
ing the classifier to only recognize situations where the
driver does not blink very often, recognizing the "driver
is sleeping" times with fast blinking of eyes. Now dur-
ing the night it might happen that the driver needs to
blink often due to the di↵erent light. Therefore the op-
erationalization will be satisfied while the behaviour is
not; the actions to make (reoperationalize context more
accurately or to activate the "support lane keeping" op-
tion in the car) will be decide later in the cycle.

4.2.4. Case 4: E↵ects of environmental uncertainty
Cases occur in which the operationalization is not

satisfied but the expected system behaviour is. Espe-
cially at the beginning, when the data mining classifier
is not properly trained because the car is hardly used
and therefore there is not enough historical data, this
case will appear as the system has to learn over time.
In this case the user executes an action that makes the
specified system behaviour to be fulfilled, triggering the
system to re-operationalize the context considering the
current context state in the new operationalization.

A↵ected requirements: {cr = (c, b) 2 CR |
EvalContext(c) = f alse ^ EvalBehav(b) = true}

In our example, a driver who is quite tired realizes
that he might be falling asleep in the next couple of min-
utes, therefore she switches on the lane keeping feature
which makes the behaviour "driver is sleeping" to be-

come satisfied. The current context should be consid-
ered in the (re-)operationalization.

4.3. Analyze - Apply Data Mining to Operationalize
Context for Contextual Requirements a↵ected by
Uncertainty

Given the output of the monitor, the analyzer deter-
mines which contextual requirements are a↵ected by
uncertainty. For these contextual requirements, it ap-
plies data mining to (re-)operationalize the context (de-
termine Oper(ci)).

In the analyzer, ACon relies on lightweight data min-
ing algorithms (i.e., rule-based classifiers). We consider
building rule-based classifiers to be lightweight because
the algorithm only needs to project and sort the dataset
with respect to each attribute (i.e., m projections and
sorts for m attributes), and then sequentially iterate over
sorted lists. While sorting is not a linear operation, it
is nevertheless a fast operation using well-known al-
gorithms such as quick sort. Other classifiers, such as
Support Vector Machines (SVM), and Neural Networks
(NN), solve optimization problems employing variants
of gradient descent algorithms, which sometimes take
long to converge to an optimal solution.

Training a lightweight classifier, such as a rule-based
one (as opposed to more high-end ones, Neural Nets,
Support Vector Machines, etc.) trades o↵ accuracy for
speed and computational resources. Therefore, it can be
easily rerun many times as newer data instances become
available. Since the classifier needs to be built on-the-
fly, expensive optimization packages for high-end clas-
sifiers would pose a burden on devices used for classifi-
cation.

Another reason we use rule-based classifiers is be-
cause they expose ”rules“, i.e. their classification deci-
sion is transparent, visible to the user, if he/she wants
to have an idea how the decision was made by the ma-
chine on a classification. This cannot be said for SVM

11

and NN, which have a black-box nature in their clas-
sification. The rules can be periodically checked by a
human operator to see if they make sense, i.e. corre-
spond to his/her understanding of the environment.
In our example, a rule could be (BlinkOfEye <= 0.9)
and (PositionOfHead <= 0.85) and (PositionOfHead
>= 0.75).

The outcome of applying such data mining algorithm
is the identification of patterns, so called rules which
represent the operationalization of context Oper(ci).
Rules are produced on contextual data collected and
stored in the knowledge base at runtime. The opera-
tionalization is represented through rules of the desired
context in which a specific contextual requirement is
valid. Many di↵erent rules can exist for one contextual
requirement, depending on how many patterns the data
mining classifier finds in the contextual data. Each of
the rules represents one desired context condition as de-
picted in Figure 3. Hence, the combination of di↵erent
rules produced by the data mining algorithm represents
the operationalization for the context of one contextual
requirement (e.g., Oper(c1) = rule1 OR rule2).

4.4. Plan - Decide whether Operationalization is Good
Enough

In the planer the actual error in classifying correct
context conditions (e.g. number of context conditions
misclassified by the rules generated by the data mining
algorithm) is compared against the policy that is given.
The policy can represent either an error threshold given
by the system provider or given by the users. The users
can define this threshold for the error at design time (and
change it at runtime), to be used for these context condi-
tions that are ’learned’ at runtime. If the error is smaller
than the threshold, the system updates the contextual
requirements with the new rules produced by the data
mining algorithm.

4.5. Execute - Update Contextual Requirements with
Operationalized Context

Last, the system updates the information about con-
textual requirements in the knowledge base with the op-
erationalized context. The rules generated by the data
mining algorithm become the candidate operationaliza-
tion of context for the particular contextual requirement.
Using these rules, the system can automatically recog-
nize the context in which contextual requirements are
valid at runtime and satisfy the expected behaviour.

5. Evaluation of ACon

We evaluated ACon’s performance in operationaliz-
ing the context for contextual requirements in a dataset
collected from the execution of an activity scheduling
system, ToTEM, being used by a crew of four ath-
letes rowing in extreme conditions crossing the Atlantic
Ocean, from Dakar (Senegal) to Miami (USA). During
the rowing trip, we collected i) end-user needs to dis-
cover contextual requirements and ii) sensor data to ap-
ply ACon for operationalization of context.

The rowing crew was scheduled to reach Miami in
less than 100 days. To achieve this goal, the rowers had
to adhere, consistently, to a strict schedule of required
activities and daily routines such as sleeping/rowing in
four-hour shifts, as well as adequate rest time to main-
tain their biometric rhythms [31], [32]. The ToTEM
system played an essential role in their successful trip
performance because the rowers were to survive harsh
and unpredictable conditions at sea during periods of
extreme fatigue.

In return for the system supporting their trip, the row-
ers volunteered to keep, during the trip, a record of situ-
ations in which they needed new or apriori unanticipated
system behaviour. This presented us with a unique op-
portunity to examine the situations when new require-
ments were needed, as well as the context in which they
should be valid. Our interviews with the rowers after
the trip as well as the analysis of their records from the
trip allowed us to identify a number of contextual re-
quirements.

In the remainder of this section, we describe the ap-
plication of ACon to the data we collected. We depict
the evaluation process in Figure 6. We note that ToTEM
was not implemented with any adaptation support dur-
ing the rowers trip. Instead, our evaluation consisted in
a post-trip analysis of data collected during the rowing
trip to validate the performance of the data mining algo-
rithms in operationalizing the context for the contextual
requirements we identified as relevant to ToTEM sup-
porting the rowers’ trip.

In summary, our evaluation consisted in a number of
activities as follows. Each of these steps are described
in detail in the next subsections:

A. Preparation for the application of data mining algo-
rithms:

1) Elicitation of ToTEM requirements before the
trip: Based on the knowledge we acquired from
a past rowing trip of the same crew, as well as
through interviews with the rowers, we elicited a
number of requirements and developed ToTEM.

12

ACon Preparation

Monitor: Sensor data (46
sensors onboard) + end-
user needs to determine
when contextual
requirements should be
satisfied

Our evaluation with ToTEM

 Runtime

Runtime (during the trip)
– Section 5.1.2

 Runtime simulation –
Sections 5.2.2 – 5.3

 Post-trip analysis (manual
after the trip) –
Sections 5.1.3 - 5.2.1

Determine input for
ACon: CR, ContextsCR ,
BehavCR , Env Monitor'

Analyze'

Monitor'

Analyze'

Monitor: Sensor data & current
satisfaction of contextual req.
Determine (current): Env,
Meas, IA

Apply: Data mining
Determine (current):
Oper

Knowledge'Base'

stored in

Feed back and adjust
system behaviour by
updating context
operationalization

Determine: CR,
ContextsCR , BehavCR

Determine (for each time t in
the entire trip): Env, Meas, IA

Apply: Data mining
Determine (current): Oper
Evaluate: Operationalization based
on the rest of sensor data
(considering IA)

Trigger manually (simulate case 1 – 4)

Trigger automatically

Knowledge'Base'

Figure 6: Our evaluation process used to evaluate ACon’s performance in operationalising the context for contextual requirements based on sensor
data and user needs collected during a rowing trip while using ToTEM.

2) Collection of data on rowers’ adaption needs and
sensor data during the trip: ToTEM was used by
the rowers during the trip. We collected contex-
tual data (sensors on the boat) and the rowers’
records of runtime adaptation needs in context.

3) Elicitation of contextual requirements after the
trip: We used the collected data as well as inter-
views with the rowers and elicited five contextual
requirements.

B. Operationalization of context: We applied data min-
ing for the operationalization of the context of these
five contextual requirements.

C. Evaluation of data mining (rules): We validated
the results of the operationalization of context 1)
through the statistical analysis of the data mining al-
gorithms and 2) in interviews with the rowers.

5.1. Preparation for the Application of Data Mining Al-
gorithms

5.1.1. Elicitation of ToTEM requirements before the
trip

Drawing on the domain knowledge gained in the
analysis of the contextual data when shaping the ACon
approach, we elicited the rowers’ goals and require-
ments for the ToTEM scheduler to be used in their trip.

The major ToTEM functionality was to alert the row-
ers about scheduled activities according to the current
local (boat) time. Other requirements included the sys-
tem allowing the rowers to manually assign activities,
alerting rowers by using configured alarms, and allow-
ing the rowers to configure the representations of the
alerts. ToTEM integrated one contextual requirement
to adjust the local boat time when the time di↵erence
between the current location and the last location is be-
tween 2 and 5 minutes. Time di↵erence was calculated
using time zone changes. The goal was to divide the one
hour time zones into smaller zones to avoid time shifts
of one hour. However, we were not able to understand
the impact the context would have on ToTEM require-

13

ments. The rowers indicated their preference for au-
tomated rescheduling in certain context conditions but
were unable to indicate which activities to be resched-
uled or under which conditions.

5.1.2. Collection of data on rowers’ adaptation needs
and sensor data during the trip

The boat was configured with 46 onboard sensors that
recorded biometric and environmental data. Biometric
data was captured through ReadiBands2 on the arm of
each rower, and measured actigraphy (movement), ef-
fectiveness (fatigue level), and whether the rower was
in bed. Environmental data included GPS position, ship
roll, wind direction/speed, and altitude.

Unfortunately the trip did not reach its destination
due to capsizing at about 1600 km from Miami. How-
ever, the rowers recovered measurements from all 46
sensors, containing about 90, 748 measurements per
sensor, from the first 64 days of the trip. The rowers also
recorded (in daily audio and written logs), as much as
their busy schedule and harsh conditions allowed, their
desired functionality for system self-adaptation in par-
ticular context conditions.

5.1.3. Elicitation of contextual requirements
After the trip we analyzed these adaptation scenarios

(from the rowers’ audio files as well as interviews with
the rowers). We identified that the rowers’ goals for
ToTEM adaptation to certain context conditions at sea
became clearer during the trip. We were able to elicit
five contextual requirements (shown in Table 5).

5.2. Operationalization of Context

5.2.1. Determine Times of Validity for Contextual Re-
quirements

With knowledge of these five contextual require-
ments, we turned our endeavours to the application of
ACon. To operationalize context for each contextual
requirement, we analyzed the contextual data from the
entire trip, as well as the rowers’ input, to identify cor-
relations between contexts in which contextual require-
ments were valid and the actual sensor data collected.

For cr2, cr3 and cr5 (shown in Table 5), where cer-
tain sensors clearly indicated relevant context condi-
tions, the operationalization was trivial. c2 (two rowers
are sleeping) and c5 (one rower is sleeping) di-
rectly correlated with the rowers band sensors captur-
ing the times the rowers were sleeping; similarly for

2http://fatiguescience.com/solutions/readiband

Normal user behavior: Rowing Anomalous user behavior: Sea anchor

Night Night Night

Day Day Day

Figure 7: Anomalous user behaviour indicates sea anchor conditions

c3 (low performance) we used the fatigue sensor-
measurements to determine the rowers performance.
The outstanding research challenge for measuring con-
text for these contextual requirements were situations
with loss of these sensors. Other sensors had to be iden-
tified, that could be used to determine the context of
validity. Cases of sensor loss appeared in our sensor
data set. ACon would have recognized such situations
and would have (re-)operationalized the context, using
sensors that are currently available. Because ACon uses
historically sensor data, using data mining it can exactly
give correlations to other sensors which can be used at
runtime to measure the context situations c2, c3 and c5.

In contrast, for cr1 and cr4 the situation was com-
pletely di↵erent because the boat was not equipped with
a sensor to directly detect sea anchor conditions. As
rowers reported, the contexts for sea anchor (at day or
night) were totally unpredictable and variable. Possible
(though not fully understood) conditions for sea anchor
could be rower fatigue or sickness or bad weather con-
ditions. In any of these cases, identifying which sensors
can measure sea anchor conditions was not possible at
design time.

For the purpose of evaluation, based on the steps in
ACon we first had to identify contextual data in which
the contextual requirement had to be satisfied. We man-
ually identified sea anchor conditions through an iter-
ative process of inspecting log data, listening to audio
files, and analyzing the sensor data visually. The Speed
Over Ground sensor was not relevant as its values close
to 0 could have indicated sea anchor but also rowing
against heavy winds. The visual inspection of the graph
showing the combination of actigraphy measurements
for all four rowers was more useful.

Figure 7 shows the rowers movements in di↵erent
colours for each rower on the y-axis over a period
of eight days (x-axis). Alternating clusters of similar
movements show normal user behaviour in the right dot-

14

Table 5: Contextual requirements with most important sensors and number of rules generated for day 53.

cri Valid context Expect. behaviour Most important sensors (up to first 13 important) # Rules
2 CR (ci) (bi) (vars(Oper(ci)))

cr1 c1: On sea b1: Turn alarms o↵ Rower1InBed, Rower2InBed, Rower3InBed, Hour, WindDirectionRelative, Rower2- 29
anchor at E↵ectiveness, Rower1E↵ectiveness, ShipPitch, Rower4InBed, Rower3E↵ectiveness,
night gpsSpeedOverGround, WindSpeedRelative, gpsCourseOverGround

cr2 c2: Two rowers b2: No non-sleeping Rower2SleepWake, Rower3SleepWake, Rower1SleepWake, Rower4SleepWake 7
are sleeping alerts

cr3 c3: Low b3: Assign easy acti- Rower1E↵ectiveness, WindDirectionRelative, gpsSpeedOverGround, DistanceOver- 8
performance vities Ground, AtmosphericPressure, Rower3InBed, Hour, Rower1InBed, WindDirection-

Bow, Rower4E↵ectiveness

cr4 c4: On sea b4: Assign sea WindDirectionRelative, Rower4E↵ectiveness, Hour, ShipRoll, Rower4InBed, Rower1- 29
anchor during anchor daytime E↵ectiveness, Rower3E↵ectiveness, gpsCourseOverGround, SpeedOverGround,
the day activities AtmosphericTemperature, WindDirectionBow, Rower1InBed, WindSpeedRelative

cr5 c5: One rower b5: Set alerts to Rower1SleepWake, Rower2InBed, Rower4SleepWake, Rower3SleepWake, 6
is sleeping visible (no tone) Rower2SleepWake, Rower4InBed, Rower1InBed

ted box — two pairs of rowers rowing in alternating
shifts of 4 hours, 24 hours a day. The left continuous
lined box shows anomalous user behaviour for three
sequential days. This anomalous behaviour coincided
with the times when the daily logs indicated that the
rowers were actually on sea anchor. These are the con-
ditions that represent the context for sea anchor at night
and during the day. For the shown time at night it was
discovered that at least three rowers are resting/sleeping
during the times shown in "night" boxes. Given that
there were only two sleeping spots in the cabin, these
conditions could not be predicted by the analyst at de-
sign time.

5.2.2. Application of Data Mining
Having identified the context "on sea anchor at night"

we next had to identify the sensors and their values that
correlated with this context. The sensor data was for-
matted to be tabular, with one column per sensor, and
a last column for the indicator attribute. We used data
mining algorithms on this sensor data to identify fre-
quent patterns correlating with the context of validity.
First, we preprocessed the sensor data for the data min-
ing by merging sensor data from all sensors into a sin-
gle data set. As some sensors had measurements every
minute, some every couple of minutes, and some every
15 minutes, we filled the entries in between by taking
the last sensed measurement. Finally, we normalized all
sensor readings.

Next, we considered rule-based data mining algo-
rithms appropriate to the system’s available process-
ing resources (e.g., battery power and CPU). Because
ToTEM is implemented on a mobile smartphone we
chose JRip [33, 34], a rule-based classifier that uses rel-

atively few system resources. JRip produces a series of
rules that represent the sensors and associated threshold
values characterizing context conditions for a particu-
lar contextual requirement. For the application of JRip,
we used WEKA, the Waikato Machine Learning suite
of algorithm implementations in Java. More details on
the performance of JRIP algorithm, the sensor data set,
and preprocessing are included in our AIRE workshop
paper [26], as well as in Angela Rook’s Master thesis
[35].

We experimented extensively with J48 in our prelim-
inary analysis described in the aforementioned thesis.
However, we decided not to include results obtained us-
ing J48 for the following reasons:

(a) The accuracy, precision, recall, and F-measure were
almost the same as when using JRip.

(b) The time complexity of J48 is greater than that of
JRip. The complexity of C4.5 (which J48 imple-
ments) can reach O(m2 ⇤ n3) with continuous at-
tributes (cf. [36]), where m is the number of at-
tributes and n is the number of instances. On the
other hand, the complexity of RIPPER, which JRip
implements, is in the order of O(n ⇤ log2n) (cf. [37]
for a complexity analysis of the precursor algorithm
which RIPPER ([38]) optimizes).

(c) J48 treats all the classes the same, whereas JRip fa-
vors the less prevalent class (the target class) over
the more frequent one. As such, decision trees are
in our case less comprehensible due to a some-
what increased model complexity (see also Kot-
siantis [34] for more discussion on this point).

15

We also experimented with SMO (a Support Vector
Machines implementation), Logistic Regression, and
Neural Nets. All of them performed worse than JRip in
terms of accuracy, precision, and recall, not to mention
their time complexity which is much higher than that of
JRip, making them quite unsuitable for low-power de-
vices.

The JRip algorithm is a separate-and-conquer algo-
rithm that grows rules by greedily adding antecedents
(or conditions) to the rule thus increasing the accuracy
of the rule at the expense of coverage (the fraction of in-
stances satisfying all the antecedents of the rule). Mul-
tiple rules are constructed in this way in order to cover
the instances not covered by the previously built rules.
The grow phase is followed by an optimization phase
that prunes rules in order to reduce overfitting (see the
description of RIPPER in [38] for more details).

Two samples of the rules produced by JRip for sea
anchor conditions from our investigation include:

• (InBed � 1) and (E↵ectiveness  0.6411) and
(COG  0.247911)

• (Day  0.210526) and (COG  0.682451)
and (Temperature  0.27027) and (Altitude 
0.072993)

These rules represent the operationalization of context
for the contextual requirements in our case study. Be-
cause both rules represent conditions for "on sea an-
chor", we only give the antecedents of the rules, exclud-
ing the right-hand side of the rule after => as it is the
same for all of them (i.e., the target-class value "on sea
anchor").

The JRip algorithm produces a di↵erent amount of
rules for each of the five contextual requirements. To
give an overview of the most important sensors, Table 5
shows the first 13 sensors with the highest frequency in
the rules generated by JRip for each of the five contex-
tual requirements for day 53 in the trip.

5.3. Evaluation of Data Mining (Rules)
We validated our context operationalization results

on all five contextual requirements through 1) statistical
analysis of the data mining algorithms and 2) interviews
with the rowers.

1) Statistical analysis. We performed two statistical
analyses based on accumulated data to validate the rules
(operationalized context) generated by the JRip algo-
rithm.

(A) For any day of the trip, we used the accumulated
data to up to that day in a 10-fold cross validation to
check the data mining algorithms performance on the

data collected up to that point. During the 10-fold cross
validation the collected data is randomly partitioned into
10 data sets of equal size. The data mining classifier is
trained on 9 data sets (the training data set) and tested
on the data set that is left (validation data set). This
procedure is repeated 10 times, making sure that each
of the 10 data sets is used only once as the validation
data set. The mean is determined out of the 10 results.

For the 10-fold cross validation we used Weka3,
which accounts for skewed data sets (relevant for most
of our contextual requirements) by stratifying the folds
accordingly (see [39], page 50). The 10-fold cross val-
idation trains and classifies the context conditions on
past collected data. The results were very high with
average values for all five contextual requirements be-
tween 98-99% for each of the precision, recall, and f-
measure respectively. We conclude from this analy-
sis that the classifier performs very well in classifying
events in the past.

(B) To assess the predictive power of the data mining
classifier we also applied the classifier on "future sen-
sor data". We were interested in how rules produced at
one point in time would classify context conditions at
future points during the rowing trip. An accurate run-
time classification of ACon is the major step for the
satisfaction of contextual requirements. Therefore, we
conducted a time series analysis of the classifier which
trains on past contextual data and tests on future contex-
tual data for the evaluation of the data mining approach
in ACon. This is a stricter but more realistic evaluation
of the generated rules as it shows results as if ToTEM
would have been used at runtime during the rowers trip.
For our evaluation of the classifier we use the measure-
ments precision, recall and F-measure. Precision shows
how many of the cases that were identified as the desired
context condition by the classifier are actually correct
(compared to real life). Recall shows how many of all
desired context instances existing in the sensor data set
are also found by the classifier. F-measure is the har-
monic mean of precision and recall.

We demonstrate our results from the analysis for
precision, recall and F-measure for each of the five
contextual requirements (cr1 - cr5) in Figure 8, rep-
resented each in a separate sub-graph. The x-axis of
each sub-graph shows the time from the trip for which
we had sensor data (January 22nd to March 26th), the
y-axis the normalization of the represented measures
precision/recall/F-measure. Each grey diamond that oc-
curs along the x-axis indicates our evaluation of the data

3http://www.cs.waikato.ac.nz/ml/weka

16

mining classifier produced at that date (e.g., the first
grey diamond represents our analysis for the day Jan-
uary 25th). The measurement is determined based on a
classifier based on the sensor data up to that day (e.g.,
January 25th) and tested on the rest of the sensor data
from that point on to March 26th.

The times when we did the validation of the op-
erationalization (grey diamonds) represent times when
ACon could have triggered the (re-)operationalization
based on the four cases of the ACRFL when used at run-
time. In our post-trip analysis we chose to operational-
ize the context on day three for the first time as some
contextual data has to be collected first, followed by a
(re-)operationalization every third day. Hence, day three
covers case 1 as there did not exist an operationalization
before. Because the classification results of the 10-fold
cross validation are quite good for these instances al-
ready, ACon would store this operationalization in the
knowledge base. Every following grey diamond (be-
sides the ones that are following the circles) represents
cases where the user might have indicated cases where
contextual requirements are not satisfied (case 3) or in-
dicating e↵ects of uncertainty (case 4). In the absence
of real-time data on the user-system interaction we ap-
plied a heuristic in which such cases would appear ev-
ery third day and therefore operationalize the context
for these days.

In Figure 8, the times when sensor loss occurred are
indicated by black filled circles. The first sensor loss
(representing case 2 a)) was due to the need for energy
conservation and a↵ected the environmental measure-
ments (wind speed, wind direction, ship roll, ship pitch,
atmospheric temperature, and atmospheric pressure).
The second black filled circle shows sensors gained for
the previously lost environmental sensors (representing
case 2 c)). The third circle shows the second sensor loss
(again case 2 a)), the biometric sensor for one of the
rowers.

For cr2, cr3 and cr5 we observe that the classifier re-
sults improve in the first 18 days, going up to over 95%
for each measurement. This indicates that ACon adapts
to the runtime conditions and shows great results for the
three contextual requirements after a learning phase of
about 18 days. After the first sensor loss (first black
filled circle) cr2 drops in recall, but recovers very fast.
Similar with cr5, which also drops precision a bit, again
it recovers fast. For the second sensor loss we do not
have enough sensor data to evaluate the e↵ect of this
sensor loss for all contextual requirements, besides cr2.
For cr2 recall drops about 10%, whereas precision stays
the same. For contextual requirements that are prone to
an unpredictable environment (cr1 and cr4), precision,

recall, and f-measure fluctuate more than for the other
three contextual requirements over time. Recall of cr1
is better than for cr4. This might be due to the fact that
being on sea anchor allows the rowers to have an addi-
tional rest, resulting in patterns in the sensor data that
measures the sleeping times, whereas the daily activi-
ties of the rowers when on sea anchor seem to be quite
unpredictable (e.g., cleaning the boat, catching up with
activities that they do not have time on regular days).

In summary, the time series analysis shows that for
three out of five contextual requirements ACon would
have adapted at runtime after 20 days if used in our
ocean rowing example, producing very high results for
precision, recall and F-measure. For all three contex-
tual requirements it is possible to achieve similar results
even after (the first) sensor loss occurs that seems to af-
fect the classification of the context conditions in first
place. For cr1 the data mining classifier achieves at cer-
tain time periods results of about 90% and even more
after 27 days of the trip for recall, but only about 60%
in precision. Depending on the circumstances this re-
sult is better than having no support for the adaptation.
Only for cr4 the data mining classifier delivers poor re-
sults over the entire trip.

2) Two interviews with the rowers to validate the dis-
covery and operationalization of the five contextual re-
quirements confirmed that the context we identified was
correct and that the rules produced by data mining were
appropriate. Furthermore, the rowers indicated that they
would like to use the functionality of the contextual
requirements (even if the classification of the context
delivers low performance results) as early as possible
during their next trip. They were willing to help train
the classifier (by giving feedback about the correctness
of the classification) rather than not using the systems
adaptation.

5.4. Threats to Validity

5.4.1. Internal Validity
While we took great care to not influence the out-

come during (manual) preparation of data, it cannot be
guaranteed that no problem was introduced in this step.
In our evaluation, we had to manually separate the sen-
sor data set to determine the indicator attribute. For ex-
ample, for cr1 – sea anchor at night – the times when
they exactly went on sea anchor were sometimes not
absolutely clear. We had to analyse the daily logs from
the rowers to determine these times, which not always
included the exact starting times of the context condi-
tions. Also, we relied on interviews with the rowers for
establishing the usefulness of our results. Although we

17

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Ac
cu
ra
cy

CR1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Pr
ec
is
io
n

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

R
ec
al
l

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

F−
M
ea
su
re

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR2

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR3

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR4

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR5

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

Figure 8: Time series analysis of contextual rules generated by the JRip algorithm for the five contextual requirements from Table 5. Each column
shows precision, recall, and f-measure in the classification of the context in which each of the contextual requirements are valid. Sensor losses and
gains are shown as three black filled circles (i.e. sensor losses shown as first and third circles; sensor gain the second circle respectively)

carefully designed the interview guide, it is possible that
the way we asked could have influenced the outcome.
In addition, the rowers might have been biased towards
helping the researchers and towards confirming the re-
searchers’ goal. We believe that plans to actually use the
system on the rowers’ next trip mitigated this problem
to a large extend.

5.4.2. Construct Validity
A threat to construct validity is that our evaluation

of ACon was conducted through a post-trip analysis of
the runtime contextual data in relation to the identified
contextual requirements. We applied data mining on the
contextual data to operationalize the context (i.e. iden-
tify measurable context conditions) in which the rowers’
contextual requirements were valid. ACon was not used
during TOTEM’s runtime execution and our evaluation
could be a↵ected by our interpretation of the context
where the contextual requirements appeared to be valid.
At the same time however, the post-trip analysis pro-
vided us with an unique evaluation setup not possible if
ACon would have been implemented and evaluated at
runtime. It enabled us to apply data mining algorithms
on part of the contextual data and evaluate the results
on the rest of the data (which would have been future
contextual data if ACon had been evaluated at runtime).

5.4.3. Conclusion Validity
In our evaluation we used five contextual require-

ments that we identified after the trip. We achieved
results of over 90% for three out of five contextual re-
quirements for the measurements precision, recall and
F-measure. The classifier for the other two requirements

was at about 90% and even higher after 27 days of the
trip for recall, and about 60% for precision. However,
for one contextual requirement the results were very
poor. This might be due to two reasons: 1) the data
set for the contextual data that had to be classified as the
valid context was the smallest data set of all five con-
textual requirements and might not have been su�cient
to find a correlation, and 2) the data points that we had
for the valid context consisted of times with little re-
peatability (i.e., the rowers being on sea anchor during
the day and executing random activities). Future work
should investigate these two reasons closer and find suit-
able mechanisms to allow human interaction in cases
where ACon is not able to automatically adapt.

5.4.4. External Validity
Our evaluation is highly specific to the case study and

provides one example of how it is possible to automat-
ically update context operationalization to improve the
mapping of system behaviour to valid context. In the
specific case, even moderate accuracy promised value
to the rowers and failure to execute a requirement would
not imply immediate danger. For safety critical systems,
an extensive assessment would be needed, which might
prove di�cult because of the high level of uncertainty in
system, environment, and technical approach (i.e. ma-
chine learning). In any case we would suggest to pro-
vide an option for users to override a decision of the
system in the case that it fails to adapt correctly to the
users’ needs. Observing such user interference could
prove to be a valuable information source for the adap-
tive system by itself and we encourage future research
in that direction.

18

6. Discussion

In discussing ACon, we reflect on the applicability
of ACon to other domains, ACon’s relationship to other
research approaches in the literature, as well as possible
extensions of ACon.

6.1. Applicability of ACon to other domains

Although the operational setting and direct users of
ToTEM are relatively unique (i.e., four elite athletes on
an open-ocean rowing trip), the overall challenge of de-
veloping a system for an uncertain operating environ-
ment is not. In our evaluation only four users were in-
volved. While this sample is not representative of all
users that can be interacting with a system, our focus
was on the uncertain operating environment and having
involved as many sensors as possible.

The analysis of uncertain operating environments for
context becomes increasingly significant as mobile and
cloud system developers create products that are used
in unexpected settings. Considering the example of a
typical smart city scenario, with literally thousands of
sensors continuously sending information that may be
used, e.g., by e-mobility services, ACon may provide
significant value. For instance, one of the most im-
portant challenges that smart cities face is to counter-
act sensor damage or calibration loss. Since the cost
to repair an individual unit is high due to the human
involvement required, it is often the case that the sen-
sor is disconnected until there are several damaged sen-
sors in a relatively small area. Developers in these cases
cannot anticipate the full scope of scenarios, and con-
text changes that may occur at runtime. ACon can sup-
port developers in designing and implementing systems
for such uncertain environments to support self-adaptive
systems in changing contexts evolving under unknown
conditions.

The smart city example naturally raises the concern
of scalability. On the one hand, it becomes neces-
sary to manage hundreds of contextual requirements
that are represented in the system. Managing a large
amount of contextual requirements is inherently com-
plex, but ACon partially mitigates this problem thanks
to the feedback loop due to having one central place
where adaptation is triggered and updates are executed.

On the other hand, we need to consider the behaviour
of data mining techniques for these large data sets. Ja-
cobs discusses performance for big data, including ex-
amples of sensor data bases [40]. Jacobs argues that
sequential access is very fast and is suitable for big
data. The algorithm we used in our evaluation (JRip)
performs only "sequential passes" over contextual data.

Therefore, we may reasonably expect that ACon would
scale even in this extreme smart cities setting, although
of course validation by experimentation is required.

6.2. Connection of ACon to other Research Approaches

ACon has been designed with the purpose of auto-
matically operationalizing uncertain environments into
rules based on context conditions that are integrated into
contextual requirements. The knowledge about contex-
tual requirements are thus kept continuously up-to-date
in response to context changes or acquisition of new
knowledge. ACon is covering a current gap in the state
of the art and connects naturally with other lines of re-
search. For instance, it complements existing require-
ments monitoring approaches, e.g., work by Oriol et al.
[14]: The rules derived in ACon can be used as mon-
itoring specifications for contextual requirements thus
allowing timely adaptation of the monitor in response
to context changes. Further, our work can be com-
bined with techniques that link self-adaptation to end-
user feedback for more customized adaptation. End-
users can actively influence the adaptation to satisfy
their needs better [41, 42, 43]. Last, integration of ACon
with RELAX-based approaches to uncertainty mitiga-
tion is worth exploring [13]. In particular, we could
consider applying the principle of relaxing goals for
those situation where the data mining techniques pro-
posed in ACon are not able to discover a clear correla-
tion between context conditions and contextual require-
ment satisfaction.

6.3. Extensions of ACon

The research presented in this paper is a first step to-
wards using machine learning to support self-adaptive
systems in the adaptation of contextual requirements
and opens up new research directions and questions.

In the case of the ocean rowing domain – which
represents a dynamic, uncertain environment – we
found that ACon can be applied for the operationaliza-
tion of context and also trigger continuous adaptation
of contextual requirements when runtime uncertainty
is identified. Nevertheless, ACon only works semi-
automatically as it needs the help of end-users in using
the functionality manually before ACon starts to adapt
to the context in which the user executes the functional-
ity. Additionally, the end-user has to correct the system
when requirements are not satisfied by the system or are
a↵ected by environmental uncertainty.

In our future research we will explore the following
extensions:

19

1. Full evaluation of ACon at runtime. We plan to im-
plement ACon into a self-adaptive ToTEM system
(as well as other self-adaptive system) and evaluate
it during a future system execution. Our prelimi-
nary evaluation showed great potential for four out
of five contextual requirements. The systematic
use of ACon in di↵erent uncertain environments
will better exhibit the strengths and limitations of
ACon and allow us to explore di↵erent options and
improve the details of ACon. We will be able to in-
vestigate and improve the technical debt of apply-
ing machine learning techniques in further detail,
as recommended by Sculley et al. [44].
Furthermore, we will iterate to improve several
parts of ACon, for example investigate the applica-
tion of adaptive monitoring to adjust for situations
where many requirements are violated. Further-
more, we can investigate di↵erent policies in how
to determine when data mining produces good re-
sults. Currently, we are suggesting to use a thresh-
old for the characteristics of data mining as policy.
Determining the acceptance of data mining might
be dependent on the users as well as the settings,
the system is used in.
After having shown the applicability of ACon for
several users, we plan an investigation how ACon
performs for di↵erent personalities and a huge
amount of users. The smart city scenario includes
extremely broad audiences in di↵erent settings.
Considering the user characteristics might have an
influence on how ACon performs and whether a
personalization of ACon would be valuable.

2. Investigate techniques to identify requirements
never executed. So far ACon triggers operational-
ization for cases when no operationalization is
given, problems with the monitoring infrastructure
occur, a contextual requirement is violated, or a
contextual requirement executed in a wrong con-
text. In addition to these cases, it is possible that a
contextual requirement is never executed because
the context never appears in reality. It is important
that a self-adaptive system identifies such cases
and acts on them, potentially with humans in the
loop to investigate this situation. A possible exam-
ple: Using ToTEM in a future rowing trip with-
out ocean-specific conditions, for example along
the Mississippi river, can cause the system to never
recognize sea anchor conditions based on strong
wind context. The current context might now be
"strong currents". A potential solution to this chal-
lenge could be awareness requirements introduced

by Souza et al. [45]. Awareness requirements are
requirements that track the execution of other re-
quirements and could be useful in identifying con-
textual requirements that are never or seldom exe-
cuted.

3. Develop techniques to automatically identify
whether a given requirement should be defined
as contextual requirement. Currently ACon can
only be applied on known contextual requirements.
Supporting a self-adaptive system in the auto-
matic identification of requirements that are in
fact contextual requirements would increase the
self-adaptive capabilities. Machine learning might
show potential in this scenario as well: Cluster
analysis might help in identifying requirements
that are always executed in one specific context.
For example, an alarm is set on the phone and
while ringing nobody picks up the phone to con-
firm that the alarm was perceived. If such cases
happen often, applying cluster analysis might show
that this user behaviour typically happens during
bad weather conditions (e.g., strong wind or rain).
Therefore, the requirement "provide visual noti-
fications" should be considered in the context of
"bad weather".

7. Conclusion

In this paper we presented ACon, a novel approach
to tackle runtime uncertainty a↵ecting the execution of
contextual requirements. ACon uses a feedback loop
to detect contextual requirements a↵ected by runtime
uncertainty. Further, ACon integrates data mining al-
gorithms that analyze contextual data to determine the
context in which contextual requirements are valid, thus
adapting the context in which contextual requirements
are valid. ACon includes the interaction with end-users
as part of a semi-automatic approach in which the hu-
man is in the loop. In a preliminary evaluation, we eval-
uated the performance of the data mining algorithms,
which lie at the core of ACon. The application of
data mining techniques in the evaluation scenario of the
ocean rowing domain has demonstrated their great po-
tential.

ACon is well suited for contextual requirements engi-
neering, where requirements are enriched with context
of validity. ACon enables the system to learn the desired
context conditions in which a specific system behavior
has to be satisfied. The best possible way to store such
contextual requirements is using contextual goal models
[46].

20

The use of established concepts in the field such as
contextual requirements and feedback loops allow us
to argue for the smooth integration of ACon with other
works that tackle related issues such as evolution of re-
quirements and requirements monitoring. The results
obtained so far are promising and open up to further re-
search avenues in continuously emerging scenarios in
the brave new world, where cloud technologies, smart
cities and apps in mobile environments create complex
ecosystems.

Acknowledgements

We are deeply indebted to the OAR Northwest mem-
bers, J. Cummer, L. Pasquale, and the SEGAL research
group members. Furthermore, we would like to ex-
press our gratitude to E. Zavala for her implementation
of ACon based on the example of the automotive do-
main. This research was funded in part by the Canadian
National Sciences and Engineering Research Council
(NSERC). This work was partially supported by the
Spanish funded project EOSSAC, TIN2013-44641-P.

References

[1] K. Welsh, P. Sawyer, Understanding the Scope of Uncertainty in
Dynamically Systems, in: Proceedings of International Working
Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ), Springer, 2010, pp. 2–16.

[2] B. H. Cheng, R. L. et al., in: Software Engineering for Self-
Adaptive Systems, Springer-Verlag, 2009, Ch. Software Engi-
neering for Self-Adaptive Systems: A Research Roadmap, pp.
1–26.

[3] M. Salehie, L. Tahvildari, Self-Adaptive Software: Landscape
and Research Challenges, Transactions on Autonomous and
Adaptive Systems (TAAS) V (N) (2009) 1–40.

[4] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, A Taxonomy of
Uncertainty for Dynamically Adaptive Systems, in: Proceed-
ings of International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), IEEE, 2012,
pp. 99–108.

[5] O. Brill, E. Knauss, Structured and Unobtrusive Observation of
Anonymous Users and their Context for Requirements Elicita-
tion, in: Proceedings of International Requirements Engineering
Conference (RE), IEEE, 2011, pp. 175–184.

[6] R. Dameri, C. Rosenthal-Sabroux (Eds.), Smart City, Progress
in IS, Springer International Publishing, 2014.

[7] E. Zavala, X. Franch, J. Marco, A. Knauss, D. Damian, SACRE:
a tool for dealing with uncertainty in contextual requirements at
runtime, in: Proceedings of International Requirements Engi-
neering Conference (RE), IEEE, 2015, pp. 278–279.
URL http://www.upc.edu/gessi/SACRE/SACRE.pdf

[8] R. Ali, Modeling and Reasoning about Contextual Require-
ments: Goal-based Framework, Ph.D. thesis, University of
Trento (2010).

[9] N. Bhaskar, P. Govindarajulu, Context Exploration For Require-
ments Elicitation In Mobile Learning Application Development,
International Journal of Computer Science and Network Secu-
rity (IJCSNS) 8 (8) (2008) 292–299.

[10] P. Inverardi, M. Mori, Requirements Models at Run-time to Sup-
port Consistent System Evolutions, in: International Workshop
on Requirements@Run.Time, IEEE, 2011, pp. 1–8.

[11] H. Müller, N. Villegas, Runtime Evolution of Highly Dynamic
Software, in: Evolving Software Systems, Springer, 2014, pp.
229–264.

[12] V. E. Souza, A. Lapouchnian, J. Mylopoulos, (Requirement)
Evolution Requirements for Adaptive Systems, in: Proceed-
ings of International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), IEEE, 2012,
pp. 155–164.

[13] A. J. Ramirez, E. M. Fredericks, A. C. Jensen, B. H. C. Cheng,
Automatically RELAXing a Goal Model to Cope with Uncer-
tainty, in: Symposium on Search-Based Software Engineering
(SSBSE), Springer, 2012, pp. 198–212.

[14] M. Oriol, N. A. Qureshi, X. Franch, A. Perini, J. Marco, Re-
quirements Monitoring for Adaptive Service-Based Applica-
tions, in: Proceedings of International Working Conference on
Requirements Engineering: Foundation for Software Quality
(REFSQ), 2012, pp. 280–287.

[15] N. Qureshi, A. Perini, Engineering Adaptive Requirements, in:
International Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2009, pp. 126–131.

[16] K. Canavera, N. Esfahani, S. Malek, Mining the Execution His-
tory of a Software System to Infer the Best Time for Its Adapta-
tion, in: Proceedings of International Symposium on the Foun-
dations of Software Engineering (FSE), ACM, 2012, pp. 1–11.

[17] R. Gullapalli, C. Muthusamy, A. Babu, Data Mining in Adaptive
Control of Distributed Computing System Performance, Inter-
national Journal of Computer Trends and Technology (IJCTT)
2 (2) (2011) 128–133.

[18] N. Esfahani, A. Elkhodary, S. Malek, A Learning-Based Frame-
work for Engineering Feature-Oriented Self-Adaptive Software
Systems, Transactions on Software Engineering (TSE) 39 (11)
(2013) 1467–1493.

[19] N. Qureshi, A. Perini, Requirements Engineering for Adaptive
Service Based Applications, in: Proceedings of International
Requirements Engineering Conference (RE), IEEE, 2010, pp.
108–111.

[20] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, A. Finkelstein,
Requirements-Aware Systems: A research agenda for RE for
Self-adaptive Systems, in: Proceedings of International Re-
quirements Engineering Conference (RE), IEEE, 2010, pp. 95–
103.

[21] R. Ali, F. Dalpiaz, P. Giorgini, Reasoning with contextual re-
quirements: Detecting inconsistency and conflicts, Information
and Software Technology (IST) 55 (1) (2013) 35–57.

[22] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J.-M.
Bruel, RELAX: A Language to Address Uncertainty in Self-
Adaptive Systems Requirements, Requirements Engineering
Journal (REJ) 15 (2) (2010) 177–196.

[23] A. Finkelstein, A. Savigni, A Framework for Requirements En-
gineering for Context-Aware Services, in: International Work-
shop From Software Requirements to Architectures, 2001, pp.
2–7.

[24] X. Franch, P. Grunbacher, M. Oriol, B. Burgstaller, D. Dhun-
gana, L. Lopez, J. Marco, J. Pimentel, Goal-Driven Adaptation
of Service-Based Systems from Runtime Monitoring Data, Pro-
ceedings of Annual International Computer, Software, and Ap-
plications Conference (COMPSAC) (2011) 458–463.

[25] R. Ali, F. Dalpiaz, P. Giorgini, V. Souza, Requirements evo-
lution: From assumptions to reality, in: Enterprise, Business-
Process and Information Systems Modeling, Vol. 81 of LNBIP,
Springer, 2011, pp. 372–382.

[26] A. Rook, A. Knauss, D. Damian, A. Thomo, A Case Study of

21

Applying Data Mining to Sensor Data for Contextual Require-
ments Analysis, in: International Workshop on Artificial Intelli-
gence for Requirements Engineering, IEEE, 2014, pp. 43–50.

[27] Y. Brun, G. S. C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. PezzÂŔ, M. Shaw, Engineering Self-Adaptive
Systems through Feedback Loops, in: Self-Adaptive Systems,
Springer-Verlag, 2009, pp. 48–70.

[28] I. Corporation, An architectural blueprint for autonomic com-
puting., White paper Fourth Edition.

[29] J. Kephart, D. Chess, The Vision of Autonomic Computing,
IEEE Computer 36 (1) (January 2003) 41–50.

[30] I. Corporation, Symptoms Reference Specification (2006).
URL {http://download.boulder.ibm.com/ibmdl/pub/

software/dw/opensource/btm/SymptomSpec_v2.0.

pdf}

[31] C. Samuels, Sleep, Recovery, and Performance: The New Fron-
tier in High-Performance Athletics., Physical Medicine and Re-
habilitation Clinics of North America 20 (1) (2009) 149–159.
doi:10.1016/j.pmr.2008.10.009.

[32] K. E. Klein, H. M. Wegmann, Significance of Circadian
Rhythms in Aerospace Operations, Tech. rep., AGARDograph
No.247, Neuilly-Sur-Seine: NATO-AGARD (1980).

[33] P.-N. Tan, V. Kumar, M. Steinbach, Introduction to Data Mining,
Pearson Publishing, 2005.

[34] S. B. Kotsiantis, Supervised Machine Learning: A Review of
Classification Techniques, Informatica 31 (2007) 249–268.

[35] A. Rook, On the Feasibility of Integrating Data Mining Algo-
rithms into Self Adaptive Systems for Context Awareness and
Requirements Evolution, Master thesis, University of Victoria,
2014.
URL http://dspace.library.uvic.ca/bitstream/

handle/1828/5580/Rook_Angela_MSc_2014.pdf

[36] J. K. Martin, D. Hirschberg, On the complexity of learning de-
cision trees, in: Proceedings of the Fourth International Sym-
posium on Artificial Intelligence and Mathematics (AI/MATH),
1996, pp. 112–115.

[37] J. Furnkranz, G. Widmer, Incremental reduced error pruning,
in: In Proceedings of the Eleventh International Conference on
Machine Learning, 1994, pp. 70–77.

[38] W. Cohen, Fast e↵ective rule induction, in: In Proceedings of the
Twelfth International Conference on Machine Learning, 1995,
pp. 115–123.

[39] G. Forman, M. Scholz, Apples-to-Apples in Cross-Validation
Studies: Pitfalls in Classifier Performance Measurement, Spe-
cial Interest Group on Knowledge Discovery and Data Mining
(SIGKDD) 12 (1) (2010) 49–57.

[40] A. Jacobs, The Pathologies of Big Data, Communications of the
ACM 52 (8) (2009) 36–44.

[41] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh,
W. Maalej, Social Sensing: When Users Become Monitors,
in: Proceedings of European Software Engineering Conference
(ESEC), 2011, pp. 476–479.

[42] W. Maalej, D. Pagano, On the Socialness of Software, in: Pro-
ceedings of the International Conference on Dependable, Auto-
nomic and Secure Computing (DASC), IEEE, 2011, pp. 864–
871.

[43] R. Ali, C. Solis, I. Omoronyia, M. Salehie, B. Nuseibeh, Social
Adaptation: When Software gives Users a Voice, in: Proceed-
ings of International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), 2011, pp. 28–30.

[44] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, Machine Learning: The
High Interest Credit Card of Technical Debt, in: Workshop on
Software Engineering for Machine Learning (SE4ML), 2014.

[45] V. E. Souza, J. Mylopoulos, From Awareness Requirements

to Adaptive Systems: A Control-Theoretic Approach, Interna-
tional Workshop on Requirements@Run.Time (2011) 9–15.

[46] R. Ali, F. Dalpiaz, P. Giorgini, A goal-based framework for con-
textual requirements modeling and analysis, Requirements En-
gineering Journal 15 (4) (2010) 439–458.

22

