
HAL Id: hal-01309004
https://hal.science/hal-01309004

Submitted on 6 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

B-Refactoring: Automatic Test Code Refactoring to
Improve Dynamic Analysis

Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel
Seinturier, Martin Monperrus

To cite this version:
Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel Seinturier, et al.. B-Refactoring:
Automatic Test Code Refactoring to Improve Dynamic Analysis. Information and Software Technol-
ogy, 2016, 76, pp.65-80. �10.1016/j.infsof.2016.04.016�. �hal-01309004�

https://hal.science/hal-01309004
https://hal.archives-ouvertes.fr

B-Refactoring: Automatic Test Code Refactoring to
Improve Dynamic Analysis

Jifeng Xuana, Benoit Cornub,c, Matias Martinezb,c, Benoit Baudryc, Lionel Seinturierb,c, Martin Monperrusb,c

aState Key Lab of Software Engineering, Wuhan University, China
bUniversity of Lille, France

cINRIA, France

STRUCTURED ABSTRACT

Context:
Developers design test suites to verify that software meets
its expected behaviors. Many dynamic analysis techniques are
performed on the exploitation of execution traces from test
cases. In practice, one test case may imply various behaviors.
However, the execution of a test case only yields one trace,
which can hide the others.
Objective:
In this article, we propose a new technique of test code refac-
toring, called B-Refactoring. The idea behind B-Refactoring
is to split a test case into small test fragments, which cover a
simpler part of the control flow to provide better support for
dynamic analysis.
Method:
For a given dynamic analysis technique, B-Refactoring moni-
tors the execution of test cases and constructs small test cases
without loss of the testability. We apply B-Refactoring to assist
two existing analysis tasks: automatic repair of if-condition
bugs and automatic analysis of exception contracts.
Results:
Experimental results show that B-Refactoring can effectively
improve the execution traces of the test suite. Real-world bugs
that could not be previously fixed with the original test suites
are fixed after applying B-Refactoring; meanwhile, exception
contracts are better verified via applying B-Refactoring to
original test suites.
Conclusions:
We conclude that applying B-Refactoring improves the execu-
tion traces of test cases for dynamic analysis. This improve-
ment can enhance existing dynamic analysis tasks.

I. INTRODUCTION

Developers design and write test suites to automatically
verify that software meets its expected behaviors. For instance,
in regression testing, the role of a test suite is to catch new
bugs – the regressions – after changes [40]. Test suites are
used in a wide range of dynamic analysis techniques: in
fault localization, a test suite is executed for inferring the
location of bugs by reasoning on code coverage [19]; in
invariant discovery, input points in a test suite are used to
infer likely program invariants [10]; in software repair, a test

suite is employed to verify the behavior of synthesized patches
[23]. Many dynamic analysis techniques are based on the
exploitation of execution traces obtained by each test case [5],
[10], [40].

Different types of dynamic analysis techniques require
different types of traces. The accuracy of dynamic analysis
depends on the structure of those traces, such as length,
diversity, redundancy, etc. For example, several traces that
cover the same paths with different input values are very useful
for discovering program invariants [10]; fault localization
benefits from traces that cover different execution paths [5]
and that are triggered by assertions in different test cases [54].
However, in practice, one manually-written test case results in
one single trace during test suite execution; test suite execution
traces can be optimal with respect to test suite comprehension
(from the human viewpoint by authors of the test suite) but
might be suboptimal with respect to other criteria (from the
viewpoint of dynamic analysis techniques).

Test code refactoring is a family of methods, which im-
prove test code via program transformation without changing
behaviors of the test code [49]. In this article, we propose
a new kind of test code refactoring, which focuses on the
design of test cases, directly for improving dynamic analysis
techniques. Instead of having a single test suite used for
many analysis tasks, our hypothesis is that a system can
automatically optimize the design of a test suite with respect
to the requirements of a given dynamic analysis technique. For
instance, given an original test suite, developers can have an
optimized version with respect to fault localization as well as
another optimized version with respect to automatic software
repair. This optimization can be made on demand for a specific
type of dynamic analysis. The optimized test suite is used as
the input of dynamic analysis without manual checking by
developers.

In this paper, we propose a novel automated test code
refactoring system dedicated to dynamic analysis, called B-
Refactoring,1 detects and splits impure test cases. In our
work, an impure test case is a test case, which executes an
unprocessable path in one dynamic analysis technique. The

1B-Refactoring is short for Banana-Refactoring. We name our approach
with Banana because we split a test case as splitting a banana in the ice
cream named Banana Split.

idea behind B-Refactoring is to split a test case into small
“test fragments”, where each fragment is a completely valid
test case and covers a simple part of the control flow; test
fragments after splitting provide better support for dynamic
analysis. A purified test suite after applying B-Refactoring
does not change the test behaviors of the original one: it
triggers exactly the same set of behaviors as the original test
suite and detects exactly the same bugs. However, it produces
a different set of execution traces. This set of traces suits
better for the targeted dynamic program analysis. Note that our
definition of purity is specific to test cases and is completely
different from the one used in the programming language
literature (e.g., [50]).

A purified test suite after applying B-Refactoring can be
employed to temporarily replace the original test suite in a
given dynamic analysis technique. Based on such replacement,
performance of dynamic analysis can be enhanced. To evaluate
our approach B-Refactoring, we consider two dynamic analy-
sis techniques, one in the domain of automatic software repair
[9], [52] and the other in the context of dynamic verification of
exception contracts [8]. We briefly present the case of software
repair here and present in details the dynamic verification of
exception contracts in Section V-B. For software repair, we
consider Nopol [52], an automatic repair system for bugs in
if conditions. Nopol employs a dynamic analysis technique
that is sensitive to the design of test suites. The efficiency of
Nopol depends on whether the same test case executes both
then and else branches of an if. This forms a refactoring
criterion that is given as input to B-Refactoring. In our dataset,
we show that B-Refactoring improves the test execution on
ifs and unlocks new bugs which are able to be fixed by
purified test suites.

Prior work. Our work [54] shows that traces by an original
test suite are suboptimal with respect to fault localization.
The original test suite is updated to enhance the usage of
assertions in fault localization. In the current article, the goal
and technique are different, B-Refactoring refactors the whole
test suite according to a given dynamic analysis technique.
Section VI-B explain the differences between the proposed
technique in this article and our prior work.

This article makes the following major contributions:

• We formulate the problem of automatic test code refactor-
ing for dynamic analysis. The concept of pure and impure
test cases is generalized to any type of program element.

• We propose B-Refactoring, an approach to automatically
refactoring test code according to a specific criterion. This
approach detects and refactors impure test cases based on
analyzing execution traces. The test suite after refactoring
consists of smaller test cases that do not reduce the
potential of bug detection.

• We apply B-Refactoring to assist two existing dynamic
analysis tasks from the literature: automatic repair of
if-condition bugs and automatic analysis of exception
contracts. Three real-world bugs that could not be fixed
with original test suites are empirically evaluated after

B-Refactoring; exception contracts are better verified by
applying B-Refactoring to original test suites.

The remainder of this article is organized as follows. In
Section II, we introduce the background and motivation of B-
Refactoring. In Section III, we define the problem of refactor-
ing test code for dynamic analysis and propose our approach
B-Refactoring. In Section IV, we evaluate our approach on five
open-source projects; in Section V, we apply the approach to
automatic repair and exception contract analysis. Section VI
details discussions and threats to the validity. Section VII lists
the related work and Section VIII concludes our work. Section
Appendix describes two case studies of repairing real-world
bugs.

II. BACKGROUND AND MOTIVATION

In this section, we present one scenario where test code
refactoring improves the automatic repair of if-condition
bugs. However, test code refactoring is a generic concept and
can be applied prior to other dynamic analysis techniques
beyond software repair. Another application scenario in the
realm of exception handling can be found in Section V-B.

A. Real-World Example in Automatic Repair: Apache Com-
mons Math 141473

In test suite based repair, a repair method generates a patch
for potentially buggy statements according to a given test suite
[23], [33], [52]. The research community of test suite based
repair has developed fruitful results, such as GenProg by Le
Goues et al. [23], Par by Kim et al. [21], and SemFix by
Nguyen et al. [33]. In this article, we automatically refactor
the test suite to improve the ability of constructing a patch.

We start this section with a real-world bug in open source
project, Apache Commons Math, to illustrate the motivation
of our work. Apache Commons Math is a Java library of
mathematics and statistics components.2

Fig. 1 shows a code snippet of this project. It consists of
a bug in an if and two related test cases.3 The program
in Fig. 1a is designed to calculate the factorial, including
two methods: factorialDouble for the factorial of a
real number and factorialLog for calculating the natural
logarithm of the factorial. The bug, at Line 11, is that the if
condition n<=0 should actually be n<0.

Fig. 1b displays two test cases that execute the buggy if
condition: a passing one and a failing one. The failing test
case detects that a bug exists in the program while the passing
test case validates the existing correct behavior. To generate a
patch, a repair method needs to analyze the executed branches
of an if by each test case. Note that an if statement with
only a then branch, such as Lines 11 to 14 in Fig. 1a, can
be viewed as an if with a then branch and an empty else
branch.

As shown in Fig. 1b, we can observe that test code before
Line 14 in test case testFactorial executes the then

2Apache Commons Math, http://commons.apache.org/math/.
3See https://fisheye6.atlassian.com/changelog/commons?cs=141473.

http://commons.apache.org/math/
https://fisheye6.atlassian.com/changelog/commons?cs=141473

1 public double factorialDouble(final int n) {
2 if (n < 0) {
3 throw new IllegalArgumentException(
4 "must have n >= 0 for n!");
5 }
6 return Math.floor(Math.exp(factorialLog (n)) + 0.5);
7 }
8
9 public double factorialLog(final int n) {

10 // PATCH: if (n < 0) {
11 if (n <= 0) {
12 throw new IllegalArgumentException(
13 "must have n > 0 for n!");
14 }
15 double logSum = 0;
16 for (int i = 2; i <= n; i++) {
17 logSum += Math.log((double) i);
18 }
19 return logSum;
20 }

(a) Buggy program

1 public void testFactorial() { //Passing test case
2 ...
3 try {
4 double x = MathUtils.factorialDouble(-1);
5 fail("expecting IllegalArgumentException");
6 } catch (IllegalArgumentException ex) {
7 ;
8 }
9 try {

10 double x = MathUtils.factorialLog(-1);
11 fail("expecting IllegalArgumentException");
12 } catch (IllegalArgumentException ex) {
13 ;
14 }
15 assertTrue("expecting infinite factorial value",
16 Double.isInfinite(MathUtils.factorialDouble(171)));
17 }
18 public void testFactorialFail() { //Failing test case
19 ...
20 assertEquals("0", 0.0d, MathUtils.factorialLog(0), 1E-14);
21 }

(b) Two original test cases

1 // The first fragment must execute the setUp code
2 @TestFragment(origin=testFactorial, order=1)
3 void testFactorial_fragment_1 () {
4 setUp();
5 //Lines from 2 to 14 in Fig. 1b executing then branch
6 }
7
8 // Split between Line 14 and Line 15 in Fig. 1b
9

10 // The last fragment must execute the tearDown code
11 @TestFragment(origin=testFactorial, order=2)
12 void testFactorial_fragment_2 () {
13 //Lines from 15 to 16 in Fig. 1b executing else branch
14 tearDown();
15 }
16
17 // Already pure test case
18 @Test
19 public void testFactorialFail() {
20 // Executes the then branch
21 }

(c) Three test cases after refactoring

Fig. 1: Example of refactoring a test suite. The buggy program and test cases are extracted from Apache Commons Math.
The buggy if is at Line 11 of Fig. 1a. A test case testFactorial in Fig. 1b executes both then (at Line 10 of Fig. 1b)
and else (at Line 15 of Fig. 1b) branches of the if (at Line 11 of Fig. 1a). Fig. 1c shows the test cases after the splitting
(between Lines 14 and 15) according to the execution on branches.

branch while test code after Line 15 executes the else branch.
The fact that a single test case executes several branches is a
problem for certain automatic repair algorithms such as Nopol
[52] described in Section II-B.

B. Automatic Software Repair with Nopol

In test suite based repair, a test suite drives the patch
generation. We consider an existing test-suite based repair
approach called Nopol [52]. Nopol focuses on fixing bugs in
if conditions. To generate a patch for an if condition, Nopol
requires test cases have to cover either the then branch or
the else branch, exclusively.

However in practice, there are cases where one test case
covers both then and else branches together. This fact
results in an ambiguous behavior with respect the repair
algorithm of Nopol. In the best case, the repair approach
discards this test case and continues the repair process with
the remaining test cases; in the worst case, the repair approach
cannot fix the bug because discarding the test case leads to a
lack of test cases.

Let us consider again, the example of Fig. 1b. Is there
any way to split this test case into two parts according to
the execution of branches? Fig. 1c shows two test cases after
splitting the test case testFactorial between Lines 14
and 15.4 Based on the test cases after splitting, Nopol works
well and is able to generate a correct patch as expected.
This necessary test case splitting motivates our work: we aim
refining a test case to cover simpler parts of the control flow
during program execution.

4Note that in Fig. 1c, the first two test cases after splitting have extra
annotations like @TestFragment at Line 2 as well as extra code like setUp
at Line 4 and tearDown at Line 14. We add these lines to facilitate the test
execution, which will be introduced in Section III-C.

In this article, we propose to refactor the test suite to fix
bugs that are unfixed because of the structure of the test
suite. Consider the example in Fig. 1. We apply our test code
refactoring technique to obtain simple test cases, as shown in
Fig. 1b. The test suite after refactoring in Fig. 1c can make
Nopol generate a correct patch that fixes the bug.

III. B-REFACTORING: A TEST CODE REFACTORING
TECHNIQUE

In this section, we present the basic concepts of B-
Refactoring, and important technical aspects.

A. Basic Concepts

Definition 1. (program element, test constituent) In this
article, a program element denotes an entity in the code of a
program, in opposition to a test constituent, which denotes an
entity in the code of a test case.

We use the terms element and constituent for sake of being
always clear whether we refer to the application program or
its test suite. Any node in an Abstract Syntax Tree (AST)
of the program (resp. the test suite) can be considered as
a program element (resp. a test constituent). For example,
an if element and a try element denote an if statement
and a try statement in Java programs, respectively.5 We
consider a test case t as a sequence of test constituents, i.e.,
t = 〈c1, c2, . . . , cn〉.

Definition 2. (execution domain) Let E be a set of program
elements in the same type of AST nodes. The execution
domain D of a program element e ∈ E is a set of code that
characterizes one execution of e.

5We follow existing work on Java program analysis [17] and call if and
try statements.

For instance, for an if element, the execution domain can
be defined as

Dif = {then-branch,else-branch}

where then-branch and else-branch are the execution
of the then branch and the else branch, respectively.

The execution domain is a generic concept. Besides if,
let us give three examples of other execution domains
as follows: the execution domain of a method invocation
func(vara, varb, ...) is {x1,x2, . . . ,xn} where xi is a vec-
tor of actual arguments in a method invocation (poten-
tially infinite); the execution domain of switch-case is
{case1, case2, . . . , casen} where casei is a case in the
switch.

For try elements, we define the execution as follows

Dtry = {no-exception,exception-caught,
exception-not-caught}

where no-exception, exception-caught, and
exception-not-caught are the execution results of
try element: no exception is thrown, one exception is caught
by the catch block, and one exception is thrown in the catch
block but not caught, respectively. The execution domain
of try will be used in dynamic verification of exception
handling in Section V-B.

Values in an execution domain D are mutually exclusive: a
single execution of a program element is uniquely classified
in D. During the execution of a test case, a program element
e ∈ E may be executed multiple times.

Definition 3. (execution signature) We refer to an execution
result of a program element as an execution signature.

A pure execution signature denotes the execution of a
program element, which yields a single value in an execution
domain D, e.g., only the then branch of if is executed by
one given test case t. An impure execution signature denotes
the execution of a program element with multiple values in D,
e.g., both then and else branches are executed by t. Given
an execution domain, let D0 = {impure} be the set of impure
execution signatures.

The execution signature with respect to an element e by a
test case t is the aggregation of each value as follows. Let T
be the test suite, the set of all test cases, we define

f : E × T → D ∪D0 ∪ {⊥}

where ⊥ (usually called “bottom”) denotes that the test case
t does not execute the program element e. For example,
f(e, t) ∈ D0 indicates both then and else branches of an
if element e are executed by a test case t. If a test case
executes the same element always in the same way (e.g., the
test case always executes then in an if element), we call it
pure. Note that for the simplest case, a set of program elements
may consist of only one program element.

Let C denote the set of test constituent ci (1 ≤ i ≤ n). Then
the above function f(e, t) can be refined for the execution of

a test constituent c ∈ C. A function g gives the purity of a
program element according to a test constituent:

g : E × C → D ∪D0 ∪ {⊥}

A test constituent c is pure on E if and only if (∀e ∈
E) g(e, c) ∈ D ∪ {⊥}; c is impure on E if and only if (∃e ∈
E) g(e, c) ∈ D0.

For example, consider a statement in a test case as a test
constituent; then a method call (also a statement) that executes
both then and else branches, is an impure constituent for
if elements. If we consider a top-level statement in a test case
as a test constituent, then a while loop that executes both
then and else, is an impure constituent for if elements.

Definition 4. (test impurity) Given a set E of program
elements and a test case t ∈ T , let us define the impurity
indicator function δ : E × T , where E is a set of all the
candidate sets of program elements. In details, δ(E, t) = 0
if and only if the test case t is pure (on the set E of program
elements) while δ(E, t) = 1 if and only if t is impure.
Formally,

δ(E, t) =

{
0 pure, iff (∀e ∈ E) f(e, t) ∈ D ∪ {⊥}
1 impure, iff (∃e ∈ E) f(e, t) ∈ D0

At the test constituent level, the above definition of purity
and impurity of a test case can be stated as follows. A test
case t is pure if the following holds

(∃x ∈ D) (∀e ∈ E) (∀c ∈ C) g(e, c) ∈ {x} ∪ {⊥}

A test case t is impure if t contains either at least one impure
constituent or at least two different execution signatures on
constituents. That is, either of the following holds

(∃e ∈ E)(∃c ∈ C)g(e, c) ∈ D0, or

∃e ∈ E,∃c1, c2 ∈ C (g(e, c1) 6= g(e, c2))∧(g(e, c1), g(e, c2) ∈ D)

An absolutely impure test case according to a set E of
program elements is a test case, for which there exists at least
one impure test constituent: (∃e ∈ E) (∃c ∈ C) g(e, c) ∈ D0.

Definition 5. (pure coverage) A program element e is purely
covered according to a test suite T if all test cases yield pure
execution signatures: (∀t ∈ T) f(e, t) /∈ D0. A program
element e is impurely covered according to T if any test case
yields an impure execution signature: (∃t ∈ T) f(e, t) ∈ D0.
This concept will be used to indicate the purity of test cases
in Section IV.

Note that the above definitions are independent of the
number of assertions per test case. Even if there is a single
assertion, the code before the assertion may explore the full
execution domain of certain program elements.

B. B-Refactoring

Test code refactoring aims to rearrange test cases according
to a certain task [49], [29], [7]. In this article, we present
B-Refactoring, a type of test code refactoring that aims to

TABLE I: Example of three test fragments and the execution
signature of an if element.

Test constituent c1 c2 c3 c4 c5 c6 c7
Execution
signature ⊥ then-

branch
⊥ else-
branch

⊥ else-
branch

then-
branch

Test fragment 〈c1, c2, c3〉 〈c4, c5, c6〉 〈c7〉

minimize the number of impure test cases in a test suite. Our
definition of purity involves a set of program elements, hence
there are multiple kinds of feasible refactoring, depending on
the considered program elements. For instance, developers can
purify a test suite with respect to a set of ifs or with respect
to a set of trys, etc.

Based on Definition 4, the task of test code refactoring for
a set E of program elements is to find a test suite T that
minimizes the amount of impurity as follows:

min
∑
t∈T

δ(E, t) (1)

The minimum of
∑

t∈T δ(E, t) is 0 when all test cases
in T are pure. As shown later, this is usually not possible
in practice. Note that, in this article, we do not aim to find
the absolutely optimal purified test suite, but a test suite that
improves dynamic analysis techniques. An impure test case
can be split into a set of smaller test cases that are possibly
pure.

Definition 6. (test fragment) A test fragment is a continuous
sequence of test constituents. Given a set of program elements
and a test case, i.e., a continuous sequence of test constituents,
a pure test fragment is a test fragment that includes only pure
constituents.

Ideally, an impure test case without any impure test con-
stituent can be split into a sequence of pure test fragments,
e.g., a test case consisting of two test constituents, which
covers then and else branches, respectively. Given a set E
of program elements and an impure test case t = 〈c1, . . . , cn〉
where (∀e ∈ E) g(e, ci) ∈ D ∪ {⊥} (1 ≤ i ≤ n), we can
split the test case into a set of m test fragments. Let ϕj be
the jth test fragment (1 ≤ j ≤ m) in t. Let ckj denote the
kth test constituent in ϕj and |ϕj | denote the number of test
constituents in ϕj . We define ϕj as a continuous sequence of
test constituents as follows,

ϕj = 〈c1j , c2j , . . . , c
|ϕj |
j 〉

where (∃x ∈ D) (∀e ∈ E) ckj ∈ {x}∪{⊥} and 1 ≤ k ≤ |ϕj |.
Based on the above definitions, given a test case without

impure test constituents, the goal of B-Refactoring is to
generate a minimized number of pure test fragments.
1) Example of B-Refactoring: In the best case, an impure
test case can be refactored into a set of test fragments as above.
Table I presents an example of B-Refactoring for a test case
with seven test constituents t = 〈c1, c2, c3, c4, c5, c5, c6, c7〉
that are executed on a set of if elements consisting of

Test constituents

with execution

signatures

Executing

test cases

Filtering out

pure test cases

Splitting test cases

Filtering out test

cases with impure

test constituents

Set of program

elements, e.g., if
Program

Original test

cases

(a) Unchanged

pure test cases

B-Refactoring

(b) Impure test cases

without impure test

constituents

(c) Impure test cases

with impure test

constituents

Test cases based on

pure test fragments

Test cases based on

impure test fragments

Splitting test cases

Legend

Input Processing

Output Data

Fig. 2: Conceptual framework of B-Refactoring. This frame-
work takes a program with test cases and a specific set of
program elements (e.g., if elements) as input; the output is
new test cases based on test fragments. The sum of test cases
in (a), (b), and (c) equals to the number of original test cases.

only one if element. Three test fragments are formed as
〈c1, c2, c3〉, 〈c4, c5, c6〉, and 〈c7〉.

Note that the goal of B-Refactoring is not to replace the
original test suite, but to temporarily refactor the test suite to
enhance dynamic analysis techniques. B-Refactoring is done
on-demand, just before executing a specific dynamic analysis.
Consequently, it has no impact on future maintenance of
test cases. In particular, new test cases potentially created
by B-Refactoring are not required to be read or modified by
developers. The difference between our work and test code
refactoring in general is discussed in Section VI-A.
2) Framework: Our method B-Refactoring refactors a test
suite according to a criterion defined with a set of specific
program elements (e.g., if elements) in order to purify its
execution (according to the execution signatures in Section
III-A). In a nutshell, B-Refactoring takes the original test
suite and the requested set of program elements as input and
generates purified test cases as output.

Fig. 2 illustrates the overall structure of our approach. We
first instrument all test cases to monitor the test execution
on the requested set E of program elements. During the test
execution, we record test cases that execute E and collect the
execution signatures of test constituents in the recorded test
cases. Second, we filter out pure test cases that already exist

in the test suite. Third, we divide the remaining test cases
into two categories: test cases with or without impure test
constituents. For each category, we split the test cases into a
set of test fragments. As a result, a new test suite is created,
whose execution according to a set of program elements is
purer than the execution of the original test suite. Note that it
is not mandatory to divide test cases into categories with or
without impure constituents; we make such division in Fig. 2
to show that tests with impure constituents lead to both pure
and impure fragments while tests without impure constituents
only lead to pure fragments. Implementation details are stated
in Section III-C.

In this article, we consider a test constituent as a top-
level statement in a test case. Examples of test constituents
could be an assignment, a complete loop, a try block, a
method invocation, etc. B-Refactoring does not try to split
the statements that are inside a loop or a try branch in a test
case.

3) Core Algorithm: Algorithm 1 describes how B-
Refactoring splits a test case into a sequence of test fragments.
As mentioned in Section III-B2, the input is a test case and a
set of program elements to be purified; the output is a set of
test fragments after splitting the original test case.

Algorithm 1 returns a minimized set of pure test fragments
and a set of impure test fragments. In the algorithm, each
impure test constituent is kept and directly transformed as
an atomically impure test case that consists of only one
constituent. The remaining continuous test constituents are
clustered into several pure test fragments. Algorithm 1 consists
of two major steps. First, we traverse all the test constituents to
collect the last test constituent of each test fragment. Second,
based on such collection, we split the test case into pure or
impure test fragments. These test fragments can be directly
treated as test cases for a dynamic analysis application.

Taking the test case in Table I as an example, we briefly
describe the process of Algorithm 1. The traversal at Line 3
consists of only one program element according to Table I.
If only one of the then and else branches is executed,
we record this branch for the following traversal of the test
case (at Line 12). If a test constituent with a new execution
signature appears, its previous test constituent is collected as
the last constituent of a test fragment and the next test fragment
is initialized (at Line 14). That is, c3 and c6 in Table I are
collected as the last constituents. The end constituent of the
test case is collected as the last constituent of the last test
fragment (at Line 20), i.e., c7. Lines from 7 to 9 are not run
because there is no impure test constituent in Table I. After
the traversal of all the test constituents, Lines from 23 to 25
are executed to obtain the final three test fragments based on
the collection of c3, c6, and c7.

4) Validation of the Refactored Test Suite: Our algorithm
for refactoring a test suite is meant to not hurt the ability
of finding bugs. The test suite after refactoring should be as
effective as the original test suite. Existing work on general
refactoring uses precondition checking to validate the program

Input :
E, a set of program elements;
t = 〈c1, . . . , cn〉, a test case with n test constituents;
D, an execution domain of the program elements in E.
Output:
Φ, a set of test fragments.

1 Let C be an empty set of last constituents in fragments;
2 Let v =⊥ be a default execution signature;

3 foreach program element e ∈ E do
4 v =⊥;
5 foreach test constituent ci in t (1 ≤ i ≤ n) do
6 if g(e, ci) ∈ D0 then // Impure constituent
7 v =⊥;
8 C = C ∪ ci − 1; // End of the previous fragment
9 C = C ∪ ci; // Impure fragment of one constituent

10 else if g(e, ci) ∈ D then // Pure constituent
11 if v =⊥ then
12 v = g(e, ci);
13 else if v 6= g(e, ci) then // v ∈ D
14 C = C ∪ ci−1;
15 v = g(e, ci);
16 end
17 end
18 end
19 end
20 C = C ∪ cn; // Last constituent of the last fragment

21 Let c+ = c1;
22 foreach test constituent cj in C do
23 ϕ = 〈c+, ..., cj〉; // Creation of a test fragment
24 Φ = Φ ∪ ϕ;
25 c+ = cj+1;
26 end

Algorithm 1: Splitting a test case into a set of test fragments
according to a given set of program elements.

behavior before and after refactoring [34], [41]. In our work,
we apply several techniques of precondition checking to avoid
potential changes of program behaviors or compilation errors.
Two major methods of precondition checking in our work are
as follows.

First, we check the name conflicts of newly created vari-
ables. In our work, newly created variables are automatically
renamed in a unique way. Based on the code analysis library,
Spoon [35], we are aware of the list of existing method and
variable names before test code refactoring and the conflicts
are handled. Since our technique refactors test cases for
dynamic analysis, no readability is required for the new names
of methods or variables.

Second, we check expected test behaviors in test
cases. In JUnit, a test case with expected behaviors
will pass if the test execution outputs an exception,
which is the same as the expected one (annotated with
@Test(expected=Exception.class)). Splitting a test

case with the above annotation may change the original
test result. In our implementation, we keep such test cases
unchanged.

However, it is challenging to prove that the above pre-
condition checking are enough to guarantee the behavioral
preservation in a semantically rich and complex programming
language as Java. Instead of a proof, we use mutation testing
to raise the confidence that our refactoring approach does not
hurt the effectiveness of the original test suite [18]. The idea
of applying mutation testing is that all mutants killed by the
original test suite must also be killed by the refactored one.
Since in practice, it is impossible to enumerate all mutants, this
validation is an approximation that compares the effectiveness
of test suites before and after B-Refactoring. We present the
validation results in Section IV-D.

C. Implementation

We implement B-Refactoring in Java 1.7, JUnit 4.11, and
Spoon. Spoon is a Java library for source code transformation
and analysis [35], which provides a static analysis platform
for extracting the structure of test classes. With the support of
instrumentation mentioned in Section III-B2, the purity of test
constituents is collected; based on the source code transforma-
tion by Spoon, test cases can be rewritten without compiling
errors. Our tool, B-Refactoring, is publicly available.6

B-Refactoring handles a number of interesting cases and
uses its own test driver to take them into account. Four major
details are listed as follows.
1) Test Transformation: As mentioned in Section III-B2,
we treat top-level statements in a test case as test constituents.
If one original test case is split into more than one test
fragments, these new ones are named with the indexes of
new fragments (as shown in Fig. 1c). When test fragments
use variables that are local to the original test case before
refactoring, these variables are changed as fields of the test
class to maintain their accessibility.
2) Execution Order: To ensure the execution order of test
fragments, the B-Refactoring test driver uses a specific an-
notation @TestFragment(origin, order) to execute
test fragments in a correct order. The parameter origin is a
string, which indicates the original method name before refac-
toring and order is a 1-based integer, which indicates the
execution order. The execution order is assigned according to
the original test case before refactoring. Then test methods are
automatically tagged with the annotation during refactoring.
Examples of this annotation are shown in Fig. 1c.
3) Handling setUp and tearDown: Unit testing can
make use of common setup and finalization code. JUnit 4
uses Java annotations to facilitate writing this code. For each
test case, a setUp method (with the annotation @Before
in JUnit 4) and a tearDown method (with @After) are
executed before and after the test case, e.g., initializing a local
variable before the execution of the test case and resetting a
variable after the execution, respectively. In B-Refactoring, to

6B-Refactoring, http://github.com/Spirals-Team/banana-refactoring.

ensure the same execution of a given test case before and after
refactoring, we include setUp and tearDown methods in
the first and the last test fragments. This is illustrated in Fig.
1c.

4) Shared Variables in a Test Case: Some variables in a test
case may be shared by multiple statements, e.g., one common
variable in two assertions. In B-Refactoring, to split a test case
into multiple ones, a shared variable in a test case is renamed
and extracted as a class field. Then each new test case can
access this variable; meanwhile, the behavior of the original
test case is not changed. Experiments in Section IV-D also
confirm the unchanged behavior of test cases.

IV. EMPIRICAL STUDY ON B-REFACTORING

In this section, we evaluate our technique for test code
refactoring. This work addresses a novel problem statement:
refactoring a test suite to enhance dynamic analysis. To our
knowledge, there is no similar technique that can be used
to compare against. However, a number of essential research
questions have to be answered.

A. Projects

We evaluate B-Refactoring on five open-source Java
projects: Apache Commons Lang (Lang for short),7 Spojo-
core,8 Jbehave-core,9 Apache Shindig Gadgets (Shindig-
gadgets for short),10 and Apache Commons Codec (Codec
for short).11 These projects are all under the umbrella of
respectful code organizations (three out of five projects by
Apache12). Table II lists these five projects. We select these five
projects in experiments because they are widely-used open-
source projects. The example of project Apache Commons
Math presented in Section II-A is discarded since the time of
its test execution is extremely long.

B. Empirical Observation on Test Case Purity

RQ1: What is the purity of test cases in our dataset?

We empirically study the purity of test cases for two
types of program elements: if elements and try elements.
The goal of this empirical study is to measure the existing
purity of test cases for if and try before refactoring. The
analysis for if facilitates the study on software repair in
Section V-A while the analysis for try facilitates the study
on dynamic verification of exception contracts in Section V-B.
We show that applying B-Refactoring can improve the purity
for individual program elements in Section IV-C.

7Apache Commons Lang 3.2, http://commons.apache.org/lang/.
8Spojo-core 1.0.6, http://github.com/sWoRm/Spojo.
9Jbehave-core, http://jbehave.org/.
10Apache Shindig Gadgets, http://shindig.apache.org/.
11Apache Commons Codec 1.9, http://commons.apache.org/codec/.
12Apache Software Foundation, http://apache.org/.

http://github.com/Spirals-Team/banana-refactoring
http://commons.apache.org/lang/
http://github.com/sWoRm/Spojo
http://jbehave.org/
http://shindig.apache.org/
http://commons.apache.org/codec/
http://apache.org/

TABLE II: Projects in empirical evaluation.

Project Description Source LoC #Test cases
Lang A Java library for manipulating core classes 65,628 2,254

Spojo-core A rule-based transformation tool for Java beans 2,304 133
Jbehave-core A framework for behavior-driven development 18,168 457

Shindig-gadgets A container to allow sites to start hosting social apps 59,043 2,002
Codec A Java library for encoding and decoding 13,948 619
Total 159,091 5,465

TABLE III: Purity of test cases for if elements according to the number of test cases, test constituents, and if elements.

Project
Test case Test constituent if element

#Total Pure Non-absolutely impure Absolutely impure Total Impure #Total #Executed Purely covered if
% # % # % # % # %

Lang 2,254 539 23.91% 371 16.46% 1,344 59.63% 19,682 5,705 28.99% 2,397 2,263 451 19.93%
Spojo-core 133 38 28.57% 5 3.76% 90 67.67% 999 168 16.82% 87 79 45 56.96%

Jbehave-core 457 195 42.67% 35 7.76% 227 49.67% 3,631 366 10.08% 428 381 230 60.37%
Shindig-gadgets 2,002 731 36.51% 133 6.64% 1,138 56.84% 14,063 6,610 47.00% 2,378 1,885 1,378 73.10%

Codec 619 182 29.40% 123 19.87% 314 50.73% 3,458 1,294 37.42% 507 502 148 29.48%
Total 5,465 1,685 30.83% 667 12.20% 3,113 56.96% 41,833 14,143 33.81% 5,797 5,110 2,252 44.07%

TABLE IV: Purity of test cases for try elements according to the number of test cases, test constituents, and try elements.

Project
Test case Test constituent try element

#Total Pure Non-absolutely impure Absolutely impure #Total #Impure #Total #Executed Purely covered try
% # % # % # % # %

Lang 2,254 295 13.09% 1,873 83.1% 86 3.81% 19,682 276 1.40% 73 70 35 50.00%
Spojo-core 133 52 39.10% 81 60.9% 0 0.00% 999 0 0.00% 6 5 5 100.00%

Jbehave-core 457 341 74.62% 91 19.91% 25 5.47% 3,631 29 0.80% 67 57 43 75.44%
Shindig-gadgets 2,002 1,238 61.84% 702 35.06% 62 3.10% 14,063 73 0.52% 296 244 221 90.57%

Codec 619 88 14.22% 529 85.46% 2 0.32% 3,458 2 0.06% 18 16 14 87.50%
Total 5,465 2,014 36.85% 3,276 59.95% 175 3.20% 41,833 380 0.91% 460 392 318 81.12%

1) Protocol: We focus on the following metrics to present
the purity level of test cases:

• #Pure is the number of pure test cases on all program
elements under consideration;

• #Non-absolutely impure is the number of impure test
cases without impure test constituent;

• #Absolutely impure is the number of test cases that consist
of at least one impure test constituent.

The numbers of test cases in these three metrics are mapped
to the three categories (a), (b), and (c) of test cases in Fig 2,
respectively.

For test constituents, we use the following two metrics,
i.e., #Total constituents and #Impure constituents. For program
elements, we use the metric #Purely covered program elements
(Definition 5) in Section III-A.

We leverage the implementation of B-Refactoring to calcu-
late those evaluation metrics and to give an overview of the
purity of test suites for the five projects.

2) Results: We analyze the purity of test cases in our
dataset with the metrics proposed in Section IV-B1. Table III
shows the purity of test cases for if elements. In the project
Lang, 539 out of 2,254 (23.91%) test cases are pure for all the
executed if elements while 371 (16.46%) and 1,344 (59.63%)

test cases are impure without and with impure test constituents.
In total, 1,658 out of 5,465 (30.83%) test cases are pure for
the all the executed if elements. These results show that there
is space for improving the purity of test cases and achieving
a higher percentage of pure test cases.

As shown in the column Test constituent in Table III,
33.81% of test constituents are impure. After applying B-
Refactoring, all those impure constituents will be isolated in
own test fragments. That is the number of absolutely impure
constituents is equal to the number of impure test cases after
refactoring.

In Table III, we also present the execution purity of if
elements. In the project Lang, 2,263 out of 2,397 if elements
are executed by the whole test suite. Among these executed
if elements, 451 (19.93%) are purely covered. In total, among
the five projects, 44.07% of if elements are purely covered.
Hence, it is necessary to improve the purely covered if
elements with B-Refactoring.

For try elements, we use the execution domain defined in
Section III-A and compute the same metrics. Table IV shows
the purity of test cases for try elements. In Lang, 295 out of
2,254 (13.09%) test cases are always pure for all the executed
try elements. In total, the percentage of always pure test cases
and the percentage of absolutely impure test cases are 36.85%

and 3.20%, respectively. In contrast to if elements in Table
III, the number of absolutely impure test cases in Spojo-core
is zero. The major reason is that there is a much larger number
of test cases in Lang (2,254), compared to Spojo-core (133). In
the five projects, based on the purity of test cases according
to the number of try elements, 81.12% try elements are
purely covered.

Comparing the purity of test cases between if and try,
the percentage of pure test cases for if elements and try
elements are similar, 30.83% and 36.85%, respectively. In
addition, the percentage of purely covered try elements is
81.12%, which is higher than that of purely covered if, i.e.,
44.07%. That is, 81.12% of try elements are executed by
test cases with pure execution signatures but only 44.07% of
if elements are executed by test cases with pure execution
signatures. This comparison indicates that for the same project,
different execution domains of input program elements result
in different results for the purity of test cases. We can further
improve the purity of test cases according to the execution
domain (implying a criterion for refactoring) for a specific
dynamic analysis technique.

Answer to RQ1: Only 31% (resp. 37%) of test cases are
pure with respect to if elements (resp. try elements).

C. Empirical Measurement of Refactoring Quality

RQ2: Are test cases purer on individual program elements
after applying B-Refactoring?

We evaluate whether B-Refactoring can improve the exe-
cution purity of test cases. Purified test cases cover smaller
parts of the control flow; consequently, they can provide better
support to dynamic analysis tasks.
1) Protocol: To empirically assess the quality of our refac-
toring technique with respect to purity, we employ the fol-
lowing metric (see Definition 5): #Purely covered program
elements is the number of program elements, each of which
is covered by all test cases with pure execution signatures.

For dynamic analysis, we generally aim to obtain a
higher number of purely covered program elements after B-
Refactoring. For each metric, we list the number of program
elements before and after applying B-Refactoring as well as
the improvement: absolute and relative (#After−#Before

#Before).
2) Results: Table V shows the improvement of test case pu-
rity for if elements before and after applying B-Refactoring.
For the project Lang, 2,263 if elements are executed by the
whole test suite. After applying B-Refactoring to the test suite,
1,250 (from 451 to 1,701) if elements are changed to be
purely covered. The relative improvement reaches 277.16%
(1,250/451). After B-Refactoring, 1,364 (5,110-3,746) if el-
ements are not purely covered. The reason is that our approach
cannot split all impure test cases into pure test cases due the
technical details (in Section III-B2).

For all five projects, 1,494 purely covered if elements are
obtained by applying B-Refactoring. These results indicate that

TABLE V: Test case purity before and after refactoring with
ifs as the purity criterion.

Project #Exec if
Purely covered if

#Before #After Improvement
%

Lang 2,263 451 1,701 1,250 277.16%
Spojo-core 79 45 54 9 20.00%

Jbehave-core 381 230 262 32 13.91%
Shindig-gadgets 1,885 1,378 1,521 143 10.38%

Codec 502 148 208 60 40.54%
Total for ifs 5,110 2,252 3,746 1,494 66.34%

TABLE VI: Test case purity before and after refactoring with
trys as the purity criterion.

Project #Exec try
Purely covered try

#Before #After Improvement
%

Lang 70 35 58 23 65.71%
Spojo-core 5 5 5 0 0.00%

Jbehave-core 57 43 44 1 2.33%
Shindig-gadgets 244 221 229 8 3.62%

Codec 16 14 16 2 14.29%
Total for trys 392 318 352 34 10.69%

the purity of test cases for if elements is highly improved via
B-Refactoring. Note that the improvement on Lang is higher
than that on the other four projects. A possible reason is
that Lang is complex in implementation due to its powerful
functionality. Then its test suite contains many impure test
cases; the original ratio of purely covered if is only 19.93%
(i.e., 451/2263 in Table III). Note that the original design of
the test suite is only software maintenance, thus, a low ratio
of purely covered if elements does not hurt the performance
of testing. Meanwhile, after applying B-Refactoring, 1,250 if
elements are liberated as purely covered ones. We consider the
reason behind the high improvement in Lang (comparing with
the other four projects in Table V) is that many original if
elements are executed by impure test cases but not absolutely
impure test cases. Hence, our work can help to highly improve
the ratio of purely covered if elements.

Similarly, Table VI shows the improvement for try ele-
ments before and after applying B-Refactoring. In Lang, 23
(from 35 to 58) try elements are changed to be purely
covered after applying B-Refactoring. For all five projects,
34 (from 318 to 352) try elements change to be purely
covered after B-Refactoring. Note that for Spojo-core, no value
is changed before and after B-Refactoring due to the small
number of test cases.

Answer to RQ2: After B-Refactoring, if and try ele-
ments are more purely executed. The purely covered if
and try are improved by 66% and 11%, respectively.

D. Mutation-based Validation for Refactored Test Suites

TABLE VII: Mutant comparison before and after applying B-
Refactoring.

Project Mutants before B-Refactoring Mutants after B-Refactoring
#Killed #Alive #Killed #Alive

Lang 82 18 82 18
Spojo-core 100 0 100 0
JBehave-core 62 33 62 33
Shinding-gadgets 100 0 100 0
Codec 90 10 90 10

RQ3: Does B-Refactoring maintain the fault revealing
power of the test suite?

In this section, we employ mutation testing to validate that
a refactored test suite does not hurt the effectiveness of the
original test suite [11], [13].
1) Protocol: For each project, we generate mutants that
represent bugs in the program code. A mutant is killed by
a test suite if at least one test case fails on this mutation.
To evaluate whether a refactored test suite finds the same
number of bugs as the original one, the two test suites should
satisfy either of the two following rules: one mutant is killed
by both the original test suite and the refactor one; or one
mutant is not killed by both test suites. For the sake of
performance, we randomly select 100 mutants per project.
We use standard mutations on boolean conditions (changes on
binary operators), which are automatically generated with the
support of the program analysis tool, Spoon. For each mutant,
we individually run the original test suite and the purified test
suite to check whether the mutant is killed. In addition, we
check that the code coverage is the same. This protocol enables
us to increase the confidence that the refactored test suites do
not hurt the fault detection power of the original ones.
2) Results: Experimental results in Table VII shows that
both the two rules in Section IV-D1 are satisfied for all
the mutants. In details, all mutants that are killed by the
original test suite are also killed by the refactored ones. The
other mutants are alive in both original and refactored test
suites, respectively. To sum up, mutation-based validation for
refactored test suites shows that the refactored test suites after
applying our technique have not hurt the effectiveness of
finding bugs of the original ones.

Answer to RQ3: The test suites automatically refactored
by B-Refactoring catch the same mutants as the original
ones.

V. APPLICATIONS TO DYNAMIC ANALYSIS

We apply B-Refactoring to improve two dynamic analysis
techniques, automatic repair and exception contract analysis.

A. B-Refactoring for Automatic Repair of Three Bugs

RQ4: Does B-Refactoring improve the fixability by the
automatic repair technique, Nopol [52]?

In this section, for automatic repair, we take Nopol [52],
an approach to automatically fixing conditional bugs, as an

example. To fix one bug, Nopol collects runtime trace of a test
suite and synthesizes source code for conditional bugs to pass
all test cases. To assess the value of one condition, Nopol is
required to distinguish runtime conditional values of different
branches, i.e., then and else branches. By applying B-
Refactoring to the original test suite, more test cases that
only cover one branch are temporarily provided for executing
Nopol. Then Nopol can fix bugs, which are not able to be
fixed with original test suites. We illustrate B-Refactoring in
automatic repair with three case studies. Among these case
studies, the last case study shows that even by applying B-
Refactoring, a bug could be incorrectly fixed. The major reason
is the presence of weak specification in test cases, which can
be overcome via manually adding a test case.

1) Protocol: We present case studies on three real-world
bugs in Apache Commons Lang.13 All the three bugs are
located in if conditions.

We choose the three bugs in case studies based on the
following steps. First, we use our tool of Abstract Syntax
Tree (AST) analysis, GumTree [12], to automatically extract
commits, which modify existing if conditions. Only commits
that modify no more than 5 files and no more than 10 AST
changes are selected. Second, we filter out complex commits,
which affect more statements than if conditions. Third, for
each commit, we collect its test suite that is submitted at
the same time of the commit. Fourth, we manually validate
whether the bug can be reproduced. Then six bugs in total are
collected after these four steps.

Table VIII shows these six bugs, including lines of exe-
cutable code (LoC), manually-written patches by developers,
and the number of test cases before and after B-Refactoring.
The six collected bugs cannot be directly and correctly fixed by
Nopol. Test suites of all these bugs contain impure test cases
according to if elements. Thus, we apply B-Refactoring to
obtain pure test cases. In total, 22 pure test cases are obtained
after applying B-Refactoring to the 12 originally executed test
cases. Note that only the executed test cases by the buggy ifs
(before and after applying B-Refactoring) are listed, not the
whole test suite.

For bugs with IDs 137371, 137552, and 230921, applying
B-Refactoring leads to the correct repair of these bugs via
providing pure test cases to Nopol. For bugs with IDs 137231
and 825420, the failure reason is that several test cases are
designed in preliminarily weak specifications. Even employ-
ing B-Refactoring, these bugs cannot be correctly fixed. For
the bug with ID 1075673, Nopol cannot synthesize a patch
because Nopol searches for a value for a null object, which
is not available during the test execution. This bug reveals
a threat to the design of Nopol, which is important to repair
methods, but not relevant to impure test cases. In this paper, we
choose three bugs as case studies, i.e., bugs with IDs 137371,
137552, and 825420.

13For more details, visit http://fisheye6.atlassian.com/changelog/commons?
cs=137371, http://fisheye6.atlassian.com/changelog/commons?cs=137552,
and http://fisheye6.atlassian.com/changelog/commons?cs=825420.

http://fisheye6.atlassian.com/changelog/commons?cs=137371
http://fisheye6.atlassian.com/changelog/commons?cs=137371
http://fisheye6.atlassian.com/changelog/commons?cs=137552
http://fisheye6.atlassian.com/changelog/commons?cs=825420

TABLE VIII: Evaluation of the effect of B-Refactoring on automatic repair for if-condition bugs. Traces of test cases after
applying B-Refactoring enable a repair approach to find patches.

Case
study ID LoC Manually-written patch by developers

Applying
B-Refactoring

#Test cases Repair resultBefore After
- 137231 10.4K text == null || repl == null || with == null || repl.length() == 0 Yes 1 2 Incorrect patch
1 137371 11.0K lastIdx <= 0 Yes 1 3 Correct patch
2 137552 12.9K len < 0 || pos > str.length() Yes 1 3 Correct patch
- 230921 15.8K substr == null || startIndex >= size Yes 3 6 Correct patch
3 825420 17.4K className == null || className.length() == 0 Yes 5 6 Incorrect patch
- 1075673 18.9K cs == null || cs.length() == 0 Yes 1 2 No patch

Total 12 22

1 String chopNewline(String str) {
2 int lastIdx = str.length() -1;
3
4 // PATCH: if (lastIdx <= 0) {
5 if (lastIdx == 0)
6 return "";
7 char last = str.charAt(lastIdx);
8 if (last == ’\n’)
9 if (str.charAt(lastIdx -1) == ’\r’)

10 lastIdx--;
11 else
12 lastIdx++;
13 return str.substring(0, lastIdx);
14 }

(a) Buggy program

1 void testChopNewLine(){
2 ...
3 assertEquals(FOO + "\n" + FOO,
4 StringUtils.chopNewline(FOO
5 + "\n" + FOO));
6
7 // B-Refactoring splits here
8 assertEquals(FOO + "b\n",
9 StringUtils.chopNewline(FOO

10 + "b\n\n"));
11
12 // B-Refactoring splits here
13 assertEquals("",
14 StringUtils.chopNewline("\n"));
15 }

(b) Test case

Fig. 3: Code snippets of a buggy program and a test case in Case study 1. The buggy if condition is at Line 5 of Fig. 3a;
the test case in Fig. 3b executes both the else and then branches of the buggy if. Then B-Refactoring splits the test case
into three test cases (at Lines 7 and 12 in Fig. 3b).

2) Case Study: We show how B-Refactoring influences
the repair of the bug with ID 137371 as follows. Fig. 3
shows a code snippet with a buggy if condition at Line 5 of
bug with ID 137371. In Fig. 3a, the method chopNewLine
aims to remove the line break of a string. The original if
condition missed the condition of lastIdx < 0. In Fig.
3b, a test case testChopNewLine targets this method. We
show three test constituents, i.e., three assertions, in this test
case (other test constituents are omitted for the sake of space).
The first and third assertions cover the else branch (viewing
as an empty else branch) of the if condition at Line 5 of
chopNewLine while the second assertion covers the then
branch. Such a test case confuses Nopol; that is, it cannot
identify unambiguously the covered branch of this test case
and cannot generate a patch for this bug.

B-Refactoring can split the test case into three test cases, as
shown at Lines 7 and 12 in Fig. 3b. We replace the original
test case with three new test cases after B-Refactoring. Then
the repair approach can generate a patch, which behaves the
same as the manual patch at Line 4 in Fig. 3a.

Results on the two other bugs (with ID 137552 and ID
825420) can be found in Section Appendix. B-Refactoring

also enables Nopol to find the patch for the bug with ID
137552; Nopol cannot correctly fix the bug with ID 825420,
even with the support of B-Refactoring. To further exploring
the fixability, in addition to automatic refactoring, we manually
add a test case that specifies a missing situation, which was
an omission in the original design of the test suite.

Based on the three case studies, we show that improving
the number of purely covered if elements can improve the
number of fixed bugs by Nopol; meanwhile, prior results in
Table V shows the number of purely covered if elements is
improved by 66.34% by applying B-Refactoring to the original
test suites. Hence, a number of potential bugs with impurely
covered if elements could be newly fixed with B-Refactoring.

To sum up, we have shown that our approachB-Refactoring
enables Nopol to automatically repair previously unfixed bugs
with Nopol, by providing a refactored version of the test
suite that produces optimized traces for the technique under
consideration.

Answer to RQ4: B-Refactoring improves the fixability of
the Nopol program repair technique on real-world bugs,
which cannot be fixed before applying B-Refactoring.

TABLE IX: B-Refactoring for exception contract checking

Project Before After Improvement on #unknown
#Source-independent #Source-dependent #Unknown #Source-independent #Source-dependent #Unknown # %

Lang 23 5 22 37 6 7 15 68.18%
Spojo-core 1 0 0 1 0 0 0 n/a

Jbehave-core 7 2 33 8 2 32 1 3.03%
Shindig-gadgets 30 12 38 31 13 36 2 5.26%

Codec 8 0 2 10 0 0 2 100.00%
Total 69 19 95 87 21 75 20 21.05%

B. B-Refactoring for Exception Contract Analysis

RQ5: Does B-Refactoring improve the identification of
exception contracts by the contract verification technique,
SCTA [8]?

In this section, we employ an existing dynamic analysis
technique of exception contracts, called SCTA by Cornu et
al. [8]. SCTA aims to verify an exception handling contract,
called source-independence, which states that catch blocks
should work in all cases when they catch an exception.
Assertions in a test suite are used to verify correctness. The
process of SCTA is as follows. To analyze exception contracts,
exceptions are injected at the beginning of try elements to
trigger the catch branches; then, a test suite is executed to
record whether a try or catch branch is covered by each
test case. SCTA requires that test cases execute only the try
or the catch.

However, if both try and catch branches are executed
by the same test case, SCTA cannot identify the coverage of
the test case. In this case, the logical predicates behind the
algorithm state that the contracts cannot be verified because the
execution traces of test cases are not pure enough with respect
to try elements. According to the terminology presented in
this article, we call such test cases covering both branches
impure. If all the test cases that execute a try element
are impure, no test cases can be used for identifying the
source-independence. To increase the number of identified
try elements and decrease the number of unknown ones, we
leverage B-Refactoring to refactor the original test cases into
purer test cases.
1) Protocol: We apply B-Refactoring on the five projects
in Section IV-A. We aim to identify the source-dependency of
more exception contracts (try elements); that is, the number
of unknown try elements on source-dependency should be
reduced. Then the goal of this experiment is to evaluate how
many try elements are recovered from unknown ones. We
apply B-Refactoring to the test suite before analyzing the
exception contracts. That is, we first refactor the test suite
and then apply SCTA on the test suites before and after
refactoring. Similar to the original work [8], we assess the
number of unknown source-dependency of trys to evaluate
B-Refactoring in exception contract analysis.

In exception contract analysis, a try is source-independent
if the catch block proceeds equivalently, whatever the source
of the caught exception is in the try block [8]. We analyze

exception contracts with the following metrics:14

• #Source-independent is the number of verified source-
independent try elements;

• #Source-dependent is the number of verified source-
dependent try elements;

• #Unknown is the number of unknown try elements,
because at least one test case is impure.

The last metric is the key one in this experiment. The goal is
to decrease this metric by refactoring, i.e., to obtain less try-
catch blocks, whose execution traces are too impure to apply
the verification algorithm.
2) Results: We investigate the results of the exception
contract analysis before and after B-Refactoring.

Table IX presents the number of source-independent try
elements, the number of source-dependent try elements, and
the number of unknown ones. Taking the project Lang as an
example, the number of unknown try elements decreases by
15 (from 22 to 7). This enables the analysis to prove the
source-independence for 14 more try (from 23 to 37) and
to prove source-dependence for one more (from 5 to 6). That
is, by applying B-Refactoring to the test suite in project Lang,
we can detect whether these 68.18% (15/23) try elements
are source-independent or not.

For all the five projects, 21.05% (20 out of 95) of try
elements are rescued from unknown ones. This result shows
that B-Refactoring can refactor test suites to cover simple
branches of try elements. Such refactoring helps the dynamic
analysis to identify the source independence.

Answer to RQ5: Applying B-Refactoring to test suites
improves the ability of verifying the exception contracts
of SCTA. 21% of unknown exception contracts are re-
duced.

VI. DISCUSSIONS

In this section, we present our discussion on differences
between B-Refactoring and classical refactoring, differences
between B-Refactoring and our previous work on test case
purification, performance of B-Refactoring, and threats to the
validity in our work.

A. Differences with Classical Refactoring

As mentioned in Section III-A, B-Refactoring aims to
enhance dynamic analysis techniques. This leads to several

14Note that the sum of the three metrics is constant before and after applying
B-Refactoring.

differences between our work and existing refactoring tech-
niques, including program refactoring and test code refactoring
[29] as follows.

First, the goal is different. B-Refactoring benefits dynamic
analysis techniques while classical refactoring benefits devel-
opers. We design B-Refactoring to improve dynamic analysis
(e.g., automatic repair); that is, the users of B-Refactoring
are programs and not humans. In contrast, most existing
refactoring techniques aim to help human developers [22] and
the users of classical refactoring are developers.

Second, a test suite after applying B-Refactoring temporar-
ily replaces the original test suite only to conduct the task
of dynamic analysis. On the contrary, the code resulting from
classical refactoring is meant to replace the original code.

Third, a refactored test suite by B-Refactoring does not have
any readability requirements because no developer will ever
read this refactored test suite. Renaming, a common concern
of classical refactoring, such as the difficulty of finding “good”
names [42], is not applicable to B-Refactoring. For instance,
a variable can be renamed as a_b_c without the concern of
test readability.

B. Differences with Our Previous Work

In our previous work, test case purification [54], we split
failing test cases to assist fault localization. Four major differ-
ences between B-Refactoring in this article and our previous
work [54] are detailed as follows.

First, test case purification is designed to improve the
performance of a single technique, fault localization, while
B-Refactoring is more general in the sense that it can improve
multiple tasks.

Second, in test case purification, only failing test cases
are refactored: skipped assertions in failing test cases are
extracted as new test cases. In B-Refactoring, both passing
and failing test cases are refactored according to traces during
test execution.

Third, the core criterion for splitting test cases is different.
B-Refactoring splits test cases based on the execution mon-
itored in application code, which is executed by test cases,
e.g., then and else branches based on the execution of if
elements. In test case purification, the failing test cases are
split based on assertions in test code (and not in application
code); that is, the refactoring criterion focuses on test code
and not application code.

Fourth, test case purification uses dynamic slicing, while in
B-Refactoring, no slicing technique is used because we do not
need to remove any statement.

C. Performance of B-Refactoring

We discuss the time cost of performing B-Refactoring as
follows. In general, applying B-Refactoring comprises four
phases. As shown in Section III-B, first, given a specific
task of dynamic analysis, a project as well as its test suite
under refactoring is instrumented so as to collect the runtime
trace between each test constituent and each program element.
Second, the test suite is run to collect the trace based on the

instrumentation. Third, according to the collected trace, the
original test suite is transformed into a new test suite with
smaller test cases. Fourth, the new test suite after refactoring
is run as a test suite in the task of dynamic analysis (e.g.,
automatic repair in Section V-A).

The first and the third phases last for a few seconds, always
less than one minute for our dataset on a standard laptop.
The time cost of the second and the fourth phases depend
on the project under study. For a mid-sized project, such as
Lang in our dataset, a typical execution of a test suite lasts
within minutes. The time cost of the second phase is nearly the
same as the test execution; the time cost of the fourth phase
is nearly the same as the time cost of executing the test suite
in a specific task of dynamic analysis.

This is preliminary evidence that B-Refactoring is fast. The
time cost is a negligible part in the dynamic analysis that is
performed. Note that for a given task, B-Refactoring is used
offline, without strong requirements on the execution time.

D. Threats to Validity

We present threats to the validity of our B-Refactoring
results in three categories.

Construct validity. In this article, we use three case studies
on real-world bugs to demonstrate the benefit of applying B-
Refactoring to test suites. Improvement based on these case
studies indicates that our proposed technique can help to better
use test suites for automatic repair. Collecting more real bugs
for evaluating B-Refactoring is possible, but time-consuming
[52]. We leave the evaluation on more real bugs as future work.
In addition, results of test case purity in five studied projects
are diverse. In Sections IV-B and IV-C, we show detailed
analysis of these results. However, a further exploration on
test suites should be conducted to find out what these results
are caused by. Due to the lack of historical test data, we have
not investigated the reason of the diverse results, which is left
as future work. In Section IV-D, we apply the idea of mutation
testing to evaluate the refactored test suite. We validate that the
test suite after refactoring does not lose the ability of testing
via randomly selected program mutants. However, we note
that our validation of test suites is incomplete. That is, not all
program behaviors are checked by mutants and the mutation
space is not completely explored (for the sake of time).

Internal validity. Test code can be complex. For example,
a test case can have loops and internal mocking classes. In
our implementation, we consider test constituents as top-level
statements, thus complex test constituents are simplified as
atomic ones. Handling more complex constituents can reduce
the number of impure test cases, e.g., reducing the number
of absolutely impure test cases in Table III. But the complex
structure of test code will increase the effort of implementing
our technique. Hence, by skipping the process of internal
statements inside test code, our work could be viewed as
a trade-off between refactoring all test constituents and the
implementation effort.

External validity. We have shown that B-Refactoring im-
proves the efficiency of program repair and contract verifi-

cation. However, the two considered approaches stem from
our own research. This is natural, since our expertise in
dynamic analysis makes us aware of the nature of these
problems. For further assessing the generic nature of our
refactoring approach, experiments involving other dynamic
analysis techniques are required. Moreover, besides Nopol [52]
and SCTA [8], there exist other methods in both automatic
repair and exception contract analysis. We have not applied
B-Refactoring to these methods since most of these tools are
not open available and are not implemented in Java as B-
Refactoring. Moreover, experiments in our work mainly focus
on if and try program elements. Both of these program
elements can be viewed as a kind of branch statements. Our
proposed work can also be applied to other elements, like
method invocations (in Section III-A). To show more evidence
of the improvement on dynamic analysis, experiments could
be conducted for different program elements.

VII. RELATED WORK

We list the related work to our article in three categories:
the approach to test code refactoring and two application
scenarios.

A. Test Code Refactoring

Test code refactoring [49] is a general concept of making
test code better understandable, readable, or maintainable.
Based on 11 test code smells, Deursen et al. [49] first propose
the concept of test code refactoring as well as six refactoring
rules, including reducing test case dependence and adding
exploration for assertions. Extension on this work by Van
Deursen & Moonen [48] and Pipka [36] propose how to refac-
tor test code for the test first rule in extreme programming.
Guerra & Fernandes [16] define a set of representation rules
for different categories of test code refactoring. Moreover, Xu
et al. [51] propose directed test suite augmentation methods
to detect affected code by code changes and to generate test
cases for covering these code. Recent work by Xuan et al.
[55] proposes test case mutation to reproduce crashes with
stack trace. Test case mutation generates multiple variants for
a given test case to trigger potential bugs.

Technical issues in refactoring have been studied. Schäfer
et al. [42] focus on conducting better renaming systems
in Java Integrated Development Environment (IDE) while
their follow-up work [43] addresses another technique, how
to extract methods during refactoring. Overbey et al. [34]
propose a method of differential precondition checking, which
identifies the behavior preservation in refactoring. To eval-
uate refactoring techniques, Soares et al. [46] automatically
generate programs as well as test suites to detect bugs of
refactoring engines; Gligoric et al. [15] propose an end-to-
end approach to testing refactoring engines with real-world
projects and evaluate their reliability. In this article, we have
not employed the above testing techniques to validate our
refactoring approach; instead, we leverage the technique of
program mutation to evaluate our approach. In our work,
program mutants are generated and executed with test suites

before and after refactoring; experiments show that program
mutants that killed by test suites are the same with and without
refactoring.

Refactoring techniques in source code [29] have been in-
troduced to test code. Existing known patterns in refactoring
are applied to test cases to achieve better-designed test code.
Chu et al. [7] propose a pattern-based approach to refactoring
test code to keep the correctness of test code and to remove
the bad code smells. Alves et al. [2] employ pattern-based
refactoring on test code to make better regression testing via
test case selection and prioritization. In contrast to modifying
one test via the above pattern-based refactoring on test code,
our work in this article aims to split one test case into a set
of small and pure test cases. The new test cases can assist a
specific software task, e.g., splitting test cases to execute single
branches in if elements for software repair and to trigger a
specific status of try elements for exception handling.

Two concepts in test generation relates to our work, i.e.,
test case adaptation and test case optimization. Test case
adaptation, introduced by Mirzaaghaei et al. [31] aims to
repair test cases to suit for the code change. On the other
hand, test case optimization, introduced by Baudry et al. [4],
[5], generates new test cases to improve the ability of fault
localization. Hence, both test case adaptation and test case
optimization generate new test cases. However, in our work,
we aim to improve the usage of test cases for dynamic analysis
techniques.

B. Automatic Software Repair

Automatic software repair aims to generate patches to
fix software bugs. Software repair employs a given set of
test cases to rank potential faulty statements [1], [53] and
validate the correctness of generated patches. Weimer et al.
[23] propose GenProg, a genetic-programming based approach
to fixing C bugs. This approach views a fraction of source
code as an AST and updates ASTs by inserting and replacing
known AST nodes. Nguyen et al. [33] propose SemFix,
a semantic-analysis based approach, also for C bugs. This
approach combines symbolic execution, constraint solving,
and program synthesis to narrow down the search space of
repair expressions.

Martinez & Monperrus [26] mine historical repair actions
based on fine-granulated ASTs with a probabilistic model. Kim
et al. [21] propose Par, a pattern-based repair approach via
frequent ways of fixing bugs. The repair patterns in their work
are used to avoid nonsensical patches due to the randomness of
some mutation operators. Qi et al. [37] investigate the strength
of random search in GenProg and show that the random
search (without genetic programming) based repair method,
RSRepair, can achieve even better performance than GenProg.
Kaleeswaran et al. [20] propose MintHint, a repair hint method
for identifying expressions that are likely to occur in patches,
instead of fully automated generating patches. Mechtaev et
al. [28] address the simplicity of generated patches with a
maximum satisfiability solver. Long & Rinard [24] propose

a staged program repair method for synthesizing conditional
bugs.

Barr et al. [3] investigate the “plastic surgery” hypothesis in
genetic programming based repair like GenProg and show that
patches can be constructed via reusing existing code. Martinez
et al. [27] target the redundancy assumptions for existing code.
Tao et al. [47] explore how to leverage machine-generated
patches to assist human debugging. Monperrus [32] discusses
the problem statement and the evaluation criteria of software
repair. Zhong & Su [57] examine 9,000 real-world patches and
summarize 15 findings for fault localization and faulty code
fix in automatic repair. A recent study by Qi et al. [38] shows
that only 2 out of 55 generated patches by GenProg and 2 out
of generated patches by RSRepair are correct; all the others
fail to be expected behaviors due to experimental issues and
weak test cases. Martinez et al. [25] empirically evaluate the
results of GenProg [23], Kali [38], and Nopol [52] on 224
real bugs from the Defects4J dataset. This study indicates the
difficulty of repairing real bugs and the status of primarily
weak specifications in test cases.

In existing work [9], [52], we propose Nopol, a specific
repair tool targeting buggy if conditions. In this article,
we leverage Nopol as a tool in one application scenario of
automatic software repair, which investigates real-world bugs
on if.

C. Automatic Analysis of Exception Handling

Exception handling aims to analyze and to enhance the pro-
cessing of software exceptions. Sinha & Harrold [44] propose
representation techniques with explicit exception occurrences
(explicitly via throw statements) and exception handling
constructs. Their following work by Sinha et al. [45] develops
a static and dynamic approach to analyzing implicit control
flows caused by exception handling.

Robillard & Murphy [39] present the concept of exception-
flow information and design a tool that supports the extraction
and view of exception flows. Fu & Ryder [14] develop a static
exception-chain analysis for the entire exception propagation
in programs. Zhang & Elbaum [56] study the faults associated
with exceptions that handle noisy resources and propose an
approach to amplifying the space of exceptional behavior
with external resources. Moreover, Bond et al. [6] present an
efficient origin tracking technique for null and undefined value
errors in the Java virtual machine and a memory-checking
tool. Mercadal et al. [30] propose an approach that relies on
an architecture description language, which is extended with
error-handling declarations.

In existing work [8], we propose an approach to detect
the types of exception handling on nine Java projects. In
this article, the approach [8] serves as a platform to examine
whether B-Refactoring can improve the ability of detecting
exception contracts.

VIII. CONCLUSIONS

This article addresses the problem of impure traces of test
cases We propose B-Refactoring, a technique to split test cases

into small fragments in order to increase the efficiency of dy-
namic program analysis. Our experiments on five open-source
projects show that our approach effectively improves the purity
of test cases. We show that applying B-Refactoring enhances
the performance of existing analysis tasks, namely repairing
if-condition bugs and analyzing exception contracts.

In future work, we plan to apply B-Refactoring to other
kinds of program analysis, such as test case prioritization.
Moreover, we will explore the reason of designing impure
test cases by analyzing and understanding existing tests in
open-source projects. A human study on testers who design
impure test cases could be helpful to further understand the
hidden knowledge of test design. We also plan to extend our
implementation of B-Refactoring to deal with more complex
statements (e.g., loops) in test cases. An advanced tool that
handles fine-grained test statements can effectively reduce the
impurity of test suites.

ACKNOWLEDGMENT

This work is partly supported by the National Natural
Science Foundation of China (under grant 61502345).

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Indus-
trial Conference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89–98. IEEE, 2007.

[2] E. L. Alves, P. D. Machado, T. Massoni, and S. T. Santos. A refactoring-
based approach for test case selection and prioritization. In 2013 8th
International Workshop on Automation of Software Test, pages 93–99.
IEEE, 2013.

[3] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro. The
plastic surgery hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
306–317, 2014.

[4] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. Automatic
test case optimization using a bacteriological adaptation model: appli-
cation to. net components. In Automated Software Engineering, 2002.
Proceedings. ASE 2002. 17th IEEE International Conference on, pages
253–256. IEEE, 2002.

[5] B. Baudry, F. Fleurey, and Y. Le Traon. Improving test suites for efficient
fault localization. In Proceedings of the 28th international conference
on Software engineering, pages 82–91. ACM, 2006.

[6] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley. Tracking bad apples: reporting the origin of null and
undefined value errors. ACM SIGPLAN Notices, 42(10):405–422, 2007.

[7] P.-H. Chu, N.-L. Hsueh, H.-H. Chen, and C.-H. Liu. A test case
refactoring approach for pattern-based software development. Software
Quality Journal, 20(1):43–75, 2012.

[8] B. Cornu, L. Seinturier, and M. Monperrus. Exception handling analysis
and transformation using fault injection: Study of resilience against
unanticipated exceptions. Information and Software Technology, 57:66–
76, 2015.

[9] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt.
In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, pages 30–39. ACM, 2014.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
Software Engineering, IEEE Transactions on, 27(2):99–123, 2001.

[11] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero. Mu-
tation testing applied to validate specifications based on statecharts. In
Software Reliability Engineering, 1999. Proceedings. 10th International
Symposium on, pages 210–219. IEEE, 1999.

[12] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus.
Fine-grained and accurate source code differencing. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 313–324, New York, NY, USA, 2014.
ACM.

[13] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. Software Engineering, IEEE Transactions on, 38(2):278–292,
2012.

[14] C. Fu and B. G. Ryder. Exception-chain analysis: Revealing exception
handling architecture in java server applications. In Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on, pages 230–239.
IEEE, 2007.

[15] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov.
Systematic testing of refactoring engines on real software projects.
In ECOOP 2013 - Object-Oriented Programming - 27th European
Conference, Montpellier, France, July 1-5, 2013. Proceedings, pages
629–653, 2013.

[16] E. M. Guerra and C. T. Fernandes. Refactoring test code safely.
In Software Engineering Advances, 2007. ICSEA 2007. International
Conference on, pages 44–44. IEEE, 2007.

[17] K. Havelund and T. Pressburger. Model checking java programs using
java pathfinder. International Journal on Software Tools for Technology
Transfer, 2(4):366–381, 2000.

[18] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. Software Engineering, IEEE Transactions on,
37(5):649–678, 2011.

[19] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th international
conference on Software engineering, pages 467–477. ACM, 2002.

[20] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso. Minthint: auto-
mated synthesis of repair hints. In Proceedings of the 36th International
Conference on Software Engineering, pages 266–276. ACM, 2014.

[21] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, 2013.

[22] M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring
challenges and benefits. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
page 50. ACM, 2012.

[23] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A
generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1):54–72, 2012.

[24] F. Long and M. Rinard. Staged program repair with condition synthesis.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 166–178, 2015.

[25] M. Martinez, T. Durieux, J. Xuan, and M. Monperrus. Automatic repair
of real bugs in java: A large-scale experiment on the defects4j dataset.
arXiv preprint arXiv:1505.07002, 2015.

[26] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2015.

[27] M. Martinez, W. Weimer, and M. Monperrus. Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions of
program repair approaches. In Proceedings of the 36th International
Conference on Software Engineering, pages 492–495, 2014.

[28] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple
program repairs. In Proceedings of the 37th International Conference
on Software Engineering. IEEE, 2015.

[29] T. Mens and T. Tourwé. A survey of software refactoring. Software
Engineering, IEEE Transactions on, 30(2):126–139, 2004.

[30] J. Mercadal, Q. Enard, C. Consel, and N. Loriant. A domain-specific
approach to architecturing error handling in pervasive computing. ACM
Sigplan Notices, 45(10):47–61, 2010.

[31] M. Mirzaaghaei, F. Pastore, and M. Pezze. Supporting test suite
evolution through test case adaptation. In Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference on,
pages 231–240. IEEE, 2012.

[32] M. Monperrus. A critical review of automatic patch generation learned
from human-written patches: essay on the problem statement and the
evaluation of automatic software repair. In Proceedings of the 36th
International Conference on Software Engineering, pages 234–242.
ACM, 2014.

[33] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
Program repair via semantic analysis. In Proceedings of the 2013
International Conference on Software Engineering, pages 772–781.
IEEE Press, 2013.

[34] J. L. Overbey, R. E. Johnson, and M. Hafiz. Differential precondition
checking: a language-independent, reusable analysis for refactoring
engines. Automated Software Engineering, pages 1–28, 2014.

[35] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code. Software: Practice and Experience, page na, 2015.

[36] J. U. Pipka. Refactoring in a “test first”-world. In Proc. Third Int’l
Conf. eXtreme Programming and Flexible Processes in Software Eng,
2002.

[37] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering, pages 254–265.
ACM, 2014.

[38] Z. Qi, F. Long, S. Achour, and M. C. Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July
12-17, 2015, pages 24–36, 2015.

[39] M. P. Robillard and G. C. Murphy. Static analysis to support the evolu-
tion of exception structure in object-oriented systems. ACM Transactions
on Software Engineering and Methodology (TOSEM), 12(2):191–221,
2003.

[40] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. Software Engineering, IEEE Transactions
on, 27(10):929–948, 2001.

[41] M. Schäfer and O. De Moor. Specifying and implementing refactor-
ings. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA
’10, pages 286–301, New York, NY, USA, 2010. ACM.

[42] M. Schäfer, T. Ekman, and O. de Moor. Sound and extensible
renaming for java. In Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA,
pages 277–294, 2008.

[43] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor. Stepping
stones over the refactoring rubicon. In ECOOP 2009 - Object-Oriented
Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009.
Proceedings, pages 369–393, 2009.

[44] S. Sinha and M. J. Harrold. Analysis and testing of programs with
exception handling constructs. Software Engineering, IEEE Transactions
on, 26(9):849–871, 2000.

[45] S. Sinha, A. Orso, and M. J. Harrold. Automated support for de-
velopment, maintenance, and testing in the presence of implicit flow
control. In Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on, pages 336–345. IEEE, 2004.

[46] G. Soares, R. Gheyi, and T. Massoni. Automated behavioral testing of
refactoring engines. IEEE Trans. Software Eng., 39(2):147–162, 2013.

[47] Y. Tao, J. Kim, S. Kim, and C. Xu. Automatically generated patches
as debugging aids: a human study. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 64–74, 2014.

[48] A. Van Deursen and L. Moonen. The video store revisited – thoughts on
refactoring and testing. In Proc. 3rd Int’l Conf. eXtreme Programming
and Flexible Processes in Software Engineering, pages 71–76. Citeseer,
2002.

[49] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring
test code. In M. Marchesi, editor, Proceedings of the 2nd International
Conference on Extreme Programming and Flexible Processes (XP2001),
pages 92–95. University of Cagliari, 2001.

[50] P. Wadler. The essence of functional programming. In Proceedings of the
19th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 1–14. ACM, 1992.

[51] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen. Directed
test suite augmentation: techniques and tradeoffs. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering, pages 257–266. ACM, 2010.

[52] J. Xuan, M. Martinez, F. Demarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus. Nopol: Automatic Repair of Condi-
tional Statement Bugs in Java Programs. IEEE Transactions on Software
Engineering, to appear.

[53] J. Xuan and M. Monperrus. Learning to combine multiple ranking
metrics for fault localization. In Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, pages 191–200.
IEEE, 2014.

[54] J. Xuan and M. Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 52–63.
ACM, 2014.

[55] J. Xuan, X. Xie, and M. Monperrus. Crash reproduction via test case
mutation: let existing test cases help. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, pages 910–913, 2015.

[56] P. Zhang and S. Elbaum. Amplifying tests to validate exception handling
code. In Proceedings of the 34th International Conference on Software
Engineering, pages 595–605. IEEE Press, 2012.

[57] H. Zhong and Z. Su. An empirical study on fixing real bugs. In Pro-
ceedings of the 37th International Conference on Software Engineering
(ICSE). IEEE, 2015.

APPENDIX

CASE STUDIES ON REPAIRING REAL-WORLD BUGS

We evaluate B-Refactoring on three real-world bugs in
Apache Commons Lang. Detailed description on these bugs
can be found in Table VIII. The first case study is in Section
V-A and the other two case studies are as follows.

A. Case study 2

The code snippet in Fig. 4 presents an if-condition bug
with ID 137552 in Apache Commons Lang. In Fig. 4a, the
method mid is to extract a fixed-length substring from a given
position. The original if condition at Line 7 did not deal
with the condition of len < 0, which is expected to return
an empty string. In Fig. 4b, a test case testMid_String
targets this method. Three assertions are shown to explain
the coverage of branches. Two assertions at Lines 3 and 11
cover the else branch of the if condition while the other
assertion at Line 7 covers the then branch. A repair approach,
like Nopol, cannot generate a patch for this bug because the
test case testMid_String covers both branches of the if
condition at Line 7 in the method mid.

We apply B-Refactoring to split the test case into three test
cases, as shown at Lines 6 and 10 in Fig. 4b. Such splitting can
separate the coverage of then and else branches; that is,
each new test case only covers either a then or else branch.
Then the repair approach can generate a patch, len <= -1
&& str.length() < pos, which behaves the same to the
manual patch at Line 6 in Fig. 4a.

B. Case study 3

This bug is with ID 825420 in Apache Commons Lang. Fig.
5 shows a code snippet with a buggy if condition at Line
12. In Fig. 5a, two methods getPackageName(Class)
and getPackageName(String) work on extracting the
package name of a class or a string. The original if condi-
tion missed checking the empty string, i.e., the condition of
className.length() == 0. In Fig. 5b, we show two
test cases that examine the behavior of these two methods.
For the first test case test_getPackageName_Class,
we present two assertions. We do not refactor this test
case because this test case is pure (the first asser-
tion executes the else branch while the second asser-
tion does not execute any branch). For the second test
case test_getPackageName_String, two assertions are
shown. The first one is passing while the second is failing.
Thus, we split this test case into two test cases to distinguish
passing and failing test cases. Such splitting is specifically
designed to support the repair by Nopol.

Based on B-Refactoring, we obtain two test cases, as shown
at Line 16 in Fig. 5b. Then the repair approach can generate
a patch as className.length() == 0. Note that this
patch is different from the real patch because the condition
className == null is ignored. The reason is that in the
original test suite, there exists no test case that validates the
then branch at Line 13. That is, the patch is incorrect.

To generate the same patch as the real one at Line 9, we
manually add one test case test_manually_add at Line
23 in Fig. 5b. This test case ensures the behavior of the
condition className == null. Based on this manually
added test case and the test cases by B-Refactoring, the repair
approach can generate a patch that is the same as the real one.

Summary. In summary, we empirically evaluate our B-
Refactoring technique on three real-world if-condition bugs
from Apache Commons Lang. All these three bugs cannot
be originally repaired by the repair approach, Nopol. The
reason is that one test case covers both the then and else
branches. Then Nopol cannot decide which branch is covered
and cannot generate repair constraints for this test case. With
B-Refactoring, we separate test cases into pure test cases to
cover only a then or else branch. Based on the test cases
after applying B-Refactoring, the first two bugs are correctly
fixed while the third bug is not. For the third bug, one test
case is ignored by developers in the original test suite. By
manually adding a new test case, this bug can also be fixed
via the test suite after B-Refactoring.

1 String mid(String str, int pos, int len) {
2 if (str == null)
3 return null;
4
5 // PATCH:
6 // if (len < 0 || pos > str.length())
7 if (pos > str.length())
8 return "";
9

10 if (pos < 0)
11 pos = 0;
12 if (str.length() <= (pos + len))
13 return str.substring(pos);
14 else
15 return str.substring(pos, pos + len);
16 }

(a) Buggy program

1 void testMid_String() {
2 ...
3 assertEquals("b", StringUtils
4 .mid(FOOBAR, 3, 1));
5
6 // B-Refactoring splits here
7 assertEquals("", StringUtils
8 .mid(FOOBAR, 9, 3));
9

10 // B-Refactoring splits here
11 assertEquals(FOO, StringUtils
12 .mid(FOOBAR, -1, 3));
13 }

(b) Test case

Fig. 4: Code snippets of a buggy program and a test case in Case study 2. The buggy if statement is at Line 7 in Fig. 4a
while the test case in Fig. 4b executes the else, the then, and the else branches of the buggy statement, respectively. Then
B-Refactoring splits the test case into three test cases.

1 String getPackageName(Class cls) {
2 if (cls == null)
3 return StringUtils.EMPTY;
4 return getPackageName(cls.getName());
5 }
6
7 String getPackageName(String className){
8
9 // PATCH: if (className == null

10 || className.length() == 0)
11
12 if (className == null)
13 return StringUtils.EMPTY;
14 while (className.charAt(0) == ’[’)
15 className = className.substring(1);
16 if (className.charAt(0) == ’L’ &&
17 className.charAt(className
18 .length() -1) == ’;’)
19 className = className.substring(1);
20 int i = className.lastIndexOf(
21 PACKAGE_SEPARATOR_CHAR);
22 if (i == -1)
23 return StringUtils.EMPTY;
24 return className.substring(0, i);
25 }

(a) Buggy program

1 // Do not need to be split.
2 void test_getPackageName_Class() {
3 assertEquals("java.util", ClassUtils
4 .getPackageName(Map.Entry.class));
5 assertEquals("", ClassUtils
6 .getPackageName((Class)null));
7 ...
8 }
9

10 void test_getPackageName_String() {
11 ...
12 assertEquals("java.util", ClassUtils
13 .getPackageName(
14 Map.Entry.class.getName()));
15
16 // B-Refactoring splits here
17 assertEquals("", ClassUtils
18 .getPackageName(""));
19 }
20
21 // Manually added test case
22 // to generate a correct condition
23 void test_manually_add() {
24 assertEquals("", ClassUtils
25 .getPackageName((String)null));
26 }

(b) Test cases

Fig. 5: Code snippets of a buggy program and a test case in Case study 3. The buggy if statement is Line 12 of Fig. 5a while
two test case in Fig. 5b executes then and else branches of the buggy statement. B-Refactoring splits the second test case
into two test cases and keeps the first test case. The last test case test_manually_add is manually added for explanation.

	Introduction
	Background and Motivation
	Real-World Example in Automatic Repair: Apache Commons Math 141473
	Automatic Software Repair with Nopol

	B-Refactoring: A Test Code Refactoring Technique
	Basic Concepts
	B-Refactoring
	Example of B-Refactoring
	Framework
	Core Algorithm
	Validation of the Refactored Test Suite

	Implementation
	Test Transformation
	Execution Order
	Handling setUp and tearDown
	Shared Variables in a Test Case

	Empirical Study on B-Refactoring
	Projects
	Empirical Observation on Test Case Purity
	Protocol
	Results

	Empirical Measurement of Refactoring Quality
	Protocol
	Results

	Mutation-based Validation for Refactored Test Suites
	Protocol
	Results

	Applications to Dynamic Analysis
	B-Refactoring for Automatic Repair of Three Bugs
	Protocol
	Case Study

	B-Refactoring for Exception Contract Analysis
	Protocol
	Results

	Discussions
	Differences with Classical Refactoring
	Differences with Our Previous Work
	Performance of B-Refactoring
	Threats to Validity

	Related Work
	Test Code Refactoring
	Automatic Software Repair
	Automatic Analysis of Exception Handling

	Conclusions
	References
	Appendix
	Case study 2
	Case study 3

