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Abstract

Context: Data miners have been widely used in software engineering to, say, generate defect predictors from static code measures.
Such static code defect predictors perform well compared tomanual methods, and they are easy to use and useful to use. Butone
of the “black arts” of data mining is setting the tunings thatcontrol the miner.
Objective: We seek simple, automatic, and very effective method for finding those tunings.
Method: For each experiment with different data sets (from open source JAVA systems), we ran differential evolution as an
optimizer to explore the tuning space (as a first step) then tested the tunings using hold-out data.
Results: Contrary to our prior expectations, we found these tunings were remarkably simple: it only required tens, not thousands,
of attempts to obtain very good results. For example, when learning software defect predictors, this method can quicklyfind tunings
that alter detection precision from 0% to 60%.
Conclusion: Since (1) the improvements are so large, and (2) the tuning isso simple, we need to change standard methods in
software analytics. At least for defect prediction, it is nolonger enough to just run a data miner and present the resultwithout
conducting a tuning optimization study. The implication for other kinds of analytics is now an open and pressing issue.

Keywords: defect prediction, CART, random forest, differen-
tial evolution, search-based software engineering.

1. Introduction

In the 21st century, it is impossible to manually browse all
available software project data. The PROMISE repository of
SE data has grown to 200+ projects [1] and this is just one of
over a dozen open-source repositories that are readily available
to researchers [2]. For example, at the time of this writing (Jan
2016), our web searches show that Mozilla Firefox has over 1.1
million bug reports, and platforms such as GitHub host over 14
million projects.

Faced with this data overload, researchers in empirical SE
use data miners to generatedefect predictors from static code
measures. Such measures can be automatically extracted from
the code base, with very little effort even for very large software
systems [3].

One of the “black arts” of data mining is setting the tuning
parameters that control the choices within a data miner. Prior
to this work, our intuition was that tuning would change the
behavior or a data miner, to some degree. Nevertheless, we
rarely tuned our defect predictors since we reasoned that a data
miner’s default tunings have been well-explored by the devel-
opers of those algorithms (in which case tuning would not lead
to large performance improvements). Also, we suspected that
tuning would take so long time and be so CPU intensive that
the benefits gained would not be worth effort.
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The results of this paper show that the above points are false
since, at least for defect prediction from code attributes:

1. Tuning defect predictors isremarkably simple;

2. And candramatically improve the performance.

Those results were found by exploring six research questions:

• RQ1:Does tuning improve the performance scores of a pre-
dictor? We will show below examples of truly dramatic im-
provement: usually by 5 to 20% and often by much more (in
one extreme case, precision improved from 0% to 60%).

• RQ2: Does tuning change conclusions on what learners are
better than others?Recent SE papers [4, 5] claim that some
learners are better than others. Some of those conclusions
are completely changed by tuning.

• RQ3: Does tuning change conclusions about what factors
are most important in software engineering?Numerous re-
cent SE papers (e.g. [6, 7, 8, 9, 10, 11]) use data miners to
conclude thatthis is more important thanthat for reducing
software project defects. Given the tuning results of this pa-
per, we show that such conclusions need to be revisited.

• RQ4: Is tuning easy?We show that one of the simpler multi-
objective optimizers (differential evolution [12]) worksvery
well for tuning defect predictors.

• RQ5: Is tuning impractically slow?We achieved dramatic
improvements in the performance scores of our data miners
in less than 100 evaluations (!); i.e., very quickly.
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• RQ6: Should data miners be used “off-the-shelf” with their
default tunings?For defect prediction from static code mea-
sures, our answer is an emphatic “no” (and the implication
for other kinds of analytics is now an open and urgent ques-
tion).

Based on our answers to these questions, we strongly advise
that:

• Data miners should not be used “off-the-shelf” with default
tunings.

• Any future paper on defect prediction should include a tun-
ing study. Here, we have found an algorithm called differ-
ential evolution to be a useful method for conducting such
tunings.

• Tuning needs to be repeated whenever data or goals are
changed. Fortunately, the cost of finding good tunings is
not excessive since, at least for static code defect predictors,
tuning is easy and fast.

2. Preliminaries

2.1. Tuning: Important and Ignored

This section argues that tuning is an under-explored software
analytics– particularly in the apparently well-explored field of
defect prediction.

In other fields, the impact of tuning is well understood [13].
Yet issues of tuning are rarely or poorly addressed in the defect
prediction literature. When we tune a data miner, what we are
really doing is changing how a learner applies its heuristics.
This means tuned data miners use different heuristics, which
means they ignore different possible models, which means they
return different models; i.e.how we learn changeswhat we
learn.

Are the impacts of tuning addressed in the defect prediction
literature? To answer that question, in Jan 2016 we searched
scholar.google.com for the conjunction of “data mining” and
“software engineering” and “defect prediction” (more details
can be found at https://goo.gl/Inl9nF). After sorting by the ci-
tation count and discarding the non-SE papers (and those with-
out a pdf link), we read over this sample of 50 highly-cited
SE defect prediction papers. What we found in that sample
was that few authors acknowledged the impact of tunings (ex-
ceptions: [4, 14]). Overall, 80% of papers in our sampledid
not adjust the “off-the-shelf” configuration of the data miner
(e.g. [9, 15, 16]). Of the remaining papers:

• Some papers in our sample explored data super-
sampling [17] or data sub-sampling techniques via
automatic methods (e.g. [14, 15, 17, 18]) or via some
domain principles (e.g. [9, 19, 20]). As an example of the
latter, Nagappan et al. [19] checked if metrics related to
organizational structure were relatively more powerful for
predicting software defects. However, it should be noted that
these studies varied the input data but not the “off-the-shelf”
settings of the data miner.

• A few other papers did acknowledge that one data miner may
not be appropriate for all data sets. Those papers tested dif-
ferent “off-the-shelf” data miners on the same data set. For
example, Elish et al.[16] compared support vector machines
to other data miners for the purposes of defect prediction.
SVM’s execute via a “kernel function” which should be spe-
cially selected for different data sets and the Elish et al. paper
makes no mention of any SVM tuning study. To be fair to
Elish et al., we hasten to add that we ourselves have pub-
lished papers using “off-the-shelf” tunings [15] since, prior
to this paper it was unclear to us how to effectively navigate
the large space of possible tunings.

Over our entire sample, there was only one paper that conducted
a somewhat extensive tuning study. Lessmann et al.[4] tuned
parameters for some of their algorithms using agrid search;
i.e. divide allC configuration options intoN values, then try all
NC combinations. This is a slow approach– we have explored
grid search for defect prediction and found it takes days to ter-
minate [15]. Not only that, we found that grid search can miss
important optimizations [21]. Every grid has “gaps” between
each grid division which means that a supposedly rigorous grid
search can still miss important configurations [13]. Bergstra
and Bengio [13] comment that for most data sets only a few
of the tuning parameters really matter– which means that much
of the runtime associated with grid search is actually wasted.
Worse still, Bergstra and Bengio comment that the important
tunings are different for different data sets– a phenomenonthat
makes grid search a poor choice for configuring data mining
algorithms for new data sets.

Since the Lessmann et al. paper, much progress has been
made in configuration algorithms and we can now report that
finding useful tunings is very easy. This result is both novel
and unexpected. A standard run of grid search (and other evo-
lutionary algorithms) is that optimization requires thousands, if
not millions, of evaluations. However, in a result that we found
startling, thatdifferential evolution(described below) can find
useful settings for learners generating defect predictorsin less
than 100 evaluations (i.e. very quickly). Hence, the “prob-
lem” (that tuning changes the conclusions) is really an exciting
opportunity. At least for defect prediction, learners are very
amenable to tuning. Hence, they are also very amenable to sig-
nificant performance improvements. Given the low number of
evaluations required, then we assert that tuning should be stan-
dard practice for anyone building defect predictors.

2.2. You Can’t Always Get What You Want

Having made the case that tuning needs to be explored more,
but before we get into the technical details of this paper, this
section discusses some general matters about setting goalsdur-
ing tuning experiments.

This paper characterizes tuning as an optimization problem
(how to change the settings on the learner in order to best im-
prove the output). With such optimizations, it is not always
possible to optimize for all goals at the same time. For exam-
ple, the following text does not show results for tuning on recall
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or false alarms since optimizingonly for those goals can lead to
some undesirable side effects:

• Recall reports the percentage of predictions that are actual
examples of what we are looking for. When we tune for
recall, we can achieve near 100% recall– but at the cost of a
near 100% false alarms.

• False alarmsis the percentage of other examples that are re-
ported (by the learner) to be part of the targeted examples.
When we tune forfalse alarms, we can achieve near zero
percent false alarm rates by effectively turning off the detec-
tor (so the recall falls to nearly zero).

Accordingly, this paper explores performance measures that
comment on all target classes: see the precision and “F” mea-
sures discussed below: seeOptimization Goals. That said, we
are sometimes asked what good is a learner if it optimizes for
(say) precision at the expense of (say) recall.

Our reply is that software engineering is a very diverse enter-
prise and that different kinds of development need to optimize
for different goals (which may not necessarily be “optimizefor
recall”):

• Anda, Sjoberg and Mockus are concerned withreproducibil-
ity and so assess their models using the the “coefficient of
variation” (CV = stddev

mean) [22].

• Arisholm & Briand [23], Ostrand & Weyeuker [24] and Rah-
man et al. [25] are concerned with reducing the work load
associated with someone else reading a learned model, then
applying it. Hence, they assess their models usingreward;
i.e. the fewest lines of code containing the most bugs.

• Yin et al. are concerned aboutincorrect bug fixes; i.e. those
that require subsequent work in order to complete the bug fix.
These bugs occur when (say) developers try to fix parts of the
code where they have very little experience [26]. Hence, they
assess a learned model using a measure that selects for the
most number of bugs in regions thatthe most programmers
have worked with before.

• For safety critical applications, high false alarm rates are ac-
ceptable if the cost of overlooking critical issues outweighs
the inconvenience of inspecting a few more modules.

• When rushing a product to market, there is a business case
to avoid the extra rework associated with false alarms. In
that business context, managers might be willing to lower
the recall somewhat in order to minimize the false alarms.

• When the second author worked with contractors at NASA’s
software independent verification and validation facility, he
found new contractors only reported issues that were most
certainly important defects; i.e. they minimized false alarms
even if that damaged their precision (since, they felt, it was
better to be silent than wrong). Later on, once those contrac-
tors had acquired a reputation of being insightful members
of the team, they improved their precision scores (even if it
means some more false alarms).

Accordingly, this paper does not assume that (e.g.) minimizing
false alarms is more important than maximizing precision or
recall. Such a determination depends on business conditions.

Rather, what we can show examples where changing opti-
mization goals can also change the conclusions made from that
learner on that data. More generally, we caution that it is impor-
tant not to overstate empirical results from analytics. Those re-
sults need to be expressedalong withthe context within which
they are relevant (and by “context”, we mean the optimization
goal).

2.3. Notes on Defect Prediction

This section discusses defect prediction, which is the partic-
ular task explored by our optimizers.

Human programmers are clever, but flawed. Coding adds
functionality, but also defects. Hence, software sometimes
crashes (perhaps at the most awkward or dangerous moment)
or delivers the wrong functionality. For a very long list of
software-related errors, see Peter Neumann’s “Risk Digest” at
catless.ncl.ac.uk/Risks.

Since programming inherently introduces defects into pro-
grams, it is important to test them before they’re used. Testing
is expensive. Software assessment budgets are finite while as-
sessment effectiveness increases exponentially with assessment
effort. For example, for black-box testing methods, alinear
increase in the confidenceC of finding defects can takeexpo-
nentiallymore effort:

• A randomly selected input to a program will find a fault with
probabilityp.

• After N random black-box tests, the chances of the inputs
not revealing any fault is(1− p)N.

• Hence, the chancesC of seeing the fault is 1− (1− p)N

which can be rearranged toN(C, p) = log(1−C)/log(1−p).

• For example,N(0.90,10−3) = 2301 butN(0.98,10−3) =
3901; i.e. nearly double the number of tests.

Exponential costs quickly exhaust finite resources so standard
practice is to apply the best available methods on code sections
that seem most critical. But any method that focuses on partsof
the code can blind us to defects in other areas. Somelightweight
sampling policyshould be used to explore the rest of the sys-
tem. This sampling policy will always be incomplete. Never-
theless, it is the only option when resources prevent a complete
assessment of everything.

One such lightweight sampling policy is defect predictors
learned from static code attributes. Given software described
in the attributes of Table 1, data miners can learn where the
probability of software defects is highest.

The rest of this section argues that such defect predictors are
easy to use, widely-used, andusefulto use.

Easy to use: Static code attributes can be automatically
collected, even for very large systems [3]. Other methods,
like manual code reviews, are far slower and far more labor-
intensive. For example, depending on the review methods,
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amc average method complexity e.g. number of JAVA byte codes
avg cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parametersin every method divided by a multiplication of number of

different method parameter types in whole class and number of methods.
cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to thetotal number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)

lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.
locm3 another lack of cohesion measure if m,a are the number ofmethods,attributesin a class number andµ(a) is the number of methods accessing an attribute,

thenlcom3= (( 1
a ∑a

j µ(aj ))−m)/(1−m).
loc lines of code

max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class
mfa functional abstraction number of methods inherited by a class plus number of methodsaccessible by member methods of the class
moa aggregation count of the number of data declarations (class fields) whosetypes are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class
defect defect Boolean: where defects found in post-release bug-trackingsystems.

Table 1: OO measures used in our defect data sets.

8 to 20 LOC/minute can be inspected and this effort repeats
for all members of the review team, which can be as large as
four or six people [27].Widely used:Researchers and indus-
trial practitioners use static attributes to guide software quality
predictions. Defect prediction models have been reported at
Google [28]. Verification and validation (V&V) textbooks [29]
advise using static code complexity attributes to decide which
modules are worth manual inspections.

Useful: Defect predictors often find the location of 70% (or
more) of the defects in code [15]. Defect predictors have some
level of generality: predictors learned at NASA [15] have also
been found useful elsewhere (e.g. in Turkey [30, 31]). The suc-
cess of this method in predictors in finding bugs is markedly
higher than other currently-used industrial methods such as
manual code reviews. For example, a panel atIEEE Metrics
2002 [32] concluded that manual software reviews can find
≈60% of defects. In another work, Raffo documents the typical
defect detection capability of industrial review methods:around
50% for full Fagan inspections [33] to 21% for less-structured
inspections.

Not only do static code defect predictors perform well com-
pared to manual methods, they also are competitive with cer-
tain automatic methods. A recent study at ICSE’14, Rahman et
al. [34] compared (a) static code analysis tools FindBugs, Jlint,
and Pmd and (b) static code defect predictors (which they called
“statistical defect prediction”) built using logistic regression.
They found no significant differences in the cost-effectiveness
of these approaches. Given this equivalence, it is significant to
note that static code defect prediction can be quickly adapted
to new languages by building lightweight parsers that find in-
formation like Table 1. The same is not true for static code
analyzers– these need extensive modification before they can
be used on new languages.

2.4. Notes on Data Miners

There are several ways to make defect predictors using
CART [35], Random Forest [36], WHERE [37] and LR (logis-
tic regression). For this study, we use CART, Random Forest
and LR versions from SciKitLearn [38] and WHERE, which

is available from github.com/ai-se/where. We use these algo-
rithms for the following reasons.

CART and Random Forest were mentioned in a recent IEEE
TSE paper by Lessmann et al. [4] that compared 22 learners for
defect prediction. That study ranked CART worst and Random
Forest as best. In a demonstration of the impact of tuning, this
paper shows we canrefutethe conclusions of Lessmann et al.
in the sense that, after tuning, CART performs just as well as
Random Forest.

LR was mentioned by Hall et al. [5] as usually being as good
or better as more complex learners (e.g. Random Forest). In a
finding that endorses the Hall et al. result, we show that untuned
LR performs better than untuned Random Forest (at least, for
the data sets studied here). However, we will show that tuning
raises doubts about the optimality of the Hall et al. recommen-
dation.

Finally, this paper uses WHERE since, as shown below, it
offers an interesting case study on the benefits of tuning.

2.5. Learners and Their Tunings

Our learners use the tuning parameters of Table 2. This sec-
tion describes those parameters. The default parameters for
CART and Random Forest are set by the SciKitLearn authors
and the default parameters for WHERE-based learner are set
via our own expert judgement. When we say a learner is used
“off-the-shelf”, we mean that they use the defaults shown in
Table 2.

As to the value of those defaults, it could be argued that these
defaults are not the best parameters for practical defect predic-
tion. That said, prior to this paper, two things were true:

• Many data scientists in SE use the standard defaults in their
data miners, without tuning (e.g. [9, 10, 11, 15]).

• The effort involved to adjust those tunings seemed so oner-
ous, that many researchers in this field were content to take
our prior advice of “do not tune... it is just too hard” [39].

As to why we used the ”Tuning Range” shown in Table 2, and
not some other ranges, we note that (1) those ranges included

4



Learner Name Parameters Default
Tuning
Range

Description

Where-based
Learner

threshold 0.5 [0.01,1] The value to determine defective or not .
infoPrune 0.33 [0.01,1] The percentage of features to consider for the best split to build its final decision tree.

min samplesplit 4 [1,10] The minimum number of samples required to split an internal node of its final decision tree.
min Size 0.5 [0.01,1] Finds minsamplesleaf in the initial clustering tree usingn samplesmin Size.
wriggle 0.2 [0.01, 1] The threshold to determine which branch in the initial clustering tree to be pruned

depthMin 2 [1,6] The minimum depth of the initial clustering tree below whichno pruning for the clustering tree.
depthMax 10 [1,20] The maximum depth of the initial clustering tree.

wherePrune False T/F Whether or not to prune the initial clustering tree.
treePrune True T/F Whether or not to prune the final decision tree.

CART

threshold 0.5 [0,1] The value to determine defective or not.
max feature None [0.01,1] The number of features to consider when looking for the best split.

min samplesplit 2 [2,20] The minimum number of samples required to split an internal node.
min samplesleaf 1 [1,20] The minimum number of samples required to be at a leaf node.

max depth None [1, 50] The maximum depth of the tree.

Random
Forests

threshold 0.5 [0.01,1] The value to determine defective or not.
max feature None [0.01,1] The number of features to consider when looking for the best split.

max leaf nodes None [1,50] Grow trees with maxleaf nodes in best-first fashion.
min samplesplit 2 [2,20] The minimum number of samples required to split an internal node.
min samplesleaf 1 [1,20] The minimum number of samples required to be at a leaf node.

n estimators 100 [50,150] The number of trees in the forest.

Logistic Regression This study uses untuned LR in order to check a conclusion of [5].

Table 2: List of parameters tuned by this paper.

the defaults; (2) the results shown below show that by explor-
ing those ranges, we achieved large gains in the performance
of our defect predictors. This is not to say thatlarger tuning
ranges might not result ingreaterimprovements. However, for
the goals of this paper (to show that some tunings do matter),
exploring just these ranges shown in Table 2 will suffice.

As to the details of these learners, LR is a parametric mod-
eling approach. Givenf = β0+∑i βixi , wherexi is some mea-
surement in a data set, andβi is learned via regression, LR con-
verts that into a function 0≤ g≤ 1 usingg= 1/

(

1+e− f
)

. This
function reports how much we believe in a particular class.

CART, Random Forest, and WHERE-based learners are all
tree learners that divide a data set, then recur on each split.
All these learners generate numeric predictions which are con-
verted into binary “yes/no” decisions via Equation 1.

inspect=
{

di ≥ T → Yes

di < T → No,
(1)

wheredi is the number of observed issues andT is some thresh-
old defined by an engineering judgement; we useT = 1.

The splitting process is controlled by numerous tuning pa-
rameters. If data contains more thanmin samplesplit, then a
split is attempted. On the other hand, if a split contains no
more thanmin samplesleaf, then the recursion stops. CART
and Random Forest use a user-supplied constant for this pa-
rameter while WHERE-based learner firstly computes this pa-
rameterm=min samplesleaf from the size of the data sets via
m = sizemin size to build an initial clustering tree. Note that
WHERE buildstwo trees: the initial clustering tree (to find sim-
ilar sets of data) then a final decision tree (to learn rules that
predict for each similar cluster). A frequently asked question
is why does WHERE build two trees– would not a single tree
suffice? The answer is, as shown below, tuned WHERE’s twin-
tree approach generates very precise predictors. As to the rest
of WHERE’s parameters, the parametermin sample split con-

trols the construction of the final decision tree (so, for WHERE-
based learner,min sizeandmin samplesplit are the parameters
to be tuned).

These learners use different techniques to explore the splits:

• CART finds the attributes whose ranges contain rows with
least variance in the number of defects. If an attribute ranges
r i is found inni rows each with a defect count variance of
vi , then CART seeks the attributes whose ranges minimizes
∑i

(√
vi×ni/(∑i ni)

)

.

• Random Forest divides data like CART then buildsF > 1
trees, each time using some random subset of the attributes.

• When building the initial cluster tree, WHERE projects the
data on to a dimension it synthesizes from the raw data using
a process analogous to principle component analysis [40]

WHERE divides at the median point of that projection. On
recursion, this generates the initial clustering tree, theleaves
of which are clusters of very similar examples. After that,
when building the final decision tree, WHERE pretends
its clusters are “classes”, then asks the InfoGain algorithm
of the Fayyad-Irani discretizer [41], to rank the attributes,
whereinfoPruneis used. WHERE’s final decision tree gen-
erator then ignores everything except the topinfoPruneper-
cent of the sorted attributes.

Some tuning parameters are learner specific:

• Max featureis used by CART and Random Forest to select
the number of attributes used to build one tree. CART’s de-
fault is to use all the attributes while Random Forest usually
selects the square root of the number of attributes.

• Max leaf nodesis the upper bound on leaf notes generated
in a Random Forest.

• Max depthis the upper bound on the depth of the CART tree.
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• WHERE’s tree generation will always split up todepthMin
number of branches. After that, WHERE will only split data
if the mean performance scores of the two halves is “trivially
small” (where “trivially small” is set by thewriggleparame-
ter).

• WHERE’s tree prunesetting controls how WHERE prunes
back superfluous parts of the final decision tree. If a decision
sub-tree and its parent have the same majority cluster (one
that occurs most frequently), then iftree prune is enabled,
we prune that decision sub-tree.

2.6. Tuning Algorithms

How should researchers select which optimizers to apply
to tuning data miners? Cohen [42] advises comparing new
methods against the simplest possible alternative. Similarly,
Holte [43] recommends using very simple learners as a kind of
“scout” for a preliminary analysis of a data set (to check if that
data really requires a more complex analysis). Accordingly, to
find our “scout”, we used engineering judgement to sort candi-
date algorithms from simplest to complex. For example, here
is a list of optimizers used widely in research:simulated an-
nealing [44, 45]; variousgenetic algorithms[46] augmented
by techniques such asdifferential evolution[12], tabu search
andscatter search[47, 48, 49, 50];particle swarm optimiza-
tion [51]; numerousdecompositionapproaches that use heuris-
tics to decompose the total space into small problems, then ap-
ply a response surface methods[52, 53]. Of these, the simplest
are simulated annealing (SA) and differential evolution (DE),
each of which can be coded in less than a page of some high-
level scripting language. Our reading of the current literature is
that there are more advocates for differential evolution than SA.
For example, Vesterstrom and Thomsen [54] found DE to be
competitive with particle swarm optimization and other GAs.

DEs have been applied before for parameter tuning (e.g.
see [55, 56]) but this is the first time they have been applied
to optimize defect prediction from static code attributes.The
pseudocode for differential evolution is shown in Algorithm 1.
In the following description, superscript numbers denote lines
in that pseudocode.

DE evolves aNewGenerationof candidates from a current
Population. Our DE’s lose one “life” when the new population
is no better than current one (terminating when “life” is zero)L4.
Each candidate solution in thePopulationis a pair of(Tunings,
Scores). Tuningsare selected from Table 2 andScorescome
from training a learner using those parameters and applyingit
test dataL23−L27.

The premise of DE is that the best way to mutate the existing
tunings is toExtrapolateL28 between current solutions. Three
solutionsa,b,c are selected at random. For each tuning param-
eteri, at some probabilitycr, we replace the old tuningxi with
yi . For booleans, we useyi = ¬xi (see line 36). For numerics,
yi = ai + f × (bi−ci) where f is a parameter controlling cross-
over. Thetrim functionL38 limits the new value to the legal
range min..max of that parameter.

The main loop of DEL6 runs over thePopulation, replacing
old items with newCandidates (if new candidate is better). This

Algorithm 1 Pseudocode for DE with Early Termination
Input: np= 10, f = 0.75,cr = 0.3, life = 5, Goal∈ {pd, f , ...}
Output: Sbest

1: function DE(np, f , cr, life, Goal)
2: Population← InitializePopulation(np)
3: Sbest←GetBestSolution(Population)
4: while life > 0 do
5: NewGeneration← /0
6: for i = 0→ np−1 do
7: Si ← Extrapolate(Population[i],Population,cr, f )
8: if Score(Si ) ¿Score(Population[i]) then
9: NewGeneration.append(Si)

10: else
11: NewGeneration.append(Population[i])
12: end if
13: end for
14: Population← NewGeneration
15: if ¬ Improve(Population) then
16: li f e−= 1
17: end if
18: Sbest← GetBestSolution(Population)
19: end while
20: return Sbest
21: end function
22: function SCORE(Candidate)
23: set tuned parameters according toCandidate
24: model←TrainLearner()
25: result←TestLearner(model)
26: return Goal(result)
27: end function
28: function EXTRAPOLATE(old, pop,cr, f )
29: a,b,c← threeOthers(pop,old)
30: new f← /0
31: for i = 0→ np−1 do
32: if cr < random() then
33: new f.append(old[i])
34: else
35: if typeof(old[i]) == bool then
36: new f.append(notold[i])
37: else
38: new f.append(trim(i,(a[i]+ f ∗ (b[i]−c[i]))))
39: end if
40: end if
41: end for
42: return new f
43: end function

means that, as the loop progresses, thePopulationis full of in-
creasingly more valuable solutions. This, in turn, also improves
the candidates, which areExtrapolated from thePopulation.

For the experiments of this paper, we collect performance
values from a data mining, from which aGoal function extracts
one performance valueL26 (so we run this code many times,
each time with a differentGoalL1). Technically, this makes
a single objectiveDE (and for notes on multi-objective DEs,
see [57, 58, 59]).

3. Experimental Design

3.1. Data Sets

Our defect data comes from the PROMISE repository
(http://openscience.us/repo/defect) and pertains to open source
Java systems defined in terms of Table 1:ant, camel, ivy, jedit,
log4j, lucene, poi, synapse, velocityandxerces.

An important principle in data mining is not to test on the
data used in training. There are many ways to design a experi-
ment that satisfies this principle. Some of those methods have
limitations; e.g. leave-one-outis too slow for large data sets
andcross-validationmixes up older and newer data (such that
data from thepastmay be used to test onfuture data).

6
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Dataset antV0 antV1 antV2 camelV0 camelV1 ivy jeditV0 jeditV1 jeditV2
training 20/125 40/178 32/293 13/339 216/608 63/111 90/272 75/306 79/312
tuning 40/178 32/293 92/351 216/608 145/872 16/241 75/306 79/312 48/367
testing 32/293 92/351 166/745 145/872 188/965 40/352 79/312 48/367 11/492
Dataset log4j lucene poiV0 poiV1 synapse velocity xercesV0xercesV1
training 34/135 91/195 141/237 37/314 16/157 147/196 77/162 71/440
tuning 37/109 144/247 37/314 248/385 60/222 142/214 71/440 69/453
testing 189/205 203/340 248/385 281/442 86/256 78/229 69/453 437/588

Table 3: Data used in this experiment. E.g., the top left dataset has 20 defective classes out of 125 total. See§3.1 for explanation oftraining, tuning, testingsets.

To avoid these problems, we used an incremental learning ap-
proach. The following experiment ensures that the trainingdata
was created at some time before the test data. For this experi-
ment, we use data sets with at least three consecutive releases
(where releasei +1 was built after releasei). When tuning a
learner,

• Thefirst release was used on line 24 of Algorithm 1 to build
some model using some the tunings found in someCandi-
date.

• The secondrelease was used on line 25 of Algorithm 1 to
test the candidate model found on line 24.

• Finally thethird release was used to gather the performance
statistics reported below from the best model found by DE.

To be fair for the untuned learner, thefirst and secondre-
leases used in tuning experiments will be combined as the train-
ing data to build a model. Then the performance of this untuned
learner will be evaluated by the samethird release as in the tun-
ing experiment.

Some data sets have more than three releases and, for those
data, we could run more than one experiment. For example,
ant has five versions in PROMISE so we ran three experiments
called V0,V1,V2:

• AntV0: first, second, third = versions 1, 2, 3

• AntV1: first, second, third = versions 2, 3, 4

• AntV2: first, second, third = versions 3, 4, 5

These data sets are displayed in Table 3.

3.2. Optimization Goals

Recall from Algorithm 1 that we call differential evolution
once for each optimization goal. This section lists those op-
timization goals. Let{A,B,C,D} denote the true negatives,
false negatives, false positives, and true positives (respectively)
found by a binary detector. Certain standard measures can be
computed fromA,B,C,D, as shown below. Note that forp f ,
thebetterscores aresmallerwhile for all other scores, thebet-
ter scores arelarger.

pd= recall = D/(B+D)

p f = C/(A+C)

prec= precision= D/(D+C)

F = 2∗ pd∗ prec/(pd+ prec)

The rest of this paper explores tuning forprecandF. As dis-
cussed in§2.2, our point is not that these are best or most im-
portant optimization goals. Indeed, the list of “most important”

data sets, sorted
1 4 8 12 17

-50

-25

0

25

50

100
precision

WHERE
CART
R.Forest

data sets, sorted
1 4 8 12 17

-50

-25

0

25

50

100
F

WHERE
CART
R.Forest

Figure 1: Deltas in performance seen in Table 4 (left) and Table 5 (right) between tuned
and untuned learners. Tuning improves performance when thedeltas are above zero.

goals is domain-specific (see§2.2) and we only explore these
two to illustrate how conclusions can change dramatically when
moving from one goal to another.

4. Experimental Results

In the following, we explore the effects of tuning WHERE,
Random Forest, and CART. LR will be used, untuned, in order
to check one of the recommendations made by Hall et al. [5].

4.1. RQ1: Does Tuning Improve Performance?

Figure 1 says that the answer to RQ1 is “yes”– tuning has a
positive effect on performance scores. This figure sorts deltas
in the precision and the F-measure between tuned and untuned
learners. Our reading of this figure is that, overall, tuningrarely
makes performance worse and often can make it much better.

Table 4 and Table 5 show the the specific values seen before
and after tuning withprecisionand“F” as different optimiza-
tion goals(the corresponding “F” and precision values for Ta-
ble 4 and Table 5 are not provided for the space limitation). For
each data set, the maximum precision or “F” values for each
data set are shown inbold. As might have been predicted by
Lessmann et al. [4], untuned CART is indeed the worst learner
(only one of its untuned results is best andbold). And, in 12

17
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WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned

antV0 0 35 15 60 21 44
antV1 0 60 54 56 67 50
antV2 45 55 42 52 56 67

camelV0 20 30 30 50 28 79
camelV1 27 28 38 28 34 27

ivy 25 21 21 26 23 20
jeditV0 34 37 56 78 52 60
jeditV1 30 42 32 64 32 37
jeditV2 4 22 6 17 4 6

log4j 96 91 95 98 95 100
lucene 61 75 67 70 63 77
poiV0 70 70 65 71 67 69
poiV1 74 76 72 90 78 100

synapse 61 50 50 100 60 60
velocity 34 44 39 44 40 42

xercesV0 14 17 17 14 28 14
xercesV1 86 54 72 100 78 27

Table 4: Precision results (best results shown inbold).

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned

antV0 0 20 20 40 28 38
antV1 0 38 37 49 38 49
antV2 47 50 45 49 57 56

camelV0 31 28 39 28 40 30
camelV1 34 34 38 32 42 33

ivy 39 34 28 40 35 33
jeditV0 45 47 56 57 63 59
jeditV1 43 44 44 47 46 48
jeditV2 8 11 10 10 8 9

log4j 47 50 53 37 60 47
lucene 73 73 65 72 70 76
poiV0 50 74 31 64 45 77
poiV1 75 78 68 69 77 78

synapse 49 56 43 60 52 53
velocity 51 53 53 51 56 51

xercesV0 19 22 19 26 34 21
xercesV1 32 70 34 35 42 71

Table 5: F-measure results (best results shown inbold).

cases, the untuned Random Forest performs better than or equal
to untuned CART in terms of precision.

That said, tuning can improve those poor performing detec-
tors. In some cases, the median changes may be small (e.g.
the “F” results for WHERE and Random Forests) but even in
those cases, there are enough large changes to motivate the use
of tuning. For example:

• For “F” improvement, there are two improvements over 25%
for both WHERE and Random Forests. Also, inpoiV0, all
untuned learners report “F” of under 50%, tuning changes
those scores by 25%. Finally, note thexercesV1result for
the WHERE learner. Here, tuning changes precision from
32% to 70%.

• Regarding precision, forantV0, andantV1untuned WHERE
reports precision of 0. But tuned WHERE scores 35 and 60
(the similar pattern can seen in “F”).

4.2. RQ2: Does Tuning Change a Learner’s Ranking ?

Researchers often use performance criteria to assert that one
learner is better than another [4, 5, 15]. For example:

1. Lessmann et al. [4] conclude that Random Forest is con-
sidered to be statistically better than CART.

2. Also, in Hall et al.’s systematic literature review[5], it is
argued that defect predictors based on simple modeling

techniques such as LR perform better than “complicated”
techniques such as Random Forest. To explain that com-
ment, we note that by three measures, Random Forest is
more complicated than LR:

(a) CART builds one model while Random Forest builds
many models.

(b) LR is just a model construction tool while Random
Forest needs both a tool to construct its forestand
a second tool to infer some conclusion from all the
members of that forest.

(c) the LR model can be printed in a few lines while the
multiple models learned by Random Forest model
would take up multiple pages of output.

Given tuning, how stable are these conclusions? Before answer-
ing this issue, we digress for two comments.

Firstly, it is important to comment on why it is so important
to check the conclusions of these particular papers. These pa-
pers are prominent publications (to say the least). Hall et al. [5]
is the fourth most-cited IEEE TSE paper for 2009 to 2014 with
176 citations (see goo.gl/MGrGr7) while the Lessmann et al.
paper [4] has 394 citations (see goo.gl/khTp97)– which is quite
remarkable for a paper published in 2009. Given the promi-
nence of these papers, researchers might believe it is appropri-
ate to use their advice without testing that advice on local data
sets.

Secondly, while we are critical of the results of Lessmann et
al. and Hall et al., it needs to be said that their analysis was
excellent and exemplary given the state-of-the-art of the tools
used when those papers were written. While Hall et al. did not
perform any new experiments, their summarization of so many
defect prediction papers has not been equalled before (or since).
As to the Lessmann et al. paper, they compared 22 data miners
using various data sets (mostly from NASA) [4]. In that study,
some learners were tuned using manual methods (C4.5, CART
and Random Forest) and some, like SVM-Type learners, were
tuned by automatic grid search (for more on grid search, see
§2.1).

That said, our tuning results show that it is time to revise the
recommendations of those papers. Figure 2 comments on the
advice from Hall et al. (that LR is better than Random Forest)L

• In a result that might have been predicted by Hall et al., un-
tuned Random Forests performs comparatively worse than
Logistic Regression. Specifically, untuned Random Forest
performs worse than Logistic regression in 13 out of 17 data
sets.

• However, it turns out that advice is sensitive to the tunings
used with Random Forest. After tuning, we find that tuned
Random Forest loses to Logistic Regression in only 6 out of
17 data sets.

As to Lessmann et al.’s advice (that Random Forest is better
than CART), in Table 4 and Table 5, we saw those counter-
examples to that statement. Recall in those tables, tuned CART
are better than or equal to tuned Random Forest in12

17 and 7
17
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Figure 2: Comparison between Logistic Regression and Random Forest before and after
tuning.

data sets in terms of precision and F-measure, respectively.
Prior to tuning experiments, those numbers are5

17 and 1
17. Re-

sults from the non-parametric Kolmogorov-Smirnov(KS) Test
show that the performance scores of tuned CART and tuned
Random Forest are not statistically different. Note that Ran-
dom Forest is not significantly better than CART, which would
not have been predicted by Lessmann et al.

Hence we answer RQ2 as “yes”: tuning can change how data
miners are comparatively ranked.

4.3. RQ3: Does Tuning Select Different Project Factors?

Researchers often use data miners to test what factors have
most impact on software projects [6, 7, 8, 9, 10, 11]. Table 6
comments that such tests are unreliable since the factors se-
lected by a data miner are much altered before and after tuning.

Table 6 shows what features are found in the trees generated
by the WHERE algorithm (bold shows the features found by the
trees from tuned WHERE; plain text shows the features seen in
the untuned study). Note that different features are selected
depending on whether or not we tune an algorithm.

For example, considermfa which is the number of methods
inherited by a class plus the number of methods accessible by
member methods of the class. For both goals (precision and
“F”) mfa is selected for 8 and 5 data sets, for the untuned and
tuned data miner (respectively). Similar differences are seen
with other attributes.

As to why different tunings select for different features, recall
from §2.1 that tuning changes how data miners heuristically ex-
plore a large space of possible models. As we change how that
exploration proceeds, so we change what features are found by
that exploration.

In any case, our answer to RQ3 is “yes”, tuning changes our
conclusions about what factors are most important in software
engineering. Hence, many old papers need to be revisited and

Data set Precision F

antV0 rfc None
mfa, loc, cam, dit, dam,
lcom3

mfa, loc, cam, dit, dam,
lcom3

camelV0 mfa, wmc, lcom3 None
mfa, wmc, rfc, loc, cam,
lcom3

mfa, wmc, rfc, loc, cam,
lcom3

ivy cam, dam, npm, loc, rfc,
wmc

cam, dam, npm, loc, rfc,
wmc

loc, cam, dam, wmc,
lcom3

loc, cam, dam, wmc,
lcom3

jeditV0 mfa, dam, loc mfa, dam, loc
mfa, lcom3, dam, dit, ic mfa, lcom3, dam, dit, ic

log4j loc, ic, dit mfa, wmc, rfc, loc, npm
mfa, lcom3, loc, ic mfa, lcom3, loc, ic

lucene dit, cam, wmc, lcom3,
dam, rfc, cbm, mfa, ic

dit, lcom3, dam, mfa

dit, cam, dam, ic dit, cam, dam, cbm, ic

poiV0 mfa, amc, dam mfa, amc, dam
mfa, loc, amc, dam, wmc,
lcom

mfa, loc, amc, dam, wmc,
lcom

synapse loc, dit, rfc, cam, wmc,
dam, lcom, mfa, lcom3

dam

loc, mfa, cam, lcom, dam,
lcom3

loc, mfa, cam, lcom, dam,
lcom3

velocity dit, wmc, cam, rfc, cbo,
moa, dam

mfa, dit

dit, dam, lcom3, ic, mfa,
cbm

dit, dam, lcom3, ic, mfa

xercesV0 wmc cam, dam, avg cc, loc,
wmc, dit, mfa, ce, lcom3

wmc, mfa, lcom3, cam,
dam

wmc, mfa, lcom3, cam,
dam

Table 6: Features selected by tuned WHERE with different goals: bold features are those
found useful by the tuned WHERE. Also, features shown in plain text are those found
useful by the untuned WHERE.

data sets, sorted
1 4 8 12 17

-50

0

50

100
Precision

WHERE
CART
R.Forest

data sets, sorted
1 4 8 12 17

-50

0

50

100
F

WHERE
CART
R.Forest

Figure 3: Deltas in performance betweennp = 10 and the recommended np’s. The rec-
ommended np is better when deltas are above zero.np = 90, 50 and 60are recommended
population size for WHERE, CART and Random Forest by Storn.

perhaps revised [6, 7, 8, 9, 10, 11]. For example, one of us
(Menzies) used data miners to assert that some factors were
more important than others for predicting successful software
reuse [8]. That assertion should now be doubted since Menzies
did not conduct a tuning study before reporting what factorsthe
data miners found were most influential.

4.4. RQ4: Is Tuning Easy?

In terms of the search space explored via tuning, optimizing
defect prediction from static code measures is muchsmaller
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Precision F
Learner CART WHERE CART WHERE
CART - 0.41 - 0.24

R. Forest 0.12 0.35 0.18 0.18

Table 7: Kolmogorov-Smirnov Tests for distributions of Figure 3

than the standard optimization.
To see this, recall from Algorithm 1 that DE explores aPop-

ulation of sizenp = 10. This is a very small population size
since Rainer Storn (one of the inventors of DE) recommends
settingnp to be ten times larger than the number of attributes
being optimized [12].

From Table 2, we see that Storn would therefore recommend
npvalues of 90, 50, 60 for WHERE, CART and Random Forest
(respectively). Yet we achieve our results using a constantnp =
10; i.e. 10

90,
10
50,

10
60 of the recommended search space.

To justify that np = 10 is enough, we did another tuning
study, where all the settings were the same as before but we
setnp = 90, np = 50andnp = 60 for WHERE, CART and Ran-
dom Forest, respectively (i.e. the settings as recommendedby
Storn). The tuning performance of learners was evaluated by
precision and “F” as before. To compare performance of each
learner with differentnp’s, we computed the delta in the perfor-
mance betweennp = 10andnpusing any of{90, 50, 60}.

Those deltas, shown in Figure 3, are sorted along the x-axis.
In those plots, a zero or negativey value means thatnp = 10
performs as well or better thannp∈ {90,50,60}. One technical
aside: the data set orderings in Figure 3 on the x-axis are not
the same (that is, ifnp> 10was useful for optimizing one data
set’s precision score, it was not necessary for that data set’s F-
measure score).

Figure 3 shows that the median improvement is zero; i.e.np
= 10 usually does as well as anything else. This observation is
supported by the KS results of Table 7. At a 95% confidence,
the KS threshold is 1.36

√

34/(17∗17)= 0.46, which is greater
than the values in Figure 3. That is, no result in Figure 3 is
significantly different to any other– which is to say that there is
no evidence thatnp = 10 is a poor choice of search space size.

Another measure showing that tuning is easy (for static code
defect predictors) is the number of evaluations required tocom-
plete optimization (see next section). That is, we answer RQ4
as “yes”, tuning is surprisingly easy– at least for defect predic-
tors and using DE.

4.5. RQ5: Is Tuning Impractically Slow?

The number of evaluations and runtime used by our opti-
mizers are shown in Table 8 and Table 9. WHERE’s runtime
are slower than CART and Random Forest since WHERE has
yet to benefit from decades of implementation experience with
these older algorithms. For example, SciKitLearn’s CART and
Random Forest make extensive use of an underlying C library
whereas WHERE is a purely interpreted Python.

Looking over Table 8, the general pattern is that 50 to 80
evaluations suffice for finding the tuning improvements re-
ported in this paper. 50 to 80 evaluations are much fewer than
our pre-experimental intuition. Prior to this paper, the authors

data sets, sorted
1 4 8 12 17

0

0.2

0.33

0.5

1

Precision

threshold
infoPrune
min_Size
wriggle

data sets, sorted
1 4 8 12 17

0

0.2

0.33

0.5

1

F

threshold
infoPrune
min_Size
wriggle

Figure 4: Four representative tuning values in WHERE with precision and F-measure as
the tuning goal, respectively.

Datasets TunedWhere TunedCART TunedRanFst
precision F precision F precision F

antV0 50 50 60 50 60 70
antV1 60 60 50 50 60 60
antV2 70 90 50 60 60 120

camelV0 70 50 70 80 110 70
camelV1 60 60 60 110 70 70

ivy 60 60 60 60 60 60
jeditV0 80 80 80 60 90 60
jeditV1 60 70 80 70 80 70
jeditV2 90 80 60 70 110 80

log4j 50 70 50 50 80 50
lucene 80 60 70 60 60 70
poiV0 60 60 70 60 130 80
poiV1 50 50 70 50 50 110

synapse 70 60 50 60 50 90
velocity 60 60 50 60 100 60

xercesV0 60 80 80 60 70 80
xercesV1 80 80 60 60 50 80

Table 8: Number of evaluations for tuned learners, optimizing for precision and F-Measure.

have conducted numerous explorations of evolutionary algo-
rithms for search-based SE applications [44, 45, 52, 60, 61].
Based on that work, our expectations were that non-parametric
evolutionary optimization would take thousands, if not mil-
lions, of evaluations of candidate tunings. This turned outnot
to be that case. By comparing the runtime of tuned and default
learners shown in Table 9, we notice that the actual tuning time
for most data sets is not extremely long.

Hence, we answer RQ5 as “no”: tuning is so fast that it could
(and should) be used by anyone using defect predictors.

As to why DE can tune defect predictors so quickly, that is an
open question. One possibility is that the search space within
the control space of these data miners has many accumulative
effects such that one decision can cascade into another (andthe
combination of decisions is better than each separate one).DE
would be a natural tool for reasoning about such “cascades”,
due to the way it mashes candidates together, then inserts the
result back into the frontier (making them available for even
more mashing at the next step of the inference).
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Datasets TunedWhere Naive Where TunedCART Naive CART TunedRanFst Naive RanFst
precision F precision F precision F precision F precision F precision F

antV0 95.47 93.58 1.65 1.39 5.08 3.52 0.08 0.08 9.78 9.89 0.20 0.17
antV1 224.67 186.95 3.03 3.18 6.52 6.18 0.12 0.12 14.13 13.39 0.25 0.25
antV2 644.99 654.34 8.24 8.08 9.00 8.79 0.24 0.18 16.75 27.56 0.44 0.36

camelV0 690.62 543.28 7.93 9.65 12.68 17.00 0.24 0.28 28.49 22.52 0.34 0.41
camelV1 1596.77 1808.03 23.56 26.98 17.13 31.92 0.27 0.28 33.96 37.00 0.77 0.85

ivy 66.69 74.50 0.97 1.18 4.26 4.72 0.07 0.08 8.89 10.39 0.19 0.21
jeditV0 459.30 518.47 5.33 6.11 8.69 7.9 0.11 0.10 18.40 14.32 0.32 0.37
jeditV1 421.56 576.29 6.59 6.89 9.05 8.13 0.12 0.10 17.93 17.42 0.36 0.34
jeditV2 595.56 657.59 6.88 7.93 7.90 10.34 0.14 0.15 27.34 20.20 0.38 0.40

log4j 76.09 123.48 1.33 1.59 2.60 2.92 0.06 0.08 9.69 7.67 0.15 0.17
lucene 236.45 219.02 2.60 3.68 6.07 6.89 0.10 0.12 9.77 13.06 0.25 0.35
poiV0 263.12 314.53 3.92 4.82 7.42 7.80 0.09 0.10 25.86 19.29 0.28 0.32
poiV1 398.33 446.05 6.94 7.55 9.31 7.62 0.13 0.14 12.67 27.23 0.29 0.36

synapse 144.09 138.75 1.85 1.83 3.88 4.87 0.07 0.08 8.13 13.29 0.19 0.17
velocity 184.10 211.88 2.68 3.13 4.27 5.51 0.07 0.10 15.18 11.58 0.21 0.27

xercesV0 136.87 178.49 1.98 2.02 9.17 7.47 0.10 0.11 14.17 17.31 0.22 0.28
xercesV1 1173.92 1370.89 12.78 14.42 10.47 11.07 0.16 0.19 18.27 25.27 0.40 0.46

Table 9: Runtime for tuned and default learners(in sec), optimizing for precision and F-Measure.

4.6. RQ6: Should we use “off-the-shelf” Tunings?

In Figure 4, we show how tuning selects the optimal values
for tuned parameters. For space limitation, only four parame-
ters from WHERE learner are selected as representatives and
all the others can be found in our online support documents
(https://goo.gl/aHQKtU). Note that the tunings learned were
different in different data sets and for different goals. Also, the
tunings learned by DE were often very different to the default
(the default values forthreshold, infoPrune, min Sizeandwrig-
gle are 0.5, 0.33, 0.5 and 0.2, respectively). That is, to achieve
the performance improvements seen in the paper, the default
tuning parameters required a wide range of adjustments.

Hence, we answer RQ6 as “no” since, to achieve the im-
provements seen in this paper, tuning has to be repeated when-
ever the goals or data sets are changed. Given this requirement
to repeatedly run tuning, it is fortunate that (as shown above)
tuning is so easy and so fast (at least for defect predictors from
static code attributes).

5. Reliability and Validity

Reliability refers to the consistency of the results obtained
from the research. For example, how well independent re-
searchers could reproduce the study? To increase external relia-
bility, this paper has taken care to either clearly define ouralgo-
rithms or use implementations from the public domain (SciK-
itLearn). Also, all the data used in this work is available on-line
in the PROMISE code repository and all our algorithms are on-
line at github.com/ai-se/where.

External validitychecks if the results are of relevance for
other cases, or can be generalized from samples to popula-
tions. The examples of this paper only relate to precision,
recall, and the F-measure but the general principle (that the
search bias changes the search conclusions) holds for any set
of goals. Also, the tuning results shown here only came from
one software analytics task (defect prediction from staticcode
attributes). There are many other kinds of software analytics
tasks (software development effort estimation, social network
mining, detecting duplicate issue reports, etc) and the implica-
tion of this study for those tasks is unclear. However, those
other tasks often use the same kinds of learners explored in this

paper so it is quite possible that the conclusions of this paper
apply to other SE analytics tasks as well.

6. Conclusions

Our exploration of the six research questions listed in the in-
troduction show that when learning defect predictors for static
code attributes, analytics without parameter tuning are consid-
eredharmfulandmisleading:

• Tuning improves the performance scores of a predictor. That
improvement is usually positive (see Figure 1) and some-
times it can be quite dramatic (e.g. precision changing from
0 to 60%).

• Tuning changes conclusions on what learners are better than
others. Hence, it is time to revisit numerous prior publica-
tions of our own [15] and others [4, 5].

• Also, tuning changes conclusions on what factors are most
important in software development. Once again, this means
that old papers may need to be revised including those some
of our own [8] and others [6, 7, 9, 10, 11].

As to future work, it is now important to explore the implica-
tions of these conclusions to other kinds of software analytics.
This paper has investigatedsomelearners usingoneoptimizer.
Hence, we can make no claim that DE is thebestoptimizer for
all learners. Rather, our point is that there exists at least some
learners whose performance can be dramatically improved byat
least one simple optimization scheme. We hope that this work
inspires much future work as this community develops and de-
bugs best practices for tuning software analytics.

Finally, on a more general note, we point out that
Fürnkranz [62] says data mining is inherently a multi-objective
optimization problem that seeks the smallest model with the
highest performance, that generalizes best for future examples
(perhaps learned in minimal time using the least amount of
data). In this view, we are using DE to optimize an optimizer.
Perhaps a better approach might be to dispense with the separa-
tion of “optimizer” and “learner” and combine them both into
one system that learns how to tune itself as it executes. If this
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view is useful, then instead of adding elaborations to data min-
ers (as done in this paper, or by researchers exploring hyper-
heuristics [63]), it should be possible to radically simplify op-
timization and data mining with a single system that rapidly
performs both tasks.
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