Tuning for Software Analytics: is it Really Necessary?

Wei Fu, Tim Menzie$, Xipeng Shen
Department of Computer Science, North Carolina State Usitye Raleigh, NC, USA

Abstract

(O Context: Data miners have been widely used in software engineerjrsgio generate defect predictors from static code measures
1 Such static code defect predictors perform well comparedanual methods, and they are easy to use and useful to usen8ut
O of the “black arts” of data mining is setting the tunings tbantrol the miner.
Objective: We seek simple, automatic, and very effective method foirimthose tunings.
O 'Method: For each experiment with different data sets (from open®UAVA systems), we ran differential evolution as an
() .optimizer to explore the tuning space (as a first step) th&rdehe tunings using hold-out data.
(/) Results: Contrary to our prior expectations, we found these tuningsawemarkably simple: it only required tens, not thousands
of attempts to obtain very good results. For example, whamlag software defect predictors, this method can quiftktytunings
O that alter detection precision from 0% to 60%.
~—— Conclusion: Since (1) the improvements are so large, and (2) the tunisg simple, we need to change standard methods in
|L| ‘software analytics. At least for defect prediction, it is Inager enough to just run a data miner and present the resthibut
(/) -conducting a tuning optimization study. The implication éher kinds of analytics is now an open and pressing issue.

7y
.2. Keywords: defect prediction, CART, random forest, differen- The results of this paper show that the above points are false
tial evolution, search-based software engineering. since, at least for defect prediction from code attributes:

S 1 Introduction 1. Tuning defect predictors iemarkably simplg

LO
N~

In the 2 century, it is impossible to manually browse all 2+ And candramatically improve the performance

available software project data. The PROMISE repository o
SE data has grown to 200+ projedﬂs [1] and this is just one o

- ‘over a dozen open-source repositories that are readillabi@i ¢ RQ1:Does tuning improve the performance scores of a pre-
= to researchers|[2]. For example, at the time of this writiday(dictor? We will show below examples of truly dramatic im-
O 2016), our web searches show that Mozilla Firefox has over 1. provement: usually by 5 to 20% and often by much more (in

million bug reports, and platforms such as GitHub hostover 1 gpe extreme case, precision improved from 0% to 60%).
. ‘million projects.

2 Faced with this data overload, researchers in empirical SB RQ2: Does tuning change conclusions on what learners are
use data miners to generatefect predictors from static code better than othersRecent SE papeIE| [@ 5] claim that some
— 'measuresSuch measures can be automatically extracted from learners are better than others. Some of those conclusions
the code base, with very little effort even for very largetaafre are completely changed by tuning.
systems|[3].
One of the “black arts” of data mining is setting the tuning ¢ RQ3: Does tuning change conclusions about what factors
parameters that control the choices within a data mineorPri ~ are most important in software engineerinimerous re-
to this work, our intuition was that tuning would change the cent SE papers (e.dl6,7./8,9] 11]) use data miners to
behavior or a data miner, to some degree. Nevertheless, we conclude thathis is more important thathat for reducing
rarely tuned our defect predictors since we reasoned thatiea d =~ software project defects. Given the tuning results of this p
miner’s default tunings have been well-explored by the Heve per, we show that such conclusions need to be revisited.
opers of those algorithms (in which case tuning would nal lea
to large performance improvements). Also, we suspected the RQ4:1s tuning easyXVe show that one of the simpler multi-
tuning would take so long time and be so CPU intensive that Objective optimizers (differential evolution [12]) workery
the benefits gained would not be worth effort. well for tuning defect predictors.

hose results were found by exploring six research question

_ _ e RQ5: Is tuning impractically slow?We achieved dramatic
conesponding auihor Tel91InsIsZoL(VIe . . . improvements in the performance scores of our data miners
mail addressesamf u@csu. edu (Wei Fu),t i m menzi es@nai | . com(Tim . . . X
Menzies), xshen5@csu. edu (Xipeng Shen) in less than 100 evaluations (!); i.e., very quickly.

Preprint submitted to Elsevier September 8, 2016

http://arxiv.org/abs/1609.01759v1

e RQ6: Should data miners be used “off-the-shelf” with their e A few other papers did acknowledge that one data miner may
default tunings¥or defect prediction from static code mea- not be appropriate for all data sets. Those papers tested dif
sures, our answer is an emphatic “no” (and the implication ferent “off-the-shelf” data miners on the same data set. For
for other kinds of analytics is now an open and urgent ques- example, Elish et aL_LiG] compared support vector machines
tion). to other data miners for the purposes of defect prediction.

] _ SVM’s execute via a “kernel function” which should be spe-

Based on our answers to these questions, we strongly advise cially selected for different data sets and the Elish etapep

that: makes no mention of any SVM tuning study. To be fair to

Elish et al., we hasten to add that we ourselves have pub-

lished papers using “off-the-shelf” tunind?_tlS] sinceiopr

to this paper it was unclear to us how to effectively navigate

e Any future paper on defect prediction should include a tun- the large space of possible tunings.
ing study. Here, we have found an algorithm called differ-

ential evolution to be a useful method for conducting suchOVer our entire sample, there was only one paper that coeduct
tunings. a somewhat extensive tuning study. Lessmann éf al.[4] tuned

parameters for some of their algorithms usingra search

e Tuning needs to be repeated whenever data or goals afe. divide allC configuration options intdl values, then try all

changed. Fortunately, the cost of finding good tunings isN® combinations. This is a slow approach—we have explored

not excessive since, at least for static code defect prdict grid search for defect prediction and found it takes daysto t

tuning is easy and fast. minate [15]. Not only that, we found that grid search can miss
important optimizationd [21]. Every grid has “gaps” betwee
each grid division which means that a supposedly rigoroiaks gr
search can still miss important configuratiohs| [13]. Beayst
2.1. Tuning: Important and Ignored and Bengio[[13] comment that for most data sets only a few
of the tuning parameters really matter— which means thatmuc
of the runtime associated with grid search is actually whste
Worse still, Bergstra and Bengio comment that the important

In other fields, the impact of tuning is well understobd [13]. tnings are different for differen_t data sets—_ a p_henom o m.' .
' makes grid search a poor choice for configuring data mining

Yet issues of tuning are rarely or poorly addressed in theadef .
T . algorithms for new data sets.
prediction literature. When we tune a data miner, what we are ~_,
Since the Lessmann et al. paper, much progress has been

really doing is changing how a learner applies its heusstic : : . .
This means tuned data miners use different heuristics,h/vhicmade in configuration algorithms and we can now report that

means they ignore different possible models, which meass th fmﬂmg useful tgnxg? |sdve(rjy eas%'ms_dresult 'hs bo;h r;gvel
return different models; i.ehow we learn changewhat we and unexpectec. A siandard run of grd searc (and o erevo-
learn. lutionary algorithms) is that optimization requires thands, if

Are the impacts of tuning addressed in the defect predictioﬁ1Ot rr_ulhons, Of. evalua}tlons. quever, na result that Wari.d
literature? To answer that question, in Jan 2016 we searches(ﬁammg’ thawlifferential evolution(described below) can find

scholar.google.com for the conjunction of “data miningtlan useful settings fo_r 'ea”?ers generati_ng defect predidtokess
“software engineering” and “defect prediction” (more dista tharl 100 eva_luatlons (ie. very qU|cI_<Iy). _Hence, the_ pr_ob-
can be found at https://goo.gl/Inl9nF). After sorting b ti- lem” (that tuning changes the conclusions) is really antexgi

tation count and discarding the non-SE papers (and those wit OPPortunity. - At -Ieast for defect prediction, learners aeeyy .
out a pdf link), we read over this sample of 50 highly-citedamenable to tuning. Hence, they are also very amenable-to sig

SE defect prediction papers. What we found in that sar,nplgificant performance improvements. Given the low number of

was that few authors acknowledged the impact of tunings (exgvaluanons required, then we assert that tuning shouldsse s

ceptions:|ﬂ4|__1|4]). Overall, 80% of papers in our samgtie dard practice for anyone building defect predictors.
not adjust the “off-the-shelf” configuration of the data miner
(e.g. [9]15 16]). Of the remaining papers: 2.2. You Can't Always Get What You Want

e Data miners should not be used “off-the-shelf” with default
tunings.

2. Preliminaries

This section argues that tuning is an under-explored softwa
analytics— particularly in the apparently well-exploresldi of
defect prediction.

e Some papers in our sample explored data super- Having made the case that tuning needs to be explored more,
sampling] or data sub-sampling techniques viabut before we get into the technical details of this papes, th
automatic methods (e.g. [_[14,]]Ejjﬁi 18]) or via somesection discusses some general matters about settingdyoals
domain principles (e.qg. % ﬂﬂZO]). As an example of theing tuning experiments.
latter, Nagappan et al._[19] checked if metrics related to This paper characterizes tuning as an optimization problem
organizational structure were relatively more powerful fo (how to change the settings on the learner in order to best im-
predicting software defects. However, it should be notatl th prove the output). With such optimizations, it is not always
these studies varied the input data but not the “off-thdfshe possible to optimize for all goals at the same time. For exam-
settings of the data miner. ple, the following text does not show results for tuning ocale

or false alarms since optimiziranly for those goals can lead to Accordingly, this paper does not assume that (e.g.) minigiz
some undesirable side effects: false alarms is more important than maximizing precision or
o recall. Such a determination depends on business conslition
e Recallreports the percentage qf predictions that are actual Rather, what we can show examples where changing opti-
examples of what we are looking for. When we tune for i, ation goals can also change the conclusions made fram tha
recall, we can achieve near 100% recall- but at the cost of g, -ner on that data. More generally, we caution that it jsdm

near 100% false alarms. tant not to overstate empirical results from analytics. Sehie-

« False alarmss the percentage of other examples that are reSUlts need to be expressalng withthe context within which
ported (by the learner) to be part of the targeted exampled€y are relevant (and by “context’, we mean the optimizatio
When we tune foffalse alarms we can achieve near zero 902)-
percent false alarm rates by effectively turning off theedet o
tor (so the recall falls to nearly zero). 2.3. Notes on Defect Prediction

Accordingly, this paper explores performance measures th% This section discusses defegt prediction, which is thegart

' lar task explored by our optimizers.

commgnt on alldtzE\)rg:JIet ?Iass?.s: _se? therreIC|_sr|r(1)ntan(_jd F* mea- Human programmers are clever, but flawed. Coding adds
sures discussed below: séptimization Goals That said, we functionality, but also defects. Hence, software someidime

are somet_irr)es asked what good is a learner if it optimizes foérashes (perhaps at the most awkward or dangerous moment)
(say) precision at the expense of (say) recall. or delivers the wrong functionality. For a very long list of

Our reply is that software engineering is a very d|versere_nte software-related errors, see Peter Neumann'’s “Risk Digest

Frisgﬁand t?at d:fferer?t rIiinds of (jtevelopmer;t rt1)ee“d t(;r:)ﬁ[;mni catless.ncl.ac. uk/Risks.
or different goals (which may not necessarily be “optimiae Since programming inherently introduces defects into pro-

recall’): grams, it is important to test them before they're used.ifigst
e Anda, Sjoberg and Mockus are concerned wéfproducibil- 1S €xpensive. Software assessment budgets are finite vehile a
ity and so assess their models using the the “coefficient o}essment effectiveness increases exponentially witlsssest
variation” (CV = Stdde 1. effort. For example, for black-box testing methoddjreear
mean

increase in the confidenéz of finding defects can takexpo-
e Arisholm & Briand E:k], Ostrand &Weyeukelr__LiM] and Rah- nentiallymore effort:

man et al.|[25] are concerned with reducing the work load _ o _
associated with someone else reading a learned model, thénA randomly selected input to a program will find a fault with
applying it. Hence, they assess their models usavgard probability p.

I.e. the fewest lines of code containing the most bugs. e After N random black-box tests, the chances of the inputs

e Yin et al. are concerned aboiacorrect bug fixesi.e. those not revealing any fault i§1 — p)N.
that require subsequentwork in order to complete the bug fix.
These bugs occur when (say) developers try to fix parts of thé
code where they have very little experierice [26]. Hence, the
assess a learned model using a measure that selects for thegq, example,N(0.90,103) = 2301 butN(0.98,10°3) =
most number of bugs in regions titae most programmers 3901 j.e. nearly double the number of tests.
have worked with before

Hence, the chanceS of seeing the fault is + (1— p)N
which can be rearrangedi®C, p) =log(1—C)/log(1— p).

N o) Exponential costs quickly exhaust finite resources so stahd

o For safety critical applications, high false alarm ratesar- racice is to apply the best available methods on codeoseti

ceptable if the cost of overlooking critical issues OUMSg that seem most critical. But any method that focuses on pérts
the inconvenience of inspecting a few more modules. the code can blind us to defects in other areas. Smheveight

e When rushing a product to market, there is a business ca§é‘mp“”9 policyshould k?e us_ed to explore_ the rest of the sys-
to avoid the extra rework associated with false alarms. 1™ This sampling policy will always be incomplete. Never-

that business context, managers might be willing to lowef€!€ss, itis the only option when resources prevent a oetepl

the recall somewhat in order to minimize the false alarms, 2SS€ssmentof everything. o _
One such lightweight sampling policy is defect predictors

e When the second author worked with contractors at NASA'dearned from static code attributes. Given software dbedri
software independent verification and validation fagilitg ~ in the attributes of Tablgel1, data miners can learn where the
found new contractors only reported issues that were mogirobability of software defects is highest.
certainly important defects; i.e. they minimized false@la The rest of this section argues that such defect predicters a
even if that damaged their precision (since, they felt, iswa easy to usewidely-usedandusefulto use.
better to be silent than wrong). Later on, once those contrac Easy to use: Static code attributes can be automatically
tors had acquired a reputation of being insightful membergollected, even for very large systems$ [3]. Other methods,
of the team, they improved their precision scores (even if itike manual code reviews, are far slower and far more labor-
means some more false alarms). intensive. For example, depending on the review methods,

amc average method complexity e.g. number of JAVA byte codes

avgcc | average McCabe average McCabe’s cyclomatic complexity Seen in class
ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parameteevery method divided by a multiplication of number of
different method parameter types in whole class and nunfbeethods.
cbm coupling between methods total number of new/redefined methods fo which all the inbdnmethods are coupled
cbo coupling between objects increased when the methods of one class access servicesibéan
ce efferent couplings how many other classes is used by the specific class.
dam data access ratio of the number of private (protected) atiributes totdial number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is couplellifies counts of methods and variables inherited)
[com Tack of cohesion in methods number of pairs of methods that do not share a reference ttséanice variable.

locm3 | another lack of cohesion measuie if m,a are the number ahethodsattributesin a class number and(a) is the number of methods accessing an attribute,
thenlconB = ((1 52 pu(ay)) —m)/(1—m).

Toc lines of code
maxcc | maximum McCabe maximum McCabe’s cyclomatic complexity seen in class
mfa functional abstraction number of methods inherited by a class plus number of methockssible by member methods of the class
moa aggregation count of the number of data declarations (class fields) whgses are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response f0 a message fo the.obje
wmc weighted methods per class
defect | defect Boolean: where defects found in post-release bug-trackystems.

Table 1: OO measures used in our defect data sets.

8 to 20 LOC/minute can be inspected and this effort repeatis available from github.com/ai-se/where. We use these-alg

for all members of the review team, which can be as large agthms for the following reasons.

four or six people@?].Widely used:Researchers and indus- CART and Random Forest were mentioned in a recent IEEE

trial practitioners use static attributes to guide sofevguality ~ TSE paper by Lessmann et al. [4] that compared 22 learners for

predictions. Defect prediction models have been reported alefect prediction. That study ranked CART worst and Random

Google EB]. Verification and validation (V&V) textbool@]z Forest as best. In a demonstration of the impact of tuning, th

advise using static code complexity attributes to decidelwh paper shows we camfutethe conclusions of Lessmann et al.

modules are worth manual inspections. in the sense that, after tuning, CART performs just as well as
Useful: Defect predictors often find the location of 70% (or Random Forest.

more) of the defects in cod15]. Defect predictors haveesom LR was mentioned by Hall et aD[S] as usually being as good

level of generality: predictors learned at NA@[lS] haveoal or better as more complex learners (e.g. Random Forest). In a

been found useful elsewhere (e.g. in Tur@ @ 31]). Thee su finding that endorses the Hall et al. result, we show thatnedu

cess of this method in predictors in finding bugs is markedlyLR performs better than untuned Random Forest (at least, for

higher than other currently-used industrial methods such athe data sets studied here). However, we will show that tunin

manual code reviews. For example, a pandEEE Metrics raises doubts about the optimality of the Hall et al. recomme

2002 [@] concluded that manual software reviews can finddation.

~60% of defects. In another work, Raffo documents the typical Finally, this paper uses WHERE since, as shown below, it

defect detection capability of industrial review methoaliund offers an interesting case study on the benefits of tuning.

50% for full Fagan inspectionﬂbs] to 21% for less-struetur

inspections. 2.5. Learners and Their Tunings

Not only do static code defect predictors perform WeII_ COM- Oyr learners use the tuning parameters of Table 2. This sec-
pared to manual methods, they also are competitive with Cefyo gescribes those parameters. The default parameters fo

tain automatic methods. A recent study at ICSE'14, Rahman @ ART and Random Forest are set by the SciKitLearn authors
al. [34] compared () static code analysis tools FIndBUGH, J 5 the default parameters for WHERE-based learner are set
and Pmd and (b) static code defect predictors (which thégatal i3 our own expert judgement. When we say a learner is used
“statistical defect prediction”) built using logistic reggsion. “off-the-shelf”, we mean that they use the defaults shown in
They found no significant differences in the cost-effeciass Table2.

of these approaches. Given this equivalence, it is signifita As to the value of those defaults, it could be argued thatthes
note that static code defect prediction can be quickly a8hpt yatauits are not the best parameters for practical defedigr

to new languages by building lightweight parsers that find in o, That said, prior to this paper, two things were true:
formation like Tabl€ll. The same is not true for static code

analyzers— these need extensive modification before they cae Many data scientists in SE use the standard defaults in their
be used on new languages. data miners, without tuning (e.d! [9./10] 15]).

e The effort involved to adjust those tunings seemed so oner-
ous, that many researchers in this field were content to take
9 our prior advice of “do not tune... it is just too harE[39].

2.4. Notes on Data Miners

There are several ways to make defect predictors usin
CART @], Random ForesﬂﬁG], WHERﬂ37] and LR (logis-
tic regression). For this study, we use CART, Random ForesAs to why we used the "Tuning Range” shown in Tdble 2, and
and LR versions from SciKitLeanﬁB8] and WHERE, which not some other ranges, we note that (1) those ranges included

4

Learner Name Parameters Default Tuning Description
Range
threshold 0.5 [0.01,1] | The value to determine defective or not .
infoPrune 0.33 [0.01,1] | The percentage of features to consider for the best splititd lis final decision tree.
min_samplesplit 4 [1,10] The minimum number of samples required to split an interodienof its final decision tree.
Where-based min_Size 0.5 [0.01,1] | Finds minsampledeaf in the initial clustering tree usingsample&™-S7e
Learner wriggle 0.2 [0.01, 1] | The threshold to determine which branch in the initial @usig tree to be pruned
depthMin 2 [1,6] The minimum depth of the initial clustering tree below whighpruning for the clustering tree
depthMax 10 [1,20] The maximum depth of the initial clustering tree.
wherePrune False TIF Whether or not to prune the initial clustering tree.
treePrune True TIF Whether or not to prune the final decision tree.
threshold 0.5 [0,1] The value to determine defective or not.
maxfeature None [0.01,1] | The number of features to consider when looking for the bt s
CART min_samplesplit 2 [2,20] The minimum number of samples required to split an interodlen
min_sampleseaf 1 [1,20] The minimum number of samples required to be at a leaf node.
max.depth None [1, 50] The maximum depth of the tree.
threshold 0.5 [0.01,1] | The value to determine defective or not.
Random maxfeature None [0.01,1] | The number qf features to cons_iderwhe_zn Iookirjg for the haigt s
Forests maxleaf-nodes None [1,50] Grow trees with maxeaf.nodes in best-first fashion.
min_samplesplit 2 [2,20] The minimum number of samples required to split an interodien
min_sampledeaf 1 [1,20] The minimum number of samples required to be at a leaf node.
n_estimators 100 [50,150] | The number of trees in the forest.
Logistic Regression This study uses untuned LR in order to check a conclusion]of [5

Table 2: List of parameters tuned by this paper.

the defaults; (2) the results shown below show that by explortrols the construction of the final decision tree (so, for W=
ing those ranges, we achieved large gains in the performandmsed learnemin_sizeandmin_samplesplitare the parameters
of our defect predictors. This is not to say thafger tuning to be tuned).

ranges might not result igreaterimprovements. However, for These learners use different techniques to explore this:spli
the goals of this paper (to show that some tunings do matter)
exploring just these ranges shown in TdHle 2 will suffice.

As to the details of these learners, LR is a parametric mod-
eling approach. Give = 3o+ ¥ Bixi, wherex; is some mea-
surement in a data set, afidis learned via regression, LR con-
verts that into a function @ g < 1 usingg=1/ (1+e~"). This %i (VW ni/(zim))-
function reports how much we believe in a particular class. ¢ Random Forest divides data like CART then buikls> 1

CART, Random Forest, and WHERE-based learners are all trees, each time using some random subset of the attributes.

tree learners that divide a data set, then recur on each split o o]
All these learners generate numeric predictions whichane ¢ ® When building the initial cluster tree, WHERE projects the
verted into binary “yes/no” decisions via Equatidn 1. data on to a dimension it synthesizes from the raw data using

a process analogous to principle component ana@is [40]

CART finds the attributes whose ranges contain rows with
least variance in the number of defects. If an attribute @eang
ri is found inn; rows each with a defect count variance of
v;, then CART seeks the attributes whose ranges minimizes

inspect= { gf ﬂ”;es (1) WHERE divides at the median point of that projection. On
e recursion, this generates the initial clustering treeje¢hges

whered is the number of observed issues ahi$ some thresh- of which are clusters of very similar examples. After that,

old defined by an engineering judgement; we Tise 1. when building the final decision tree, WHERE pretends

The splitting process is controlled by numerous tuning pa- tS clusters are “classes”, then asks the InfoGain algorith
rameters. If data contains more thawn_samplesplit, then a of the Fayyad-Irani dlscret|zeﬂl41],. to rank the attritgjte
split is attempted. On the other hand, if a split contains no WhereinfoPruneis used. WHERE's final decision tree gen-
more thanmin_samplegeaf, then the recursion stops. CART erator then ignores everything except the ittpPruneper-
and Random Forest use a user-supplied constant for this pa- €Nt of the sorted attributes.
rameter while WHERE-based learner firstly computes this paggme tuning parameters are learner specific:
rametermzmm_samplesieaf from the size of the data sets via

— sizd"n-siZe to puild an initial clustering tree. Note that ® Max featureis used by CART and Random Forest to select
WHERE buildstwotrees: the initial clustering tree (to find sim- the number of attributes used to build one tree. CART's de-
ilar sets of data) then a final decision tree (to learn rules th ~ faultis to use all the attributes while Random Forest uguall
predict for each similar cluster). A frequently asked gioest ~ Selects the square root of the number of attributes.
is why does WHERE build two trees— would not a single tree
suffice? The answer is, as shown below, tuned WHERE's twin-
tree approach generates very precise predictors. As tette r
of WHERE's parameters, the paramat@n_sample split con- e Max depthis the upper bound on the depth of the CART tree.

o Maxleaf nodesis the upper bound on leaf notes generated
in a Random Forest.

e WHERE's tree generation will always split up tepthMin Algorithm 1 Pseudocode for DE with Early Termination
number of branches. After that, WHERE will only split data input: np=10, f =0.75,cr =03, life = 5, Goal € {pd. f,...}
if the mean performance scores of the two halves is “triyiall OUPUt e

small” (where “trivially small” is set by thevriggle parame- 1 function DE(np, f, cr, life, Goal)

2: Population« InitializePopulationgp)
ter). 3:

4

5

6

Sest < GetBestSolutiorfo pulation
whilelife > 0 do
NewGeneratior— 0
fori=0—np—1do
S <+ ExtrapolatePopulatiorji], Populationcr, f)
if Score§) ¢ ScorelRopulatiorii]) then
NewGeneratiorappend§)

e WHERE'stree_prunesetting controls how WHERE prunes >
back superfluous parts of the final decision tree. If a degisio 7:
sub-tree and its parent have the same majority cluster (ongf

that occurs most frequently), thentie_pruneis enabled, 1o dse
we prune that decision sub-tree. g end’\i‘fewGeneratiomppendPopulatiorii])
13: end for .
2.6. Tuning Algorithms 1;‘; Eoﬁpf*ag:gc;';m;?;ﬂign
How should researchers select which optimizers to appl;ﬁf end”iffe*:
to tuning data miners? CoheE[42] advises comparing news: Shest ¢ GetBestSolutiorRopulation)
end while

methods against the simplest possible alternative. Silyjila 185 T S,
Holte [43] recommends using very simple learners as a kind 0315 end function
“scout” for a preliminary analysis of a data set (to checktt ~ 22: function ScorgCandidatg .
. . . : set tuned parameters accordingandidate
data really requires a more complex analysis). Accordintgly 24: model—TrainLearner()
find our “scout”, we used engineering judgement to sort candi2>: :Z?G’r';zzfl(‘;ime'mde)
date algorithms from simplest to complex. For example, heres: end function
is a list of optimizers used widely in researcéimulated an- ggi funglgncEXIEQZ&?E%&%?S)CLf)
. . . . : ,0,C <)
nealing [@ 45]; variousgenetic algorithmg4€] augmented 35 newf< o
by techniques such adifferential evolution[12], tabu search g; fori=0-np-1do

. A : if don() th
andscatter search47,[48,/49] 50];particle swarm optimiza- 33, ' °L§V5?2p32‘n>d;.;i‘[}])

tion [|5_1|]; numerousiecompositiompproaches that use heuris- 245
tics to decompose the total space into small problems, then aze:

else
if typeof(old[i]) == boolthen
new f.append(noold|i])
else

i 37:
ply aresponse surfacc_a metho@,@]_. Of thgse, the s_lmplest o new fappend(uimiCai + f » (bf] - i)
are simulated annealing (SA) and differential evolutiofEfD 30 end if
each of which can be coded in less than a page of some highe: end if
.. . . 41: end for
level scripting language. Our reading of the current ltfi@@iS 42: return newf
that there are more advocates for differential evoluti@mtS8A. 43: end function
For example, Vesterstrom and Thomsen [54] found DE to be

competitive with particle swarm optimization and other GAs

DEs have been applied before for parameter tuning (e_d_nean_s tr|1at, as thellookg pro?r?sses_l,lf_tﬁpul_atloms fllm O.f n-
see [55] 56]) but this is the first time they have been applieé[fr:easmg_3(;I thlOI’e vz;_ua g;’to u Iolnféjf 1S, 't?] IIJDm’ alsgl VRS
to optimize defect prediction from static code attributd$ie € candidates, which atextrapolatel from theropulation

pseudocode for differential evolution is shown in Algonitf]. For the experimen.ts_ of this paper, we collegt performance
In the following description, superscript numbers denated values from a data mining, from which@oalfunction extracts

in that pseudocode. one performance valli€ (so we run this code many times,

DE evolves aNewGeneratiorof candidates from a current eagh time _Nith_ a differenGoal™). Technica_lly, _this_ makes
Population Our DE’s lose one “life” when the new population a S"l‘—[_%l; objectiveDE (and for notes on multi-objective DEs,
is no better than current one (terminating when “life” is@ét. 0.

Each candidate solution in tf@pulationis a pair of(Tunings,
Scores) Tuningsare selected from Tabld 2 ar@torescome
from training a learner using those parameters and applying
test data23-L27, 3.1. Data Sets

The premise of DE is that the best way to mutate the existing Our defect data comes from the PROMISE repository
tunings is toExtrapolaté?8 between current solutions. Three (http://openscience.us/repo/defect) and pertains ta sparce
solutionsa, b, c are selected at random. For each tuning paramdava systems defined in terms of TdOleft, came] ivy, jedit,
eteri, at some probabilitgr, we replace the old tuning with log4j, lucene poi, synapsevelocityandxerces
yi. For booleans, we usg = —x; (see line 36). For numerics, An important principle in data mining is not to test on the
yi =&+ f x (b —¢i) wheref is a parameter controlling cross- data used in training. There are many ways to design a experi-
over. Thetrim functior-38 limits the new value to the legal ment that satisfies this principle. Some of those methods hav
range min..max of that parameter. limitations; e.g. leave-one-outs too slow for large data sets

The main loop of DE® runs over thePopulation replacing andcross-validatiormixes up older and newer data (such that
old items with newCandidates (if new candidate is better). This data from thepastmay be used to test doture datg.

6

3. Experimental Design

http://openscience.us/repo/defect

Dataset antV0 antV1 antv2 camelVO camelVl ivy jeditvVo jwdit jeditv2
training 207125 40/178 32/293 13/339 216/608 63/111 90/272 75/306 791312
tuning 40/178 32/293 92/351 216/608 145/872 16/241 75/306 9/312 48/367
testing 32/293 92/351 166/745 145/872 188/965 40/352 /31 48/367 11/492
Dataset log4j lucene poiVO poiV1l synapse velocity xercesVXxercesV1
training 34/135 91/195 141/237 37/314 16/157 147/196 7116 71/440
tuning 37/109 1447247 37/314 248/385 60/222 142/214 71/440 69/453
testing 189/205 203/340 248/385 281/442 86/256 781229 539/4 437/588

Table 3: Data used in this experiment. E.g., the top left datdnas 20 defective classes out of 125 total. §3&8 for explanation ofraining, tuning, testingets.

To avoid these problems, we used an incremental learning ap-
proach. The following experiment ensures that the traidiatg 100
was created at some time before the test data. For this experi
ment, we use data sets with at least three consecutive esleas
(where releasé+ 1 was built after releasg. When tuning a ¥
learner,

precision F
T T 100 T T T

e Thefirstrelease was used on line 24 of Algorithin 1 to build =r 1 %

some model using some the tunings found in s@aadi-
date] i

e Thesecondrelease was used on line 25 of Algoritfiin 1 to] 1 %1

test the candidate model found on line 24.

e Finally thethird release was used to gather the performance

statistics reported below from the best model found by DE. Tk WHERE Tk WHERE

——— R.Forest ——— R.Forest

To be fair for the untuned learner, tliest and secondre- — — . — — .
leases used in tuning experiments will be combined as the tra data sets, sorted data sets, sorted
ing data to build a model. Then the performance of this urdune
learner will be evaluated by the sartinird release as in the tun-
ing eXpefiment- Figure 1: Deltas in performance seen in TdHle 4 (left) ande@kright) between tuned
Some data sets have more than three releases and, for th@gguntuned learners. Tuning improves performance whedeltas are above zero.
data, we could run more than one experiment. For example,

ant has five versions in PROMISE so we ran three experimentaOals is domain-specific (sé2) and we only explore these
called VO,V1,V2:

two to illustrate how conclusions can change dramaticaligmv
e ANtVO: first, second, third = versions 1, 2, 3 moving from one goal to another.

e AntV1: first, second, third = versions 2, 3, 4

4. E i Resul
e AntV2: first, second, third = versions 3, 4, 5 Xperimental Results

These data sets are displayed in Table 3. In the following, we explore the effects of tuning WHERE,
Random Forest, and CART. LR will be used, untuned, in order
3.2. Optimization Goals to check one of the recommendations made by Hall etlal. [5].

Recall from Algorithm 1 that we call differential evolution
once for each optimization goal. This section lists those op4.1. RQ1: Does Tuning Improve Performance?
timization goals. Let{A,B,C,D} denote the true negatives,
false negatives, false positives, and true positives éesgely)
found by a binary detector. Certain standard measures can
computed fromA,B,C,D, as shown below. Note that fqrf,
thebetterscores aremallerwhile for all other scores, thiget-
ter scores ardarger.

Figure[1 says that the answer to RQ1 is “yes"- tuning has a
L;))é)sitive effect on performance scores. This figure sortsdel
in the precision and the F-measure between tuned and untuned
learners. Our reading of this figure is that, overall, turreugly
makes performance worse and often can make it much better.
Table[4 and Tablgl5 show the the specific values seen before
pd = recall = D/(B+D) and after tuning wittprecisionand“F” as different optimiza-
pf= N C/(A+C) tion goals(the corresponding “F” and precision values far T
pree= precison= ZD: i)%:;)ec o+ preg ble[@ and TablEI5 are not provided for the space limitationj. F
each data set, the maximum precision or “F” values for each
The rest of this paper explores tuning foecandF. As dis- data set are shown ioold. As might have been predicted by
cussed irff2.4, our point is not that these are best or most im-Lessmann et aI|:t4], untuned CART is indeed the worst learner
portant optimization goals. Indeed, the list of “most imjpoit” (only one of its untuned results is best doald). And, in }—%

WHERE CART Random Forest : “ : n
Data set | default Tuned | default Tuned | default Tuned techn!ques suchas LR perform better than Co_mpllcated
antvo | 0 35 15 0 21 42 techniques such as Random Forest. To explain that com-
antVl 0 60 54 56 67 50 :
antv2 | a5 c5 22 5 6 p ment, we note that by three measures, Random Forest is
camem gg gg gg gg gi ;3 more complicated than LR:
came!

i 25 21 21 26 23 20 . . .
jedit\% 34 37 56 78 50 60 (a) CART builds one model while Random Forest builds
Jediv® 1 % 2 s “ 32 s many models.
jedi

log4j 96 91 95 98 95 100 ic i i i
e | & 7 pd % o - (b) LR is just a model construction tool Wh|le Random
poivo | 70 70 65 71 67 69 Forest needs both a tool to construct its forastl
poivVl 74 76 72 90 78 100 H H
synapse| 61 50 50 100 60 60 a second tool to infer some conclusion from all the
velocity | 34 44 39 44 40 42 members of that forest.
xercesVO | 14 17 17 14 28 14
xercesV1 | 86 54 72 100 78 27 (c) the LR model can be printed in a few lines while the

multiple models learned by Random Forest model

Table 4: Precision results (best results showald). .
would take up multiple pages of output.

WHERE CART Random Forest . . .
Dataset| default _ Tuned | default _ Tuned | defaut Tuned Given tuning, how stable are these conclusions? Beforeemsw
anvo 9 . - o - - ing this issue, we digress for two comments.
aml\\//% gz gg gg ‘212 % gg Firstly, it is important to comment on why it is so important
came! . .
camelVl | 34 34 38 32 2 33 to check the conclusions of these particular papers. Thase p
jeditl\\% ig j‘; gg g‘; gg gg pers are prominent publications (to say the least). Hall. §5j
jeditvl | 43 44 44 47 46 48 is the fourth most-cited IEEE TSE paper for 2009 to 2014 with
'e‘l’gg’j o & = P o o 176 citations (see go0o.gl/MGrGr7) while the Lessmann et al.
lucene | 73 73 65 72 70 76 paper|ﬂ4] has 394 citations (see goo.gl/khTp97)—which isequ
poiVo 50 74 31 64 45 77 H : : H
poivi | 75 . pos 69 77 78 remarkable for a paper published in 2009. Given the promi-
synapse gi gg gg gti gg gi nence of these papers, researchers might believe it is jppro
ng;;;'vyo 19 2 19 % 21 21 ate to use their advice without testing that advice on loethd
xercesV1 | 32 70 34 35 42 71 sets.

Secondly, while we are critical of the results of Lessmann et
al. and Hall et al., it needs to be said that their analysis was
excellent and exemplary given the state-of-the-art of tudst
cases, the untuned Random Forest performs better thanalr equised when those papers were written. While Hall et al. did not
to untuned CART in terms of precision. perform any new experiments, their summarization of so many

That said, tuning can improve those poor performing detecdefect prediction papers has not been equalled beforen@e)si
tors. In some cases, the median changes may be small (e &s to the Lessmann et al. paper, they compared 22 data miners
the “F” results for WHERE and Random Forests) but even inysing various data sets (mostly from NASA) [4]. In that study
those cases, there are enough large changes to motivatsethe gome learners were tuned using manual methods (C4.5, CART
of tuning. For example: and Random Forest) and some, like SVM-Type learners, were

« For “F” improvement, there are two improvements over25%tuned by automatic grid search (for more on grid search, see
’ §2.1).

for both WHERE and Random Forests. Also,piaiV0, all That said wni its show that it is time t T
untuned learners report “F” of under 50%, tuning changes atsai d (i_ur umfntg:]resu S Show F'gﬂl |52|me 0 re\:me h
those scores by 25%. Finally, note tkercesVlresult for recommendations ol Inose papers. Figure - comments on the

the WHERE learner. Here, tuning changes precision fronfidvice from Hall et al. (that LR is better than Random Fotest)

Table 5: F-measure results (best results shoviboid).

32% to 70%. e In a result that might have been predicted by Hall et al., un-
tuned Random Forests performs comparatively worse than

o Logistic Regression. Specifically, untuned Random Forest
performs worse than Logistic regression in 13 out of 17 data
sets.

e Regarding precision, fantV(Q andantVluntuned WHERE
reports precision of 0. But tuned WHERE scores 35 and 6
(the similar pattern can seen in “F").

4.2. RQ2: Does Tuning Change a Learner’s Ranking ? e However, it turns out that advice is sensitive to the tunings
used with Random Forest. After tuning, we find that tuned
Random Forest loses to Logistic Regression in only 6 out of
17 data sets.

Researchers often use performance criteria to assertrikat o
learner is better than anothef @L_Ezl 15]. For example:

1. Lessmann et aI|:|[4] conclude that Random Forest is con- ¥ i h)
sidered to be statistically better than CART. As to Lessmann et al.’s advice (that Random Forest is better

than CART), in Tablé ¥ and Tabld 5, we saw those counter-
2. Also, in Hall et al.s systematic literature revi&v[Sﬂ,is& examples to that statement. Recall in those tables, tundfCA
argued that defect predictors based on simple modelingre better than or equal to tuned Random Fore%t%iandll7

8

Data set Precision F
Precision Precision rfc None
antVo . .
100 T T T 100 T T T mfa, loc, cam, dit, dam,| mfa, loc, cam, dit, dam,
lcom3 lcom3
90 90 1
camelVO mfa, wmc, lcom3 None
mfa, wmc, rfc, loc, cam,| mfa, wmc, rfc, loc, cam,
-~ i 80 i lcom3 lcom3
v cam, dam, npm, loc, rfc, | cam, dam, npm, loc, rfc,
Yy wmc wmc
70 b p 70 g loc, cam, dam, wmc,| loc, cam, dam, wmc,
lcom3 lcom3
- mf I mf I
60 L | 60 | jeditvo a, dam, loc o a, dam, loc o
mfa, lcom3, dam, dit, ic mfa, lcom3, dam, dit, ic
: loc, ic, dit mfa, wmc, rfc, loc, npm
50 4 50 4 log4 . . ! PN
94 mfa, lcom3, loc, ic mfa, lcom3, loc, ic
lucen dit, cam, wmc, Icom3, dit, [com3, dam, mfa
a0] 40 - ucene dam, rfc, cbom, mfa, ic
dit, cam, dam, ic dit, cam, dam, cbm, ic
30 b | 30 | R mfa, amc, dam mfa, amc, dam
poivVo
mfa, loc, amc, dam, wmc,| mfa, loc, amc, dam, wmc,
lcom Icom
20r 1 20r 1 synapse loc, dit, rfc, cam, wmc, dam
ynap: dam, lcom, mfa, lcom3
10; —— Logistic Regression 1 10; —¥— Logistic Regression :OC, n:l)fa‘ cam, Icom, dam’ :OC, rgfa’ cam, Icom, dam‘
——— Untuned R.Forest ~——— Tuned R.Forest (;:pm T 5 c?md‘
; it, wmc, cam, rfc, cbo mfa, dit
0 L . L 0 L . L velocit) ’ o ' ’
1 4 8 12 17 1 4 8 12 17 Y moa, dam)))
data sets, sorted data sets, sorted dg, dam, Ilcom3, ic, mfa,| dit, dam, lcom3, ic, mfa
cbm
wmc cam, dam, avg-cc, loc,
xercesVO0 wmc, dit, mfa, ce, lcom3
Figure 2: Comparison between Logistic Regression and Rarftwest before and after wme, mfa, Icom3, cam,| wmc, mfa, Icom3, cam,
tuning dam dam

Table 6: Features selected by tuned WHERE with differentsydmld features are those
found useful by the tuned WHERE. Also, features shown innptekt are those found

data sets in terms of precision and F-measure, respectivelypef! by the untuned WHERE.
Prior to tuning experiments, those numbers é}rand li? Re-
sults from the non-parametric Kolmogorov-Smirnov(KS)tTes
show that the performance scores of tuned CART and tune
Random Forest are not statistically different. Note than-Ra
dom Forest is not significantly better than CART, which would
not have been predicted by Lessmann et al. s s]
Hence we answer RQ2 as “yes”: tuning can change how dal
miners are comparatively ranked. s

Precision F
100 T T T 100 T T T

4.3. RQ3: Does Tuning Select Different Project Factors?]

Researchers often use data miners to test what factors ha
most impact on software projects [6,7/8/9] 10, 11]. Table €
comments that such tests are unreliable since the facters s
lected by a data miner are much altered before and aftergunin

Table[® shows what features are found in the trees generat: —f—cART —f—cART
by the WHERE algorithm (bold shows the features found by the Lo .
trees from tuned WHERE; plain text shows the featuresseeni * * 2 2 7 ' acssomd
the untuned study). Note that different features are ssdect
depending on whether or not we tune an algorithm. _ _ ’

For example, considenfawhich is the number of Methods qpmened np s beter when defas are above age: 50, 50 and e recammended
inherited by a class plus the number of methods accessible tpgpulation size for WHERE, CART and Random Forest by Storn.
member methods of the class. For both goals (precision and

“F") mfais selected for 8 and 5 data sets, for the untuned and .
tuned data miner (respectively). Similar differences aens perhaps rewsecﬂ[@ 7l 8, 8.]10] 11]. For example, one of us

with other attributes (Menzies) used data miners to assert that some factors were

. . . more important than others for predicting successful saftw
As to why differenttunings select for different features;all) . .
. ; o reuse|ﬂ3]. That assertion should now be doubted since Mgnzie
from §2.1 that tuning changes how data miners heuristically ex-,. . ;
. d{d not conduct a tuning study before reporting what factioes
plore a large space of possible models. As we change how th% : . .
. ata miners found were most influential.
exploration proceeds, so we change what features are found b
that exploration. _) 5
In any case, our answer to RQ3 is “yes”, tuning changes ouf4+ RQ4: Is Tuning Easy*
conclusions about what factors are most important in sséwa In terms of the search space explored via tuning, optimizing

engineering. Hence, many old papers need to be revisited arttfect prediction from static code measures is msictaller
9

50 F - 50 F -

—%— WHERE —%— WHERE

Precision F
Learner | CART WHERE | CART WHERE Precision F
CART - 0.41 - 0.24 j j j j T
R. Forest | 0.12 0.35 0.18 0.18

Table 7: Kolmogorov-Smirnov Tests for distributions of &ig[3

than the standard optimization.
To see this, recall from Algorithm 1 that DE exploreBap- o5t 1 osf
ulation of sizenp = 10. This is a very small population size
since Rainer Storn (one of the inventors of DE) recommends
settingnp to be ten times larger than the number of attributes
being optimized [12]. . o
From Tabld®, we see that Storn would therefore recommend
npvalues of 90, 50, 60 for WHERE, CART and Random Forest

0.33 - 4 0.33 -

0.2 4 0.2

) . A —-)k—_threshold —-)k—_threshold
(respectively). Yet we achieve our results using a constart T mepgre T ioPune
10; i.e. 33, 18, 19 of the recommended search space. —5—wiggle —5—wiggle
To justify thatnp = 10 is enough, we did another tuning 14 812 17 14 812 17
data sets, sorted data sets, sorted

study, where all the settings were the same as before but we
setnp =90, np = 50andnp = 60for WHERE, CART and Ran-
dom Forest, respectively (i.e. the settings as recommebged
Storn). The tuning performance of learners was evaluated b
precision and “F” as before. To compare performance of each

jgure 4: Four representative tuning values in WHERE witicigion and F-measure as
e tuning goal, respectively.

learner with differenhp's, we con_1puted the delta in the perfor- Datasets| TunedWhere | TunedGART TunedRanEst
mance betweenp = 10andnp using any of{ 90, 50, 6Q. o Peasion 5'(:) precision 5'; precision 7';
. . . an
Those deltas, shown in Figurk 3, are sorted along the x-axis. antvi 60 60 50 50 60 60
In those plots, a zero or negatiyevalue means thatp = 10 Ve | ne R % & B
performs as well or better thamp € {90,50,60}. One technical camelV1 8 5 8 uoj 79 I
. V!
aside: the data set orderings in Figlfe 3 on the x-axis are not jed@tv)é 80 80 80 60 90 60
the same (that is, ifip > 10was useful for optimizing one data kive | e &| & w| oo 8
set’s precision score, it was not necessary for that datafset log4j 50 70 50 50 80 50
lucene 80 60 70 60 60 70
measure score). poiVO 60 60 70 60 130 80
Figure[3 shows that the median improvement is zeronige. ommese| 0 | 50 e Er O
= i i ioni velocity 60 60 50 60 100 60
10 usually does as well as anything else. This observ_atlon is elocty &0 & > & L s
supported by the KS results of Talple 7. At a 95% confidence, xercesVl | 80 80 60 60 50 80

the KS threshold is.B6,/34/(17+ 17) = 0.46, which is greater
than the values in Figuid 3. That is, no result in Fidure 3 i
significantly different to any other— which is to say thatréhis

no evidence thatp = 10is a poor choice of search space size. . .
have conducted numerous explorations of evolutionary-algo

Another measure showing that tuning is easy (for static code L :
defect predictors) is the number of evaluations requiresbto- fithms for search-based SE applications (44,145, 52/ 60, 61]

. . B n that work, our ex ions were that non-pari r
plete optimization (see next section). That is, we answe# RQ ased on that work, our expectations were that non-paramet

as “ves” tuning is surorisinaly easy— at least for defeetio- evolutionary optimization would take thousands, if not-mil
yes , tuning P gly easy l lions, of evaluations of candidate tunings. This turnedrait
tors and using DE.

to be that case. By comparing the runtime of tuned and default
_ _ learners shown in Tablé 9, we notice that the actual tuning ti
4.5. RQ5: Is Tuning Impractically Slow? for most data sets is not extremely long.

The number of evaluations and runtime used by our opti- Hence, we answer RQ5 as “no”: tuning is so fast that it could
mizers are shown in Tablg 8 and Table 9. WHERE's runtimeland should) be used by anyone using defect predictors.
are slower than CART and Random Forest since WHERE has As to why DE can tune defect predictors so quickly, that is an
yet to benefit from decades of implementation experiende wit open question. One possibility is that the search spacenwith
these older algorithms. For example, SciKitLearn’s CAR®@ an the control space of these data miners has many accumulative
Random Forest make extensive use of an underlying C librargffects such that one decision can cascade into anothett{and
whereas WHERE is a purely interpreted Python. combination of decisions is better than each separate &te).

Looking over Tabld 18, the general pattern is that 50 to 80Qvould be a natural tool for reasoning about such “cascades”,
evaluations suffice for finding the tuning improvements re-due to the way it mashes candidates together, then inserts th
ported in this paper. 50 to 80 evaluations are much fewer tharesult back into the frontier (making them available for reve
our pre-experimental intuition. Prior to this paper, théhaoss more mashing at the next step of the inference).

10

STable 8: Number of evaluations for tuned learners, optingiZor precision and F-Measure.

Datasets TunedWhere Naive Where TunedCART Naive. CART TunedRanFst Naive.RanFst

precision F precision F precision F precision F precision F precision F
antV0 95.47 93.58 1.65 1.39 5.08 3.52 0.08 0.08 9.78 9.89 0.20 0.17
antV1l 224.67 186.95 3.03 3.18 6.52 6.18 0.12 0.12 14.13 13.39 0.25 0.25
antv2 644.99 654.34 8.24 8.08 9.00 8.79 0.24 0.18 16.75 27.56 0.44 0.36
camelVO 690.62 543.28 7.93 9.65 12.68 17.00 0.24 0.28 28.49 22.52 0.34 0.41
camelVl | 1596.77 1808.03| 23.56 26.98 17.13 31.92 0.27 0.28 33.96 37.00 0.77 0.85
ivy 66.69 74.50 0.97 1.18 4.26 4.72 0.07 0.08 8.89 10.39 0.19 0.21
jeditvo 459.30 518.47 5.33 6.11 8.69 7.9 0.11 0.10 18.40 14.32 0.32 0.37
JjeditvVl 421.56 576.29 6.59 6.89 9.05 8.13 0.12 0.10 17.93 17.42 0.36 0.34
jeditv2 595.56 657.59 6.88 7.93 7.90 10.34 0.14 0.15 27.34 20.20 0.38 0.40
log4j 76.09 123.48 1.33 1.59 2.60 2.92 0.06 0.08 9.69 7.67 0.15 0.17
lucene | 236.45 219.02 2.60 3.68 6.07 6.89 0.10 0.12 9.77 13.06 0.25 0.35
poiVOo 263.12 314.53 3.92 4.82 7.42 7.80 0.09 0.10 25.86 19.29 0.28 0.32
poiV1l 398.33 446.05 6.94 7.55 9.31 7.62 0.13 0.14 12.67 27.23 0.29 0.36
synapse | 144.09 138.75 1.85 1.83 3.88 4.87 0.07 0.08 8.13 13.29 0.19 0.17
velocity 184.10 211.88 2.68 3.13 4.27 5.51 0.07 0.10 15.18 11.58 0.21 0.27
xercesVO | 136.87 178.49 1.98 2.02 9.17 7.47 0.10 0.11 14.17 17.31 0.22 0.28
xercesV1l | 1173.92 1370.89] 12.78 14.42 10.47 11.07 0.16 0.19 18.27 25.27 0.40 0.46

Table 9: Runtime for tuned and default learners(in sec)oping for precision and F-Measure.

4.6. RQ6: Should we use “off-the-shelf” Tunings? paper so it is quite possible that the conclusions of thisspap

. . . apply to other SE analytics tasks as well.
In Figure[4, we show how tuning selects the optimal values PPl y

for tuned parameters. For space limitation, only four paam
ters from WHERE learner are selected as representatives agd -onclusions
all the others can be found in our online support documents
(https://goo.gl/aHQKtU). Note that the tunings learnedreve
different in different data sets and for different goalss@lthe
tunings learned by DE were often very different to the defaul
(the default values fahreshold infoPrune min_Sizeandwrig-
gleare 05, 0.33, 05 and 02, respectively). That is, to achieve

the performance improvements seen in the paper, the default Tyning improves the performance scores of a predictor. That
tuning parameters required a wide range of adjustments. improvement is usually positive (see Figlile 1) and some-

Hence, we answer RQ6 as “no” since, to achieve the im- times it can be quite dramatic (e.g. precision changing from
provements seen in this paper, tuning has to be repeatedwhen ¢ to 60%).

ever the goals or data sets are changed. Given this requiteme

to repeatedly run tuning, it is fortunate that (as shown apov e Tuning changes conclusions on what learners are better than
tuning is so easy and so fast (at least for defect predictons f others. Hence, it is time to revisit numerous prior publica-
static code attributes). tions of our ownl[15] and others![4, 5].

Our exploration of the six research questions listed intike i
troduction show that when learning defect predictors fatist
code attributes, analytics without parameter tuning aresich
eredharmfulandmisleading

e Also, tuning changes conclusions on what factors are most
important in software development. Once again, this means
that old papers may need to be revised including those some

Reliability refers to the consistency of the results obtained of our own [8] and others [6] 7| B, 10,]11].
from the research. For example, how well independent re-

searchers could reproduce the study? To increase exteliaal r As to future work, it is now important to explore the implica-
bility, this paper has taken care to either clearly defineadgw- tions of these conclusions to other kinds of software aiyt
rithms or use implementations from the public domain (SciK-This paper has investigatsdmelearners usin@neoptimizer.
itLearn). Also, all the data used in this work is availablelme Hence, we can make no claim that DE is testoptimizer for
in the PROMISE code repository and all our algorithms are onall learners. Rather, our point is that there exists at leasesom
line at github.com/ai-se/where. learners whose performance can be dramatically improvedl by
External validity checks if the results are of relevance for least one simple optimization scheme. We hope that this work
other cases, or can be generalized from samples to populérspires much future work as this community develops and de-
tions. The examples of this paper only relate to precisionpugs best practices for tuning software analytics.
recall, and the F-measure but the general principle (that th Finally, on a more general note, we point out that
search bias changes the search conclusions) holds for any ﬁlrnkranz@lz] says data mining is inherently a multi-@tijee
of goals. Also, the tuning results shown here only came fronoptimization problem that seeks the smallest model with the
one software analytics task (defect prediction from statide highest performance, that generalizes best for future piesn
attributes). There are many other kinds of software arayti (perhaps learned in minimal time using the least amount of
tasks (software development effort estimation, socialvogt data). In this view, we are using DE to optimize an optimizer.
mining, detecting duplicate issue reports, etc) and thdid@p Perhaps a better approach might be to dispense with thessepar
tion of this study for those tasks is unclear. However, thosdion of “optimizer” and “learner” and combine them both into
other tasks often use the same kinds of learners explorédsin t one system that learns how to tune itself as it executesidf th

11

5. Reliability and Validity

view is useful, then instead of adding elaborations to date m pp. 481-490doi : 10. 1145/ 1985793, 1985859
ers (as done in this paper, or by researchers exploring hyper ~URLhttp://doi.acm org/10.1145/1985793. 1985859

ot [éb : : : - .] N. Nagappan, B. Murphy, V. Basili,
heL_mSt_ICS])’ it Shou_lq be p_OSSIble_ to radlca”y Slﬁpbp . The influence of organizational structure on software @yialin empirical case st
timization and data mining with a single system that rapidly in: ICSE 08, ACM. 2008, pp. 521-530.
performs both tasks. doi : 10. 1145/ 1368088. 1368160.

URLhttp://doi . acm org/ 10. 1145/ 1368088. 1368160
[20] A. E. Hassar, Predicting faults using the complexitgadle changes, in:
Proceedings of the 31st International Conference on Scétlkagineer-
ing, ICSE '09, IEEE Computer Society, Washington, DC, USB02, pp.
. . . 78-88/doi : 10. 1109/ 1 CSE. 2009. 5070510.
The work has partially funded by a National Science Foun- uRLJrtt p: /7 dx. doi . or g/ 10. 1109/ | CSE. 2009. 5070510
dation CISE CCF award #1506586. [21] D. Baker, A Hybrid Approach to Expert and Model-basetbEfEstima-
tion, Ph.D. thesis, Lane Department of Computer ScienceEectrical
Engineering, West Virginia University (2007).
[22] B. Anda, D. I. K. Sjgberg, A. Mockus, Variability and neglucibility in

Acknowledgments

References software engineering: A study of four companies that deyedicthe same
) system, IEEE Trans. Softw Eng. 35 (3) (2009) 407-429.

1 T Menzies, C. Pape, M. Rees-Jones, [23] E. Arisholm, L. Briand, Predicting fault-prone commois in
The promise repository of empirical software engineeriagad ~ (Feb a java legacy system, in: ISESE ‘06, 2006, available from
2015). ' http: /7/si nul a. no/ r esear ch/ engi neeri ng/ publ i cati ons/ Ari sh
URLhttp://openscience. us/repo [24] T.J. Ostrand, E. J. Weyuker, R. M. Bell, Where the bugs &r. ISSTA

[2] D. Rodriguez, I. Herraiz, R. Harrison, On software ergrng reposito- '04, ACM, 2004, pp. 86-96.
ries and their open problems, in: Proceedings RAISE’'122201 [25] F. Rahman, D. Posnett, P. Devanbu,

[3] N. Nagappan, T. Ball, Static analysis tools as early éatbrs of pre- Recalling the "imprecision’ of cross-project defect prin,
release defect density, in: ICSE '05, ACM, 2005, pp. 580-586 in: FSE'12, ACM, 2012, pp. 61:1-61:11.

[4] S.Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmgatlassifica- doi - 10, 1145/ 2393596, 2393660,
tion models for software defect prediction: A proposed fearork and URLht tp: /7 doi . acm or g/ 10. 1145/ 2393596. 2393669
novel findings, IEEE Trans. Softw Eng. 34 (4) (2008) 485-496. [26] Z.Yin, D. Yuan, Y. Zhou, S. Pasupathy, L. Bairavasuraay How do

[5] T.Hall, S.Beecham, D.Bowes, D. Gray, S. Counsell, Asysitic review fixes become bugs?, in: ESEC/FSE "11, 2011, pp. 26-36.
of fault prediction performance in software engineeringEE Trans. [27] T. Menzies, D. Raffo, S. Setamanit, Y. Hu, S. Tootoonidfodel-
Softw. Eng. 38 (6) (2012) 1276-1304. based tests of truisms, in: ASE '02, 2002, available from

[6] R.M.Bell, T. J. Ostrand, E. J. Weyuker, The limited impatindividual htt p: /7 menzi es. us/ pdf / 02t ui sis. pdfl
developer data on software defect prediction, Empiricdtv@oe Engi- [28] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, E. J. W. Jr, 3obug
neering 18 (3) (2013) 478-505. prediction support human developers? findings from a gocage study,

[7] F. Rahman, P. Devanbu, How, and why, process metrics efterpin: in: ICSE "13, IEEE, 2013, pp. 372-381.

ICSE "13, IEEE Press, 2013, pp. 432-441. [29] S. Rakitin, Software Verification and Validation for #titioners and

[8] T. Menzies, J. D. Stefano, More success and failure fadto software Managers, Second Edition, Artech House, 2001.
reuse, IEEE Trans. Softw Eng. 29 (5) (2003) 474-477, availdom [30] A. Tosun, A. Bener, R. Kale, Al-based software defeetfictors: Appli-
http://menzies. us/ pdf/02sereuse. pdf| _ cations and benefits in a case study, in: IAAI, 2010.

€ R Moser, W. Pedrycz, G. Succi, [31] A. Tosun, A. Bener, B. Turhan, Practical consideragiar deploying ai
A comparative analysis of the efficiency of change metriags static code attributgg mfggfel%g{gm@{molﬂ case study within the Turkish telecounication
in: ICSE 08, ACM, 2008, pp. 181-190. industry, in: PROMISE’09, 2009.
doi : 10. 1145/ 1368088. 1368114 [32] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. LindydD. Port,
URLhttp://doi.acmorg/10.1145/1368088. 1368114 . Rus, R. Tesoriero, M. Zelkowitz, What we have learned alfighting

[10] T. Zimmermann, R. Premraj, A. Zeller, Predicting deefor eclipse, in: defects, in: Proceedings of 8th International SoftwareridgtSympo-
PROMISE'07, IEEE, 2007, pp. 9-9. o _ sium, Ottawa, Canada, IEEE, 2002, pp. 249-258.

[11] K. Herzig, S..Just, A. Rau, A. Zeller, Predicting defectsing change [33] M. Fagan, Design and code inspections to reduce emopsdgram de-
genealogies, in: ISSRE '13, IEEE, 2013, pp. 118-127. velopment, IBM Systems Journal 15 (3).

[12] R. Storn, K. Price, Differential evolution—a simpledhefficient heuristic [34] F. Rahman, S. Khatri, E. Bar, P. Devanbu,
for global optimization over continuous spaces, Journaglobal opti- Comparing static bug finders and statistical prediction, IESE 2014,
mization 11 (4) (1997) 341-359. ACM, 2014, pp. 424-434doi : 10. 1145/ 2568225, 2568269,

[13] J. Bergstra, Y. Bengio, Random Search for Hyper-Patam@ptimiza- URL|htt p: /7 doi . acm or g/ 10. 1145/ 2568225. 2568269
tion, Journal of Machine Learning Research 13 (2012) 2838-30 [35] L. Breiman, A. Cutler, Random forests,

[14] K. Gao, T. M. Khoshgoftaar, H. Wang, N. Seliya, https://www.stat.berkeley.edu/ breiman/RandomForgae1).

Choosing software metrics for defect prediction: An inigegton on feature mctioa;,tgmg;q\@g_ Friedman, R. A. Olshen, C. J. Stones§lfcation and
Softw. Pract. Exper. 41 (5) (2011) 579-606. Regression Trees, 1984,

doi : 10. 1002/ spe. 1043, [37] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, Faus,

URLhttp: //dx. doi . org/ 10. 1002/ spe. 1043 B. Turhan, T. Zimmermann, Local versus global lessons féeaepre-

[15] T. Menzies, J. Greenwald, A. Frank, Data mining statide attributes to diction and effort estimation, IEEE Trans. Softw Eng. 39(@)13) 822—
learn defect predictors, IEEE Trans. Softw Eng. 33 (1) (3@92.3, avail- 834.
able fromht t p: // menzi es. us/ pdf/ 06l ear nPredi ct. pdf. [38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, Bhirion,

[16] K.O.Elish, M. O. Elish, Predicting defect-prone sodive modules using support yeciqri&aCRingfiondel, P. Prettenhofer, R. Weiss, V. DuboulgVan-
Journal of Systems and Software 81 (5) (2008) 649 — 660. derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perr@uEhesnay,

doi:http://dx.doi.org/10. 1016/].]ss.2007.07.040, Scikit-learn: Machine learning in Python, Journal of MaehiLearning
URLhttp://ww. sci encedi rect.com science/article/pii/ 501%%7992@1) 2825-2830.

[17] L. Pelayo, S. Dick, Applying novel resampling strategjito software [39] T. Menzies, E. Kocaguneli, L. Minku, F. Peters, B. Tuth&haring Data

defect prediction, in: quzy Information Proc_essing Sycie2007. and Models in Software Engineering, Morgan Kaufmann, 2015.

NAFIPS '07. Annual Meeting of the North American, 2007, pf—82. [40] 1. Jolliffe, Principal component analysis, Wiley Omdi Library, 2002.

doi : 10. 1109/ NAFI PS. 2007. 383813, [41] U. M. Fayyad, I. H. Irani, Multi-interval discretizath of continuous-
[18] S. Kim, H. Zhang, R. Wy, L. Gong, valued attributes for classification learning, in: Prodegs of the Thir-

Dealing with noise in defect prediction, in: ICSE '11, ACMOT1,
12

http://openscience.us/repo
http://openscience.us/repo
http://menzies.us/pdf/02sereuse.pdf
http://doi.acm.org/10.1145/1368088.1368114
http://dx.doi.org/10.1145/1368088.1368114
http://doi.acm.org/10.1145/1368088.1368114
http://dx.doi.org/10.1002/spe.1043
http://dx.doi.org/10.1002/spe.1043
http://dx.doi.org/10.1002/spe.1043
http://menzies.us/pdf/06learnPredict.pdf
http://www.sciencedirect.com/science/article/pii/S016412120700235X
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2007.07.040
http://www.sciencedirect.com/science/article/pii/S016412120700235X
http://dx.doi.org/10.1109/NAFIPS.2007.383813
http://doi.acm.org/10.1145/1985793.1985859
http://dx.doi.org/10.1145/1985793.1985859
http://doi.acm.org/10.1145/1985793.1985859
http://doi.acm.org/10.1145/1368088.1368160
http://dx.doi.org/10.1145/1368088.1368160
http://doi.acm.org/10.1145/1368088.1368160
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://simula.no/research/engineering/publications/Arisholm.2006.4
http://doi.acm.org/10.1145/2393596.2393669
http://dx.doi.org/10.1145/2393596.2393669
http://doi.acm.org/10.1145/2393596.2393669
http://menzies.us/pdf/02truisms.pdf
http://doi.acm.org/10.1145/2568225.2568269
http://dx.doi.org/10.1145/2568225.2568269
http://doi.acm.org/10.1145/2568225.2568269

teenth International Joint Conference on Artificial Ingghce, 1993, pp.
1022-1027.

[42] P. R. Cohen, Empirical Methods for Artificial Intelligee, MIT Press,
1995.

[43] R.Holte, Very simple classification rules perform wall most commonly
used datasets, Machine Learning 11 (1993) 63.

[44] M. S. Feather, T. Menzies, Converging on the optimalaiatt
ment of requirements, in: |EEE Joint Conference On Require-
ments Engineering ICRE'02 and RE’02, 2002, available from
http:// nmenzi es. us/ pdf/02re02. pdt.

[45] T. Menzies, O. El-Rawas, J. Hihn, M. Feather, B. Boehm,
R. Madachy, The business case for automated software engi-
neerng, in: ASE '07, ACM, 2007, pp. 303-312, available from
http:// nmenzi es. us/ pdf/ 07casease- v0. pdfl

[46] A. Goldberg, On the complexity of the satisfiability ptem, in: Courant
Computer Science conference, No. 16, New York University, 1979.

[47] F. Glover, C. McMillan, The general employee schedylproblem. an
integration of ms and ai, Computers & Operations Researdb)1(3986)
563 - 573.

[48] R. P. Beausoleil, MOSS: multiobjective scatter seaapplied to non-
linear multiple criteria optimization, European JournbDperational Re-
search 169 (2) (2006) 426 — 449.

[49] J. Molina, M. Laguna, R. Marti, R. Caballero, Sspmo: Aatser tabu
search procedure for non-linear multiobjective optimaat INFORMS
Journal on Computing.

[50] A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. DarilA. Beham,
Abyss: Adapting scatter search to multiobjective optiniara IEEE
Trans. Evol. Comp. 12 (4) (2008) 439-457.

[51] H. Pan, M. Zheng, X. Han, Particle swarm-simulated afing fusion
algorithm and its application in function optimization, ilnternational
Conference on Computer Science and Software Engineerd@f, 2p.
78-81.

[52] J. Krall, T. Menzies, M. Davies, Gale: Geometric actiearning for
search-based software engineering, To appear, IEEE T3aftsv Eng.

[53] M. Zuluaga, A. Krause, G. Sergent, M. Plischel, Acte@rhing for multi-
objective optimization, in: International Conference oadiline Learn-
ing (ICML), 2013.

[54] J. Vesterstrom, R. Thomsen, A comparative study ofeddffitial evolu-
tion, particle swarm optimization, and evolutionary altfons on numer-
ical benchmark problems, in: IEEE Congress on Evolutior@oynputa-
tion '04, 2004 /doi : 10. 1109/ CEC. 2004. 1331139,

[55] M. Omran, A. P. Engelbrecht, A. Salman, Differentiabkition methods
for unsupervised image classification, in: IEEE CongresSwaiutionary
Computation '05, Vol. 2, 2005, pp. 966-973.

[56] 1. Chiha, J. Ghabi, N. Liouane, Tuning pid controllertvimulti-objective
differential evolution, in: ISCCSP '12, IEEE, 2012, pp. 1-4

[57] T.Robic, B. Filipic, Demo: Differential evolutiorof multiobjective opti-
mization, in: Evolutionary Multi-Criterion OptimizatigrSpringer, 2005,
pp. 520-533.

[58] Q.Zhang, H. Li, Moea/d: A multiobjective evolutionagjgorithm based on decompositjon,
IEEE Trans. Evol. Comp 11 (6) (2007) 712-731.
doi : 10. 1109/ TEVC. 2007. 892759,

URLhttp://dx. doi.org/10. 1109/ TEVC. 2007. 892759

[59] W. Huang, H. Li, On the differential evolution schema&smoea/d, in:
ICNC '10, Vol. 6, 2010, pp. 2788-2792.

[60] J. Krall, T. Menzies, M. Davies, Better model-basedIgsia of human
factors for safe aircraft approach, To appear, |IEEE Trdiwsacon Hu-
man Machine Systems.

[61] P. G. ll, T. Menzies, S. Williams, 0. El-Rawas,
Understanding the value of software engineering techmegog in:
ASE '09, IEEE, 2009, pp. 52—6doi : 10. 1109/ ASE. 2009. 93.
URLhttp://dx. doi.org/10. 1109/ ASE. 2009. 93

[62] J. Furnkranz, P. Flach, Roc 'n’ rule learning: towadetter under-
standing of covering algorithms, Machine Learning 58 (D0&) 39-77.
doi : http://dx.doi.org/10.1007/s10994- 005- 5011- x.

[63] Y. Jia, M. B. Cohen, M. Harman, J. Petke, Learning coratonal inter-
action testing strategies using hyperheuristic searcHC8E '15, |IEEE,
2015.

13

http://menzies.us/pdf/02re02.pdf
http://menzies.us/pdf/07casease-v0.pdf
http://dx.doi.org/10.1109/CEC.2004.1331139
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/ASE.2009.93
http://dx.doi.org/10.1109/ASE.2009.93
http://dx.doi.org/10.1109/ASE.2009.93
http://dx.doi.org/http://dx.doi.org/10.1007/s10994-005-5011-x

	1 Introduction
	2 Preliminaries
	2.1 Tuning: Important and Ignored
	2.2 You Can't Always Get What You Want
	2.3 Notes on Defect Prediction
	2.4 Notes on Data Miners
	2.5 Learners and Their Tunings
	2.6 Tuning Algorithms

	3 Experimental Design
	3.1 Data Sets
	3.2 Optimization Goals

	4 Experimental Results
	4.1 RQ1: Does Tuning Improve Performance?
	4.2 RQ2: Does Tuning Change a Learner's Ranking ?
	4.3 RQ3: Does Tuning Select Different Project Factors?
	4.4 RQ4: Is Tuning Easy?
	4.5 RQ5: Is Tuning Impractically Slow?
	4.6 RQ6: Should we use ``off-the-shelf'' Tunings?

	5 Reliability and Validity
	6 Conclusions

