

Accepted Manuscript

Empirical Evaluation of Software Maintainability Based on a Manually
Validated Refactoring Dataset

Péter Heged}us, István Kádár, Rudolf Ferenc, Tibor Gyimóthy

PII: S0950-5849(16)30356-1
DOI: 10.1016/j.infsof.2017.11.012
Reference: INFSOF 5918

To appear in: Information and Software Technology

Received date: 14 January 2017
Revised date: 11 November 2017
Accepted date: 19 November 2017

Please cite this article as: Péter Heged}us, István Kádár, Rudolf Ferenc, Tibor Gyimóthy, Empirical
Evaluation of Software Maintainability Based on a Manually Validated Refactoring Dataset, Information
and Software Technology (2017), doi: 10.1016/j.infsof.2017.11.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2017.11.012
https://doi.org/10.1016/j.infsof.2017.11.012

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We provided a manually validated refactoring dataset containing only true

positive refactorings.

• The maintainability of refactored elements (classes and methods) was

lower than that of not-refactored elements.

• Size, complexity, and coupling metrics were generally higher in the refac-

tored elements.

• Results are in line with our previous findings on the not validated dataset,

but more significant.

• We found no strong connection between clone metrics and refactoring that

was reported previously.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Empirical Evaluation of Software Maintainability
Based on a Manually Validated Refactoring Dataset

Péter Hegedűsa, István Kádárb, Rudolf Ferencb, Tibor Gyimóthyb

aMTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
bUniversity of Szeged, Hungary

Abstract

Context: Refactoring is a technique for improving the internal structure

of software systems. It has a solid theoretical background while being used in

development practice also. However, we lack empirical research results on the

real effect of code refactoring and its application.

Objective: This paper presents a manually validated subset of a previously

published dataset containing the refactorings extracted by the RefFinder tool,

code metrics, and maintainability of 7 open-source systems. We found that

RefFinder had around 27% overall average precision on the subject systems,

thus our manually validated subset has substantial added value. Using the

dataset, we studied several aspects of the refactored and non-refactored source

code elements (classes and methods), like the differences in their maintainability

and source code metrics.

Method: We divided the source code elements into a group containing the

refactored elements and a group with non-refactored elements. We analyzed

the elements’ characteristics in these groups using correlation analysis, Mann-

Whitney U test and effect size measures.

Results: Source code elements subjected to refactorings had significantly lower

maintainability than elements not affected by refactorings. Moreover, refactored

elements had significantly higher size related metrics, complexity, and coupling.

Email addresses: hpeter@inf.u-szeged.hu (Péter Hegedűs), ikadar@inf.u-szeged.hu
(István Kádár), ferenc@inf.u-szeged.hu (Rudolf Ferenc), gyimothy@inf.u-szeged.hu
(Tibor Gyimóthy)

Preprint submitted to Information and Software Technology November 20, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Also these metrics changed more significantly in the refactored elements. The

results are mostly in line with our previous findings on the not validated dataset,

with the difference that clone metrics had no strong connection with refactoring.

Conclusions: Compared to the preliminary analysis using a not validated

dataset, the manually validated dataset led to more significant results, which

suggests that developers find targets for refactorings based on some internal

quality properties of the source code, like their size, complexity or coupling,

but not clone related metrics as reported in our previous studies. They do

not just use these properties for identifying targets, but also control them with

refactorings.

Keywords: code refactoring, manually validated empirical dataset, source

code metrics, software maintainability, empirical study

1. Introduction

Source code refactoring is a popular and powerful technique for improving

the internal structure of software systems. The concept of refactoring was in-

troduced by Fowler [1] and nowadays IT practitioners think of it as an essential

part of the development process. Despite the high acceptance of refactoring

techniques by the software industry, it has been shown that practitioners apply

code refactoring differently than Fowler originally suggested. He proposed that

code smells should be the primary technique for identifying refactoring oppor-

tunities in the code and a lot of research effort [2, 3, 4, 5] has been put into

examining them. However, there are statements in the literature [6, 7, 8] that

engineers are aware of code smells, but are not really concerned on their im-

pact as refactoring activity is not focused on them. A similar counter intuitive

result by Bavota et al. [9] suggests that only 7% of the refactoring operations

actually remove the code smells from the affected class. Besides exploring how,

when and why refactoring is used in the everyday software development, their

effects on short and long-term maintainability and costs are vaguely supported

by empirical results.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

To help addressing the further empirical investigations of code refactoring,

we proposed a publicly available refactoring dataset [10] that we assembled using

the RefFinder [11, 12] tool for refactoring extraction and the SourceMeter1

static source code analyzer tool for source code metric calculation. The dataset

consists of refactorings and source code metrics for 37 releases of 7 open-source

Java systems. We applied the dataset for a preliminary analysis on the effects

of code refactoring on source code metrics and maintainability [10, 13]. After

the analysis, however, it turned out that the quality of the refactoring data

is quite low due to the false positive instances extracted by RefFinder, thus

in this paper2 we propose an improved dataset that is a manually validated

subset of our original dataset. It contains one manually validated release for

each of the 7 systems. Besides the list of true positive refactoring instances

in the dataset every refactoring is also mapped to the source code elements

at the level of methods and classes on which the refactoring was performed.

We also store exact version and line information in the dataset to supports

reproducibility. Additionally to the source code metrics, the dataset includes

the relative maintainability indices of source code elements, calculated by the

QualityGate3 tool, an implementation of the ColumbusQM quality model [15].

Being a direct measure of maintainability, it allows the analysis of the connection

between source code maintainability and code refactoring as well.

Although the manually validated refactoring dataset is in itself a major

contribution, we also utilized it to replicate and extend our preliminary stud-

ies [10, 13] and re-examine the connection between maintainability and code

refactoring as well as the distribution of the individual source code metrics in

the refactored and non-refactored source code elements. The previous studies

used the original (i.e. not validated) dataset, thus it is a question how the re-

sults change using the manually validated dataset. Our empirical investigation

focused on the low-level quality attributes of refactored (and non-refactored)

1 http://www.sourcemeter.com/
2This journal paper is an extended version of our conference paper [14].
3 http://www.quality-gate.com/

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

classes and methods, and we tried to find patterns that may explain the moti-

vations of the developers to perform refactoring and how the internal structure

of the source code elements change upon refactoring.

To concisely describe our research motivations, we framed the following re-

search questions, which we investigated with the help of the improved dataset:

RQ1. Are source code elements with lower maintainability subject to more

refactorings in practice?

Since refactoring is by definition a change to improve the internal code struc-

ture by preserving its functionality, it is an intuitive assumption that poor code

structure is the primary driver behind code refactoring. To verify this, we inves-

tigated the maintainability values of the refactored and non-refactored source

code elements to see whether there are patterns that support or contradict this

assumption. By applying statistical methods on the refactoring data contained

in our dataset we found that the low maintainability values of source code en-

tities indeed triggered more code refactorings in practice.

RQ2. What are the typical values of source code metrics of the refactored

and non-refactored elements and how do they change upon refactorings?

The first research question investigates the maintainability of the refactored

and non-refactored source code elements, but we were also interested in the

typical source code metric values of these elements and the effects of refactorings

on these metrics. Although the RMI itself relies on source code metrics, it uses

and combines only a small fraction of the available metrics (i.e. those extracted

by SourceMeter). We wanted to analyze each and every metric by itself to get

a deeper insight about the effect of refactorings on them. Moreover, besides

the sheer metric values we were also interested in their changes throughout the

releases.

Therefore, in RQ2 we examined how do the well-known source code metrics,

like complexity, lines of code, coupling, etc., shape and change for the refactored

and non-refactored source code elements. In general, we found that source code

elements that were refactored had significantly different (typically higher) size

related metrics (e.g. lines of code, number of statements), complexity (e.g.

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

McCabe’s cyclomatic complexity [16], nesting level) and coupling (e.g. coupling

between object classes and number of incoming invocations) on average than

source code elements not refactored at all.

Moreover, these were the metrics that changed more significantly in the

refactored elements than in the non-refactored ones. Additionally, we found

no such metric that would be consistently larger in the non-refactored classes

and/or would grow much slower in non-refactored classes than in the refactored

ones.

We also compared the findings with the previous results obtained on the not

validated refactoring dataset and found that most of the metric groups found to

be relevant in connection with refactoring was the same for both datasets. How-

ever, while previous results displayed 2-4 significant cases out of 7, we obtained

3-6 significant cases with much stronger p-values using the manually validated

dataset. We also identified that clone related metrics had no strong connec-

tion with refactoring, even though previous results on the not validated dataset

suggested so due to the false positive refactoring instances.

The main contributions of the paper can be summarized as follows. In the

conference version [14] we already presented:

• Amanually validated dataset containing true positive refactoring instances

attached to source code elements at method and class level and their source

code metrics and maintainability scores.

• An extension of the RefFinder tool that allows batch-style analysis and

result reporting attached to the source code elements.

• An empirical investigation of the maintainability scores of the source code

classes and methods affected by at least one refactoring and those of not.

On the basis of the achieved positive results so far, in this paper we extend our

previous analysis with:

• An empirical evaluation of the main quality properties (i.e. source code

metrics) and their changes due to refactoring (an entirely new research

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

question).

• A comparison of the findings with the previous results obtained on the

not validated refactoring dataset.

• Detailed information of the existing and new statistical test results and

an extended discussion of them.

• We made our data analysis results available online just like the dataset

itself.

The rest of the paper is organized as follows. First, we start with a related

literature overview in Section 2. Next, Section 3 outlines the data collection

and validation process of creating the dataset. We describe the data analysis

methodology applied for answering the research questions in Section 4. In Sec-

tion 5, we display the results of our empirical investigation on the maintainability

and source code metrics of refactored and non-refactored source code entities.

The threats to the validity of our results are listed in Section 7. Finally, we

conclude the paper in Section 8.

2. Related Work

There are several studies that have investigated the relationship between

practical refactoring activities and the software quality through different quality

attributes. Many of them used the RefFinder tool [11] to extract refactorings

from real-life open-source systems, similarly as we did.

Bavota et al. [9] made observations on the relations between metrics/code

smells and refactoring activities. They mined the evolution history of 2 open-

source Java projects and revealed that refactoring operations are generally fo-

cused on code components for which quality metrics do not suggest there might

be a need for refactoring operations. In contrast to this work, by consider-

ing maintainability instead of code smells, we found significant and quite clear

relationship with refactoring activities. Bavota et al. also provided a large

refactoring dataset with 15,008 refactoring operations, but it contains file level

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

data only without exact line information. Our open dataset contains method

level information as well and refactoring instances are completely traceable.

In a similar work to ours, Murgia et al. [17] studied whether highly coupled

classes are more likely to be targets of refactoring than less coupled ones. Classes

with high fan-out (and relatively low fan-in) metric consistently showed to be

targets of refactoring, implying that developers may prefer to refactor classes

with high outgoing rather than high incoming coupling. Kataoka et al. [18]

also focused on the coupling metrics to evaluate the impact of refactorings and

showed that their method is effective in quantifying the impact of refactoring

and helped them to choose the appropriate refactoring types.

Contrary to these two works [17, 18], we did not select a particular metric

to assess the effect of refactorings, but rather used statistical tests to find those

metrics that change meaningfully upon refactorings. This way we could identify

that complexity and size metrics also play an important role in connection with

refactorings applied in practice.

Kosker et al. [19] introduced an expert system for determining candidate

software classes for refactoring. They focused on the complexity measures as

primary indicators for refactoring and built machine learning models that can

predict whether a class should be refactored or not based on its static source

code metrics. In lack of real refactoring data, they assumed that classes with

decreasing complexity over the releases are the ones being refactored actively.

Using this heuristic, they were able to build quite efficient prediction models.

Although it might seem that our work is very similar to that of Kosker et al.,

there are numerous differences. We mined and manually verified real refactoring

instances instead of using heuristics to determine which classes are refactored.

We also analyzed the values of static source code metrics of the refactored and

non-refactored elements, but our focus was not on selecting the best predictors

for building machine learning models, but to generally explore the connection

between each and every metric and refactorings. Moreover, we examined 50+

metrics, which is almost the double that Kosker et al. used and also contain for

example, cohesion and clone related metrics that were not examined by them.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Furthermore, we applied a statistical approach instead of machine learning, and

published results at the level of methods as well, not just for classes as Kosker

et al did. A significant part of our work was dedicated to the analysis of the

changes in metric values that was entirely omitted by Kosker et al.

In the study conducted by Silva et al. [20] the authors monitored Java

projects on GitHub and asked the developers to explain the reasons behind their

decision to refactor the code. They composed a set of 44 distinct motivations of

12 refactoring types such as “Extract reusable method” or “Introduce alterna-

tive method signature” and found that refactoring activity is mainly triggered

by changes in the requirements and much less by code smells. The authors also

made the collected data and the tool called RefactoringMiner publicly available,

which was used to detect the refactorings.

The case study by Ratzinger et al. [21] investigated the influence of refac-

toring activities on software defects. The authors extracted refactoring and

non-refactoring related features that represent several domains such as code

measures, team and co-change aspects, or complexity that served as input to

build prediction models for software defects. They found that the number of

software defects decreased if the number of refactorings increased in the preced-

ing time period.

Similarly to us, Murphy-Hill et al. [22] empirically analyzed how developers

refactor in practice. They found that automatic refactoring is rarely used: 11%

by Eclipse developers and 9% by Mylyn developers. Unlike this paper, we did

not focus on how refactorings are introduced (i.e. manually or using a tool),

but rather on their effect on source code.

Negara et al. [23] conducted an empirical study considering both manual

and automated refactoring. Using a continuous refactoring inference algorithm,

they composed a corpus of 5,371 refactoring instances collected from developers

working in their natural environment. According to their findings, more than

half of the refactorings were performed manually, more than one third of the

refactorings performed by developers were clustered in time, and 30% of the

applied refactorings did not reach the version control system.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The approach presented by Hoque et al. [24] investigates the refactoring

activity as part of the software engineering process and not its effect on code

quality. The authors found that it is not always true that there are more refac-

toring activities before major project release dates than after. The authors were

able to confirm that software developers perform different types of refactoring

operations on test code and production code, specific developers are responsible

for refactorings in the project and refactoring edits are not very well tested.

Tsantalis et al. [25] identified that refactoring decision-making and appli-

cation is often performed by individual refactoring “managers”. They found a

strong alignment between refactoring activity and release dates and revealed

that the development teams apply a considerable amount of refactorings during

testing periods.

Measuring clones (code duplications) and investigating how refactoring af-

fects them has also attracted a lot of research effort. Our dataset also includes

clone metrics, thus clone oriented refactoring examinations can also be per-

formed.

Choi et al. [26] identified that merged code clone token sequences and differ-

ences in token sequence lengths vary for each refactoring pattern. They found

that “Extract method” and “Replace method with method object” refactorings

are the most popular when developers perform clone refactoring.

Choi et al. [27] also presented an investigation of actual clone refactorings

performed in open-source development. The characteristics of refactored clone

pairs were also measured. From the results, they again confirmed that clone

refactorings are mostly achieved by “Replace method with method object” and

“Extract method”.

We found that refactoring activities are not related to clone metrics signif-

icantly in general. However, we did not distinguish our analysis based on the

types of refactorings (due to the relatively small number of true positive refactor-

ing instances), which might introduce new results for specific refactoring types

that differ from the overall case.

An automated approach to recommend clones for refactoring by training a

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

decision tree-based classifier was proposed by Wang et al. [28]. The approach

achieved a precision of around 80% in recommending clone refactoring instances

for each target system, and similarly good precision is achieved in cross-project

evaluation. By recommending which clones are appropriate for refactoring, the

approach allows for better resource allocation for refactoring itself after obtain-

ing clone detection results.

Fowler informally linked bad code smells to refactorings and according to

Beck, bad smells are structures in the code that suggest refactoring [1]. Despite

that many studies showed that practitioners apply code refactoring differently,

probably the most widespread approach in the literature to detect program parts

that require refactoring is still the identification of bad smells.

Tourwé and Mens recommended a semi-automated approach based on logic

meta programming to formally specify and detect bad smells and to propose ade-

quate refactorings that remove these bad smells [29]. Another approach to point

out structural weaknesses in object-oriented programs and solve them in an au-

tomated fashion using refactorings was proposed by Dudziak and Wolak [30].

Tahvildari and Kontogiannis proposed a framework in which a catalog of object-

oriented metrics was used as indicators to automatically detect where a particu-

lar refactoring can be applied to improve software quality [31]. Szőke et al. [32]

introduced a tool called FaultBuster that identifies bad code smells using static

source code analysis and automatically applies algorithms to fix selected code

smells by refactoring.

Although RefFinder can detect 63 refactoring types from Fowler’s catalog

and many studies used it to extract refactorings [27, 33, 34, 35], there are other

approaches for refactoring detection in practice. A method by Godfrey and

Zou [36] identified merge, split and rename refactorings using extended origin

analysis in procedural code, which served as a basis of refactoring reconstruction

by matching code elements. Demeyer et al. [37] proposed an approach that

compares two program versions based on a set of lightweight, object-oriented

metrics such as method size, class size, and the number of method calls within a

method to detect refactorings. Rysselberghe and Demeyer exploited also clone

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

detection to detect move refactorings [38]. Xing et al. [39] presented an ap-

proach by analyzing the system evolution at the design level. They used a tool

called UMLDiff to match program entities based on their name and structural

similarity. However, the tool did not analyze method bodies, so it did not detect

intra-method refactoring changes, such as a ’Remove Assignment To Parameter’.

The survey by Soares et al. [40] compared different approaches to detect

refactorings in a pair of versions. They performed comparisons by evaluat-

ing their precision and recall in randomly selected versions of JHotDraw and

Apache Common Collections. The results showed that Murphy-Hill [22] (man-

ual analysis) performed the best, but was not as scalable as the automated

approaches. Ratzinger’s approach [21] is simple and fast, but it has low re-

call; SafeRefactor [41] is able to detect most applied refactorings, although they

get low precision values in certain circumstances. According to experiments,

RefFinder has a precision of around 35% and a recall of 24%, which is similar

to our evaluation results.

A history querying tool called QWALKEKO [42] was also applied to the

problem of detecting refactorings. The main difference between QWALKEKO

and RefFinder is that RefFinder is limited to reason about two predefined ver-

sions while QWALKEKO is able to detect refactorings that happen across mul-

tiple versions. Besides the ones presented above, many other approaches exist

in the literature [43, 44, 45, 46, 47], however, our focus is not on refactoring

miner tools, but to utilize refactoring instances found by those tools to analyze

their connection with software maintainability in practice.

3. Dataset Construction

In order to support empirical research on source code refactorings, we built a

manually validated dataset of the applied refactorings and source code metrics

between two subsequent releases of 7 open-source Java systems available on

GitHub. The dataset published here is the manually validated subset (from

now on improved dataset) of the one proposed in our previous paper (from now

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

on base dataset) [10]. Table 1 provides an overview of the projects, their names,

URLs, number of analyzed releases and the covered time interval by the releases

in the base dataset.

Table 1: Descriptive statistics of the systems included in the refactoring base dataset

System Git URL # Rel. Time interval

antlr4 https://github.com/antlr/antlr4 5 21/01/2013-22/01/2015
junit https://github.com/junit-team/junit 8 13/04/2012-28/12/2014
mapdb https://github.com/jankotek/MapDB 6 01/04/2013-20/06/2015
mcMMO https://github.com/mcMMO-Dev/mcMMO 5 24/06/2012-29/03/2014
mct https://github.com/nasa/mct 3 30/06/2012-27/09/2013
oryx https://github.com/cloudera/oryx 4 11/11/2013-10/06/2015
titan https://github.com/thinkaurelius/titan 6 07/09/2012-13/02/2015

To reveal refactorings between two adjacent release versions we used the

RefFinder [11] refactoring reconstruction tool. In order to use RefFinder to

automatically extract refactorings not just between two adjacent versions of

a software but between each of the versions in a given version sequence we

improved RefFinder to be able to perform an automatic batch analysis. To

make further examinations possible, we also implemented an export feature

in RefFinder that writes the revealed refactorings and all of their attributes

into CSV files for each refactoring type.4 The base dataset is composed of the

not validated output of RefFinder grouped by refactoring types (e.g. extract

method, remove parameter) and the more than 50 types of source code metrics

extracted by the SourceMeter static code analysis tool, mapped to the classes

and methods of the systems. The full list of extracted source code metrics is

available on the tool’s website.5 Instead of selecting several metrics to analyze,

we applied all the statistical methods on each of the provided metrics, which

include all the most widely used code metrics.

The refactoring types are different at the class and method levels: there are

23 refactoring types at class level, and 19 at method level. For a complete list

of method and class-level refactorings see our previous paper [13]. Beyond the

plain source code metrics the datasets include the so-called relative maintain-

4The corresponding code changes can be found in a pull-request to the original repository:
https://github.com/SEAL-UCLA/Ref-Finder/pull/1

5https://www.sourcemeter.com/resources/java/

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ability index (RMI) which was measured by QualityGate SourceAudit [48] for

each method and class of the systems. RMI, similarly to the well-known main-

tainability index [49], reflects the maintainability of a code element, but it is

calculated using dynamic thresholds from a benchmark database, not by a fixed

formula. Thus, RMI expresses the maintainability of a code element compared

to the maintainability of other elements in the benchmark [50].

Figure 1: An overview of the process applied for constructing the base and the improved
datasets

The high-level overview of the dataset creation process is shown in Figure 1.

First of all, the Java source code is processed by the extended RefFinder version

that reveals and exports the refactoring instances to CSV files for each refactor-

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ing type. The source code is also analyzed by the SourceMeter and QualityGate

tools to calculate the source code metrics and RMI values for each method and

class of the input project. The base dataset is assembled by mapping the ex-

tracted refactorings to the affected code elements and extending the output of

static code analysis with the number of refactorings for each type that is mapped

to the element.

To compose the improved dataset we performed a manual validation that

resulted in a subset of the refactoring instances detected by RefFinder (i.e. we

left only the true positive instances), then we mapped this validated subset of

refactoring instances to the code elements again.

The datasets are available in the PROMISE data repository [51]:

http://openscience.us/repo/refactoring/refact.html

http://openscience.us/repo/refactoring/refact_val.html

and also at the following location:

http://www.inf.u-szeged.hu/~ferenc/papers/RefactDataSet

3.1. Dataset Validation

As false positive instances may seriously affect the validity of empirical in-

vestigations using the dataset, we decided to manually validate the refactoring

instances extracted by RefFinder and propose an improved dataset. The raw

output of the tool enumerates all the source code elements with path and line

information in the source code versions before and after refactoring.

Listing 1: Sample Add Parameter output of RefFinder

old method;new method;added parameter

removeAllConfigsNotInRuleStopState ()

@/antlr4_base1 /.../ ParserATNSimulator.java :1027:1;

removeAllConfigsNotInRuleStopState ()

@/antlr4_base2 /.../ ParserATNSimulator.java :846:1;

boolean:lookToEndOfRule

For example, if the tool reports an “Add Parameter” refactoring, the output

contains the old method to which a new parameter is being added and the same

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

method in the new version (where the new parameter is already present in the

source code) as well as the name of the parameter that was added. Listing 1

shows a simplified “Add Parameter” sample output of RefFinder for the antlr4

system.

The evaluation process consisted of the following steps for each such refac-

toring instance selected for manual validation:

1. We located the files affected by the actual refactoring instance both in the

old and new versions.

2. We opened the old and new files in a diff viewer tool (Araxis6 or Win-

Merge7) and located the source code elements enumerated in the refactor-

ing instance by the reported line numbers and identifier names.

3. By doing a line-by-line code inspection the evaluators decided whether the

reported instance is a true refactoring or not (adhering to the definition

of the individual refactorings and comprehending the semantic meaning

of the reviewed code parts).

Since it requires an enormous amount of human effort, we started by se-

lecting one release from each of the 7 systems and validated every refactoring

instance candidate proposed by RefFinder following the above described process.

The releases were selected to contain as many different types of refactorings as

possible. We also kept in mind that the number of refactorings within each type

has to be large enough in the releases given that some of them will be marked

as false positives. We did not choose releases with huge amount of refactorings

due to the necessity of an enormous validation effort.

Note, that we made a compromise in selecting the refactoring instances for

validation. We chose to evaluate all instances between two selected releases for

each of our subject systems. This resulted in an uneven proportion of validated

6https://www.araxis.com/
7http://winmerge.org/

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

refactorings from system to system (e.g. we evaluated almost 58% of refactor-

ing instances for oryx, but only about 2% for titan), see Table 2. Moreover,

there are refactoring types from which we did not evaluate a single instance,

Table 3 lists only those refactoring types that were encountered during manual

validation (RefFinder is able to extract 23 different types of refactorings [13]).

The reason why we did this contrary to choosing for example, a fixed x% of

refactoring instances for evaluation, is that it would not allow us to answer our

research questions meaningfully. Validating a fixed proportion of refactorings

for each system would not ensure a fully validated release for each system, in-

stead we would end up with releases containing refactoring instances from a

couple of which are manually validated and the rest are not. Analysis on such

a dataset would be by no means more precise than using the base dataset, as

the unvalidated instances might bias the statistical tests performed on the data

between two releases of a system. As the manually validated subset of refactor-

ing instances for analyzing our research questions is meaningful only if we have

at least one fully validated release for each system, we made this compromise.

The validation was carried out by two of the authors of this paper. Un-

fortunately, performing the evaluation in an optimal way, namely to examine

all the possible refactoring instances by both of the authors, was not feasible

due to our available resources. Instead, the authors distributed the refactorings

between them nearly equally and they validated only their corresponding in-

stances. This strategy reduced the amount of required human resources to half

of the optimal strategy; however, it also introduced some issues. To mitigate

the possible inconsistency in the judgment of the two authors, they performed

a random sample cross-validation on about 10% of each other’s data. Addition-

ally, in each and every problematic case all the authors of the paper (not just

the two evaluators) mutually agreed on how those specific refactorings should

be classified.

Table 2 shows the total number of refactoring instances found by RefFinder

in all the releases of the systems (# All), the selected revisions for manual

validation (Release), the number of manually validated instances per system

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(# Eval.), the number of true/false positive refactoring instances (TP and FP)

and the overall precision of RefFinder on the analyzed systems (Prec.).

Table 2: Number of all and manually validated refactorings in each subject system with
precision information

System # All Release # Eval. TP FP Prec.

antlr4 269 30/06/2013 [3468a5f] 112 50 62 44.64%
junit 1,080 08/04/2010 [a30e87b] 29 14 15 48.28%
mapdb 4,547 30/07/2014 [967d502] 171 4 167 2.34%
mcMMO 448 11/07/2013 [4a5307f] 63 6 57 9.52%
mct 716 27/09/2013 [f2cdf00] 97 28 69 28.87%
oryx 123 11/04/2014 [0734897] 71 25 46 35.21%
titan 3,661 13/02/2015 [fb74209] 84 18 66 21.43%
Total 10,844 – 627 145 482 23.13%

The evaluated release means that the refactoring instances between this and

the previous release was considered for validation. As can be seen, only the

fraction of the total number of refactorings has been validated (less than 6%).

Even this work took more than one person month work from the two authors.

However, as the overall precision of the RefFinder tool was only around 23% in

total (and approximately 27% if we take the average of the system-wise precision

values) on the base dataset, even these few hundred manually validated instances

of the improved dataset bear a significant additional value compared to the base

dataset. Considering the projects, we got the lowest precision value in case of

mapdb and mcMMO resulting a relatively low number of refactorings in these

projects.

Table 3 summarizes the number of various refactoring types within each

subject system. As can be seen, Add and Remove Parameter are the two most

frequently applied refactorings types. Together with the third most common In-

troduce Explaining Variable, they constitute nearly 60% of the total refactoring

count. The majority of the Add Parameter refactoring is in the antlr4 system,

while most of the Remove Parameter refactorings appear in oryx.

3.2. Dataset Structure

The improved dataset contains one folder for each release of the analyzed

systems. Within each folder there are two files ($proj-Class.csv and $proj-

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Total number of refactoring occurrences in the improved dataset grouped by their
types

Refactoring Type antlr4 junit mapdb mcMMOmct orxy titan Total
Add Parameter 22 2 0 1 11 1 2 39
Remove Parameter 2 0 0 0 4 18 5 29
Introduce Explaining Variable 6 0 2 0 3 4 2 17
Extract Method 4 4 0 2 0 0 0 10
Introduce Assertion 2 1 0 0 3 0 4 10
Rename Method 0 2 0 1 2 0 4 9
Replace Method with Method Object 8 0 0 0 0 0 1 9
Inline Temp 0 1 0 1 4 1 0 7
Move Method 3 2 1 0 0 0 0 6
Move Field 2 1 0 0 0 0 0 3
Extract Interface 0 0 1 0 1 0 0 2
Inline Method 0 1 0 1 0 0 0 2
Remove Assignment to Parameters 1 0 0 0 0 0 0 1
Replace Magic Number with Constants 0 0 0 0 0 1 0 1
Total 50 14 4 6 28 25 18 145

Method.csv) and a sub-folder containing a list of CSV (Comma Separated Val-

ues) files named by refactoring types. The CSV files with the names of refac-

torings (e.g. ADD_PARAMETER) lists only the true positive refactoring in-

stances found by RefFinder and manually checked by one of the authors. The

structure of these CSV files may differ based on the refactoring types, but they

always contain enough information to uniquely identify the entities affected by

the refactoring in the previous and actual releases (e.g. unique name, path

of classes/methods, parameters or line information). The $proj-Class.csv and

$proj-Method.csv files hold an accumulated result of the above.

Each line of these CSV files represents a class or method in the system

(identified in the same way as in the refactoring CSVs). In the columns of the

CSV, there are the source code metrics with the RMI scores and the various

refactoring types. For each row we have the source code metrics calculated for

this element and the number of refactorings of a certain type affecting the source

code element (i.e. the source code element appears in the refactoring type CSV

in an arbitrary role).

4. Data Analysis Methodology

To investigate our research questions we utilized the improved dataset in the

following ways.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Answering RQ1: Are source code elements with lower maintainability subject

to more refactorings in practice? To check if there are significant differences in

the maintainability of the refactored and non-refactored elements, we took all

the RMI values in release xi−1 for each system, where xi is the release selected

for manual validation. We formed two groups by RMI values based on the fact

if a corresponding source code entity was affected by any refactorings in release

xi. So we mapped the source code entities (i.e. classes and methods) from

version xi−1 to xi and put all the RMI values for the entities in xi−1 into the

not affected group if the entity had zeros in all refactoring columns in xi, other-

wise we put the RMI values of the entity into the affected group. Once we had

these two groups we run a Mann-Whitney U test [52], which is a non-parametric

statistical test to analyze whether the distribution of the values differ signifi-

cantly between two groups. The p-value of the test helped us judging whether

there is significant difference in the maintainability values between the source

code entities subjected to refactoring and the entities unaffected by refactoring.

Moreover, we used the mean rank values produced by the test to decide the

direction of the differences, namely whether the maintainability value is lower

or higher within one of the groups. To assess the volume of the differences, we

calculated the so-called Cliff’s δ non-parametric effect size measure as well [53].

Answering RQ2: What are the typical values of source code metrics of the

refactored and non-refactored elements and how do they change upon refactor-

ings? To analyze the differences in the metric values, we followed a very similar

approach to that of answering RQ1. We formed the two groups in the same

way as before, but instead of the RMI values, we run the Mann-Whitney U

test on each and every source code metric of the refactored and non-refactored

classes and methods. With this test we could identify those source code metrics

that are significantly different in the refactored group compared to the elements

unaffected by refactorings (from now on, we refer to this test as MWUPrev).

To study the effect of code refactoring as well, we calculated the metric differ-

ences between versions xi−1 and xi and run the Mann-Whitney U test on the

differences as well (from now on, we refer to this test as MWUDiff). Since

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

refactorings aim at improving the internal code structure, we were interested in

whether we can observe more significant changes of the metrics in the refactored

elements or not. To get a high-level overview of the most important source code

metrics, we counted the number of cases (for the 7 different subject systems)

when there were significant differences both in the metric values before the

refactoring and in the amount of metric change after the refactoring in a source

code element. We also counted the number of cases where only one of the test

produced significant results (i.e. only the metric values before the refactoring or

the amount of change for a metric value differed significantly in the refactored

group). To assess the effect sizes in case of significant differences, we calculated

the Cliff’s δ measures here as well.

5. Results

5.1. Maintainability Analysis

RQ1 – Are source code elements with lower maintainability subject to more

refactorings in practice?

As described in the previous section, for answering RQ1 we divided the

methods and classes of the systems into two groups. The first group was formed

out of the entities affected by at least one refactoring between the two releases

we validated. The second group contained all the other entities (i.e. the ones

being untouched by refactorings between the releases). Figure 2 depicts the

average RMI values of the entities falling into these groups. Light gray columns

denote the average RMI values within methods, while black color is for classes.

The ref and noref marks next to the systems stand for the two groups, ref is

the first group of entities (i.e. the ones affected by refactorings) and noref is

the second group.

To formally evaluate whether there is a difference in the maintainability

values we performed a Mann-Whitney U test on the RMI values of the two

groups defined above. We executed the test on each system both for the groups

of classes and methods. Tables 4 and 5 summarize the results of the test runs.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Average RMI values within the refactored and non-refactored entities

The main result of the test is the p-value (two-tailed) shown in the sec-

ond column. This indicates whether the null-hypothesis should be rejected,

which states that there is no significant difference between the RMI values of

the entities affected by refactorings in adjacent releases and the RMI values of

non-refactored entities. Thus, a p-value below 0.05 indicates that the hypothesis

should be rejected and the alternative hypothesis should be accepted, namely

that there is a significant difference in the RMI values between the two groups.

Table 4: The Mann-Whitney U test results for refactored and not refactored classes

System p-value No noref cl. No ref cl. M. ranknoref M. rankref Cliff’s δ

antlr4 0.00001 385 23 210.61 102.26 0.53
junit 0.00628 646 9 330.38 156.83 0.53
mapdb 0.01186 415 4 211.46 58.37 0.73
mcMMO 0.27604 85 4 45.65 31.25 0.32
mct 0.00000 2013 15 1019.94 284.60 0.73
oryx 0.04467 489 15 254.78 178.13 0.30
titan 0.00009 1145 13 583.61 217.50 0.63

To tell something about which group has higher RMI values, thus better

maintainability, we should observe the mean ranks. The column Mean ranknoref

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

displays the mean ranks in the not refactored groups, while Mean rankref shows

the mean rank values within the refactored groups. If the mean rank value of

one group is higher, it means the RMI values in that group are significantly

higher than in the other group. We report Cliff’s δ values as well in the last

columns, which measure how often the values in one distribution are larger

than the values in another distribution. It ranges from -1 to 1 and is linearly

related to the Mann-Whitney U statistic, however it captures the direction of the

difference in its sign as well. Simply speaking, if Cliff’s δ is a positive number,

the maintainability values are higher in the non-refactored group, while negative

value means that RMIs are higher in the refactored group. The closer the |δ| is
to 1, the more values are larger in one group than the values in the other group.

Table 5: The Mann-Whitney U test results for refactored and not refactored methods

System p-value No noref mth. No ref mth. M. ranknoref M. rankref Cliff’s δ

antlr4 0.00000 3104 40 1583.10 750.16 0.53
junit 0.00466 2253 12 1135.84 600.21 0.47
mapdb 0.20610 3358 3 1681.63 973.00 0.42
mcMMO 0.06529 813 5 410.69 215.40 0.48
mct 0.00346 11068 16 5545.88 3205.34 0.42
oryx 0.00034 2333 19 1181.03 620.82 0.48
titan 0.00530 7950 17 3987.32 2431.26 0.39

5.2. Source Code Metrics Analysis

RQ2 – What are the typical values of source code metrics of the refactored

and non-refactored elements and how do they change upon refactorings?

To find those properties that are significantly different of the refactored and

non-refactored source code elements, we performed a Mann-Whitney U test

according to the methodology described in Section 4. We used source code

metrics to describe source code properties extracted by the SourceMeter static

code analysis tool (the extraction process is highlighted in Section 3).

The possible differences in the distribution of source code metrics may help

to shed light on the main characteristics of refactoring targets in practical de-

velopment. As we saw in Section 5.1, the maintainability values are significantly

lower in the source code elements targeted by refactorings. As the maintainabil-

ity value is derived from source code metrics, it suggests that developers tend

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to (consciously or unconsciously) pay attention to some source code properties

finding refactoring candidates. To get a more detailed picture of this, we ana-

lyzed all the 52 class-level and 17 method-level metrics regarding two aspects.

First, how do their distributions differ within the source code elements that are

refactored from one version to another and those that are not (testMWUPrev).

Second, how do the metric change distributions differ between the refactored

and non-refactored elements from one version to another (MWUDiff).

Figure 3: High-level visualization of the Mann-Whitney U test (MWUPrev) results for classes

An overview of the results for classes is shown in Figure 3. Note that the

metrics with a prefix “T” (Total) are omitted from the analysis, as they are

variants of the same metrics with only slight differences in their calculation

(i.e. they strongly correlate with the original metrics). The height of the bars

represent for how many subject systems did the statistical tests give significant

results, thus their maximal value is 7, as we have 7 subject systems. The

blue color means that both tests MWUPrev and MWUDiff gave significant

results, meaning that we got a p-value less than 0.05, thus we could reject the

null-hypothesis (i.e. that there is no significant difference in the certain metric

values/the metric value changes between the groups of classes being refactored

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and those of not being refactored). Red color marks the number of cases where

only test MWUPrev resulted in significant p-value, while green color means the

same for test MWUDiff . That is, in case of red bars only the metric values

differ significantly between the classes being refactored later and those of not,

while the amount of changes in this metric between the two versions do not

differ significantly. Green bars mark the opposite, where there is no significant

difference in the bare metric values, but the amount of changes for that specific

metric differs significantly between the refactored and non-refactored classes.

Figure 4: The average metric values, the p-values and the Cliff’s delta effect sizes for the
refactored and non-refactored classes

To see also the likely direction of the differences in the values as well, we col-

lected the main characteristics of the most relevant metrics (i.e. those showing

the strongest connection with refactorings) in Figure 4. The table contains five

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

columns for each system. The first column (avgRef) shows the average metric

values in version xi−1 within the group of classes that are refactored in ver-

sion xi, while column two shows the average metric values in the non-refactored

classes (avgNoRef). Third column contains the p-values for test MWUPrev.

Column four (δPrev) displays the Cliff’s delta effect size measures between the

distribution of metric values of the refactored and non-refactored classes in ver-

sion xi−1 (i.e. the effect size measure related to the statistical test MWUPrev).

It reflects how often a metric value picked randomly for a class being refac-

tored later is larger than a randomly selected metric value for a non-refactored

class. The fifth column (δDiff) presents the Cliff’s delta values for the metric

differences between versions xi and xi−1 (i.e. the effect size measure related to

the statistical test MWUDiff). Missing cell values mean that the correspond-

ing statistical test yielded no significant results (p-value is above 0.05), thus we

could not reject the null-hypothesis (either forMWUPrev and/orMWUDiff).8

Figure 5: High-level visualization of the Mann-Whitney U test (MWUPrev) results for meth-
ods

8The exact p-values for all the tests can be found in the online appendix available at
http://www.inf.u-szeged.hu/~ferenc/papers/RefactDataSet/

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The color codes express the magnitude of the effect sizes, darker cell values

(green for the metric values, blue for the metric value differences) indicate larger

effect sizes.

Regarding the method level metrics, Figure 5 contains the overview of the

statistical test results run for method-level metrics. We can observe the ef-

fect size values for the most relevant metrics (i.e. those showing the strongest

connection with refactorings) outlined in Figure 6.

Figure 6: The average metric values, p-values and the Cliff’s delta effect sizes for the refactored
and non-refactored methods

6. Discussion and Interpretation of the Results

In Section 5, we provided the detailed results of the analysis of the improved

dataset performed according to the methodology described in Section 4. In this

section, we discuss the findings and compare them with our previous results on

the base dataset.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.1. RQ1 – Are source code elements with lower maintainability subject to more

refactorings in practice?

6.1.1. Interpretation of the Results for Classes and Methods

As can be seen in Figure 2, all the average maintainability values of the

refactored group (regardless whether for classes or methods) is much lower than

the non-refactored group. What is more, almost all the average maintainability

values for non-refactored classes and methods are positive (except for titan and

classes of mcMMO), while the values related to refactored entities are negative.

By the nature of its calculation, the sign of the RMI value captures the fact

whether a source code element increases the overall maintainability or decreases

it. Thus an RMI value of 0 has a special meaning, namely that the maintainabil-

ity of a source code element (be it a class or a method) with 0 RMI is exactly as

good as the system’s average maintainability [50]. This implicates that positive

RMI value means above average maintainability, negative RMI means maintain-

ability below the average, which makes it intuitive that the source code entities

targeted by refactorings have lower maintainability than the average.

The formal justification of this can be interpreted from the results in Tables 4

and 5. As can be seen all the p-values are well below 0.05 (highlighted with bold

letters), except for mcMMO and mapdb at method granularity. We already

showed in Table 3 that the precision of RefFinder is very low on these systems

for some reason, thus the number of available true positive refactoring instances

is also very low in the improved dataset. To make it even worse, for mcMMO the

6 refactorings are located in just 4 classes further reducing the number of cases

(columns two and three display the number of classes/methods not affected by

refactorings and those of affected, respectively). This low number of samples

for one group might be the reason for the higher p-values. Nonetheless, it poses

a question about the reliability of the other tests as well, as the number of

samples in the two groups are highly unbalanced in most of the cases. However,

the Mann-Whitney U test is designed to work well in such unbalanced sets

as well [52], using the exact distribution of the small sized samples. Thus,

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in general, we can conclude that according to the statistical test, there is a

significant difference in the RMI values between the source code entities being

refactored and the entities not affected by any refactorings.

In each row of both tables (Tables 4 and 5), the mean ranks of refactored

group are lower than the not refactored group and all the Cliff’s δ values are

positive, which means that the maintainability values of not refactored elements

are higher, thus in general, elements targeted by refactorings typically have lower

maintainability. So based on these numbers, we can say that the maintainability

of source code entities subjected to refactorings is significantly lower than the

maintainability of not refactored entities.

6.1.2. Comparison With the Base Dataset Results

In a previous study [13] we already presented preliminary results on the

connection of code maintainability and refactoring. For that study, we used the

original, not validated base dataset containing refactoring instances extracted

by RefFinder as is. Since we learned that the precision of RefFinder is quite low,

and we created a manually validated, improved subset of the original dataset, it

is an interesting question how the new analysis results relate to previous results.

At first, we examined the Spearman’s correlation between the RMI and the

number of refactorings affecting the source code elements. The previously pub-

lished results can be seen in Figure 7 (the various gray bars mark the calculated

correlation between the different versions of a system). There is a clear inverse

correlation between RMI and the number of refactorings for both classes and

methods. That is, the lower the maintainability of a source code element, the

more refactorings touch it. We replicated the very same correlation analysis

on the manually validated subset of data, and the results are shown in Ta-

ble 6. Since we have validated data for one version of each subject system (i.e.

refactorings are validated between two selected versions), we present only two

correlation coefficients for each system, one for the connection between class-

level RMI scores and the number of refactorings affecting the classes, and one

for the same connection at method level.

We can observe the very same inverse correlations, though the coefficients are

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 7: Correlation of maintainability (RMI) and number of refactorings in classes and
methods calculated on the base dataset [13]

slightly lower than those calculated on the base dataset and in case of mcMMO

at class level and mapdb at method level, the p-values are well above 0.05. The

p-values are almost the same as the ones presented for the Mann-Whitney U

tests (see the detailed discussion and reasoning about them in Section 5.1). Even

the tendency that method level coefficients are smaller than class level values

is the same. The reason behind the lower coefficients on the improved dataset

might be due to the smaller sample sizes. Thus, we can say that the early

results seem to remain valid after using the improved dataset. In addition, in

Section 5.1 we confirmed that there is a statistically significant difference in the

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Spearman’s correlation coefficients between RMI and refactoring numbers on the
improved dataset (significant values are marked with bold)

System
Class Method

Coeff. p-value Coeff. p-value

antlr4 -0.21163 0.00002 -0.10281 0.00000

junit -0.10665 0.00629 -0.05947 0.00464

mapdb -0.12297 0.01176 -0.02181 0.20615

mcMMO -0.11661 0.27649 -0.06449 0.06526

mct -0.10760 0.00000 -0.02778 0.00345

oryx -0.08828 0.04762 -0.07381 0.00034

titan -0.11507 0.00009 -0.03125 0.00528

maintainability scores of the refactored and non-refactored source code elements

(both at class and method level) with a Mann-Whitney U test. What is more,

we also showed that effect size values range from medium to high, and their

direction confirms that source code elements to be refactored are likely to have

smaller maintainability scores than elements not refactored between the two

versions.

6.2. RQ2 – What are the typical values of source code metrics of the refactored

and non-refactored elements and how do they change upon refactorings?

6.2.1. Interpretation of the Results for Classes

The first blue bar in Figure 3 means that the LOC (Lines Of Code) metric

and its changes showed a significant difference between the refactored and non-

refactored group of classes for 6 out of the 7 subject systems. If we examine

the direction of this difference (i.e. the effect sizes shown in Figure 4), we can

even see that the LOC values of refactored classes are significantly larger in all

6 cases. Thus, developers tend to select and refactor large classes, what is not

surprising. LLOC (Logical Lines Of Code) and NOS (Number of Statements)

are also size metrics (and strongly correlate with LOC), thus their strong effect

is also not surprising.

Another group of metrics showing clear patterns is the coupling metrics:

RFC (Response set For a Class), CBO (Coupling Between Object classes),

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CBOI (Coupling Between Object classes Inverse), NII (Number of Incoming

Invocations) and NOI (Number of Outgoing Invocations). The three colored

bar for CBOI (i.e. the number of other classes, which directly use a class)

means that in 4 out of 7 cases both the metric values and their changes showed

a significant difference, while in 1-1 case only the metric values or their changes

showed a significant difference between the refactored and non-refactored group

of classes. Red cases might suggest that developers consider the given metric

to decide which classes to refactor, however, the aim of the refactoring is not

(primarily) to improve the given characteristic of the code. Green cases suggest

just the opposite, namely that developers do not consider the value of a given

metric as a major factor in deciding what classes to refactor, but (intentionally

or not) by refactoring a class, they change these properties in a significant way.

The third group of metrics with remarkable patterns are the complexity

metrics: WMC (Weighted Methods per Class), NL (Nesting Level) and NLE

(Nesting Level Else-If). For all three metrics in 4 out of 7 systems we found

significant differences both in the metric values and their changes, while in 2 and

1 cases (for WMC, and NL, NLE, respectively) only the metric values differed

between the refactored and non-refactored group of classes. The comment, code

clone related and inheritance metrics do not show clear patterns, most of them

have only (quite low) green bars.

Looking at the direction of the above discussed differences it is remarkable

in Figure 4 that all the available δPrev values are positive, which reflects that

the appropriate metric values in the refactored group is much likely to be larger

than in the non-refactored group. Although most of the values reflect a medium

level effect size, such high values like 0.85 (CBOI for mapdb) and 0.84 (RFC

for mct) also appear. It suggests that coupling is one of the main factors that

developers consider when they select the targets for refactoring (which is in line

with other research results [17]). Very similar phenomenon applies to size (i.e.

LLOC, LOC, NOS) and complexity (i.e. WMC, NL, NLE) metrics in general.

An interesting observation can be made in connection with the CLOC (Com-

ment Lines Of Code) metric. It measures the amount of comments in a class,

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and for 5 out of the 7 systems its average value is larger in the classes that are

refactored in version xi (it is even true for the CD – Comment Density metric

– for 4 out of 7 cases). Thus, developers refactor classes with more comments,

which might seem to be a contradiction at first glance. However, comments are

often outdated, misleading or simply comment out unnecessary code, which are

all indicators of poor code quality, thus refactoring is justified.

Another interesting question is how refactorings affect the changes of these

metric values, do developers intend to control the growth of some metrics with

refactorings or not? To analyze this, we observed the values in column δDiff .

One could expect negative values here, which would indicate that the metric

value changes are significantly larger in the non-refactored classes (thus eroding

much faster due to development [54]). Actually, exactly this pattern can be

observed with only a few exceptions (some junit and mapdb complexity and

coupling metrics).

The contradictory values in mapdb and the lots of missing values in the

mcMMO system (due to not significant test results) are likely to be caused by

the very small number of source code elements falling into the refactored group.

Thus, the number of metric differences we can use is also too small, so hectic or

not significant results might occur with higher probability. For the oryx system,

many metric values did not change between the two versions, thus we encoun-

tered many 0 diff values, which caused the tests to fail in deriving significant

results. However, despite the few exceptions, it still quite spectacular that the

size, complexity and coupling metrics grow much faster in the non-refactored

classes than in the classes subjected to refactoring. This might suggest that de-

velopers not just select refactoring targets based on these source code properties,

but try to manage and keep these values under control by applying refactorings.

On one hand, we can observe a more or less clear pattern in the presented

metrics, namely that the metric values tend to be significantly higher in the

classes that are the targets of later code refactorings and the metric values tend

to grow much slower (or even decrease) for these classes compared to the non-

refactored ones. On the other hand, we did not find metrics that would show the

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

opposite behavior consistently. It means that although there are always some

exceptions, there is no such metric that would be consistently larger in the non-

refactored classes and/or would grow much slower in non-refactored classes than

in the refactored ones, which further strengthens our positive observations.

6.2.2. Interpretation of the Results for Methods

Looking at Figure 5 a very similar pattern can be observed for methods

than those of presented above for classes, namely that LOC, LLOC and NOS

(i.e. size metrics) are at the top of the list. They are followed by complexity

metrics (NL, NLE and McCabe). From the coupling group, NOI also plays an

important role in selecting refactoring candidates. However, in general, we can

say that the results are much weaker for methods; we got significant results for

3 out of the 7 systems for both tests.

Regarding the direction of the differences in the metric values (see Figure 6),

again similar patterns can be observed as for classes, though with smaller effect

size values. The reasoning of the contradictory and missing values in case of

some systems is the same as for classes, i.e. the small number of refactored

elements and/or the small amount of changes in the metric values between the

two versions. It looks like examining the effect of code refactorings is much more

effective at class level. The granularity of methods might be too fine for such

type of evaluation, or we need significantly more refactoring data to be able to

apply the tests at method level with stable and meaningful outcome.

6.2.3. Comparison With the Base Dataset Results

We present the summary of the previous study results [10, 13] on the analysis

of the metric distribution differences using the non-validated base dataset in

Table 7. The numbers in the table represent the p-values for the corresponding

Mann-Whitney U tests executed on the base dataset (i.e. the non-validated

dataset). The results on the manually validated, improved dataset presented

earlier in this paper are in line with these preliminary numbers, though they

are much more consistent and significant for more subject systems. That is

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

because the preliminary tests were biased by the many false positive refactoring

instances that have been removed from the improved dataset. The p-values in

column three from the tables presented in Figure 4 and 6 should be compared

to the values in Table 7.

Size, complexity and coupling metrics show the highest differences in their

distribution within the refactored and non-refactored groups. However, while

previous results displayed 2-4 significant cases out of 7, we had 3-6 signifi-

cant cases in the new tests on the manually validated, improved dataset, with

stronger p-values. For example, in case of mct, we had no significant p-values for

the tests run on the base dataset, while on the improved dataset size, complex-

ity and coupling metrics showed a strong connection with refactorings (p-values

with zeros in the first 5 decimal places).

Table 7: Results of previous studies on class level [10] and method level [13] analysis of the
metric value distributions within refactored and non-refactored classes; each cell shows the
p-value of the appropriate Mann-Whitney U test

System name
Class level Method level

CI WMC NOI RFC LLOC NOS CC LLOC NOS NOI

antlr4 0.033 0.428 0.010 0.031 0.002 0.122 0.049 0.000 0.002 0.001

junit 0.728 0.042 0.170 N/A 0.101 0.113 0.058 0.923 0.667 0.403

mapdb 0.030 0.006 0.005 0.000 0.000 0.000 0.010 0.003 0.965 0.002

mcMMO 0.005 0.608 0.003 0.013 0.257 0.594 0.815 0.824 0.516 0.251

mct 0.905 0.200 N/A 0.941 0.115 0.703 0.703 0.924 0.547 0.660

oryx 0.667 0.575 0.381 0.533 0.743 0.159 0.654 0.555 0.306 1.000

titan 0.022 0.016 0.000 0.000 0.002 0.042 0.601 0.016 0.003 0.000

Similar can be said for junit and oryx at the class level (p-values with zeros

in the first 2-3 decimal places). For antlr4 and titan, there were also lots of

significant p-values in the first results, but the results on the improved dataset

are at least as strong (some p-values are even a couple of orders of magnitudes

lower, like RFC, LLOC or NOS for antlr4, or WMC, NOS for titan at class

level). For the mapdb and mcMMO systems we got some weaker values than

previously, but that is because the very high number of false positive instances

found in these systems, thus only a few refactoring instances remained in the

improved dataset (i.e. the small sample size seriously affects the p-values). At

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

method level, the differences are a bit less spectacular, but we could find a

connection between method level complexity (McCC – McCabe’s cyclomatic

complexity) and refactorings in 2 cases that were hidden before.

One more significant difference is that the clone related metrics (CI – Clone

Instances at class level and CC – Clone Coverage at method level) are much less

significant in the current analysis. Therefore, despite the fact that clone metrics

seemed to play an important role in refactorings, it turned out that they were

reported only due to the false positive refactoring instances. To summarize, we

were able to confirm first results performed on the base dataset, but with an

increased confidence and we were able to refuse metrics (i.e. clone metrics) that

were reported incorrectly due to false refactoring instances. And what is more,

we also showed that these metrics grow much slower (or even decrease) in the

refactored source code elements. Furthermore, we found no such metrics that

would consistently contradict these results and would show just the opposite

behavior.

6.3. Comparison of the Results for RQ1 and RQ2

Analyzing RQ1, we concluded that the maintainability – in means of RMI

values – of the source code elements subjected to refactorings is significantly

lower than the maintainability of the elements not touched by refactorings.

Investigating RQ2, we found that several metrics (like size, complexity, and

coupling) show significantly higher values in average for those source code ele-

ments that are refactored later and they change in greater extent as well. As

RMI itself relies on metric values, it is interesting to note that these are exactly

the type of metrics it is based on. For calculating RMI, we do not use all the

available source code metrics extracted by SourceMeter, so this is an interest-

ing observation that most of the metrics affected by code refactorings are the

very same that we use to assess the maintainability of the code. This further

strengthens that there is a tight connection between source code maintainability

and the activity of code refactoring. Code clones are the only exceptions here,

which are heavily utilized by the RMI, though turned out to be unrelated to

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

code refactoring in our study. This somewhat counter intuitive result should be

addressed by further studies on the subject.

6.3.1. Analysis of the Connection Between Size and Number of Refactorings

One might argue that the strong connection between the size metrics (and

even RMI that depends on the code size as well) and refactorings is due to the

simple fact that large code base provides more opportunities for refactoring, thus

larger code entities will be refactored more often. To find out whether this is

truly the case and to determine the type of connection between size metrics and

the number of refactorings affecting a code entity, we performed a correlation

analysis.

We took all the classes and methods from the 7 subject systems and run a

Pearson and a Spearman’s rank correlation analysis between the lines of code

(LOC) metrics and the number of refactorings affecting the particular class or

method. Given that most of the classes and methods have no refactorings at all,

we applied the correlation analysis both on the list of all classes and methods

and on the list of classes and methods having at least one refactoring. The

results are summarized in Table 8.

Table 8: Correlation coefficients between code lines and number of refactorings affecting source
code elements

Correlation Class0 Class1 Method0 Method1

Spearman’s 0.133 -0.045 0.038 0.029

p-value 0.000 0.342 0.000 0.380

Pearson’s 0.087 -0.020 0.034 -0.036

p-value 0.000 0.428 0.000 0.355

Columns Class0 andMethod0 show the resulting correlation coefficients and

p-values when we included all the classes and methods (even with 0 refactoring

counts) and run the correlation analysis on the entire data. Columns Class1 and

Method1 display the same results after removing all the classes and methods

having 0 refactoring counts. In overall, we can say that there is no strong

correlation between lines of code and the number of refactorings. In case of

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Class0 and Method0 all the coefficients are positive, indicating that the larger

the size of a code entity is, the more refactorings affect it, but these coefficients

are very small. (The largest one is 0.133 Spearman’s ρ coefficient significant at

the level of 0.001.) The values for Class1 andMethod1 are not even significant,

most probably due to the smaller number of sample sizes.

To summarize, we did not find any strong correlation between code size and

number of refactorings. Thus the result showing that refactored classes and

methods have larger code sizes in general than the non-refactored classes and

methods is not a trivial consequence of the fact that larger code base is more

likely to be refactored. The above results also suggest that developers chose

refactoring targets based on their combined set of properties (i.e. not just by

their sizes).

7. Threats to Validity, Limitations

In this section, we summarize the threats to validity of our study.

The key attribute in the datasets is the fully qualified name of the method

with parameter descriptions. If a source code element is renamed between two

consecutive releases, we do not track it and its metrics, and handle it as a

new one in the next release. Following such renamed entities throughout code

versions is a really hard task in general, but the number of renaming is relatively

small compared to other changes, thus we consider this to be a minor threat.

In addition, there might be arbitrary changes between the two examined

releases of the systems, not just refactorings. Therefore, we cannot be sure

that changes in a source code element that is affected by a refactoring are

only due to the refactoring itself, or other unrelated modifications cause it.

The optimal solution would be to find those particular commits that introduce

the refactoring, although there is no guarantee that the commit contains only

code related to the refactoring itself. Finding those commits would require

running RefFinder for each subsequent revision between two releases, which is

obviously unfeasible. However, during manual validation we found that most of

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the refactored source code elements did not contain any additional change, thus

the impact of this threat is limited.

Another threat to our results is that we investigated only seven Java sys-

tems, which may not represent correctly the general characteristics of all of

the software systems considering refactoring activities in practice. Moreover,

since manual validation requires huge human effort, the number of refactoring

instances in the improved dataset is also limited. Therefore, we plan to con-

tinuously extend the number of systems in the improved dataset as well as the

number of manually evaluated true positive refactoring instances.

As we employed human evaluation, we cannot be 100% sure that each and

every refactoring instance was correctly classified by the authors. However,

both evaluators are very experienced researchers and also software developers

that mitigates this threat. Moreover, all the authors consulted about refactoring

instances that were not straightforward to classify, and resolved these cases by

majority voting.

It is hard to ensure the systematic reproducibility of the human evaluations

as the classification of refactoring instances is prone to human subjectivity.

There is no way we can guarantee that the re-validation of the same instances by

someone else would result in the very same classification (true/false instances).

To mitigate this, we provide a step-by-step description of our validation process,

so that the only part of our study that is not systematically reproducible is the

human decision on the refactoring instances. Nonetheless, our purpose was to

provide a high-quality, validated golden set of true instances, so that it can be

used by other researchers as is, without having to invest the same amount of

manual effort we did. We rather encourage the research community to help in

validating those instances that have not been classified yet. We believe that

the bias caused by the subjectivity of human evaluations based on a line-by-

line code review is much less significant than the noise introduced by automatic

extraction tools.

By manual validation we can ensure the high precision of the refactoring in-

stances in the improved dataset, however, we cannot guarantee complete recall.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

It is possible that there are true refactoring instances that RefFinder did not

find, thus we also omitted these during the manual validation, what might cause

a bias in the evaluation. Nonetheless, the extraction rules of RefFinder are quite

conservative, thus the tool is more likely to report false positive instances than

to omit true negative ones. Therefore, the effect of missed refactoring instances

is low.

Regarding the statistical analysis, the relatively small number of refactoring

instances results in unbalanced datasets, which might cause a loss of statistical

power. The unbalanced property comes from the fact that there are much less

refactored source code elements than unaffected elements and the tests compare

the properties of these two sets, the latter one containing a much larger number

of samples. However, we chose the Mann-Whitney U method to perform the

hypothesis testing, which is not sensitive to population sizes and is able to handle

highly unbalanced datasets applying exact distributions of small samples.

8. Conclusions and Future Work

In this paper we proposed an improved public empirical dataset containing

manually validated, fine-grained refactoring data for 7 open-source systems.

The dataset can be used for empirical investigations on source code refactoring,

like its usage patterns, its effect on source code metrics and maintainability.

The published data is a manually validated subset of our previous base dataset

containing refactoring instances extracted by the RefFinder tool. With the

validation step, we can ensure the high precision of this improved dataset.

With the help of the improved dataset, we examined whether developers tend

to refactor source code entities with low maintainability or refactoring activity

is not related to the internal quality at all. For this purpose, we analyzed the

maintainability values in the improved dataset by running a Mann-Whitney U

test on the two groups of entities formed by the fact whether they were affected

by any refactorings between two releases or not. The results showed that the

overall average maintainability of refactored entities was much lower in the pre-

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

refactoring release than the entities subjected to no refactorings. This strongly

suggests that refactoring is indeed used on deteriorated entities in practice no

matter if it is a conscious activity of the developers or not.

Moreover, we were interested in how the distribution of typical source code

metrics look like in the refactored and non-refactored source code elements.

We found that the size, complexity and coupling related metric values were

significantly higher in the source code elements being refactored. We could also

confirm that developers do not only select their targets for refactoring based

on these metrics, but they even try to control and reduce their values, as these

metrics grow much slower (or even decrease) in the source code elements touched

by refactorings. It would have been interesting to see how these results change

by considering individual refactoring types only, but unfortunately, we do not

have enough refactoring data in the validated, improved dataset to be able to

derive meaningful results at this fine-grained level, so continuous extension of

the manually validated instances is one of our major goals.

We also compared the results with our previous findings performed on the

base refactoring dataset, where just like in the current study size, complexity and

coupling metrics showed the highest differences in their distributions within the

refactored and non-refactored groups. However, while previous results displayed

2-4 significant cases out of 7, we had 3-6 significant cases in the new tests on

the improved dataset, with much stronger p-values, thus we can be much more

confident in the results. We found one major difference as well; the clone related

metrics (CI at class level and CC at method level) are much less significant in

the current analysis. So despite the fact that clone metrics seemed to play an

important role in refactorings, it turned out that they were reported only due

to the false positive refactoring instances.

Even though this paper presents a fundamental research, the results can be

used as a first step towards understanding refactoring practices more deeply.

Having full understanding on the developers’ actions we can propose new meth-

ods and tools for them that are aligned with their current habits, but help

in performing refactoring faster, cheaper, and better. For example, automated

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

refactoring tools would be a great utilization of our results for picking refactoring

candidates based on the metric values of the source code elements (considering

developer preferences) and suggesting also code changes aligned with developers’

taste learned by real-world refactoring samples.

Currently, the improved refactoring dataset contains only the fraction of the

data from the base dataset (i.e. around 6%). This is due to the large amount of

human effort required for validation. We plan to continuously increase the size

of the improved dataset, but a community supported common effort would be

very welcome.

Acknowledgment

This research was supported by the EU-funded Hungarian national grant

GINOP-2.3.2-15-2016-00037 titled “Internet of Living Things” and the UNKP-

17-4 New National Excellence Program of the Ministry of Human Capacities.

References

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-

Wesley, 1999.

[2] E. van Emden, L. Moonen, Java Quality Assurance by Detecting Code

Smells, in: Proceedings of the 9th Working Conference on Reverse Engi-

neering, 2002, pp. 97–106.

[3] F. A. Fontana, S. Spinelli, Impact of Refactoring on Quality Code Evalua-

tion, in: Proceedings of the 4th Workshop on Refactoring Tools, WRT ’11,

ACM, New York, NY, USA, 2011, pp. 37–40.

[4] F. Khomh, M. Di Penta, Y.-G. Gueheneuc, An Exploratory Study of the

Impact of Code Smells on Software Change-proneness, in: Proceedings of

the 16th Working Conference on Reverse Engineering, IEEE, 2009, pp.

75–84.

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[5] M. Mantyla, J. Vanhanen, C. Lassenius, A Taxonomy and an Initial Empir-

ical Study of Bad Smells in Code, in: Proceedings of the 2003 International

Conference on Software Maintenance, ICSM 2003., IEEE, 2003, pp. 381–

384.

[6] R. Peters, A. Zaidman, Evaluating the Lifespan of Code Smells using Soft-

ware Repository Mining, in: Proceedings of the 16th European Conference

on Software Maintenance and Reengineering (CSMR), 2012, pp. 411–416.

[7] A. F. Yamashita, L. Moonen, Do Developers Care about Code Smells? An

Exploratory Survey, in: Proceedings of the 2013 Working Conference on

Reverse Engineering, WCRE, Vol. 13, 2013, pp. 242–251.

[8] R. Arcoverde, A. Garcia, E. Figueiredo, Understanding the Longevity of

Code Smells: Preliminary Results of an Explanatory Survey, in: Proceed-

ings of the 4th Workshop on Refactoring Tools, WRT ’11, ACM, New York,

NY, USA, 2011, pp. 33–36.

[9] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, F. Palomba, An Ex-

perimental Investigation on the Innate Relationship Between Quality and

Refactoring, Journal of Systems and Software 107 (2015) 1 – 14.

[10] I. Kádár, P. Hegedűs, R. Ferenc, T. Gyimóthy, A Code Refactoring Dataset

and Its Assessment Regarding Software Maintainability, in: 2016 IEEE

23rd International Conference on Software Analysis, Evolution, and Reengi-

neering (SANER), Vol. 1, 2016, pp. 599–603.

[11] M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Ref-Finder: a Refactoring

Reconstruction Tool Based on Logic Query Templates, in: Proceedings

of the 18th ACM SIGSOFT international symposium on Foundations of

software engineering (FSE’10), 2010, pp. 371–372.

[12] K. Prete, N. Rachatasumrit, N. Sudan, K. Miryung, Template-based Re-

construction of Complex Refactorings, in: Proceedings of the 2010 IEEE

International Conference on Software Maintenance (ICSM), 2010, pp. 1–10.

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[13] I. Kádár, P. Hegedűs, R. Ferenc, T. Gyimóthy, Assessment of the Code

Refactoring Dataset Regarding the Maintainability of Methods, Springer

International Publishing, 2016, Ch. Computational Science and Its Appli-

cations – ICCSA 2016: 16th International Conference, Beijing, China, July

4-7, 2016, Proceedings, Part IV, pp. 610–624.

[14] I. Kádár, P. Hegedűs, R. Ferenc, T. Gyimóthy, A Manually Validated

Code Refactoring Dataset and Its Assessment Regarding Software Main-

tainability, in: Proceedings of the 12th International Conference on Predic-

tive Models and Data Analytics in Software Engineering, PROMISE 2016,

ACM, New York, NY, USA, 2016, pp. 10:1–10:4.

[15] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, T. Gyimóthy, A Proba-

bilistic Software Quality Model, in: Proceedings of the 27th IEEE Interna-

tional Conference on Software Maintenance (ICSM), 2011, pp. 243–252.

[16] T. J. McCabe, A Complexity Measure, IEEE Transactions on Software

Engineering vol. 2 (1976) 308–320.

[17] A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell, J. McFall,

S. Swift, Refactoring and its Relationship with Fan-in and Fan-out: An

Empirical Study, in: Proceedings of the 16th European Conference on

Software Maintenance and Reengineering (CSMR), 2012, pp. 63–72.

[18] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, A Quantitative Evaluation

of Maintainability Enhancement by Refactoring, in: Proceedings of the

International Conference on Software Maintenance, 2002, pp. 576–585.

[19] Y. Kosker, B. Turhan, A. Bener, An Expert System for Determining Can-

didate Software Classes for Refactoring, Expert Systems with Applications

36 (6) (2009) 10000–10003.

[20] D. Silva, N. Tsantalis, M. T. Valente, Why We Refactor? Confessions of

GitHub Contributors, CoRR abs/1607.02459.

44

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[21] J. Ratzinger, T. Sigmund, H. C. Gall, On the Relation of Refactorings

and Software Defect Prediction, in: Proceedings of the 2008 International

Working Conference on Mining Software Repositories, MSR ’08, ACM, New

York, NY, USA, 2008, pp. 35–38.

[22] E. Murphy-Hill, C. Parnin, A. P. Black, How We Refactor, and How We

Know It, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

[23] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, D. Dig, A Compara-

tive Study of Manual and Automated Refactorings, in: Proceedings of the

27th European Conference on Object-Oriented Programming, ECOOP’13,

Springer-Verlag, Berlin, Heidelberg, 2013, pp. 552–576.

[24] M. I. Hoque, V. N. Ranga, A. R. Pedditi, R. Srinath, M. A. A. Rana,

M. E. Islam, A. Somani, An Empirical Study on Refactoring Activity, ACM

Computing Research Repository abs/1412.6359.

[25] N. Tsantalis, V. Guana, E. Stroulia, A. Hindle, A Multidimensional Empir-

ical Study on Refactoring Activity, in: Proceedings of the 2013 Conference

of the Center for Advanced Studies on Collaborative Research, CASCON

’13, IBM Corporation, Riverton, NJ, USA, 2013, pp. 132–146.

[26] E. Choi, N. Yoshida, K. Inoue, An Investigation into the Characteristics

of Merged Code Clones during Software Evolution, IEICE Transactions on

Information and Systems 97 (5) (2014) 1244–1253.

[27] E. Choi, N. Yoshida, K. Inoue, What Kind of and How Clones Are Refac-

tored?: A Case Study of Three OSS Projects, in: Proceedings of the 5th

Workshop on Refactoring Tools, WRT ’12, ACM, New York, NY, USA,

2012, pp. 1–7.

[28] W. Wang, M. W. Godfrey, Recommending Clones for Refactoring Using

Design, Context, and History, in: Proceedings of the 2014 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME), IEEE,

2014, pp. 331–340.

45

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[29] T. Tourwe, T. Mens, Identifying Refactoring Opportunities Using Logic

Meta Programming, in: Proceedings of the 7th European Conference on

Software Maintenance and Reengineering, 2003, pp. 91–100.

[30] T. Dudziak, J. Wloka, Tool-supported Discovery and Refactoring of Struc-

tural Weaknesses in Code, Unpublished doctoral dissertation, Technical

University of Berlin, Germany.

[31] L. Tahvildari, K. Kontogiannis, A Metric-based Approach to Enhance De-

sign Quality Through Meta-pattern Transformations, in: Proceedings of

the 7th European Conference on Software Maintenance and Reengineer-

ing, IEEE, 2003, pp. 183–192.

[32] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, T. Gyimóthy, FaultBuster: an

Automatic Code Smell Refactoring Toolset, in: M. W. Godfrey, D. Lo,

F. Khomh (Eds.), SCAM, IEEE Computer Society, 2015, pp. 253–258.

[33] S. Counsell, X. Liu, S. Swift, J. Buckley, M. English, S. Herold, S. Eldh,

A. Ermedahl, An Exploration of the ’Introduce Explaining Variable’ Refac-

toring, in: Proceedings of the XP2015 Scientific Workshop, XP ’15 work-

shops, ACM, New York, NY, USA, 2015, pp. 9:1–9:5.

[34] H. Liu, Q. Liu, Y. Liu, Z. Wang, Identifying Renaming Opportunities by

Expanding Conducted Rename Refactorings, IEEE Transactions on Soft-

ware Engineering vol. 41 (9) (2015) 887–900.

[35] A. Ghannem, G. El Boussaidi, M. Kessentini, Model Refactoring Using

Examples: a Search-based Approach, Journal of Software: Evolution and

Process 26 (7) (2014) 692–713.

[36] M. W. Godfrey, L. Zou, Using Origin Analysis to Detect Merging and Split-

ting of Source Code Entities, IEEE Transactions on Software Engineering

31 (2) (2005) 166–181.

[37] S. Demeyer, S. Ducasse, O. Nierstrasz, Finding Refactorings via Change

Metrics, SIGPLAN Not. 35 (10) (2000) 166–177.

46

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[38] F. Van Rysselberghe, S. Demeyer, Reconstruction of Successful Software

Evolution Using Clone Detection, in: T. Mikkonen, M. W. Godfrey,

M. Saeki (Eds.), Proceedings of the International Workshop on Principles

of Software Evolution, IEEE Computer Society Press, 2003, pp. 126–130.

[39] Z. Xing, E. Stroulia, Refactoring Detection based on UMLDiff Change-

Facts Queries, in: Proceedings of the Working Conference on Reverse En-

gineering, Vol. 6, Citeseer, 2006, pp. 263–274.

[40] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing Approaches

to Analyze Refactoring Activity on Software Repositories, Journal of Sys-

tems and Software 86 (4) (2013) 1006 – 1022.

[41] G. Soares, B. Catao, C. Varjao, S. Aguiar, R. Gheyi, T. Massoni, Analyzing

Refactorings on Software Repositories, in: Proceedings of the 25th Brazilian

Symposium on Software Engineering, SBES, Sao Paulo, Brazil, September

28-30, 2011, pp. 164–173.

[42] R. Stevens, C. D. Roover, C. Noguera, V. Jonckers, A History Querying

Tool and Its Application to Detect Multi-version Refactorings, in: A. Cleve,

F. Ricca, M. Cerioli (Eds.), Proceedings of the 17th European Confer-

ence on Software Maintenance and Reengineering, IEEE Computer Society,

2013, pp. 335–338.

[43] Q. D. Soetens, J. Pérez, S. Demeyer, An Initial Investigation into Change-

Based Reconstruction of Floss-Refactorings, in: Proceedings of the Inter-

national Conference on Software Maintenance, IEEE Computer Society,

2013, pp. 384–387.

[44] X. Ge, Q. L. DuBose, E. R. Murphy-Hill, Reconciling Manual and Au-

tomatic Refactoring, in: M. Glinz, G. C. Murphy, M. Pezzè (Eds.), Pro-

ceedings of the International Conference on Software Engineering, IEEE

Computer Society, 2012, pp. 211–221.

47

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[45] K. Taneja, D. Dig, T. Xie, Automated Detection of Api Refactorings in

Libraries, in: Proceedings of the 22nd IEEE/ACM International Confer-

ence on Automated Software Engineering, ASE ’07, ACM, New York, NY,

USA, 2007, pp. 377–380.

[46] R. Mahouachi, M. Kessentini, M. Ó. Cinnéide, Search-based Refactoring

Detection using Software Metrics Variation, in: International Symposium

on Search Based Software Engineering, Springer, 2013, pp. 126–140.

[47] G. Antoniol, M. Di Penta, E. Merlo, An Automatic Approach to identify

Class Evolution Discontinuities, in: Proceedings of the 7th International

Workshop on Principles of Software Evolution (IWPSE 2004), 6-7 Septem-

ber 2004, Kyoto, Japan, IEEE Computer Society, 2004, pp. 31–40.

[48] T. Bakota, P. Hegedüs, I. Siket, G. Ladányi, R. Ferenc, QualityGate

SourceAudit: A Tool for Assessing the Technical Quality of Software,

in: 2014 Software Evolution Week - IEEE Conference on Software Main-

tenance, Reengineering, and Reverse Engineering, CSMR-WCRE 2014,

Antwerp, Belgium, February 3-6, 2014, 2014, pp. 440–445.

[49] P. Oman, J. Hagemeister, Metrics for Assessing a Software System’s Main-

tainability, in: Proceedings of the International Conference on Software

Maintenance, IEEE CS Press, 1992, pp. 337–344.

[50] P. Hegedűs, T. Bakota, G. Ladányi, C. Faragó, R. Ferenc, A Drill-Down

Approach for Measuring Maintainability at Source Code Element Level,

Electronic Communications of the EASST 60.

[51] T. Menzies, R. Krishna, D. Pryor, The Promise Repository of Empirical

Software Engineering Data (2015).

URL http://openscience.us/repo

[52] H. B. Mann, D. R. Whitney, On a Test of Whether one of Two Ran-

dom Variables is Stochastically Larger than the Other, Ann. Math. Statist.

18 (1) (1947) 50–60.

48

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[53] M. R. Hess, J. D. Kromrey, Robust Confidence Intervals for Effect Sizes: a

Comparative Study of Cohen’s d and Cliff’s delta Under Non-normality and

Heterogeneous Variances, in: Annual Meeting of the American Educational

Research Association, 2004, pp. 1–30.

[54] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, T. Gy-

imóthy, A Cost Model Based on Software Maintainability, in: Proceedings

of the 28th IEEE International Conference on Software Maintenance (ICSM

2012), IEEE Computer Society, Riva del Garda, Italy, 2012, pp. 316–325.

49

