1809.02351v1 [cs.SE] 7 Sep 2018

arxXiv

Non-Technical Individual Skills are Weakly Connected to the Maturity of
Agile Practices

Lucas Gren®*, Alessia Knauss®, Christoph Johann Stettina®°

% Chalmers University of Technology and the University of Gothenburg, SE-412 96 Gothenburg, Sweden
b Centre for Innovation, Leiden University, Schouwburgstraat 2, 2511 VA, The Hague, The Netherlands
¢LIACS, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

Abstract

Context Existing knowledge in agile software development suggests that individual competency (e.g.
skills) is a critical success factor for agile projects. While assuming that technical skills are important for
every kind of software development project, many researchers suggest that non-technical individual skills
are especially important in agile software development.

Objective In this paper, we investigate whether non-technical individual skills can predict the use of agile
practices.

Method Through creating a set of multiple linear regression models using a total of 113 participants from
agile teams in six software development organizations from The Netherlands and Brazil, we analyzed the
predictive power of non-technical individual skills in relation to agile practices.

Results The results show that there is surprisingly low power in using non-technical individual skills to
predict (i.e. explain variance in) the mature use of agile practices in software development.

Conclusions Therefore, we conclude that looking at non-technical individual skills is not the optimal
level of analysis when trying to understand, and explain, the mature use of agile practices in the software
development context. We argue that it is more important to focus on the non-technical skills as a team-level
capacity instead of assuring that all individuals possess such skills when understanding the use of the agile
practices.

Keywords: skills, agile practices, code quality, empirical study

1. Introduction

Agile methods are increasingly used in industry as they are established to support projects in their
success [55]. Cockburn & Highsmith [I0] argue that individual competency is an important success factor
in agile projects. In agile methods “the emphasis on people and their talent, skill, and knowledge becomes
evident.” Even on team-level, they argue that the emphasis is again “on competency rather than process.”
Literature suggests that we progress through two major stages during the development of a cognitive skill,
a declarative knowledge stage and a procedural knowledge stage [3]. While the former can be acquired
by reading text books (e.g. learn how to lead a team), the latter, the procedural knowledge, can only be
acquired in process (e.g. by actually leading a team and learning from mistakes). Hence, it seems that
success in agile projects depends on individual skills, that are developed in individuals over time. Many
studies in software engineering have focused on explaining the individual skills (see e.g. Turley & Bieman
[66]), which implies that the individual non-technical skills are believed to predict team-level performance
in relation to collaborative aspects. However, no studies have looked at explicit connections between agile

*Corresponding author. Tel.: 446 739 882 010
Email addresses: lucas.gren@cse.gu.se (Lucas Gren), alessia.knauss@chalmers.se (Alessia Knauss),
c.j.stettina@cdh.leidenuniv.nl (Christoph Johann Stettina)

Preprint submitted to Information and Software Technology September 10, 2018

practices and individual non-technical skills. As we assume technical skills to always be a precondition for
a successful software development endeavour, non-technical skills seem to be important in such endeavours
as well [5]. Such non-technical individual skills have been stated as especially important in agile practices,
since they focus more on individuals than processes [10].

Therefore, this paper investigates the connections between (i.e. the predictive power of) thirteen self-
assessed non-technical individual skills and the intended mature use of a set of eight common agile practices.
In this paper, we define practice maturity by assuming it to be possible to describe by an evolutionist
model comprising of a progressive and directional set of changes. As the practices mature, they increase in
perfection or complexity over time [33]. We assume the end goal of the development of the agile practices to
be to what degree a practice is implemented in its intended way, as measured by the degree of agreement to
items in the perceptive agile measurement [63]. We did not investigate the use of agile practices by having
subjects tick the practices they use from a list, but instead used the perceptive agile measurement [63] to
assess the degree of agile behavior prescribed by an agile practice. We assume different degrees of such agile
behavior to be equivalent to different levels of agile practice maturity. The perceptive agile measurement
was created to assess the social-psychological effect of agile practices, which provides a higher resolution of
the actual behaviour shown in these agile teams.

The sample consisted of agile team members from seven organizations in Brazil and The Netherlands.
We set up eight hypotheses regarding the associations between all individual skills and each agile practice.
In order to assess the hypotheses, we conducted a diversity of analyses: First, we checked our survey data
for normality. Second, we ran eight independent ANOVAs. Third, we built three new regression models for
the significant models and analyzed their effect sizes.

The results show non-significant or negligible effect sizes for all our analyses. We therefore conclude that
looking at non-technical individual skills is not the optimal level of analysis when wanting to understand
the use of agile practices, and argue for using the “agile team” as the level of analysis instead.

To clarify the outline of this paper, the next section (Section [2]) presents related work with regards to in-
dividual and team level skills in agile software development. Section[3]gives an overview of the measurements
and constructs (i.e., non-technical individual skills and agile practice) used in this paper. Section |4| depicts
the method used to measure agility and non-technical individual skills and correlate these measurements in
a set of multiple linear regression models, Section [B] presents the results, which are discussed in Section [6]
followed by conclusions and future work in Section [7}

2. Related Work

In this section, we provide a definition of what skills are, provide an overview of research on individual
skills in the software engineering context, and present the few studies looking at a higher level of analysis
in relation to skills in the software engineering domain.

2.1. What Is a Skill?

We define a skill as “an ability to do something well; expertise” [60] in this study in its broader sense.
However, in order to understand what this means, we need to look at related research in what characterizes
a skill and how they are acquired. As mentioned in the introduction, the acquisition of a cognitive skill
can be described by two major stages: a declarative knowledge stage and a procedural knowledge stage
[B]. These stages are intimately connected to what Argyris [4] calls single- and double-loop learning. We
can learn to repeat new information without integrating it on a deeper level. With such shallow learning,
we can not apply our acquired knowledge in new situations and we fail to translate the new knowledge to
similar cases [4]. Therefore, we asked the participants of this study about their own satisfaction in relation
to specific skills, which then are more in relation to the procedural knowledge (double-loop) rather than
shallower declarative (single-loop) knowledge in their work context. In this study, we also define a team-level
skill as the capability of the entire team in relation to non-technical skills, i.e. even if all members can not
plan well for themselves, the team as an entity might have good planning skills anyways as a product of
collaboration and reciprocal help.

Another scientific field that has gone through similar phases in research is the medical field, and Fletcher
et al. [2I] shows how surgical teams have gone from only focusing on technical skills to also realizing the
importance of the non-technical skills needed for successful treatment of patients. Fletcher et al. [2I] divides
the non-technical skills into two categories; (1) cognitive and mental skills (e.g. decision-making, planning,
etc.) and (2) social or interpersonal skills (e.g. team-working, communication, leadership, etc.). This research
highlights the importance of individual non-technical skills, which has also been common in the software
engineering research and is presented next.

2.2. Research on Individual Skills in Agile Software Development

Agile methods are described as having a strong focus on individuals and their skills [I0]. Cockburn &
Highsmith [I0] conclude that individual skills seem more important than team characteristics — even on
the team level they argue that the emphasis is on individual competency. Strengths as well as weaknesses
of individual skills need to be taken into consideration as both can have an influence on the success of an
organization. Conboy et al. [I4] report an increased exposure of capabilities and reliance on social skills.
They report that exposing weaknesses of team members can often be counter-productive and even highly
respected and performing team members can be bullied, challenging existing organizations. Furthermore,
an understanding of the skills necessary within a team can help team members in their development.

In agile software development, the individual skills of software engineers need to be considered, accord-
ing to many studies. For example, Turley & Bieman [66] identified 38 essential competencies of software
engineers. Among the top ten are: (1) Team Oriented, (2) Seeks Help, (3) Helps Others, (4) Use of Pro-
totypes, (5) Writes/Automates Tests with Code, (6) Knowledge, (7) Obtains Necessary Training/Learning,
(8) Leverages/Reuses Code, (9) Communication/Uses Structured Techniques for Communication, and (10)
Methodical Problem Solving. In addition to the general skills that a software engineer should possess, skills
of requirements engineers play an important role in agile software development. The focus in agile software
development is on the customer who decides on what is of value and who is supposed to be on site to
clarify requirements [22]. Hence, contrary to traditional RE, in agile development any member from the
development team can directly interact with the customer and collect requirements [59]. Furthermore, RE
represents an area in which it is especially important to consider social /non-technical skills and theories [67].
Hence, non-technical skills of requirements engineers are important and required for each individual team
member in agile software development.

Negotiation is an inevitable element in RE [47, 24]. For example in requirements elicitation and analysis
it plays a major role as it supports handling stakeholder conflicts concerning requirements [I]. Negotiation
promotes a shared vision, shared knowledge, and cooperation among stakeholders [I]. Furthermore, com-
munication is an inevitable skill in RE [I5]. Team members need to communicate with each other for many
reasons, i.e. bugs discussion, code issues, code reviews, code refactoring, code synchronization, coordination,
management, support issues, sprint planning, quality, user story clarification and user story negotiation [30].
In agile requirements engineering most activities depend on communication between different parties, their
input and judgment. Hence, it is highly dependent on the skills of the team members. Further skills for
phased as well as agile RE are: 1) Dividing bigger tasks into small ones, 2) giving up control — as code is
developed and changes by different people, 3) writing meaningful tests, 4) conversation, 5) object-oriented
design, 6) fast cycle times [35].

2.3. Research on Team-Level Skills in Agile Software Development

Most existing research focuses on individual skills, as presented in Section A few studies also report
about the importance of non-technical skills on a team level (e.g., with regards to team work and setting up
teams). Lalsing et al. [37] identified the underlying people factors for a team to be effective in agile software
development, and several agile projects were in the study. Results showed that for projects exceeding the
project budget, issues were e.g. related to team communication and collaboration (i.e. trust and interaction).
They concluded that it is crucial to select the “right people for the right team,” and not only the “right
people.” Tanner & von Wilingh [65] study success and failure of agile projects in waterfall environments.
From studying two cases of agile projects and literature on this topic, they concluded that the following

3

factors have an influence on the projects success or failure of agile projects: 1) Culture, 2) Customer
Involvement and Mandate, 3) Stakeholder Involvement and Buy-In, 4) Team Structure and Team Logistics,
5) Project Type and Project Planning, and 6) Skill Level and Attitude of Team Members. Crowder & Friess
[17] identified communication, coordination, trust and team orientation as the most important team factors
for distributed agile teams, based on survey data. From a systematic literature review, they identified team
orientation, shared leadership, mutual performance monitoring, backup behavior, feedback, team autonomy,
team learning, coordination, communication, trust, collective culture, ease of use of technology, and team
familiarity as teamwork factors. Gren et al. [23] also found that team maturity (from a group dynamics
perspective) is a key factor in the success of building agile teams in large organizations.

A challenge when trying to understand productivity in general is to get data from the right level of
analysis [25]. Software engineering research on human factors can learn a great deal from the journey
social psychology has done from the individual to the group as a level of analysis (cf. Hogg & Williams
[27]), a journey that has largely been repeated by organizational science [34]. If we want to understand
agile practices, the individual skills level might be too much on a micro level based on research in other
fields, and we could study the agile teams and how software developers and other team-members behave
collectively instead, i.e. explained variance in data might come from the meso level of the team as an entity.
Recent research in social psychology [72] 19] has shown that, in general, the performance of teams on a
diversity of tasks is set on group-level independent of the intelligence of the individuals. The intelligence of
groups have instead been shown to be more dependent of social sensitivity (i.e. a person’s ability to read
emotions in facial expression), and conversational turn-taking (i.e. groups were less collectively intelligent if
a few individuals dominated the conversations). Such findings contradict the conclusions drawn in a lot of
software engineering research on the importance of non-technical individual skills (see for example Turley
& Bieman [66]). To clarify such contradictions, we conduct a study in the software engineering domain
aiming to shed light on this contradiction of individual vs. group level. As software engineering mainly looks
at individual level, this is the level we chose to investigate in this current study. According to Hackman
[25], one should preferably look at the macro (i.e. organizational) level in addition to the micro and meso
levels. While we recognize that variance possibly could be explained on the organizational level, we focus
on discussing the micro and meso levels in this study.

3. Measurements, Constructs, and Research Hypotheses

In this section we describe the measurements used in the current study and their operationalization based
on previous studies. We first present theory on common agile practices and how they can be measured, and
then we suggest a measurement of self-assessed non-technical individual skills based on such studies in the
agile context.

3.1. Common Agile Practices

Agility as a concept can be difficult to delineate [36]. Agility emerged in practice and has been dis-
cussed across different scientific domains such as manufacturing and logistics [6], business management [48],
information systems literature [I3], and sports science [58], which makes it difficult to define. Fuelled by
the difficulties in definition, an analysis by Laanti et al. [36] suggests to look at agility as a set of concrete
practices to understand agility. Other studies have followed that track and investigated the usage and per-
ceptions of practices perceived as agile within software development teams [70} [63]. In line with Salvato [53]
we believe that such concrete, routinized activities have a huge impact on the effectiveness and sustainability
of project management processes — and, as such, that there must be some kind of behaviour that can be
considered “more” agile than other behaviour connected to more traditional project management groups.
Early Scrum literature generally describes to the following practices [54]: (1) Collocated scrum teams, (2)
Daily scrum stand-up meetings (3) Iteration planning in sprint planning meetings, (4) Iterative development
in sprints, and (5) Sprint reviews.

Based on previous research and perceptions of practitioners, So & Scholl [63] constructed an instrument
for quantitative analyses of social-psychological effects of the above mentioned agile practices, however

4

categorized a bit differently than those Scrum practices above. They created scales for the eight of the core
agile practices, namely (1) Iteration planning, (2) Iterative development, (3) Continuous integration and
testing, (4) Stand-up meetings, (5) Customer access, (6) Customer acceptance tests, (7) Retrospectives, and
(8) Collocation. The framework of So & Scholl [63] is particularly useful as they provide for the first time
a scientifically validated psychometric instrument covering these eight core agile practices, i.e. their tool
tries to capture agile behaviour in connection to the practices and therefore claims to measure the actual
practices. The measured practices Customer access, and Customer acceptance tests, also extend their survey
to include aspects of agile requirements engineering, which adds a focus on the entire development chain
from planning to delivering in the agile context.

We use the questionnaire suggested by So & Scholl [63] to understand the connection of agile practices
and individual skills with the reason that we need social-psychological measurements in our study. In
the following, we will elaborate on the eight practices included in the instrument by So & Scholl [G3].
Furthermore, in the text boxes below each of the depicted practice we reproduce the exact items (i.e., the
agile practice and sub-questions used to cover this agile practice) used in our questionnaire.

Tteration Planning. In a Collaborative planning workshop the deliverables and scope of an iteration is defined
with all team members being present. It is executed at the beginning of each iteration, sometimes also
referred to as Planning Game. The practice generally consists of two stages: In the first stage, requirements
are gathered in the form of user stories to serve as a medium for discussions between the customer and the
developers. In the second stage, the stories are revised, estimated and prioritized into an iteration backlog
[4I]. The active participation of technical team members in definition as well as estimation of user stories
is considered as an indication for a mature application of the practice [69) 56].

Iteration Planning: (1) All members of the technical team actively participated during iteration planning meetings. (2)
All technical team members took part in defining the effort estimates for requirements of the current iteration. (3) When effort
estimates differed, the technical team members discussed their underlying assumption. (4) All concerns from team members
about reaching the iteration goals were considered. (5) The effort estimates for the iteration scope items were modified only by
the technical team members. (6) Each developer signed up for tasks on a completely voluntary basis. (7) The customer picked
the priority of the requirements in the iteration plan.

Tterative Development. Routinized delivery of sub-results (working software) in short and iterations of fixed
length [50]. Although the practice has been popularized with the dawn of agile methods, the application of
iterative software development dates as far back as the mid-1950s [38]. Short iterations of 30 days or less
together with continuous integration, have been found as the two practices considered most essential for a
team to be considered agile [70]. Iterative development is a shared practice in agile methods as well as in
user-centered design [7].

Iterative Development: (1) We implemented our code in short iterations. (2) The team rather reduced the scope than
delayed the deadline. (3) When the scope could not be implemented due to constraints, the team held active discussions on
re-prioritization with the customer on what to finish within the iteration. (4) We kept the iteration deadlines. (5) At the end
of an iteration, we delivered a potentially shippable product. (6) The software delivered at iteration end always met quality
requirements of production code. (7) Working software was the primary measure for project progress.

Continuous Integration and Testing. Holck & Jgrgensen [28] define continuous integration as follows: (1)
access of development team members to add contributions to the development version at any time, and
(2) obligation of team members to integrate their own contributions properly. In order to enable such
a continuous integration of ongoing development into a software system, the practices are ofter linked to
(automated) testing methods to enable a timely verification of the system [26].

Continuous Integration and Testing: (1) The team integrated continuously. (2) Developers had the most recent version
of code available. (3) Code was checked in quickly to avoid code synchronization/integration hassles... (4) The implemented code
was written to pass the test case. (5) New code was written with unit tests covering its main functionality. (6) Automated unit

tests sufficiently covered all critical parts of the production code. (7) For detecting bugs, test reports from automated unit tests
were systematically used to capture the bugs. (8) All unit tests were run and passed when a task was finished and before checking
in and integrating. (9) There were enough unit tests and automated system tests to allow developers to safely change any code.

Stand-up meetings. Frequent team coordination meetings in which team members provide a status update
to their colleagues. The meetings are generally hold standing up and are time boxed to 5-15 minutes to
frame its short and focused nature. Each coaching session starts with a team stand-up where each group
was asked the three common questions: “What have you done since the last meeting?” “What are you
planning on doing until the next meeting?” and “What issues and impediments are you facing that prevent
you from accomplishing these things?” An ethnographic account of the practice is provided by Sharp &
Robinson [56]. Stray et al. [64] investigated the application of daily stand-up team coordination meetings.
They found that only 24% of each of the meetings they studied focused on coordination. Rather, 35% of the
meeting time was spent on content-discussions elaborating problem issues and discussing possible solutions.

Stand-Up Meetings: (1) Stand up meetings were extremely short (max. 15 minutes). (2) Stand up meetings were to the
point, focusing only on what had been done and needed to be done on that day. (3) All relevant technical issues or organizational
impediments came up in the stand up meetings. (4) Stand up meetings provided the quickest way to notify other team members
about problems. (5) When people reported problems in the stand up meetings, team members offered to help instantly.

Customer Access. Availability of customers for product feedback and clarification of requirements is integral
to effective agile teams and has been found as one of the critical success factors when implementing agile
methods [45] [9]. Especially when moving away from traditional software development customer access can
be a challenge as customers might not be used to close interaction [45].

Customer Access: (1) The customer was reachable. (2) The developers could contact the customer directly or through
a customer contact person without any bureaucratic hurdles. (3) The developers had responses from the customer in a timely
manner. (4) The feedback from the customer was clear and clarified his requirements or open issues to the developers.

Customer Acceptance Tests. Acceptance tests defined by the customer present a means to the developers
to determine which iteration goals have been achieved at the end of each iteration [62)].

Customer Acceptance Tests: (1) How often did you apply customer acceptance tests? (2) A requirement was not regarded
as finished until its acceptance tests (with the customer) had passed. (3) Customer acceptance tests were used as the ultimate
way to verify system functionality and customer requirements. (4) The customer provided a comprehensive set of test criteria for
customer acceptance. (5) The customer focused primarily on customer acceptance tests to determine what had been accomplished
at the end of an iteration.

Retrospectives. Workshop at the end of each iteration to improve the process and incorporate successful
practices for the next iteration. In order to enable continuous improvement of the practices applied each
team member lists “What went well” and “What could be improved” [42]. The impact, however, dependent
largely on their implementation [44]. For example, retrospectives should take place at the end of each
iteration and systematically assign all improvement points to responsible individuals [62].

Retrospectives: (1) How often did you apply retrospectives? (2) All team members actively participated in gathering
lessons learned in the retrospectives. (3) The retrospectives helped us become aware of what we did well in the past iteration(s).
(4) The retrospectives helped us become aware of what we should improve in the upcoming iteration(s). (5) In the retrospectives
(or shortly afterward), we systematically assigned all important points for improvement to responsible individuals. (6) Our team
followed up intensively on the progress of each improvement point elaborated in a retrospective.

Table 1: Non-technical individual skills used in the present study

Non-technical skills

Studies including skill

(1) Communication Skills [39, 66, 151 37, [32 [46], 17)
(2) Teamwork Skills [39,, 66, 10, [65] [46] [17)
(3) Collaboration Skills [66l, 37, [17]

(4) Ability to Meet Project Goals [66], 8, 17]

(5) Customer Orientation [66}, 22], [32] [46] [65]
(6) Requirements Management Skills [59, [1]

(7) Planning Skills [39, [66, 46} [65)

(8) Leadership Skills [39, B2, 406, 17, 12]
(9) Decision-Making Skills [46], B3]

(10) Business-Minded Skills [66., [17]

(11) Problem-Solving Skills [66, [46]

(12) Organizing Skills [39, [66]

(13) Negotiation Skills [66, 24, 11, 57, [17]

Collocation. Close proximity of development team members is reported as one of the critical success factors
when implementing agile methods [40]. It is recognized as one of the important vehicles for successful
communication and knowledge creation [45].

Collocation: (1) Developers were located majorly in...
admins) were located in... (3) Requirements engineers were located with developers in...
with the developers in... (5) The customer was located with the developers in...

(2) All members of the technical team (including QA engineers, db
(4) The project/release manager worked

3.2. Common Non-Technical Skills

We use common denominators on skills derived from previous studies as presented in Section In
that analysis, we found 13 non-technical individual skills that have been identified in at least two papers
as important for software developers to be successful. Table [I| presents the non-technical skills used in this
study and supporting literature depicting the importance of this skill.

3.3. Research Hypotheses

Based on the literature, in this current paper, we investigate the assumption that the use of agile practices
is positively connected to non-technical individual skills. All the items were self-assessed by team members
in agile software development projects. The hypotheses were therefore the following:

e H;: The mature use of the agile practice Iteration Planning is positively associated with agile team
members’ self-assessed non-technical skills.

e Hs: The mature use of the agile practice Iterative Development is positively associated with agile
team members’ self-assessed non-technical skills.

e Hj: The mature use of the agile practice Continuous Integration and Testing is positively associated
with agile team members’ self-assessed non-technical skills.

7

e H,: The mature use of the agile practice Stand-Up Meetings is positively associated with agile team
members’ self-assessed non-technical skills.

e H;5: The mature use of the agile practice Customer Access is positively associated with agile team
members’ self-assessed non-technical skills.

e Hys: The mature use of the agile practice Customer Acceptance Tests is positively associated with
agile team members’ self-assessed non-technical skills.

e H7: The mature use of the agile practice Retrospectives is positively associated with agile team
members’ self-assessed non-technical skills.

e Hjg: The mature use of the agile practice Collocation is positively associated with agile team members’
self-assessed non-technical skills.

4. Method

In order to investigate the connections between the individual skills and agile practices, we created a
survey using the agile practices suggested by So & Scholl [63] and our aggregation of non-technical individual
skills (both derived in the previous section).

4.1. Participants

All the participants were members of agile teams in the participating companies (as stated by our
company contacts). We explicitly asked all team members to answer the survey, but to skip questions they
were not able to assess. As a consequence, most respondents were intimately connected to development code
in one way or the other. The reason why we did not asked specifically for only software developers, were
that some employees that conduct software development might have another title, like for example “system
engineer.”

This study was carried out at six organizations in total, three companies in Brazil and three in The
Netherlands (two companies and one public sector IT department). These companies were selected because
the first and third authors had direct or indirect research connections to people within the organizations.
We wanted the participating organizations to be as diverse as possible in order to being able to generalize
our study to the broader population of agile team members in the software development context, i.e. we
intended to survey agile team members from different continents, different sizes of organization, as well as
the public and private sectors (see Table .

‘s9sATelre UOISSOIZDI INO UT oSN 0) S9sU0dsal PI[eA GG 1589 18 PRY oM ‘San[eA SUISSIUI 0} aNP UOIS[OP SSIM-IST] 1]V 4

x€TT ‘T®I0L
4 000G SpueIoYION 9], UOIJezZIURSI() 10399G OI[qNJ
L 000°0G SPUeLIIaN ST, ¢ Aueduop)
i% 005‘e spue[IeyjoN 9Y.[, § Awedwo))
T ge [izeig ¢ Auedurop
LS 000°G [1zexg ¢ Auedwop)
(& 00T [1ze1g T Auwedwop
sosuodsod Jo # soakojdwo Jo # AL1juno)H uorjeziue3iQ0

suorjeziuedi() uryedmoijred ayJ, :g 9[qel,

The Brazilian sub-sample contained data points from IT departments at a large on-line media and social
networking enterprise with around 5,000 employees, a smaller software consultancy company with around 35
employees, and a company that provides programming courses to individuals and companies, with around
100 employees. All the agile team members received the surveys via their managers but their replies were
anonymous. The response rate was 92% for the Brazilian sub-sample due to the fact that they were collected
on-site in paper form.

The Dutch sub-sample consisted of four groups across three organizations: an IT service provider (around
3,500 employees), banking and financial services (around 50,000 employees), and an IT service department
in the public sector (around 5,000 employees). The response rate for the Dutch sub-sample was 81%.

All the participating companies said they use an agile development approach in the software development
conducted, but with teams of different maturity levels in that process. The total number of respondents in
the first measurement was 158 agile team members.

4.2. Survey items

In the survey these skills were separately put as questions in the following form: “How satisfied are you
with your [skill]?” The reason why we used personal satisfaction of a certain non-technical skill was that, in
agile teams, such skills are perceived as utterly important. Therefore, a satisfaction of a skill should be more
related to a perceived peer-evaluation by a team-member than if asked to only rate their own individual
skills. In addition, as mentioned previously, we aimed at investigating procedural rather than declarative
skills, and in order for a participant to rate their individual skill high in context, we believe such rating will
be more in relation to their declarative knowledge.

We used the survey suggested by So & Scholl [63] to measure the mature use of the eight agile practices
included in their study, i.e. higher scores on their survey imply higher maturity of a practice since the
questions are in relation to the intended, and therefore mature, use of a practice. The entire construct used
is presented in Section [3] Due to all the different definitions and ambiguity of “agility” [36], we chose this
survey since it captures the social-psychological behavior in connection to what the different practices try
to achieve. It is also the only tool we have found that is validated through a factor analysis [20] and a
reliability analysis (using the Cronbach’s a [16]) with a sample of N = 227 [63].

The agile items in the questionnaire were assessed on a 7-point Likert scale (1 = never and 7 = always),
with one exception being the Collocation items that were rated from 1 = the same room to 5 = different
timezones. These scales were used for the simple reason that these measurements were developed and
validated using those exact scales. The skills were assessed from 1 = completely dissatisfied and 9 =
completely satisfied.

In order to validate our results further, we also built a regression model using perceived code quality as
a response variable. The perceived code quality aspect was measured using the single question: “How would
you rate the code quality in your product(s)?” rated from 1 (very poor) to 4 (excellent). The reason for
this validation was to investigate if non-technical individual skills were connected to a completely different
aspect of the software developed (i.e. other than the agile practices). If that were the case, we would have
support for the usefulness of measuring non-technical individual skills outside the scope of agile practices.

4.8. Data collection and analysis

The questionnaires were distributed in paper form by one of the managers and collected on site by the
first and third authors (depending on the country).

To evaluate if the data was normally distributed, we plotted frequency histograms for all the multiple
linear regression models (for one example, see Figure [1). Figure [I| shows that the residuals are randomly
scattered around the regression line. However, we saw some issues with the dependent variable Retrospec-
tives, which turned out to have a set of outliers. When these outliers were removed and the data looked
normally distributed, the ANOVA for that category was still not significant, meaning that the outliers did
not affect the result. We also checked the variance inflation factor (VIF) for each regression model and all
values were below 3, which is acceptable for these kinds of analysis since a common rule of thumb is below
10 [43].

10

Histogram
Dependent Variable: Iterative Planning

Mean =-4.65E-15
259 Std. Dev. =0.935
N =105

Frequency
g
N

0 T T T T T
-4 -3 -2 -1 2

Regression Standardized Residual

Figure 1: Frequency histogram with Iteration Planning as dependent variable and all the individual skills as factors.

In order to investigate the connections between the two concepts we first ran eight ANOVAs with all the
skills as factors and the agile practices as response variables one by one. The purpose was to investigate
the predictive power of knowing the agile team members perceived individual skills on all the agile practices
separately (plus the quality question in its own analysis as a validation). This means that we investigated
how much of the variance in a measured agile practice that was explained by the non-technical individual
skills together, and therefore, opted to use linear regression analysis with all the skills as factors. It is
important to note the differences between predictive and causal models and in this study we only claim the
former. However, since we have the theoretical assumption that skills predict agile practices maturity and
not the other way around, we have the skills as independent variables and the agile practices measurements
as dependent variables. If the ANOVA was significant at an alpha level of 5%, we proceeded and built a
multiple linear regression model to see which skills (factors) were significant. As a measurement of effect
size we used n? (often called R? in regression analysis) for each omnibus test (i.e. ANOVA) [L1].

5. Results

To assess the predictive power of non-technical individual skills on the agile practices, we ran eight
independent ANOVA omnibus tests of which only the three response variables “Iteration Planning” (F =
2.166,p = 0.017, N = 105), “Customer Access” (F = 2.415,p = 0.008, N = 102), and “Customer Ac-
ceptance Tests” (F = 2.940,p = 0.001, N = 99) were significant. All the other ANOVAs using “It-
erative Development” (F = 1.307,p = 0.224, N = 103), “Continuous Integration and Testing” (F =
0.664,p = 0.792, N = 100), “Stand-Up Meetings” (F = 0.862,p = 0.595, N = 99), “Retrospectives”
(F = 0.946,p = 0.510, N = 101), and “Collocation” (F = 0.968,p = 0.488, N = 103) as dependent
variables were not significant at an alpha level of 5%. We therefore failed to reject the null-hypotheses in
favour of Hy, H3, Hy, H7, Hg using the agile practices as response variables, i.e. they were not significant
at an alpha level of 5%. Therefore, we also conclude that we have weak support, but still reject the null
hypotheses in favour of Hy,Hs, and Hg. Next, we explain why the support was weak.

The agile practices Iteration Planning, Customer Access, and Customer Acceptance Tests had significant
ANOVAs and we therefore ran further analyses using the significant factors (i.e. non-technical individual
skills) in order to evaluate the size of the effects found. For these three significant omnibus tests, we built new
models based on the significant factors and calculated effect sizes, which were found to be low or very low.
The results were: Iteration Planning (adjusted R? = 11.7%), using planning and teamwork skills as factors
(see Table , Customer Access (adjusted R? = 6.0%), using business-minded skills and organizing skills as
factors (see Table , and finally Customer Acceptance Tests (adjusted R? = 4.6%), using organizing skills

11

Table 3: Linear Regression Coefficients (Dependent Variable: Iteration Planning with 112 valid cases). Adjusted R? = 11.7%

Model Unstandardized B Std. Error Standardized B t p-value
(Constant) 3.373 0.528 6.389 0.000*
Teamwork Skills 0.175 0.074 0.778 2.354 0.020*
Planning Skills 0.133 0.062 0.208 2.148 0.034*
*p<.05

Table 4: Linear Regression Coefficients (Dependent Variable: Customer Access with 108 valid cases). Adjusted R? = 6.0%

Model Unstandardized B Std. Error Standardized B t p-value

(Constant) 5.251 0.692 7.590 0.000*

Business-Minded Skills 0.173 0.080 0.204 2.150 0.034*

Organizing Skills -0.181 0.077 -0.222 -2.342 0.021*
*p<.05

as a factor (see Table. The only model with explained variance over ten percent was predicting “Iteration
Planning” by using planning and teamwork skills skills. The regression models built using Customer Access
and Customer Acceptance Tests had effect sizes under 10%, showing low predictive power of non-technical
individual skills, even though we rejected the null hypotheses.

Higher teamwork and planning skills were connected to better iteration planning, which is the only result
that makes sense. Actually, organizing skills were negatively correlated to Customer Access and Customer
Acceptance Tests, which questions the relevance of the results in general. This would then mean that good
organizing skills would be bad for mature Customer Access and Customer Acceptance Tests practice, which
seems odd. However, we believe these results also point out that individual satisfaction of e.g. organizing
skills is a poor predictor of agile maturity of a practice. Additionally, these effect sizes should be seen as
irrelevant according to Cohen [I1], while above ten percent is considered only a small effect. Therefore,
the significant connections between teamwork and planning skills and iteration planning are the only ones
relevant to analyze further.

The variance in the measurement of Iteration Planning, could be explained by 11.7%, which is considered
a small effect in these types of studies [II]. As mentioned before, it makes sense that the individual skills
of teamwork and planning would be connected to how well a team plans for an iteration, however, it
makes equally much sense that individual communication, collaboration, decision-making, problem-solving,
organizing, and negotiation skills would be connected to e.g. the team ability to develop iteratively. In
addition, the effect was barely over ten per cent, which we still consider much lower that would be the case
if all these agile team practices depended on individual non-technical skills.

Table 5: Linear Regression Coefficients (Dependent Variable: Customer Acceptance Tests with 104 valid cases). Adjusted
R? = 4.6%

Model Unstandardized B Std. Error Standardized B t p-value

(Constant) 5.811 0.757 7.679 0.000*

Organizing Skills -0.269 0.111 -0.234 -2.431 0.017*
*p<.05

12

Validating individual skills against perceived code quality. As a validation of the non-technical individual
skills measurements we also built a model using the perceived code quality in products as a response variable.
The non-technical individual skills showed no connection to the agile team members’ perceived code quality
(F =1.172,p = 0.314, N = 99), which means that non-technical individual skills also failed to predict the
agile team members’ perceived quality of the code.

Summary of statistical results. To summarize the results above, we first analyzed our survey data for nor-
mality and plotted frequency histograms for multiple regression models using non-technical individual skills
as factors and the agile practices (one-by-one), and perceived code quality, as response variables. To assess
the predictive power of non-technical individual skills on the agile practice and perceived quality, we ran
nine independent ANOVA omnibus tests of which only the three response variables “Iteration Planning,”
“Customer Access,” and “Customer Acceptance Tests” were significant. For these three significant omnibus
tests, we build new models based on the significant factors and calculate effect sizes, which were found to
be low or very low. The only model with explained variance over ten percent was predicting “Iteration
Planning” by using teamwork and planning skills. This result makes sense, however, so would many other
predictions which were not significant, and in addition, higher organizing skills were connected to lower
Customer Access and Customer Acceptance Tests, which questions the relevance of such a measurement.
The data analyses therefore have shown that looking at non-technical individual skills is not the optimal
level of analysis when wanting to predict agile maturity. What this means and the implications of the low
predictive power of non-technical individual skills in connection agile practices will be discussed next.

It is important to, again, highlight the differences between correlation/predictive and causal models and
in this study we only claim the former.

6. Discussion

The results show that there is very little predictive power when using self-assessed non-technical individ-
ual skills to understand the perceived maturity of the agile practices. Based on previous work in software
engineering we would not expect such a result. This means that we can not look at self-assessed non-technical
individual skills when trying to predict the intended and mature use of agile practices.

If there is little value in looking at individual non-technical skills when understanding or improving agile
practices, what is then the option? As mentioned in the introduction, Turley & Bieman [66] identified 38 es-
sential competencies of software engineers on different abstraction levels, which we interpret as an indication
of the issues shown in our present study with using non-technical individual skills in order to increase the use
of agile practices in software development teams, i.e. they are simply too many. In accordance with Tanner
& von Wilingh [65] and Crowder & Friess [I7] who investigated agile project success in relation to team
orientation, shared leadership, backup behavior, feedback, team autonomy, team learning, coordination,
communication, trust, collective culture, team familiarity, customer involvement and mandate, stakeholder
involvement and buy-in, and team structure and team logistics, we have also found empirical support for
looking at other levels of analysis than the individual, when wanting to optimize the benefits from an agile
approach. Since project success is connected to agility [55] and So & Scholl [63] suggest a measurement for
the intended use of the agile practices, we assume that higher scores on the agile practices measurement do
imply a higher probability of project success. Lalsing et al. [37] also state that it is of utter importance to
find the “right people for the right team” and not only the “right people,” which seems to be a key when
building teams that can leverage agile practices in the way that they are intended.

Hackman [25] underlines the importance of crossing levels in organizational research and in this present
study, we have shown that the individual level does not explain much variance and we instead need to
investigate the team as the level of analysis. The cross-section between what is team and organization could
be hard to define and e.g. organizational routines could be defined as both [49]. However, the distinctiveness
between teams in organizations are often possible to find, and we argue the team-level needs to be in focus
instead of the individual level, but preferably also in relation to the organizational level.

As a comparison, we looked at how Edum-Fotwe & McCaffer [I§] present individual skills needed in the
construction industries. They suggest skills not far from what is suggested in software development, which

13

supports our claim that these non-technical individual skills are too general to be useful in predictions of
the dynamics of the specific organizational case. Edum-Fotwe & McCaffer [18] divide the needed abilities
into primary and secondary knowledge and skill elements for developing project management competencies.
Among the primary knowledge and skill elements, they report: (1) Planning and scheduling, (2) Construc-
tion management activities, (3) Basic technical knowledge in own field, (4) Productivity and cost control,
(5) Leadership, (6) Delegation, (7) Negotiation, (8) Decision making, (9) Motivation and promotion, (10)
Team working, (11) Time management, (12) Top management relations, (13) Establishing budgets, (14) Re-
porting systems, (15) Drafting contracts, (16) Communication skills Presentation, (17) General and business
correspondence, (18) Report writing, (19) Chairing meetings, and (20) Understanding of organization.

We believe our findings imply that the teams need all the abilities that the non-technical individuals
skills try to capture, but should be seen, and investigated, as a team capacity instead. This means that there
is a difference between an individual having team working skills and the skills the team as a whole possesses.
Our present study supports the findings presented in Section that team skills are key to implementing
and using agile practices. The collective intelligence is a property of the team itself [72] and, therefore,
also the agile practices, i.e. just like the collective intelligence is unrelated to individual intelligence [72],
individual non-technical skills seem to be unrelated to non-technical team skills. In addition, personalities
can be consciously changed over time [29] and depend on our group membership [51]. From the software
development context, Gren et al. [23] present an interesting quote in their study saying that the interviewees
were surprised by how vocal some, previously very quiet, programmers get on some of their agile teams.
Such a finding has extensive empirical support from social psychology and the studies of how context and
its social expectations and interactions form reality [61].

6.1. Threats to Validity

We reflect on the threats to validity using internal, external, construct, and conclusion validity following
the guidelines by Wohlin et al. [71].

Internal Validity. We only used the self-assessed (i.e. perceived) non-technical individual skills. It is difficult
to determine the correlation of these agile team members’ self-assessed skills to their actual skills, or peer-
assessed skills. However, it has been proven in psychology research that people overestimate their skills
systematically (see e.g. Alicke et al. [2]). Hence, we assume our self-assessment to be a valid measurement
when building associative models with relative associations between variables. A potential other threat is
the operationalization of “skills” into asking about the agile team members’ satisfaction of their own skill.
As mentioned in the method, the reason for using the personal satisfaction of a certain non-technical skills
was the fact that, in agile teams, such skills are perceived as utterly important and a satisfaction of a skill
should then be more related to a peer-evaluation then if asked to only rate their individual skills. Yet, we
recognize that the reported individual skills could differ from “real” or the actual skills perceived by peers.

We did not include participants from companies not following agile practices for a comparison between
other types of software development work practices. The rational behind this was our focus on companies
using agile practices and the fact that we prioritized having a high number of participants than comparing
the results to participants from organizations not following agile practices. We would also have had to
specify and measure other work practices, which then became out of scope for this study. However, we
would not be surprised if non-technical individual skills would turn out to be weakly connected to other
types of high performance work practices, both in other software development methods, but also in other
fields.

Ezternal validity. The sampling in this study represents a convenience sampling procedure, as the authors
of this paper had direct or indirect research connections to people within the organizations that chose
participants to the study. To mitigate this threat, we tried to diversify the sample of participants to include
as a representative sampling of agile teams as possible. We involved participants from seven organizations
from different continents, different sizes of organizations, as well as the public and private sectors. In
addition, in order to correlate skills to levels of agile maturity, the organizations, and the participating agile
teams, were all on different agile maturity levels, both within and between organizations. Four organizations

14

were based in Brazil and three organizations were from Europe, The Netherlands, including two companies
and one public sector IT department. We therefore believe that our sample is representative for agile team
members since we sampled from IT organizations of different types and sizes. Again, we aimed at looking for
correlations, but allowing the skills measurements to co-vary, which makes such a sample appropriate. We
also opted not to specify that we only wanted software developers to answer the survey, since we knew that
many team members conducting software development work, might have other titles. We instead explicitly
asked all members to respond, but told them to skip questions they could not assess. Therefore, our sample
reflects all the agile team members that were involved in software development.

Conclusion wvalidity. Due to our large sample size of 113 survey responses, we had a decent sample for
building our linear regression models. We also made sure all the assumptions were fulfilled when building
such statistical models.

Construct validity. To ensure that we do not just base our measurements on our assumptions, we conducted
a literature review on individual skills in software development and agile projects, as well as on agile practices.
From this review, we presented the most related work we found and step-by-step derived representative non-
technical individual skills as well as agile practices. We only included a measurement if we found evidence for
it in at least two publications. In addition, and more importantly, we failed to reject most of our hypothesis,
which was not our initial intention, of course, but our data turned out to provide us with different results
than we expected, i.e. we reported our results and discussed it without trying to fish for significant p values
in data.

A common construct validity threat is hypothesis guessing. Since the participants filled out their surveys
on paper and totally anonymous (i.e. not even stating their role or gender), we believe they were given a
chance to answer honestly. We also did not inform participants about any of our hypotheses, but instead
introduced our research topic of finding drivers behind agile practices in general over a large sample from
more than one country.

7. Conclusions and Future Work

This paper set out to investigate the assumption that non-technical individual skills are positively con-
nected to the mature use of agile practices. Through building a set of multiple linear regression models
using a total of 113 survey responses, we analyzed the predictive power in measuring individual skills in
relation to agile practices. We found that there is very low power in using non-technical individual skills to
predict the maturity of agile practices in software development teams. We, therefore, conclude that looking
at non-technical individual skills is not the optimal level of analysis when trying to understand and predict
the use of agile practices in the software development context.

Future studies should focus more on the team-level when understanding the use of agile practices and
build upon such theories when understanding the dynamics of agile teams in addition to trying to validated
the result of the present study using external, or peer-assessed, measurements of skills and agile practices.
In future studies, instead of asking questions about the non-technical individual skills, we would suggest
items regarding non-technical team-level skills. For example, given that members of the team have enough
talent and experience for the kind of work that is conducted, items suggested by Wageman et al. [68] might
be useful, like for example, whether everyone in the team has the special skills that are needed for team
work. Future studies should also include the macro level of analysis in order to investigate if aspect of team
agility could be explained on the organizational level, which there are indications of [52].

Acknowledgements

We would like to thank all the participating companies as well as colleagues helping out in different
phases of this research.

15

References

(6]
(7]
(8]

[10]
[11]
[12]
(13]
(14]
(15]
[16]
[17)
(18]
(19]

[20]
(21]

[22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
31]

(32]

(33]

34]

Ahmad, S., & Muda, N. A. (2011). An empirical framework design to examine the improvement in software requirements
through negotiation. International Journal on New Computer Architectures and Their Applications, 1, 599-614.

Alicke, M. D., Klotz, M. L., Breitenbecher, D. L., Yurak, T. J., & Vredenburg, D. S. (1995). Personal contact, individuation,
and the better-than-average effect. Journal of personality and social psychology, 68, 804.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological review, 89, 369.

Argyris, C. (2000). Double-loop learning. Wiley Encyclopedia of Management, .

Bender, L. L., Walia, G. S., Fagerholm, F., Pagels, M., Nygard, K. E., & Miinch, J. (2014). Measurement of the non-
technical skills of software professionals: An empirical investigation. In International Conference on Software Engineering
and Knowledge Engineering (SEKE) (pp. 478-483).

Booth, C., & Harmer, M. (1994). Agile manufacturing concepts and opportunities in ceramics. Ceramic Transactions,
50, 67-76.

Chamberlain, S., Sharp, H., & Maiden, N. (2006). Towards a framework for integrating agile development and user-centred
design. In Extreme programming and agile processes in software engineering (pp. 143-153). Springer.

Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational research methods,
4, 62-83.

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile software projects. Journal of Systems
and Software, 81, 961-971.

Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. Computer, 34, 131-133.

Cohen, J. (1992). Quantitative methods in psychology — A power primer. Psychological Bulletin, 112, 155-159.

Cohn, M. (2004). Situational leadership for agile software development. Cutter IT Journal, 17, 16-21.

Conboy, K. (2009). Agility from first principles: Reconstructing the concept of agility in information systems development.
Information Systems Research, 20, 329-354.

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. (2010). People over process: Key people challenges in agile develop-
ment. IEEE Software, 99, 47-57.

Coughlan, J., Lycett, M., & Macredie, R. D. (2003). Communication issues in requirements elicitation: A content analysis
of stakeholder experiences. Information and Software Technology, 45, 525-537.

Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.

Crowder, J. A., & Friess, S. (2015). Agile project management: Managing for success. Cham, Switzerland: Springer.
Edum-Fotwe, F. T., & McCaffer, R. (2000). Developing project management competency: Perspectives from the con-
struction industry. International Journal of Project Management, 18, 111-124.

Engel, D., Woolley, A. W., Jing, L. X., Chabris, C. F., & Malone, T. W. (2014). Reading the mind in the eyes or reading
between the lines? Theory of mind predicts collective intelligence equally well online and face-to-face. PloS ONE, 9, 1-16.
Fabrigar, L. R., & Wegener, D. T. (2012). Ezploratory factor analysis. Oxford: Oxford University Press.

Fletcher, G., McGeorge, P., Flin, R. H., Glavin, R. J., & Maran, N. J. (2002). The role of non-technical skills in anaesthesia:
A review of current literature. British Journal of Anaesthesia, 88, 418-429.

Fricker, S. (2010). Requirements value chains: Stakeholder management and requirements engineering in software ecosys-
tems. In International Working Conference on Requirements Engineering: Foundation for Software Quality (pp. 60-66).
Gren, L., Torkar, R., & Feldt, R. (2017). Group development and group maturity when building agile teams: A qualitative
and quantitative investigation at eight large companies. The Journal of Systems and Software, 124, 104-119.
Griinbacher, P., & Seyff, N. (2005). Requirements negotiation. In A. Aurum, & C. Wohlin (Eds.), Engineering and
Managing Software Requirements (pp. 143-158). Berlin: Springer.

Hackman, J. R. (2003). Learning more by crossing levels: Evidence from airplanes, hospitals, and orchestras. Journal of
organizational behavior, 24, 905—922.

Hellmann, T. D., Sharma, A., Ferreira, J., & Maurer, F. (2012). Agile testing: Past, present, and future — Charting a
systematic map of testing in agile software development. In Agile Conference (AGILE), 2012 (pp. 55-63). IEEE.

Hogg, M. A., & Williams, K. D. (2000). From I to we: Social identity and the collective self. Group Dynamics: Theory,
Research, and Practice, 4, 81.

Holck, J., & Jgrgensen, N. (2003). Continuous integration and quality assurance: A case study of two open source projects.
Australasian Journal of Information Systems, 11, 40-53.

Hudson, N. W., & Fraley, R. C. (2015). Volitional personality trait change: Can people choose to change their personality
traits? Journal of personality and social psychology, 109, 490.

Inayat, I., & Salim, S. S. (2015). A framework to study requirements-driven collaboration among agile teams: Findings
from two case studies. Computers in Human Behavior, 51, 1367-1379.

Janis, I. L., & Mann, L. (1977). Decision making: A psychological analysis of conflict, choice, and commitment. New
York: The Free Press.

Kelle, E. V., Wijst, P. V. D., Visser, J., Plaat, A., & Group, S. . (2015). An empirical study into social success factors
for agile software development. In International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE) (pp. 6-9).

King, J. L., & Kraemer, K. L. (1984). Evolution and organizational information systems: An assessment of nolan’s stage
model. Communications of the ACM, 27, 466-475.

Klein, K. J., & Kozlowski, S. W. (2000). From micro to meso: Critical steps in conceptualizing and conducting multilevel
research. Organizational research methods, 3, 211-236.

16

[35]
[36]
137]
[38]
[39]
[40]
[41]

[42]
[43]

f44]
[45]
[46]
[47]
48]
[49]
[50]
51]

[52]
53]

[54]
[55]

[56]
[57)

(58]
[59]
[60]
[61]
(62]

(63]

[64]
[65)
[66]
[67]
(68]
(69]

[70]
(71]

Kovitz, B. (2003). Hidden skills that support phased and agile requirements engineering. Requirements Engineering
Journal, 8, 135-141.

Laanti, M., Simild, J., & Abrahamsson, P. (2013). Definitions of agile software development and agility. In Systems,
Software and Services Process Improvement (pp. 247-258). Springer.

Lalsing, V., Kishnah, S., & Pudaruth, S. (2012). People factors in agile software development and project management.
International Journal of Software Engineering € Applications, 8, 117-137.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history. IEEE Computer, (pp. 47-56).
Lee, S. M., & Lee, C. K. (2006). IT managers’ requisite skills. Communications of the ACM, 49, 111-114.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R., Williams, L., & Zelkowitz, M. (2002).
Empirical findings in agile methods. In Eztreme Programming and Agile Methods (pp. 197-207). Springer.

Liu, L., Maurer, F., & Erdogmus, H. (2005). An environment for collaborative iteration planning. In Proceedings of the
Agile Development Conference (pp. 80-89). IEEE.

Maham, M. (2008). Planning and facilitating release retrospectives. In Agile Conference (AGILE) (pp. 176-180). IEEE.
Marquaridt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation.
Technometrics, 12, 591-612.

McHugh, O., Conboy, K., & Lang, M. (2012). Agile practices: The impact on trust in software project teams. IEEFE
Software, 29, 71-76.

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in adopting agile software
development practices. Journal of Systems and Software, 82, 1869—-1890.

Napier, N. P., Keil, M., & Tan, F. B. (2009). IT project managers’ construction of successful project management practice:
A repertory grid investigation. Information Systems Journal, 19, 255-282.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements Engineering: A Roadmap. In Proceedings of the Conference on
The Future of Software Engineering (ICSE) (pp. 35-46).

van Oosterhout, M. (2010). Business Agility and Information Technology in Service Organizations. Rotterdam: Erasmus
Research Institute of Management.

Pentland, B. T., & Feldman, M. S. (2005). Organizational routines as a unit of analysis. Industrial and corporate change,
14, 793-815.

Petersen, K., & Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development
approach with agile practices. Empirical Software Engineering, 15, 654—693.

Reynolds, K. J., Turner, J. C., Haslam, S. A., & Ryan, M. K. (2001). The role of personality and group factors in
explaining prejudice. Journal of Experimental Social Psychology, 37, 427-434.

Roth, A. (1996). Achieving strategic agility through economies of knowledge. Strategy € leadership, 24, 30-36.

Salvato, C. (2009). Capabilities unveiled: The role of ordinary activities in the evolution of product development processes.
Organization Science, 20, 384-409.

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. Upper Saddle River, NJ: Prentice Hall.
Serrador, P., & Pinto, J. K. (2015). Does agile work? — A quantitative analysis of agile project success. International
Journal of Project Management, 33, 1040-1051.

Sharp, H., & Robinson, H. (2004). An ethnographic study of XP practice. Empirical Software Engineering, 9, 353—-375.
Shell, G. R. (2001). Bargaining styles and negotiation: The Thomas-Kilmann conflict mode instrument in negotiation
Training. Negotiation Journal, (pp. 155-174).

Sheppard, J., & Young, W. (2006). Agility literature review: Classifications, training and testing. Journal of sports
sciences, 24, 919-932.

Sillitti, A., & Succi, G. (2005). Requirements engineering for agile methods. In A. Aurum, & C. Wohlin (Eds.), Engineering
and Managing Software Requirements (pp. 309-326). Berlin: Springer.

Skill. (n.d.). Oxford dictionaries — english. https://en.oxforddictionaries.com/definition/skill.

Snyder, M. (1984). When belief creates reality. Advances in experimental social psychology, 18, 247-305.

So, C. (2010). Making software teams effective: How agile practices lead to project success through teamwork mechanisms.
Frankfurt am Main: Peter Lang.

So, C., & Scholl, W. (2009). Perceptive agile measurement: New instruments for quantitative studies in the pursuit of the
social-psychological effect of agile practices. In Agile Processes in Software Engineering and Extreme Programming (pp.
83-93). Springer.

Stray, V. G., Moe, N. B., & Aurum, A. (2012). Investigating daily team meetings in agile software projects. In 38th
EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) (pp. 274-281). IEEE.

Tanner, M., & von Wilingh, U. (2014). Factors leading to the success and failure of agile projects implemented in
traditionally waterfall environments. In Management, Knowledge and Learning International Conference (pp. 693-701).
Turley, R. T., & Bieman, J. M. (1994). Identifying essential competencies of software engineers. In ACM Conference on
Computer Science (pp. 271-278).

Viller, S., & Sommerville, I. (1999). Social analysis in the requirements engineering process: From ethnography to method.
In IEEE International Symposium on Requirements Engineering (pp. 6-13). IEEE.

Wageman, R., Hackman, J. R., & Lehman, E. (2005). Team diagnostic survey: Development of an instrument. The
Journal of Applied Behavioral Science, 41, 373-398.

Wang, X., Conboy, K., & Pikkarainen, M. (2012). Assimilation of agile practices in use. Information Systems Journal,
22, 435-455.

Williams, L. (2012). What agile teams think of agile principles. Communications of the ACM, 55, 71-76.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Ezperimentation in Software

17

Engineering: An Introduction. Norwell, MA, USA: Kluwer Academic Publishers.
[72] Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective intelligence
factor in the performance of human groups. Science, 330, 686—688.

18

	1 Introduction
	2 Related Work
	2.1 What Is a Skill?
	2.2 Research on Individual Skills in Agile Software Development
	2.3 Research on Team-Level Skills in Agile Software Development

	3 Measurements, Constructs, and Research Hypotheses
	3.1 Common Agile Practices
	3.2 Common Non-Technical Skills
	3.3 Research Hypotheses

	4 Method
	4.1 Participants
	4.2 Survey items
	4.3 Data collection and analysis

	5 Results
	6 Discussion
	6.1 Threats to Validity

	7 Conclusions and Future Work

