
The Impact of IR-based Classifier Configuration on the Performance and the Effort
of Method-Level Bug Localization

Chakkrit Tantithamthavorna,∗, Surafel Lemma Abebeb, Ahmed E. Hassanc, Akinori Iharad, Kenichi Matsumotod

aThe University of Adelaide, Australia.
bThe Addis Ababa University, Ethiopia.

cQueen’s University, Canada.
dNara Institute of Science and Technology, Japan.

Abstract

Context: IR-based bug localization is a classifier that assists developers in locating buggy source code entities (e.g.,
files and methods) based on the content of a bug report. Such IR-based classifiers have various parameters that can be
configured differently (e.g., the choice of entity representation).
Objective: In this paper, we investigate the impact of the choice of the IR-based classifier configuration on the top-k
performance and the required effort to examine source code entities before locating a bug at the method level.
Method: We execute a large space of classifier configuration, 3,172 in total, on 5,266 bug reports of two software systems,
i.e., Eclipse and Mozilla.
Results: We find that (1) the choice of classifier configuration impacts the top-k performance from 0.44% to 36% and
the required effort from 4,395 to 50,000 LOC; (2) classifier configurations with similar top-k performance might require
different efforts; (3) VSM achieves both the best top-k performance and the least required effort for method-level bug
localization; (4) the likelihood of randomly picking a configuration that performs within 20% of the best top-k classifier
configuration is on average 5.4% and that of the least effort is on average 1%; (5) configurations related to the entity
representation of the analyzed data have the most impact on both the top-k performance and the required effort; and (6)
the most efficient classifier configuration obtained at the method-level can also be used at the file-level (and vice versa).
Conclusion: Our results lead us to conclude that configuration has a large impact on both the top-k performance and the
required effort for method-level bug localization, suggesting that the IR-based configuration settings should be carefully
selected and the required effort metric should be included in future bug localization studies.

Keywords: Bug Localization, Classifier Configuration, Evaluation Metrics, Top-k Performance, Effort

1. Introduction

Developers spend 50% of their programming time de-
bugging the source code in an unfamiliar software sys-
tem [1]. Debugging mainly includes locating buggy source
code entities and fixing them. Establishing a good strategy
to help developers quickly locate buggy source code enti-
ties considerably reduces developers’ effort and debugging
time. To this end, several studies propose the use of Infor-
mation Retrieval (IR) based classifiers for bug localization
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

IR-based classifiers have different configuration param-
eters. For example, source code entities can be repre-
sented using only identifiers or using comments and iden-

∗Corresponding author.
Email addresses:

chakkrit.tantithamthavorn@adelaide.edu.au (Chakkrit
Tantithamthavorn), surafel.lemma@aait.edu.et (Surafel Lemma
Abebe), ahmed@cs.queensu.ca (Ahmed E. Hassan),
akinori-i@is.naist.jp (Akinori Ihara), matumoto@is.naist.jp
(Kenichi Matsumoto)

tifiers. Recent studies suggest that such configuration pa-
rameters may impact the top-k performance of IR-based
bug localization [16, 17]. In a recent study, Thomas et
al. [2] show that the choice of classifier configurations im-
pacts the performance of IR-based classifiers at the file-
level granularity. In addition to file-level, IR-based clas-
sifiers are often used to locate bugs at the method-level
[18, 19, 20, 21, 22, 23, 24]. Indeed, our recent work shows
that method-level bug localization requires less effort to
locate bugs than file-level bug localization [25]. However,
little is known about the impact that the choice of a classi-
fier configuration has on classifiers that are used to locate
bugs at the method-level.

In this paper, we partially replicate and extend
Thomas et al. [2] to investigate the impact of IR-based
classifier configuration on the top-k performance and the
required effort to examine source code entities (e.g., files
and methods) before locating a bug at the method level.
Moreover, we also analyze the classifier sensitivity to pa-
rameter value changes. Finally, we investigate whether the
most efficient classifier configuration for file-level bug local-

Preprint submitted to Information Software and Technology April 16, 2018

ar
X

iv
:1

80
6.

07
72

7v
1

 [
cs

.S
E

]
 2

0
Ju

n
20

18

ization is also the most efficient at the method-level (and
vice versa). In total, we explore a large space of classifier
configurations 3,172 configurations. Through a case study
of 5,266 bug reports of two software systems (i.e., Eclipse
and Mozilla), we address the following research questions:

(RQ1) Can IR-based classifier configurations sig-
nificantly impact the top-k performance of
method-level bug localization?
The choice of classifier configuration impacts the
top-k performance from 0.44% to 36%, indicating
that using an inappropriate configuration could
result in poor top-k performance. Moreover, there
are only few classifier configurations that perform
close to the best performing configuration, indi-
cating that finding the best top-k configuration is
difficult.

(RQ2) Can IR-based classifier configurations sig-
nificantly impact the required effort for
method-level bug localization?
The required effort of the classifier configurations
vary from 4,395 to 50,000 LOC, indicating that
using an inappropriate configuration could result
in wasted effort. Classifier configurations which
give similar top-k performance often require dif-
ferent amount of effort, suggesting that practition-
ers should take into consideration the effort that is
required to locate bugs instead of simply using the
top-k metrics when comparing the performance of
classifier configurations.

(RQ3) Is the most efficient classifier configura-
tion for method-level bug localization also
the most efficient configuration for file-level
bug localization (and vice versa)?
The most efficient classifier configuration obtained
at the method-level can also be used at the file-
level (and vice versa) without a significant loss of
top-kLOC performance.

Our results lead us to conclude that configuration has
a large impact on both the top-k performance and the re-
quired effort for method-level bug localization. The results
suggest that the IR-based configuration settings should be
carefully selected and the required effort metrics should be
included in future bug localization studies. Nonetheless,
we find that configurations related to the entity represen-
tation of the analyzed data have the most impact on the
top-k performance and the required effort, suggesting that
practitioners would benefit from guidance on which con-
figuration parameters matter the most.

1.1. Paper Organization

The remainder of the paper is structured as follows. Sec-
tion 2 introduces Information Retreival (IR)-based Bug
Localization. Section 3 motivates our research questions,

IR-based 
Bug

Localization

Rank Source code

1 A.java

2 B.java

3 C.java

4 D.java

Entities where  
the bug should  

be fixed.

query

corpus

Bug Reports

Source Code  
Entity

Figure 1: An overview of IR-based Bug Localization.

while Section 4 describes our case study design. The re-
sults of our case studies are presented in Section 5. Threats
to the validity of our study are disclosed in Section 6. Fi-
nally, Section 7 draws conclusions.

2. IR-based Bug Localization

Bug localization is the task of identifying source code
entities that are relevant to a given bug report. In the lit-
erature, various approaches that exploit information such
as dynamic and textual information are proposed in order
to support bug localization. A comprehensive survey of the
approaches can be found in Dit et al. [26]. In this section,
we discuss approaches that exploit textual information us-
ing Information Retrieval (IR) classifiers to locate source
code entities that are relevant to fix a bug.

In IR-based bug localization (see Figure 1), a bug report
is treated as a query and source code entities are treated
as a document corpus. A source code entity is considered
relevant if the entity indeed needs to be modified to resolve
the bug report, and irrelevant otherwise. A source code
entity could be defined at different granularity levels (e.g.,
package, file, or method). Prior studies use file [5, 6, 2, 7,
27], or method [21, 22, 24, 23, 25] granularity levels.

File-level bug localization is well-studied using sev-
eral popular IR models such as Vector Space Model (VSM)
[6], Latent Semantic Indexing (LSI) [24, 23], and Latent
Dirichlet Allocation (LDA) [24, 23]. The results of the
studies, however, cannot be generalized. For example,
Rao and Kak [6] state that VSM outperforms sophisticated
classifiers like LDA, while Lukins et al. [24, 23] state that
LDA outperforms LSI. As noted in Thomas et al. [2], the
differences are often due to the use of different datasets,
different evaluation metrics, and different classifier con-
figurations. The classifier configuration for IR-based bug
localization includes the choice of bug report representa-
tion, entity representation, preprocessing steps, and IR-
classifier parameters. To compare different IR-based clas-
sifiers, Thomas et al. [2] proposed a framework with a large
space of classifier configurations. Thomas et al. [2]’s results
show that the configuration of IR-based classifiers impacts
the performance of the IR-based bug localization at the
file level.

2

Method-level bug localization considers a relatively
smaller source code entities (i.e., methods) instead of file.
Marcus et al. [18] use LSI to identify the methods that are
required to implement a task. The results show that LSI
provides better results than existing approaches at that
time, such as regular expressions and dependency graphs.
Marcus et al. [19] and Poshyvanyk et al. [20] combine LSI
with a dynamic feature location approach called scenario-
based probabilistic ranking in order to locate methods rel-
evant to a given task. Lukins et al. [24, 23] use Latent
Dirichlet Allocation (LDA) techniques to localize bugs at
the method-level. Their study on Eclipse, Mozilla, and
Rhino shows that LDA-based approach is more effective
than approaches using LSI. However, to evaluate their ap-
proach, they use only 322 bugs across 25 version of three
systems (Eclipse, Mozilla, and Rhino), which on average
are less than 20 bugs per version. Wang et al. [22] investi-
gate the effectiveness of several IR classifiers on method-
level bug localization. The results of Wang et al. [22]’s
study show that older and simpler IR techniques, e.g.,
VSM, outperform more recent IR techniques. In their
study, however, they use only one classifier configuration.
Hence, their results cannot be validated and generalized
to other classifier configurations.

Our RQ1 revisits Thomas et al. [2]’s study at the method
level. Moreover, we investigate the difficulty of locating
optimal configurations and the impact of each parameter
on the overall performance of a classifier. Such sensitivity
analysis of parameters provides us with a better under-
standing of the difficulty of the problem of finding config-
urations in practice.

Evaluation Metrics are used to assess the perfor-
mance of different classifiers in localizing bugs. Several
studies use the top-k performance metric to carry out such
assessment [5, 6, 2, 7, 3, 28]. The top-k performance met-
ric considers a bug to be localized if at least one relevant
source code entity is returned in the top-k ranked entities.
Metrics such as Precision, Recall, Mean Average Precision
(MAP), and Mean Reciprocal Ranks (MRR) will not be
used for our study, since practitioners are primarily inter-
ested in the top-k suggested entities Guan et al. [29].

In contrast to recent studies of effort-aware bug predic-
tion [30, 31, 32], prior studies of bug localization have not
explored the effort that is needed to cope with irrelevant
suggestions until a relevant entity is located. Hence, our
RQ2 explores this notion of effort as another dimension to
evaluate and compare classifiers for IR-based bug localiza-
tion.

3. Research Questions

The goal of our study is to better understand: (1) the
impact of classifier configurations on method-level bug lo-
calization and which parameters have a large impact on the
performance of IR-based classifiers; (2) the impact of clas-
sifier configurations on the required effort to locate bugs

at the method level and which parameters have a large im-
pact on the required effort of IR-based classifiers; and (3)
whether the most efficient classifier configuration found for
file-level bug localization is also efficient at method-level
(and vice versa).

To do so, we executed a large space of classifier configu-
ration, 3,172 in total, on 5,266 bug reports of two software
systems, i.e., Eclipse and Mozilla. We define and present
the rationale of our research questions below:

(RQ1) Can IR-based classifier configurations signifi-
cantly impact the top-k performance of method-level
bug localization?

Motivation. Thomas et al. [2] showed that the choice
of classifier configuration impacts the top-k performance
of file-level bug localization. However, the impact of clas-
sifier configurations on method-level bug localization and
a comparison to file-level bug localization remains largely
unexplored. Besides, prior research has paid attention to
identifying the ideal IR configuration. Lohar et al. [33] use
a Genetic Algorithm to identify the best IR configuration
for traceability link recovery. Panichella et al. [34] use a
Genetic Algorithm to determine the best LDA configura-
tion. Yet, little is known which parameters of IR-based
bug localization truly have the most impact on the top-
k performance. For example, the choice of preprocessing
techniques might have a larger impact than the choice of
LDA configurations. Knowing which parameters are in-
fluential indicators of the top-k performance could help
practitioners make effective use of their time when explor-
ing various parameters (e.g., not spending too much time
to find the optimal LDA configurations).

(RQ2) Can IR-based classifier configurations signifi-
cantly impact the required effort for method-level bug
localization?

Motivation. Traditionally, the performance of IR-based
bug localization approaches is evaluated using the top-k
performance metric. However, the top-k performance met-
ric does not take into consideration the effort that is re-
quired to examine the entities that are ranked before the
first relevant source code entity Xu et al. [35]. The metric
assumes that the required effort to locate a relevant entity
ranked first and tenth are the same, which is not necessary
true. While for a developer, the required effort is different
due to the number of ranked entities to be examined and
their varying sizes. Yet, little is known about the impact
that classifier configuration has on the required effort to
locate the first buggy entity. Knowing the required effort
provides us a better understanding of the practicality of a
classifier [36, 31].

(RQ3) Is the most efficient classifier configuration for
method-level bug localization also the most efficient con-
figuration for file-level bug localization (and vice versa)?

3

Motivation. In RQ2, we investigate if the top-k per-
former requires the least effort to locate bugs. Therefore,
in addition to evaluating the performance and the effort
individually, investigating the most efficient configuration
is also necessary for practitioners [31, 37]. An efficient
configuration is a configuration which gives the best top-
k performance with a limited amount of reviewing effort.
Since traditional IR evaluation metrics (e.g., top-k perfor-
mance) do not consider the required effort [35], the most
efficient configuration still remains unexplored. Besides,
different researchers conduct bug localization only at one
granularity level, i.e., file or method. Prior research finds
that classifiers for bug prediction that are designed to work
well at one granularity level do not often work well at an-
other level [30, 38, 39]. Yet, little is known about whether
such performance variances hold for IR-based bug local-
ization at different granularity levels. RQ3 investigates
if the configuration found to be efficient at a granularity
level will also be efficient on the other granularity levels.
Knowing the most efficient configuration of bug localiza-
tion would help practitioners choose the configuration that
performs best and requires the least effort.

Table 1: Studied systems.

Eclipse Mozilla
(JDT) (mailnews)

Domain IDE Web browser
Language Java C/C++/Java
Years considered 2002 - 2009 2002 - 2006
Bug reports 3,898 1,368
Source code snapshots 16 10
Source code files 1,882 - 2,559 319 - 332
Source code methods 17,466 - 27,404 6,656 - 7,466
Source code corpus size 232 - 506 (KLOC) 173 - 193 (KLOC)

Table 2: Descriptive statistics of the studied systems.

Min. 1st Qu. Med Mean 3rdQu. Max

Eclipse system

Bug report size (#words) 2 40 67 146 129 6,187
File size (LOC) 1 59 116 255 255 12,490
Method size (LOC) 0 4 8 14 15 2,518
files per bug report 1 1 1 2 2 10
methods per bug report 1 1 3 15 8 98

Mozilla system

Bug report size (#words) 4 54 96 127 152 2,077
File size (LOC) 41 162 448 777 885 8,733
Method size (LOC) 0 9 19 35 42 720
files per bug report 1 1 1 2 2 9
methods per bug report 1 1 3 18 10 96

4. Case Study Design

In this section, we provide a summary of the studied
systems, and our data extraction and analysis approaches.

4.1. Studied Systems
In order to address our three research questions and es-

tablish the validity and generalizability of our results, we

(DP-3) Source Code
Preparation  

at the Method-Level

Bug Tracking  
System (BTS)

Version Control 
System (VCS)

Source Code  
Corpus

Bug Reports

Ground-Truth 
Data

(DP-2) Ground-Truth  
Data Preparation

(DP-1) Bug Report 
Preparation

Figure 2: An overview of our data preparation approach (Section
4.2).

conduct an empirical study using two of the three soft-
ware systems that are provided by Thomas et al. [2] (i.e.,
Eclipse and Mozilla). The third system, Jazz, is a propri-
etary system, and hence, was not available. Eclipse JDT
is one of the most popular integrated development envi-
ronment (IDE), which is mainly written in Java. Mozilla
mailnews is a popular email client, which is mainly written
in C/C++. Tables 1 and 2 provide descriptive statistics for
the two studied systems. We used a total of 5,266 bug re-
ports and 26 source code snapshots (as used in Thomas et
al. [2]).

4.2. Data Preparation

In order to produce the necessary datasets for our study,
we first need to prepare the data from the Bug Tracking
Systems (BTS) of each studied system. Next, we need to
prepare a set of links between bug reports and entities that
were changed to resolve the corresponding bugs to create
the ground-truth data at the method level. Finally, we
need to prepare source code corpus at the method level
from the Version Control Systems (VCS) of each studied
system. Figure 2 provides an overview of our data prepa-
ration approach, which is further divided into the three
steps that we describe below.

(DP-1) Bug Report Preparation. In IR-based bug
localization, we have to collect bug reports, which are
treated as a query, and source code entities, which are
treated as a document corpus. For each studied system,
we obtain the raw bugs data and the source code snapshots
at the file-level from Thomas et al. [2].

(DP-2) Ground-Truth Data Preparation. To cre-
ate the ground-truth data at the method-level, we need to
establish a set of links between bug reports and the meth-
ods that were changed to resolve the corresponding bugs.
To identify the changed methods, we used the information
in the change messages of the Git commit log. Change
messages of the Git commit log contains the method names
whose content were changed in a given commit.

To identify a bug report in the Git commit log, we used
an approach similar to Fischer et al. [40], which is also

4

commit b1672031b269719ce6519561e4ea344da64970cb

Author: oliviert <oliviert>

Date: Tue Nov 3 15:37:46 2009 +0000

HEAD - Fix for 293777

diff --git a/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

b/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

index 4901ba8..00aaffd 100644

--- a/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

+++ b/compiler/org/eclipse/jdt/internal/compiler/lookup/MethodScope.java

@@ -469,7 +469,7 @@ public final int recordInitializationStates(FlowInfo flowInfo) {

Figure 3: A snippet of the Eclipse JDT commit log.

used in Thomas et al. [2]. This approach parses the Git
commit log messages and looks for messages with ”fixed”
and ”bugs” keywords (e.g., “Fixed Bug #293777”). If such
a message is found, the approach will establish a link be-
tween the change commit and a bug report using the iden-
tified bug ID.

To identify the changed methods’ names in the change
messages, we rely on the change information of the git

log command. The change information will show the
changed methods’ names and lines where method decla-
rations occur. Figure 3 shows a snippet of a Git com-
mit log for Eclipse JDT obtained using the command
git log -p. This commit log provides information about
what is modified to resolve bug ID 293777.1 The line
which starts with @@ in the log shows the name of the
method that is changed to fix the bug. As shown in Fig-
ure 3, the method recordInitializationStates of the
file MethodScope.java was fixed to resolve the bug ID
293777.

(DP-3) Source Code Preparation at the Method-
level. To build the source code corpus at the method-
level, we use an abstract syntax tree (AST) to extract
methods from source code files. In addition to methods,
source code files contain source code elements such as at-
tribute and header definitions. Hence, in order not to
miss any information which were in the files, we created a
dummy method per file. The dummy method for each file
contains all statements in the file which do not fall into
the body of methods, e.g., attribute definitions. For the
Eclipse system, which is written in Java, we use the pub-
licly available JavaParser library.2 For the Mozilla system,
which is written in C++, we use a publicly available C++
method extractor based on regular expressions.3

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=293777
2https://code.google.com/p/javaparser/
3https://github.com/SAILResearch/replication-ist_bug_

localization/

4.3. Classifier Configuration Framework

Table 3 show the summaries of the parameters and
the corresponding values that are used in the configura-
tion of the classifiers. The configurations are presented in
Thomas et al. [2]. However, for the sake of completeness
and clarity, we present them briefly below.

For bug report representation, there are three values:
the title of the bug report only (A1); the description only
(A2); and both the title and description of the bug report
(A3).

For source code entity representation, there are six val-
ues. The first three parameters are based on the text of the
source code entity itself: the identifier names (B1); com-
ments only (B2); and both identifiers and comments (B3).
The other two parameters are based on past bug report
(PBR) [7]; using all the PBRs of an entity (B4); and using
just the 10 most recent PBRs of an entity (B5). Finally,
we consider all possible data for an entity: its identifier,
comments, and all PBRs (B6).

There are three common preprocessing steps: splitting
identifiers; removing stop words; and stemming using the
Porter stemming algorithm. We tested a total of 8 possible
preprocessing techniques (C0-C7).

There are two families of classifiers: IR-based classifiers
and entity metric-based classifiers. For IR-based classi-
fiers, we consider Vector Space Model (VSM), Latent Se-
mantic Indexing (LSI), and Latent Dirichlet Allocation
(LDA) models.

VSM [41] is a simple algebraic model based on the term-
document matrix of a corpus. The rows of the matrix
are represented by unique terms collected from the corpus
while the columns represent unique documents. When a
term is contained in a document, the intersection of the
term row and document column will hold the weight of
the term, otherwise zero. The similarity between two doc-
uments will increase as the number of common terms they
have increases.

The VSM model has two parameters: term weighting
and similarity score. For term weighting, we considered

5

Source Code  
Ranking

Performance and
required effort

calculation 
(Top-K, LOC,  

Top-LOC)

Source  
Code  

Corpus

Bug  
Reports

(A) Bug report
representation

(B) Entity  
representation

(D, E)  
VSM classifier  
[Term weight,

similarity score]

(F, G)  
LSI classifier  
[term weight, 

#topics]

(J)  
LDA classifier  

[#topics]

(M)  
Entity-metric  

classifier

Source Code  
Ranking

Source Code  
Ranking

Source Code  
Ranking

Ground-Truth 
Data

Issue 
Reports

Source  
Code  
Entity

(C
) D

at
a 

 P
re

pr
oc

es
si

ng

Bug  
Localization 

Results

Classifier Configuration Framework

Studied Classifiers

Figure 4: An overview of our data analysis approach that is applied to address our research questions (RQs).

the tf-idf (D1) and sublinear tf-idf (D2) weighting schemes,
as well as the more basic Boolean (D3) weighting scheme.
tf-idf is computed as the product of the number of oc-
curences of a term in a document and inverse of number
of documents containing the term. In sublinear tf-idf, the
term frequency is replaced with logarithm of the term fre-
quency. The Boolean weighting scheme assigns one if a
term occurs in a document and zero, otherwise.

For similarity score, we considered both the cosine (E1)
and overlap (E2) similarity scores [42]. Cosine similarity
is computed as the ratio of the dot product of two doc-
ument vectors to the product of their Euclidean length.
The overlap similarity is defined as the ratio of the num-
ber of common terms of two documents to the size of the
smallest document. We use the implementation of VSM
that is provided by Apache Lucene.4

LSI [43] is an extension to VSM which assumes that
there is some latent structure in word usage that is par-
tially obscured by variability in word choice. Singular
value decomposition (SVD) is used as a means to project
the original term-document matrix into three new matri-
ces: a topic-document matrix D; a term-topic matrix T ;
and a diagonal matrix S of eigenvalues. The dimension in
the projected latent semantic space represents the number
of topics which is less than the original matrix. A topic
contains list of terms that are related by collocation. Un-
like VSM, LSI could consider two documents to be similar
even if they have no common term. While computing sim-
ilarity, LSI sees if the terms in the two documents are from
the same topic, rather than term overalp.

The LSI model has three parameters: term weighting,
similarity score, and number of topics. We considered the
same three weighting schemes as we did for the VSM model
(F1-F3). We hold the similarity score constant at cosine
(H1). Finally, we considered four values for the number

4https://lucene.apache.org/core/

of topics: 32, 64, 128, and 256 (G32-G256). We use the
implementation LSI that is provided by Gensim.5

LDA [44] is a popular statistical topic model which pro-
vides a means to automatically index, search, and cluster
documents that are unstructured and unlabeled. In LDA,
documents are represented as a mixture of words taken
from different latent topics, where a topic is characterized
by a distribution over words. A topic is defined before any
data is generated as a distribution over a fixed vocabulary.
LDA rank terms representing a topic using a probability
of membership. The membership probability indicates the
level of representativeness of the term in the respective
topics in which it is found. In LDA, documents are as-
sumed to be generated by randomly choosing a topic from
a selected topic distribution and assigning the topic for a
given term in a document.

The LDA model has five parameters: number of top-
ics, a document-topic smoothing parameter, a topic-word
smoothing parameter, number of sampling iterations, and
similarity score. We considered four values for the number
of topics: 32, 64, 128, and 256 (J32-J256), to be consistent
with the LSI model. Finally, we considered the conditional
probability score (N1). We use the implementation of LDA
that is provided by MALLET Topic Modeling.6

Previous studies used the Entity Metric (EM) to pre-
dict buggy source code entities [45] and locate bugs in
the source code [2]. EM measures source code features
such as line of code and past bug proneness to predict and
locate buggy source code entities. EM-based classifiers
have only a single parameter, entity metric, which is used
to determine the bug-proneness of an entity. We consid-
ered four metrics: the Lines of Code (LOC) of an entity;7

the churn of an entity (i.e., we computed the summation

5https://radimrehurek.com/gensim/
6http://mallet.cs.umass.edu/
7https://www.dwheeler.com/sloccount/

6

Table 3: The configuration parameters and the values of the IR (e.g.,
VSM, LSI, and LDA) and EM family of classifiers, as proposed by
[2].

Parameter Value

Parameters common to all IR classifiers

(A) Bug report representation A1 (Title only)
A2 (Description only)
A3 (Title + description)

(B) Entity representation B1 (Identifiers only)
B2 (Comments only)
B3 (Idents + comments)
B4 (PBR-All)
B5 (PBR-10 only)
B6 (Idents+comments+PBR-All)

(C) Preprocessing steps C0 (None)
C1 (Split only)
C2 (Stop only)
C3 (Stem only)
C4 (Split + stop)
C5 (Split + stem)
C6 (Stop + stem)
C7 (Split + stop + stem)

Parameters for VSM only

(D) Term weight D1 (tf-idf)
D2 (Sublinear tf-idf)
D3 (Boolean)

(E) Similarity metric E1 (Cosine)
E2 (Overlap)

Parameters for LSI only

(F) Term weight F1 (tf-idf)
F2 (Sublinear tf-idf)
F3 (Boolean)

(G) Number of topics G32 (32 topics)
G64 (64 topics)
G128 (128 topics)
G256 (256 topics)

(H) Similarity metric H1 (Cosine)

Parameters for LDA only

(I) Number of iterations I1 (Until model convergence)

(J) Number of topics J32 (32 topics)
J64 (64 topics)
J128 (128 topics)
J256 (256 topics)

(K) α K1 (Optimized based on K)

(L) β L1 (Optimized based on K)

(N) Similarity metric N1 (Conditional probability)

Parameters for EM only

(M) Metric M1 (Lines of code)
M2 (Churn)
M3 (New bug count)
M4 (Cumulative bug count)

of lines added and deleted from the git log --numstat

command); the cumulative bug count of an entity; the new
bug count of an entity.

To quantify the performance of all possible classifiers,
we used a full factorial design. We explored every possible

combination of parameter values. In this study, we have
3,168 IR-based classifiers and 4 entity metric-based classi-
fiers. Thus, we have 3,172 classifiers under test. We run
all 3,172 classifiers on the data for the two systems at the
method level.

5. Case Study Results

In this section, we present our research questions (RQs)
and their results. For each research question, we discuss
the approach that we followed to answer the RQs.

(RQ1) Can IR-based classifier configurations sig-
nificantly impact the top-k performance of method-
level bug localization?

Approach. To investigate the impact of classifier con-
figuration for method-level bug localization, we use the
framework proposed by Thomas et al. [2]. The framework
is summarized in Section 4.3. We executed all 3,172 con-
figurations of bug localization approaches at the method-
level (see Figure 4). To compare the different classifier
configurations, we computed the top-k performance met-
ric for each configuration. The top-k performance metric
is described below.
Evaluation Metric. Top-k performance metric is the
most frequently-used evaluation metric to assess the per-
formance of IR-based bug localization approaches [5, 6, 2,
7, 3]. IR-based bug localization approaches rank source
code entities based on the entities’ similarity to a query
formulated from the bug report. The entities ranked at
the top are considered to be the most relevant to start
fixing the reported bug. Developers usually examine the
ranked entities in the top k, starting sequentially from the
top, until they find the relevant entity to fix the reported
bug. Top-k performance measures the percentage of bug
reports for which at least one relevant source code entity
was returned in the top k ranked entities. Formally, the
top-k performance of a classifier Cj is

top-k(Cj) =
1

|Q|

|Q|∑

i=1

I(∃d ∈ D|rel(d, qi)∧r(d|Cj , qi) ≤ k),

(1)
where |Q| is the number of queries, qi is an individual
query, rel(d, qi) returns whether entity d is relevant to
query qi, r(d|Cj , qi) is the rank of d given by Cj in re-
lation to qi, and I is the indicator function, which returns
1 if its argument is true and 0 otherwise. For example, a
top-20 performance value of 0.25 indicates that for 25% of
the bug reports, at least one relevant source code entity
was returned in the top 20 results. Following Thomas et
al. [2], we choose the k value to be 20.
Results. The choice of classifier configuration im-
pacts the top-k performance from 0.44% to 36%.
Table 4 presents the top-20 performance value of the best
and worst four top-k configurations of method-level bug

7

Table 4: The best four configurations and the worst four configurations for method-level bug localization, for each classifier family (VSM,
LSI, LDA, and EM) and each studied system. The configurations are ordered according to their top-20 performance.

VSM LSI LDA EM

Rank Configuration Top-20 Rank Configuration Top-20 Rank Configuration Top-20 Rank Config. Top-20

Eclipse system

1 A1.B4.C5.D1.E1 0.343 1 A1.B4.C7.F1.G256 0.307 1 A1.B4.C6.J32.K1 0.083 1 M2 0.117
2 A1.B4.C3.D1.E1 0.343 2 A1.B4.C6.F1.G256 0.307 2 A1.B4.C6.J64.K1 0.081 2 M4 0.037
3 A1.B4.C7.D1.E1 0.340 3 A1.B4.C3.F1.G256 0.303 3 A1.B4.C2.J64.K1 0.080 3 M1 0.027
4 A1.B4.C6.D1.E1 0.340 4 A1.B4.C5.F1.G256 0.302 4 A1.B4.C4.J128.K1 0.079 4 M3 0.027

861 A3.B2.C3.D1.E2 0.007 1725 A2.B2.C1.F1.G32 0.004 574 A1.B2.C2.J32.K1 0.001 -
862 A2.B2.C0.D2.E2 0.006 1726 A2.B2.C1.F3.G32 0.004 574 A1.B2.C2.J256.K1 0.001 -
863 A2.B2.C3.D1.E2 0.006 1727 A2.B2.C1.F2.G32 0.004 575 A1.B2.C0.J256.K1 0.001 -
864 A2.B2.C0.D1.E2 0.006 1728 A2.B2.C0.F1.G32 0.004 576 A1.B2.C2.J128.K1 0.000 -

Mozilla system

1 A3.B1.C7.D1.E1 0.376 1 A3.B3.C5.F2.G256 0.308 1 A3.B6.C7.J32.K1 0.096 1 M2 0.087
2 A3.B3.C7.D1.E1 0.376 2 A3.B1.C5.F2.G256 0.303 2 A3.B6.C4.J32.K1 0.091 2 M1 0.062
3 A3.B1.C5.D1.E1 0.373 3 A3.B3.C1.F2.G256 0.282 3 A3.B6.C7.J64.K1 0.090 3 M3 0.033
4 A3.B3.C5.D1.E1 0.370 4 A3.B1.C2.F3.G256 0.278 4 A3.B6.C7.J128.K1 0.087 4 M4 0.032

861 A2.B3.C0.D1.E2 0.004 1725 A2.B1.C0.F1.G32 0.003 574 A3.B2.C7.J64.K1 0.010 -
862 A3.B3.C0.D1.E2 0.003 1726 A1.B2.C2.F3.G32 0.003 574 A1.B2.C2.J32.K1 0.010 -
863 A2.B1.C0.D1.E2 0.003 1727 A1.B2.C6.F3.G32 0.003 575 A1.B2.C2.J128.K1 0.010 -
864 A3.B1.C0.D1.E2 0.003 1728 A2.B3.C0.F1.G32 0.002 576 A3.B2.C5.J256.K1 0.008 -

Table 5: The likelihood of randomly picking a configuration within
20% of the best top-k performance.

Classifier # Config. 1% 5% 10% 15% 20%

Eclipse system

VSM 864 0.005 0.010 0.019 0.023 0.042
LSI 1,728 0.001 0.002 0.010 0.020 0.034
LDA 576 0.002 0.007 0.017 0.035 0.054
EM 4 0 0 0 0 0

Mozilla system

VSM 864 0.003 0.007 0.014 0.041 0.065
LSI 1,728 0.001 0.001 0.002 0.010 0.020
LDA 576 0.002 0.002 0.009 0.009 0.023
EM 4 0 0 0 0 0

localization. For Eclipse, the best top-k configuration lo-
calizes 1,337 bugs (34.3%), while the worst top-k config-
uration localizes none of the bugs in the top-20 ranked
methods. For Mozilla, the best top-k configuration local-
izes 514 bugs (37.6%), while the worst top-k configuration
localizes 12 bugs (0.88%) in the top-20 ranked methods.
The wide top-k performance range indicates that classifier
configuration plays an important role in the top-k per-
formance of classifiers. Using inappropriate configuration
could result in poor top-k performance.

Among the four types of classifiers, VSM
achieves the best top-k performance. When com-
paring the best top-k configuration of each classifier, on
average, VSM is 1.2 to 4 times better than other clas-
sifiers (i.e., LSI, LDA, and EM). We suspect that VSM
outperforms others has to do with the similar textual char-
acteristics between bug reports and source codes. To see

Table 6: Top-20 performance dispersions of method-level bug local-
ization for Eclipse and Mozilla.

Min. 1st Qu. Med Mean 3rdQu. Max Variance

Eclipse system

VSM 0.006 0.031 0.073 0.098 0.152 0.343 0.0073
LSI 0.004 0.023 0.054 0.089 0.153 0.308 0.0062
LDA 0.000 0.005 0.017 0.025 0.041 0.083 0.0005
EM 0.027 0.027 0.033 0.052 0.058 0.117 0.0019

Mozilla system

VSM 0.034 0.078 0.126 0.146 0.189 0.376 0.0067
LSI 0.025 0.093 0.148 0.138 0.177 0.308 0.0034
LDA 0.009 0.027 0.045 0.044 0.058 0.096 0.0003
EM 0.032 0.033 0.048 0.054 0.068 0.087 0.0007

if increasing the number of topics changes the results, we
run LSI and LDA using 512 topics and found the result to
still hold. We suspect that increasing the number of topics
will produce more granular topics, instead of totally dif-
ferent topics [46]. Thus, increasing the number of topics
has little impact on the top-k performance.

The likelihood of randomly picking a configura-
tion that performs within 20% of the best top-k
classifier (VSM) configuration is on average 5.4%.
Table 5 shows the likelihood of configurations that per-
form within 1, 5, 10, 15, and 20 percent of the best top-k
performing classifier configuration of each classifier. The
second column in the tables indicates the total number of
configurations for the respective classifiers. EM has only
four configurations, hence, we did not compute the like-
lihood of randomly picking the best top-k configuration.
While using the best top-k classifier (VSM), the likelihood
of randomly picking a configuration that performs within

8

20% of the best top-k configuration is on average 5.4% for
method level. The low likelihood indicates that there are
only few classifier configurations that perform close to the
best performing configuration. The statistical summaries
of classifier configurations performance also indicate that
the performance of the majority of classifier configurations
is low as compared to the best top-k performing classifier
(see Table 6). Hence, finding the best top-k configuration
is difficult.

Summary: Configuration has a large impact on the top-
k performance of method-level bug localization, suggest-
ing that using an inappropriate configuration could re-
sult in poor top-k performance. There are only few clas-
sifier configurations that perform close to the best per-
forming configuration, indicating that finding the best
top-k configuration is difficult. Hence, practitioners are
in need of guidance to help them in selecting the optimal
configurations.

Bug  
Localization 

Results  
(Top-K, LOC)

(Step 1) 
Model

Construction

(Step 2) 
Assessment

of Model
Stability

(Step 3) 
Estimate
Power of

Explanatory
Variables

Model
Wald’s statistic

Figure 5: An overview of our sensitivity analysis approach.

Parameter Sensitivity Analysis. Our results indicate
that locating the best configuration is difficult. Hence, we
would like to explore which of the parameters has the most
impact on the performance of a classifier. To perform such
sensitivity analysis, we build regression models. The mod-
els help to understand the relationship between classifier
configurations and the top-k performance of a classifier.
To study the importance of each configuration parame-
ter and examine the relative contribution (in terms of ex-
planatory power) of each configuration parameter to the
regression model, we perform an ANOVA analysis [47, 48].
As suggested by our recent work, we use ANOVA Type II
[49, 50]. Figure 5 shows an overview of our sensitivity
analysis approach. We describe each step of our approach
below.

(Step-1) Model Construction. We build regression
models to explain the relationship that classifier configu-
rations have on the top-k performance of a classifier. A
regression model fits a line of the form y = β0 + β1x1 +
β2x2 + ... + βnxn to the data, where y is the dependent
variable and each xi is an explanatory variable. In our
models, the dependent variable is the top-k performance
and the explanatory variables are the set of parameters
outlined in Table 3. We fit our regression models using
the Ordinary Least Squares (OLS) technique using the ols
function provided by the rms package [51], as suggested by
recent studies [52, 53, 54].

(Step-2) Assessment of Model Stability. We eval-
uate the fit of our models using the Adjusted R2, which
provides a measure of fit that penalizes the use of addi-
tional degrees of freedom. However, since the adjusted R2

is measured using the same data that was used to train the
model, it is inherently upwardly biased, i.e., “optimistic”.
We estimate the optimism of our models using the follow-
ing bootstrap-derived approach [48, 55].

First, we build a model from a bootstrap sample, i.e.,
a dataset sampled with replacement from the original
dataset, which has the same population size as the orig-
inal dataset. Then, the optimism is estimated using the
difference of the adjusted R2 of the bootstrap model when
applied to the original dataset and the bootstrap sample.
Finally, the calculation is repeated 1,000 times in order to
calculate the average optimism. This average optimism is
subtracted from the adjusted R2 of the model fit on the
original data to obtain the optimism-reduced adjusted R2.
The smaller the average optimism, the higher the stability
of the original model fit.

(Step-3) Estimate Power of Explanatory Vari-
ables. We perform an ANOVA analysis of each classi-
fier configuration using the Wald χ2 maximum likelihood
(a.k.a., “chunk”) test. The larger the Wald χ2 value, the
larger the impact that a particular explanatory variable
has on the response [48].

Finally, we present both the raw Wald χ2 values, and
its bootstrap 95 percentile confidence interval. High Wald
χ2 indicates high impact on the top-k performance of clas-
sifier.

For VSM, the choice of both term weight and
source code representation consistently appears as
the most important parameters at the method
level. Figure 6 shows that the choice of both term weight
and source code representation (i.e., B and D) has the
highest explanatory power for VSM only at the method
level.

For LSI and LDA, while the choice of data repre-
sentation and data preprocessing consistently ap-
pears as the most important parameters, the num-
ber of topics in LSI and LDA consistently appear
as the least important parameters. Figure 6 shows
that the choice of source code representation (i.e., B) has
the highest explanatory power. Conversely, the number of
topics for LSI and LDA (i.e., G and J) have a low sensi-
tivity. Hence, the number of topics has minimal impact
on the performance of classifiers. Our results also confirm
the finding of Bigger et al. [56]. Our findings suggest that
practitioners should carefully select configurations related
to the source code representation and not to be as con-
cerned about the number of topics.

Summary: Configurations related to the source code
representation has the most impact on the top-k per-
formance, suggesting that practitioners should carefully
select the source code representation settings and not to
be as concerned about the number of topics.

9

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)
0 100 200 300 400

(a) Eclipse (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)
0 100 200 300

(b) Mozilla (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)
0 1000 2000 3000

(c) Eclipse (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)
200 400 600

(d) Mozilla (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)
0 200 400 600 800 1000

(e) Eclipse (LDA)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)
0 50 100 150 200

(f) Mozilla (LDA)

Figure 6: Distribution of Wald’s statistics for each configuration parameter. A horizontal blue line indicates the bootstrap percentile 95%
confidence interval, where a diamond shape indicates the median Wald’s statistic for each configuration parameter of each studied system at
the method level. High Wald’s statistics indicates high impact on the top-k performance of the classifier.

10

RQ2: Can IR-based classifier configurations sig-
nificantly impact the required effort for method-
level bug localization?

Approach. To address this research question, we
used lines of code (LOC) as a proxy to measure the
required effort to locate bugs. Arisholm et al. [31] point
out that the cost of source code quality assurance activi-
ties, such as code inspection, are roughly proportional to
the size of source code entity. For every classifier config-
uration, we computed the cumulative sum of LOC a de-
veloper would need to read to find the first relevant entity
to a bug report. The effort is computed for all config-
urations that are ranked based on top-k performance at
the method-level (see Table 4). The results are presented
using horizontal boxplots. In order to better see the dis-
tribution of the efforts required to locate the first buggy
entities, we used 50,000 LOC as the maximum LOC to be
examined.

Results. The required effort of the classifier con-
figurations varies from 4,395 to 50,000 LOC. Table 7
presents horizontal boxplots of the cumulative sum of LOC
that a developer would read to locate the first buggy en-
tity. The boxplots are shown for the best four and the
worst four top-k configurations at the method granularity
level. The average median required effort for the best top-
k configurations is 4,395 LOC, while the required effort
for the worst top-k configuration is 50,000 LOC, respec-
tively. The observed wide range of required effort between
the best and worst top-k configuration indicates that the
choice of configuration also impacts effort.

Classifier configurations which give similar top-k perfor-
mance could require drastically different amount of efforts.
While evaluating classifier configurations using top-k per-
formance metrics, two configurations could achieve similar
performance. However, we find that the required effort to
locate bugs using the two configurations could be a median
difference of 2.6 times and vary up to 15 times. For exam-
ple, for Eclipse at the method-level, the second best LDA
configuration (A1.B4.C6.J64.K1) and the third best LDA
configuration (A1.B4.C2.J64.K1) achieve a top-k perfor-
mance of 0.081 and 0.080, respectively. However, the me-
dian required effort by the two configurations is 13,820
LOC and 50,000 LOC, respectively. Hence, we recommend
that researchers should also take into consideration the
required effort to locate bugs while comparing the perfor-
mance of classifier configurations using top-k metrics. We
also computed the Spearman rank correlation [57, 58] be-
tween the rank of the configurations ordered by top-k per-
formance and the effort for method granularity level. We
find that the Spearman rank correlation values for Eclipse
and Mozilla are 0.9 and 0.8, respectively. The results in-
dicate that the configurations that perform well at top-k
performance tend to give the lowest effort.

Among the four types of classifiers, VSM re-
quires the least effort. For Eclipse and Mozilla, Table 8
shows that the least efforts are 2,025 LOC and 3,090 LOC,

while the effort required by the best VSM top-k configu-
rations (A1.B4.C5.D1.E1 and A3.B1.C7.D1.E1) are 2,602
LOC and 6,188 LOC, respectively. Hence, our findings
suggest that the best VSM top-k configuration requires
the least effort to locate bugs at the method-level.

The likelihood of randomly picking a configura-
tion that performs within 20% of the least effort is
on average 1%. Table 9 shows the likelihood of config-
urations that perform within 1, 5, 10, 15, and 20 percent
of the classifier configuration that requires the least effort
of each classifier. The second column in the tables indi-
cates the total number of configurations for the respective
classifiers. EM has only four configurations, hence, we did
not compute the likelihood of randomly picking the con-
figuration that requires the least effort. While using the
classifier that requires the least effort (VSM, LSI), the like-
lihood of randomly picking a configuration that performs
within 20% of the least effort configuration is on average
1% for method level, respectively. The low likelihood in-
dicates that there are only a few classifier configurations
that require effort close to the least effort configuration.
The statistical summaries of the required effort for differ-
ent classifier configurations also indicate that the effort of
the majority of classifier configurations is large as com-
pared to the least effort classifier (see Table 8). Hence,
this indicates that finding the least effort configuration is
difficult and more difficult than finding the best top-k con-
figuration.

Summary: Configuration has a large impact on the re-
quired effort of bug localization at the method level, sug-
gesting that practitioners should take into consideration
required effort to locate bugs while comparing the perfor-
mance of classifier configurations using top-k metrics.
There are only few classifier configurations that perform
close to the configuration that requires the least effort,
indicating that finding the least effort configuration is
difficult. Hence, practitioners are in need of guidance
to help them in selecting the optimal configurations.

Parameter Sensitivity Analysis. We again use the
high-level approach of Figure 5 to understand the rela-
tionship that classifier configurations have on the required
effort.

In contrast to the top-k performance, the most
important parameters are inconsistent across clas-
sifiers and systems for the method level classifiers.
Figure 6 shows that there is no consistency in the most im-
portant parameters across classifiers and systems for the
method level, indicating that the parameters are more sus-
ceptible to the required effort. Such inconsistency suggests
that the impact that parameter configurations has on the
required effort is larger than their impact that has on the
top-k performance. Conversely, the number of topics in
LSI and LDA tends to appear as the least important pa-
rameters, which is consistent to the top-k performance.

11

Table 7: The amount of lines of code (Median LOC) a developer needs to read in order to locate the first buggy entity of the best four
configurations and the worst four configuration of bug localization at method-level, for each classifier family (VSM, LSI, LDA, and EM) and
each studied system. The configurations are ordered according to their top-20 performance.

VSM LSI LDA EM

Rank Configuration Median Rank Configuration Median Rank Configuration Median Rank Configuration Median

Eclipse system at the method-level

1 A1.B4.C5.D1.E1 2,602 1 A1.B4.C7.F1.G256 2,399 1 A1.B4.C6.J32.K1 15,190 1 M2 9,230 ●● ● ●● ●●● ●●● ●●● ●● ● ●●●● ●●● ●● ●● ●●● ●●●

2 A1.B4.C3.D1.E1 2,602 2 A1.B4.C6.F1.G256 2,412 2 A1.B4.C6.J64.K1 13,820 2 M4 12,580
3 A1.B4.C7.D1.E1 2,639 3 A1.B4.C3.F1.G256 2,719 ●● ●●● 3 A1.B4.C2.J64.K1 50,000 3 M1 50,000 ● ●● ●● ●●● ● ● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●●●●●● ●● ● ●● ● ●●●● ●● ● ● ● ●● ● ●● ● ●●●●● ●● ●● ●●● ●● ●● ●●● ● ●●●● ●●● ● ●● ●● ●●●● ● ●● ●● ●● ●●● ● ●● ●●● ●● ●● ● ●●●● ●● ●●● ●● ● ●●● ●● ●●● ●● ●●● ● ●●● ●● ●●●●● ●● ●● ● ● ● ●●●●●● ● ● ●● ● ● ●● ●●● ●●● ●●● ● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●●●● ● ●●● ●●● ● ●●● ● ●● ● ● ●● ● ●● ●●●● ●●● ●●●● ●●●●●●● ●●● ●●●● ●● ●●● ●●● ●● ●●●● ● ●● ●●●● ●●● ●●● ●● ●●● ●● ●● ●●●●● ●● ●●●● ●● ●● ● ●

4 A1.B4.C6.D1.E1 2,639 4 A1.B4.C5.F1.G256 2,711 ●● 4 A1.B4.C4.J128.K1 50,000 4 M3 15,660
861 A3.B2.C3.D1.E2 50,000 ● ●● ●●● ● ●●● ●●● ● ●●● ●●●● ●● ● ● ●● ●● ●●● ● ● ●● ● ●● ●●● ● ●●● ●●●● ●● ● ●● ●● ● ●●● ● ● ● ●●● ●●● ● ●●● ●●● ●● ●●● ●●● ●●● ● ●● ● ●● ● ●● ●●● ● ● ●●●● 1725 A2.B2.C1.F1.G32 50,000 ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●●● ● ●●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ● ●●● ●● ● ●●●● ●●● ●●● ●● ● ●●● ● ●● ●● ●●●● ● ●● ● ●●●● ●● ●● ● ●●● ● ●● ●● ●●● ● ● ● ●● ● ●● ●● ●●● ● ●●●● ●● ●●● ●● ● ●● ●●●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●●● ●● ●●● ●●●●●● ●● ●●● ● ● ●●● ● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ●●●● ● ●●● ●● ● ● ●● ●● ●● ●● ● ● ●● ●●● ●● ● ●●●●● ● ●● ● ●●● ● ●● ●●● ●● ●● ●● ● ●● ●● ●●● ●●● ●● ●●●● ● ●● ●●● ● ● ●● ●●● ●●● ● 574 A1.B2.C2.J32.K1 50,000 ● ●●● ● ●●●● ●●● ● ● -
862 A2.B2.C0.D2.E2 50,000 ● ●● ●●● ● ●●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●● ● ●● ●● ● ● ●● ●●● ● ● ●●● ●● ● ●● ● ● ● ●●●● ● ●●● ●●● ●● ●●● ●●● ●● ●●● ● ●● ● ● ●●● ●● ●●● ● 1726 A2.B2.C1.F3.G32 50,000 ●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●● ● ●● ● ●●● ●●● ●● ● ●● ● ●● ●● ●● ●●● ● ●●●●● ●●● ●● ●●● ● ●●●● ●● ●● ● ● ●●● ●● ●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●●● ●●● ● ● ●● ●● ● ● ●●● ● ● ●● ● ●● ●● ●●● ● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●●●●● ● ●●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●● ●● ● ●● ●●● ●●●●●●●● ●● ● ●●● ●●●● ● ● ● ●● ●●● ●● ●●●● ●● ●●● ● ● 574 A1.B2.C2.J256.K1 50,000 ● ●● ●●● ●●● ● -
863 A2.B2.C3.D1.E2 50,000 ● ●● ●●● ● ●●● ●● ● ●●● ●●●● ●● ● ●● ●● ●●● ● ● ●● ● ●● ●●● ● ●● ●●●● ●● ●●● ●● ● ●● ● ● ● ●●●● ● ●●● ●●● ●● ●●● ●●● ●●● ●●● ● ●● ● ● ●●● ● ● ●●●● 1727 A2.B2.C1.F2.G32 50,000 ●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ●●● ●● ● ●● ● ●● ●● ●●●● ●●● ●●●●● ●●●● ● ●●● ● ●●●● ●●● ● ● ●●● ● ●● ●● ●●●● ●●●● ●● ●●● ●● ● ●● ●●●● ●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ●●●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ● ●●● ●● ●●● ●●●●● ●● ● ●● ● ●●● ●●● ●● ●● ●● ● ●●● ●● ● ● ●● ●● ● ●●● ● 575 A1.B2.C0.J256.K1 50,000 ●● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ● ● -
864 A2.B2.C0.D1.E2 50,000 ● ●● ●●● ● ●●● ●●● ●● ●●● ●● ●● ● ●●● ● ● ●● ● ●● ●●● ● ●● ●●● ● ● ●●● ●● ● ●●● ● ● ●●●● ● ●●● ●●● ●● ●●● ●●● ●● ●●● ● ●● ● ● ●●● ● ● ●●● ● 1728 A2.B2.C0.F1.G32 50,000 ● ●● ● ●● ●● ●● ● ● ●● ●● ●●● ● ●●● ● ● ●● ● ●● ●●● ● ● ●● ●● ● ● ●● ● ● ● ●●●● ● ●● ●● ● ●● ●●● ● ●● ● ● ●● ●●●● ● ● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ●● ●●●● ●● ● ●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ● ●● ●●● ●●● ●●● ● ● ●● ●● ●● ●●● ● ● ●●● ● ● ●● ●●● ●● ●● ● ● ● ●●● ●●●● ●● ● ● ●●● ●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●●● ●● ●● ● 576 A1.B2.C2.J128.K1 50,000 ● ●● ●● ●●●● ● ● -

Mozilla system at the method-level

1 A3.B1.C7.D1.E1 6,188 1 A3.B3.C5.F2.G256 8,614 1 A3.B6.C7.J32.K1 24,360 1 M2 20,760
2 A3.B3.C7.D1.E1 5,932 2 A3.B1.C5.F2.G256 9,127 2 A3.B6.C4.J32.K1 29,350 2 M1 50,000 ●●●●●●●● ● ●●● ●●

3 A3.B1.C5.D1.E1 8,744 3 A3.B3.C1.F2.G256 11,270 3 A3.B6.C7.J64.K1 24,650 3 M3 31,080
4 A3.B3.C5.D1.E1 8,453 4 A3.B1.C2.F3.G256 11,810 4 A3.B6.C7.J128.K1 25,640 4 M4 34,430

861 A2.B3.C0.D1.E2 50,000 ●●●● ●● ● ●●● ● ●● ● ●●● ●●●●● ●● ●● ● ● ●●●●● ● ●● ● ● ●●●● ●● ●● ●●●● ●●●● ●●● ● ●●●●● ●● ● ●●●●● ● ●● ●●● ●● ● ●● ●● ● 1725 A2.B1.C0.F1.G32 50,000 574 A3.B2.C7.J64.K1 50,000 ●● ● ● ● ● ●●● ●●●● ● ●● ●●● ● ●● ●● ●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●● ● ● ●● ●● ● ●● ● ● ●● ● ● ●● ●●●● ● ●● ●●● ● ● ●●● ●● ●●● ●●●●●● ●● ● ●● ● ●● ● ●● ●●●●● ●●● ● ●● ● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●●● ●● ● ● ●● ● ● ● -
862 A3.B3.C0.D1.E2 50,000 ●● ●●●● ●● ● ●● ●●● ●●●●●● ●●● ● 1726 A1.B2.C2.F3.G32 50,000 ● ●● ●● ● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●●● ● ●● ●● ● ● ●● ●● ● ●● ●● ● ●●● ●●● ●● ●●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ●●● ●● ●●● ●●●●● ●● ●●●● ●●● ● ●●●●● ● ● ● ●● ●● ● ●●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ●● ● ● ● ●●● ●● ●●● ●● ● ●●● ●● ●●● 574 A1.B2.C2.J32.K1 50,000 ● ●●●● ●● ●● ●●● ● ● ●●●● ● ●● ●●● ● ●●● ●●● ● ●● ● -
863 A2.B1.C0.D1.E2 50,000 ●●●● ●● ● ● ●● ●●● ●●● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●●● ● ●● ●●● ● ●● ●● ● ● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ● 1727 A1.B2.C6.F3.G32 50,000 ●●● ● ●● ●● ●●● ●● ●● ●● ●●●● ● ● ●●● ●● ●●● ● ● ●● ●● ●●● ●● ●● ●● ●● ● ●●●● ●●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●● ● ●●●● ●● ● ● ●●● ● ●●● ●● ●●● ● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●●● ●● ● ●●● ● ●● ●● ●● 575 A1.B2.C2.J128.K1 50,000 ●● ●● ●●● ●●● ● ● ●● ● ●● ● ● ●●● ● ●● ● ●●● ● ● ●● ●●● ● ● ●●●● ●●● -
864 A3.B1.C0.D1.E2 50,000 ●●●● ●● ●●● ●● ● ● ●● ●● ●●● ●● ● ●●● ●●●● ●●●● ● ● ●● ●●● ●● 1728 A2.B3.C0.F1.G32 50,000 576 A3.B2.C5.J256.K1 50,000 -

Table 8: The median required effort dispersion amongst classifier
families.

Min. 1st Qu. Med Mean 3rdQu. Max Var

Eclipse system

VSM 2,400 6,788 12,830 20,320 31,680 50,000 293
LSI 2,025 5,440 12,990 21,460 43,410 50,000 341
LDA 11,920 16,330 50,000 35,080 50,000 50,000 262
EM 9,230 11,740 14,120 21,870 24,250 50,000 358

Mozilla system

VSM 3,090 9,439 36,590 30,530 50,000 50,000 357
LSI 3,709 15,180 20,780 25,370 33,680 50,000 202
LDA 24,360 50,000 50,000 47,890 50,000 50,000 28
EM 20,760 28,500 32,760 34,070 38,330 50,000 146

Summary: The most important parameters inconsis-
tently appear across classifiers and systems for the
method level, indicating that the parameters are more
susceptible to the required effort. Conversely, the num-
ber of topics in LSI and LDA consistently tends to ap-
pear as the least important parameters, indicating that
practitioners should not be concerned about the number
of topics as compared to other parameters.

RQ3: Is the most efficient classifier configuration
for method-level bug localization also the most ef-
ficient configuration for file-level bug localization
(and vice versa)?

Approach. Given a list of source code entities ranked
by the similarity scores, a developer is expected to focus
on resources at the beginning of the list as much as pos-
sible. The question to answer in this context is: what
is the percentage of bug reports that can be successfully
localized, when reviewing only top LOC of the entities
ranking. Hence, we extend the top-k performance metric
to top-kLOC performance. Top-kLOC performance is the
percentage of bug reports for which at least one relevant

Table 9: The likelihood of randomly picking a configuration within
20% of the least effort configuration for method-level bug localiza-
tion.

Classifier # Config. 1% 5% 10% 15% 20%

Eclipse system

VSM 864 0.002 0.002 0.009 0.021 0.028
LSI 1,728 0.001 0.001 0.001 0.002 0.003
LDA 576 0.003 0.003 0.007 0.010 0.016
EM 4 0 0 0 0 0

Mozilla system

VSM 864 0.001 0.002 0.003 0.005 0.007
LSI 1,728 0.001 0.001 0.003 0.004 0.004
LDA 576 0.002 0.003 0.003 0.005 0.005
EM 4 0 0 0 0 0

source code entity is found in the top ranked entities with
cumulative sum of executable LOC below k. Formally, the
top-kLOC performance of a classifier Cj is

top-kLOC(Cj) = 1
|Q|

|Q|∑

i=1

I(∃d ∈ D | rel(d, qi) ∧

s(r(d|Cj , qi)) ≤ k),

where |Q| is the number of queries, qi is an individual
query, rel(d, qi) returns whether entity d is relevant to
query qi, r(d|Cj , qi) is the rank of d given by Cj in relation
to qi, s is the cumulative sum of executable LOC of all en-
tities whose rank is less than or equal to r(d|Cj , qi), and I
is the indicator function, which returns 1 if its argument is
true and 0 otherwise. For example, a top-10,000LOC per-
formance value of 0.25 indicates that for 25% of the bug
reports, at least one relevant source code entity was re-
turned in the top ranked entities whose cumulative sum of
LOC is below 10,000. We choose the k value to be 10,000
LOC.

Evaluation Metric: To compare the top-kLOC perfor-

12

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)
0 100 200 300 400

(a) Eclipse (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (D)

Similarity (E)
0 5 10 15 20 25

(b) Mozilla (VSM)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)
0 100 200 300

(c) Eclipse (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Term Weight (F)

Number of Topics (G)
0 20 40 60 80

(d) Mozilla (LSI)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)
0 5 10 15 20

(e) Eclipse (LDA)

Wald's statistics

Bug Report (A)

Entity (B)

Preprocessing (C)

Number of Topics (J)
0 10 20 30 40 50

(f) Mozilla (LDA)

Figure 7: Distribution of Wald’s statistics for each configuration parameter. A horizontal blue line indicates the bootstrap percentile 95%
confidence interval, where a diamond shape indicates the median Wald’s statistic for each configuration parameter of each studied system at
the method level. High Wald’s statistics indicates high impact on the required effort of the classifier.

13

mance of the most efficient classifier configurations, we
used the differences between the lift charts of top-kLOC

performances obtained at different k values. The compar-
ison is between the top-kLOC performance lift chart of the
best configuration of file-level on the method-level with the
best configuration of method-level (and vice versa).
Result. The most efficient configuration is an IR-
based classifier that uses the Vector Space Model
(A3.B6.C7.D2.E1), with the index built using sub-linear
tf-idf term weighting on all available data in the source
code entities (i.e., identifiers, comments, and past bug re-
ports for each entity), which has been stopped, stemmed,
and split, and queried with all available data in the bug
report (i.e., title and description) with cosine similarity.

The most efficient configuration of file-level bug
localization performs close enough to the most ef-
ficient configuration of method-level, when used at
the method-level. We used the most efficient file-level
configuration at the method-level (line with diamond) and
compared the results with the results of the most effi-
cient configuration of method-level bug localization(line
with circle) (see Figure 8). The top-kLOC performance
of the most efficient method-level configuration (line with
circle) is same or higher than the top-kLOC performance
of the most efficient file-level configuration (line with dia-
mond) while used to locate bugs at the method-level. For
Eclipse, the maximum difference where the line with cir-
cle is higher than the line with diamond is 0.004, while
for Mozilla, the maximum difference is 0.045. The small
differences indicate that the most efficient file-level config-
uration is also efficient at the method-level.

The most efficient configuration of method-level
bug localization performs close enough to the most
efficient configuration of file-level, when used at the
file-level. We compared the most efficient configuration
of method-level bug localization at the file-level (line with
square) with the most efficient configuration of file-level
bug localization (line with triangle) (see Figure 8). For
every k ≤ 10,000, we computed the difference between the
top-kLOC performance of the line with triangle and the
line with square. The maximum observed difference for
Eclipse is 0.016, while for Mozilla the maximum difference
is 0.032. The results of the best efficient configuration
comparisons indicate that the best efficient configuration
irrespective of the granularity level gives similar result.

Summary: The most efficient classifier configuration
obtained at the method-level can also be used at the file-
level (and vice versa) without a significant loss of top-
kLOC performance.

6. Threats to Validity

The key goal of our study is to explore the impact of pa-
rameter setting in prior bug localization studies. Hence,

our study has much of our threats to validity of prior stud-
ies in literature on this topic (especially for internal valid-
ity concerns). We do note that a key contribution of our
study is the used methodology to quantify and analyze the
impact of settings. Such methodology holds independent
of threats to validity that arise due to data characteristics.

6.1. Threats to Internal Validity

The main internal threat to validity of our study and
other bug localization studies in literature lies on the Fis-
cher et al. [40]’s technique that we used to collect ground-
truth data. Although this technique is commonly used for
linking bug reports to source code entities, a number of
potential biases can affect the validity of the ground-truth
data of our study.

First, wrongly classified bug reports might be included
in our datasets, which can impact the top-k performance
of bug localization. Herzig et al. [59] find that 43% of bug
reports are wrongly classified, suggesting that these mis-
classified bug reports should be excluded from the various
analyses. However, an extensive analysis by Kochhar et
al. [60] finds that wrongly classified bug reports have a
negligible impact on the performance of bug localization.
Hence, we suspect that this bias does not pose a great
threat in our study.

Second, incomplete ground-truth entities can impact the
top-k performance of bug localization, another threat that
is shared with prior studies. Bird et al. [61] find that there
are several bug reports that are not identified in the com-
mit logs. To mitigate this threat, such analysis would re-
quire deep domain knowledge of the system and a thorough
working understanding of how the code is organized and
run. Unfortunately, we do not possess this knowledge or
understanding.

Third, incorrect ground-truth entities can impact the
top-k performance of bug localization. This internal threat
to validity is also shared with prior studies. Murphy et
al. [62, 63] find that developers often refactored source
code while fixing bugs. Kawrykow et al. [64] find that
developers often included unrelated changes (e.g., refac-
toring, comments modification, code indentation) to the
bug-fixing commit. Such unrelated changes are considered
as non-buggy entities, which should be excluded from the
ground truth data as they do not contain the bug. How-
ever, an extensive analysis by Kochhar et al. [60] finds that
such incorrect ground-truth entities does not have an im-
pact on the performance of bug localization. Hence, we
suspect that this bias does not pose a great threat in our
study.

Finally, Kochhar et al. [60] point out that already lo-
calized bug reports (i.e., bug reports where their textual
descriptions have already specified the files that contain
the bug) can inflate the top-k performance if they are not
removed. To ensure if already localized bug reports are af-
fecting the conclusions of our paper, we analyze search the
file extensions (e.g., .java, .cpp, .h) using a regular expres-
sion for all of the studied bug reports. After we removed

14

●

●

●

●

●

●

●
●

●
●

●

Lines of code (LOC)

To
p−

k(
LO

C)
 P

er
fo

rm
an

ce

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Method−Level VS File−Level on Eclipse Project

● A3.B6.C7.D2.E1@Method
A3.B6.C7.D2.E1@File
A3.B6.C6.D2.E1@Method
A3.B6.C6.D2.E1@File ●

●

●

●

●
●

●
●

●
● ●

Lines of code (LOC)

To
p−

k(
LO

C)
 P

er
fo

rm
an

ce

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Method−Level VS File−Level on Mozilla Project

● A3.B6.C7.D2.E1@Method
A3.B6.C7.D2.E1@File
A3.B6.C6.D2.E1@Method
A3.B6.C6.D2.E1@File

System System

Figure 8: The top-kLOC performance for the most efficient configuration of method-level bug localization used at method-level (line with
circle) and file-level (line with square); and, the best configuration of file-level bug localization used at method-level (line with diamond) and
file-level (line with triangle). The figure shows that the most efficient configuration of file-level bug localization performs close enough to the
most efficient configuration of method-level, when used at the method-level (for k <= 10,000 LOC).

these localized bug reports, we find that they do not alter
our conclusions. Thus, we suspect that already localized
bug reports do not pose a great threat to validity of our
conclusions.

6.2. Threats to External Validity
Threats to external validity are concerned with the gen-

eralization of our findings. In this study, we used two large
open source software systems, Eclipse and Mozilla, which
are large real-world software systems and frequently used
in top venue. The data for the systems is obtained from
Thomas et al. [2] for a fair comparison of RQ1 to file-level
bug localization. Thus, our conclusions may not general-
ize to other software systems. Moreover, we only consider
bug reports during a period of 2002-2009 for Eclipse JDT
and a period of 2002-2006 for Mozilla. Thus, our conclu-
sions may not generalize to other periods. However, the
key goal of our work is to highlight that there is an impact
for some datasets. We can add additional datasets but re-
alistically we will never have enough datasets to establish
a wide ranging empirical law. The key message to take
home from our analyeses is that the parameter settings
matter. Given the simplicity of considering these settings,
we suggest that all future studies explore them (as it might
be the case that they matter for their data set). If they do
not matter for a particular system, then the wasted efforts
are minimal.

6.3. Threats to Construct Validity
The main threat to construct validity of our study is

related to the effort-based evaluation which is used to an-
alyze method-level bug localization. In our study, we used

LOC as a proxy to measure effort as done in prior stud-
ies [30, 31, 32]. However, LOC may not reflect actual effort
required to assess a code entity. A code entity could be
complex and also depend on other entities. Future studies
should incorporate factors related to complexity and de-
pendency of the source code entity into the effort-based
metrics. This proposed direction for future studies holds
for our work and other works in the area of effort-aware
bug prediction.

The results of our RQ1 rely on the top-20 performance in
order to establish a fair comparison with Thomas et al. [2].
Recently, a survey on 386 practitioners by Kochhar et
al. [65] shows that more than 73.58% of respondents sug-
gested that the top-5 performance is the optimal inspec-
tion threshold for bug localization. Thus, future studies
should consider top-5 performance as suggested by practi-
tioners. Since the top-k performance does not measure the
number of relevant buggy entities in the top-k ranked list,
other performance measures like Mean Reciprocal Rank
(MRR) and Recall should be considered in future work.
Mean Reciprocal Rank (MRR) is a statistical measure for
evaluating any process that produces a list of possible re-
sponses to a query. The reciprocal rank of a query response
is the multiplicative inverse of the rank of the first correct
answer. Recall measures the percentage of the relevant
buggy entities that successfully retrieved for a bug report.
Nevertheless, the results of our RQ2 show that classifier
configurations which give similar top-k performance could
require drastically different amount of efforts. Thus, tra-
ditional IR evaluation metrics (e.g., top-k performance,
MRR, and Recall) should also consider the required effort

15

to locate bugs (e.g., the top-kLOC performance in RQ3)
into consideration.

7. Conclusion

Previous study showed that classifier configuration has
an impact on file-level bug localization. Several bug lo-
calization studies, however, are also conducted at the
method-level. In this paper, we investigate the impact
that the choice of IR-based classifier configuration has on
the top-k performance and the required effort to examine
source code entities (e.g., files and methods) before locat-
ing a bug at the method level. Moreover, we also analyze
the classifier sensitivity to parameter value changes. In
total, we explore a large space of classifier configurations,
3,172 configurations. Through a case study of 5,266 bug
reports of two large-scale software systems (i.e., Eclipse
and Mozilla), we make the following observations:

– The choice of classifier configuration impacts the top-
k performance from 0.44% to 36% and the required
effort from 4,395 to 50,000 LOC, suggesting that using
inappropriate configurations could result in poor top-
k performance and wasted effort.

– Classifier configurations which give similar top-k per-
formance could require different efforts, suggesting
that practitioners should take into consideration re-
quired effort to locate bugs while comparing the per-
formance of classifier configurations.

– VSM achieves both the best top-k performance and
the least required effort for method-level bug localiza-
tion.

– The likelihood of randomly picking a configuration
that performs within 20% of the best top-k classifier
configuration is on average 5.4% and that of the least
effort is on average 1%.

– Configurations related to the entity representation of
the analyzed data have the most impact on the top-k
performance and the required effort, suggesting that
practitioners would benefit of guidance on which con-
figuration parameters matter the most.

– The most efficient classifier configuration obtained at
the method-level can also be used at the file-level (and
vice versa) without a significant loss of top-kLOC per-
formance.

Furthermore, we also repeat our analysis at the file level
to extend the findings of [2]. Table 10 summarizes the key
findings of the method-level and file-level bug localizations.
Our results lead us to conclude that configurations have
a large impact on both the top-k performance and the
required effort for method-level and file-level bug localiza-
tion, suggesting that the IR-based configuration settings

should be carefully selected and the required effort mea-
sure should be included in future bug localization studies.

At the end, we suggest that the most effi-
cient classifier configuration for bug localization is
A3.B6.C7.D2.E1@Method the Vector Space Model, with
the index built using sub-linear tf-idf term weighting on
methods (i.e., identifiers, comments, and past bug reports
for each entity), which has been stopped, stemmed, and
splitted, and queried with all available data in the bug re-
port (i.e., title and description) with cosine similarity. We
provide our datasets online in order to encourage future
research in the area of IR-based bug localization.8

Acknowledgments

We would like to thank Stephen W. Thomas for giv-
ing us access to his classifier configuration framework and
ground-truth dataset.

References

[1] K. Sweeney, Software Bugs Cost More Than Double Eurozone
Bailout (2013).
URL http://www.businessweekly.co.uk/hi-tech/

14898-software-bugs-cost-more-than-double-eurozone-bailout

[2] S. W. Thomas, M. Nagappan, D. Blostein, A. E. Hassan, The
Impact of Classifier Configuration and Classifier Combination
on Bug Localization, IEEE Transactions on Software Engineer-
ing 39 (10) (2013) 1427–1443.

[3] D. Kim, Y. Tao, S. Kim, A. Zeller, Where Should We Fix This
Bug ? A Two-phase Recommendation Model, IEEE Transac-
tions on Software Engineering 39 (11) (2013) 1597 – 1610.

[4] R. K. Saha, M. Lease, S. Khurshid, D. E. Perry, Improving
Bug Localization using Structured Information Retrieval, in:
Prooceedings of the 28th International Conference on Auto-
mated Software Engineering (ASE’13), 2013, pp. 345 – 355.

[5] J. Zhou, H. Zhang, D. Lo, Where Should the Bugs Be Fixed ?,
in: Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE’12), 2012, pp. 14–24.

[6] S. Rao, A. Kak, Retrieval from Software Libraries for Bug Lo-
calization : A Comparative Study of Generic and Composite
Text Models, in: Proceedings of the 8th IEEE Working Con-
ference on Mining Software Repositories (MSR’11), 2011, pp.
43–52.

[7] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, T. N.
Nguyen, A Topic-Based Approach for Narrowing the Search
Space of Buggy Files From a Bug Report, in: Proceedings of
the 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE’11), 2011, pp. 263–272.

[8] E. Hill, A. Bacchelli, D. Binkley, B. Dit, D. Lawrie, R. Oliveto,
Which feature location technique is better?, in: Proceedings of
the International Conference on Software Maintenance (ICSM),
2013, pp. 408–411.

[9] E. Hill, S. Rao, A. Kak, On the use of stemming for concern
location and bug localization in java, in: Proceedings of the 12th
International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, 2012, pp. 184–193.

[10] A. Wiese, V. Ho, E. Hill, A comparison of stemmers on source
code identifiers for software search, in: Proceedings of the 27th
International Conference on Software Maintenance (ICSM),
IEEE, 2011, pp. 496–499.

8https://github.com/SAILResearch/replication-ist_bug_

localization/

16

[11] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk,
A. De Lucia, Parameterizing and assembling ir-based solutions
for se tasks using genetic algorithms, in: Proceedings of the
23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1, IEEE, 2016, pp. 314–325.

[12] B. Dit, L. Guerrouj, D. Poshyvanyk, G. Antoniol, Can better
identifier splitting techniques help feature location?, in: Pro-
ceedings of the 19th International Conference on Program Com-
prehension (ICPC), IEEE, 2011, pp. 11–20.

[13] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, H. Mei,
Boosting bug-report-oriented fault localization with segmenta-
tion and stack-trace analysis, in: Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on,
IEEE, 2014, pp. 181–190.

[14] T. Dilshener, M. Wermelinger, Y. Yu, Locating bugs without
looking back, in: Mining Software Repositories (MSR), 2016
IEEE/ACM 13th Working Conference on, IEEE, 2016, pp. 286–
290.

[15] X. Xia, L. Bao, D. Lo, S. Li, ”Automated Debugging Consid-
ered Harmful” Considered Harmful: A User Study Revisiting
the Usefulness of Spectra-Based Fault Localization Techniques
with Professionals Using Real Bugs from Large Systems, in:
Proceedings of the International Conference on Software Main-
tenance and Evolution (ICSME), IEEE, 2016, pp. 267–278.

[16] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Mat-
sumoto, The impact of automated parameter optimization on
defect prediction models, IEEE Transactions on Software Engi-
neering (TSE) (2018) In Press.

[17] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Mat-
sumoto, Automated parameter optimization of classification
techniques for defect prediction models, in: The International
Conference on Software Engineering (ICSE), 2016, pp. 321–332.

[18] A. Marcus, A. Sergeyev, V. Rajlich, J. Maletic, An information
retrieval approach to concept location in source code, Proceed-
ings of the 11th Working Conference on Reverse Engineering
(WCRE’11) (2004) 214–223.

[19] D. Poshyvanyk, Y.-g. Gueneuc, A. Marcus, G. Antoniol, V. Ra-
jlich, Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval, IEEE
Transactions on Software Engineering 33 (6) (2007) 420–432.

[20] D. Poshyvanyk, Y.-g. Guéhéneuc, A. Marcus, G. Antoniol,
V. Rajlich, Combining Probabilistic Ranking and Latent Se-
mantic Indexing for Feature Identification, in: Proceedings of
14th IEEE International Conference on Program Comprehen-
sion (ICPC’06), 2006, pp. 137—-148.

[21] S. Davies, M. Roper, M. Wood, Using Bug Report Similarity to
Enhance Bug Localisation, in: Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE’12), 2012, pp. 125–
134.

[22] S. Wang, D. Lo, Z. Xing, L. Jiang, Concern Localization Using
Information Retrieval : An Empirical Study on Linux Kernel,
in: Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE ’11), 2011, pp. 92–96.

[23] S. K. Lukins, N. a. Kraft, L. H. Etzkorn, Source Code Retrieval
for Bug Localization Using Latent Dirichlet Allocation, in: Pro-
ceeding of the 15th Working Conference on Reverse Engineering
(WCRE’08), 2008, pp. 155–164.

[24] S. K. Lukins, N. a. Kraft, L. H. Etzkorn, Bug localization using
latent Dirichlet allocation, Information and Software Technol-
ogy 52 (9) (2010) 972–990.

[25] C. Tantithamthavorn, A. Ihara, H. Hata, K. Matsumoto, Im-
pact Analysis of Granularity Levels on Feature Location Tech-
nique, in: Proceedings of The First Asia Pacific Requirements
Engineering Symposium (APRES’14), 2014, pp. 135–149.

[26] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature Lo-
cation in Source Code : A Taxonomy and Survey, Journal of
Software: Evolution and Process 25 (1) (2013) 53–95. doi:

10.1002/smr.
[27] C. Tantithamthavorn, R. Teekavanich, A. Ihara, K. Matsumoto,

Mining A Change History to Quickly Identify Bug Locations : A
Case Study of the Eclipse Project, in: Proceedings of the 2013

IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW’13), 2013, pp. 108–113.

[28] C. Tantithamthavorn, A. Ihara, K. Matsumoto, Using Co-
change Histories to Improve Bug Localization Performance, in:
Proceedings of the 14th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD’13), 2013, pp. 543–548.

[29] Z. Guan, E. Cutrell, An eye tracking study of the effect of target
rank on web search, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’07), CHI’07,
ACM, New York, NY, USA, 2007, pp. 417–420.

[30] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto,
B. Adams, A. E. Hassan, Revisiting Common Bug Prediction
Findings Using Effort-Aware Models, in: Proceedings of the
2010 IEEE International Conference on Software Maintenance
(ICSM’10), 2010, pp. 1–10.

[31] E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic and
comprehensive investigation of methods to build and evaluate
fault prediction models, Journal of Systems and Software 83 (1)
(2010) 2–17.

[32] T. Mende, R. Koschke, Effort-Aware Defect Prediction Mod-
els, Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (CSMR’10) (2010) 107–116.

[33] S. Lohar, A. Zisman, M. Keynes, J. Cleland-huang, Improving
Trace Accuracy through Data-Driven Configuration and Com-
position of Tracing Features, in: Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), 2013, pp. 378–388.

[34] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk,
A. D. Lucia, How to Effectively Use Topic Models for Soft-
ware Engineering Tasks ? An Approach Based on Genetic Al-
gorithms, in: Proceedings of the 35th International Conference
on Software Engineering (ICSE’13), 2013, pp. 522–531.

[35] Y. Xu, D. Mease, Evaluating web search using task comple-
tion time, in: Proceedings of the 32nd International ACM SI-
GIR Conference on Research and Development in Information
Retrieval (SIGIR’09), SIGIR ’09, ACM, New York, NY, USA,
2009, pp. 676–677.

[36] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder,
A. Zisman, Software traceability: Trends and future direc-
tions, in: Proceedings of the on Future of Software Engineering
(FOSE’14), FOSE 2014, 2014, pp. 55–69.

[37] J. Cleland-huang, O. Gotel, J. H. Hayes, P. Mäder, A. Zisman,
M. Keyes, Software Traceability : Trends and Future Direc-
tions, in: Proceedings of the on Future of Software Engineering
(FOSE’14), 2014, pp. 55–69.

[38] D. Posnett, V. Filkov, P. Devanbu, Ecological inference in
empirical software engineering, 2011 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering,
ASE 2011, Proceedings (2011) 362–371doi:10.1109/ASE.2011.
6100074.

[39] H. Hata, O. Mizuno, T. Kikuno, Bug prediction based on fine-
grained module histories, in: Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE’12), 2012, pp.
200–210. doi:10.1109/ICSE.2012.6227193.

[40] M. Fischer, M. Pinzger, H. Gall, Populating a Release History
Database from version control and bug tracking systems, in:
Proceedings of the 19th International Conference on Software
Maintenance (ICSM’03), 2003, pp. 23–32. doi:10.1109/ICSM.

2003.1235403.
[41] G. Salton, A. Wong, C.-S. Yang, A vector space model for au-

tomatic indexing, Communications of the ACM 18 (11) (1975)
613–620.

[42] C. D. Manning, P. Raghavan, H. Schütze, Introduction to In-
formation Retrieval, no. c, Cambridge Unviersity Press, New
York, NY, USA, 2008.

[43] T. Hofmann, Probabilistic latent semantic indexing, in: Pro-
ceedings of the 22nd annual international ACM SIGIR con-
ference on Research and development in information retrieval,
ACM, 1999, pp. 50–57.

17

[44] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation,
Journal of machine Learning research 3 (Jan) (2003) 993–1022.

[45] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect predic-
tion approaches: A benchmark and an extensive comparison,
Empirical Software Engineering 17 (4-5) (2012) 531–577.

[46] T.-H. Chen, S. W. Thomas, A. E. Hassan, A survey on the use
of topic models when mining software repositories, Empirical
Software Engineering 21 (5) (2016) 1843–1919.

[47] M. K. Cowles, Statistical computing: An introduction to data
analysis using s-plus (2004).

[48] F. E. Harrell Jr., Regression Modeling Strategies, 1st Edition,
Springer, 2002.

[49] J. Jiarpakdee, C. Tantithamthavorn, A. E. Hassan, The im-
pact of correlated metrics on defect models, arXiv preprint
arXiv:1801.10271.

[50] C. Tantithamthavorn, A. E. Hassan, An experience report on
defect modelling in practice: Pitfalls and challenges, in: In Pro-
ceedings of the International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP’18),
2018, p. To Appear.

[51] F. E. Harrell Jr., rms: Regression modeling strategies, http:

//CRAN.R-project.org/package=rms (2015).
[52] S. McIntosh, Y. Kamei, B. Adams, A. E. Hassan, An empirical

study of the impact of modern code review practices on software
quality, Empirical Software Engineering (2015) To appear.

[53] P. Thongtanunam, S. McIntosh, A. E. Hassan, H. Iida, Review
participation in modern code review: An empirical study of
the android, qt, and openstack projects 22 (2) (2017) 768–817.
doi:10.1007/s10664-016-9452-6.

[54] P. Thongtanunam, S. McIntosh, A. E. Hassan, H. Iida, Revisit-
ing code ownership and its relationship with software quality in
the scope of modern code review, in: Proceedings of the 38th In-
ternational Conference on Software Engineering (ICSE), 2016,
pp. 1039–1050.

[55] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Mat-
sumoto, An empirical comparison of model validation tech-
niques for defect prediction models, IEEE Transactions on Soft-
ware Engineering (TSE) (1) (2017) 1–18.

[56] L. Biggers, C. Bocovich, R. Capshaw, B. Eddy, L. Etzkorn,
N. Kraft, Configuring latent dirichlet allocation based feature
location, Empirical Software Engineering 19 (3) (2014) 465–500.

[57] J. H. Zar, Spearman rank correlation, Encyclopedia of Biostatis-
tics.

[58] J. H. Zar, Significance testing of the spearman rank correla-
tion coefficient, Journal of the American Statistical Association
67 (339) (1972) 578–580.

[59] K. Herzig, S. Just, A. Zeller, It’s not a Bug, it’s a Feature:
How Misclassication Impacts Bug Prediction, in: Proceedings
of the 35th International Conference on Software Engineering
(ICSE’13), no. Section XII, 2013, pp. 392–401.

[60] P. S. Kochhar, Y. Tian, D. Lo, Potential Biases in Bug Localiza-
tion: Do They Matter?, in: Proceedings of the 29th ACM/IEEE
international conference on Automated Software Engineering
(ASE’14), 2014, pp. 803–813.

[61] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, P. Devanbu, Fair and Balanced ? Bias in Bug-Fix
Datasets Categories and Subject Descriptors, in: Proceedings
of the the 7th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE’09), 2009, pp.
121–130.

[62] E. Murphy-Hill, T. Zimmermann, C. Bird, N. Nagappan, The
design space of bug fixes and how developers navigate it, IEEE
Transactions on Software Engineering 41 (1) (2015) 65–81.

[63] E. Murphy-Hill, T. Zimmermann, C. Bird, N. Nagappan, The
design of bug fixes, in: Prooceedings of the International Confer-
ence on Software Engineering (ICSE 2013), 2013, pp. 332–341.

[64] D. Kawrykow, M. P. Robillard, Non-essential changes in version
histories, in: Proceedings of the 33rd International Conference
on Software Engineering (ICSE 2011), ACM, 2011, pp. 351–360.

[65] P. S. Kochhar, X. Xia, D. Lo, S. Li, Practitioners’ expecta-

tions on automated fault localization, in: Proceedings of the
International Symposium on Software Testing and Analysis (IS-
STA’16), 2016, pp. 165–176.

18

Table 10: Summary of the main findings. The two cells with gray background indicate the main contributions of Thomas et al. [2], while the
remaining 18 cells with white background are the main contributions of this paper.

File-Level Method-Level
Does classifier configuration impact top-k per-
formance of classifiers?

Yes Yes

What is the best top-k performing classifier? VSM VSM
What is the range between the best and worst
top-k performing classifiers?

The top-k performance range
is between 0.37% and 67.48%,
on average.

The top-k performance range
is between 0.44% and 36%, on
average.

What is the likelihood of randomly picking a
configuration that performs within 20% of the
best top-k performing classifier?

There is an average of 12.2%
chance of randomly picking
a configuration that performs
within 20% of the best top-k
performing classifier.

There is an average 5.4%
chance of randomly picking
a configuration that performs
within 20% of the best top-k
performing classifier.

What is the likelihood of randomly picking a
configuration that performs within 20% of the
classifier that requires the least effort?

There is an average of 1%
chance of randomly picking
a configuration that performs
within 20% the classifier that
requires the least effort.

There is an average of 2%
chance of randomly picking
a configuration that performs
within 20% the classifier that
requires the least effort.

Which parameter has the most impact on the
performance? (i.e., sensitivity)

Term weight for VSM. Entity
representation for LSI and
LDA.

Term weight for VSM. Entity
representation for LSI and
LDA.

Which parameter has the most impact on the
required effort? (i.e., sensitivity)

Inconsistent results for the
most important parameters.
However, the number of top-
ics appears as the least im-
portant parameters.

Inconsistent results for the
most important parameters.
However, the number of top-
ics appears as the least im-
portant parameters.

Does the best top-k performing classifier re-
quire the least effort?

VSM is the most top-k per-
forming classifier. However,
LSI requires the least effort.
VSM requires as much as 2.56
times more effort than LSI.

VSM is the best top-k per-
forming classifier and also re-
quires the least effort.

Which IR classifier gives the least effort? LSI VSM

Is the most efficient classifier configuration for
method-level bug localization also efficient for
file-level bug localization (and vice versa)?

Yes Yes

19

