
A Case Study on Software Vulnerability Coordination

Jukka Ruohonena,∗, Sampsa Rautia, Sami Hyrynsalmia,b, Ville Leppänena

aDepartment of Future Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
bPori Department, Tampere University of Technology, P.O. Box 300, FI-28101 Pori, Finland

Abstract

Context : Coordination is a fundamental tenet of software engineering. Coordination is required also for identifying
discovered and disclosed software vulnerabilities with Common Vulnerabilities and Exposures (CVEs). Motivated by
recent practical challenges, this paper examines the coordination of CVEs for open source projects through a public
mailing list.

Objective: The paper observes the historical time delays between the assignment of CVEs on a mailing list and the
later appearance of these in the National Vulnerability Database (NVD). Drawing from research on software
engineering coordination, software vulnerabilities, and bug tracking, the delays are modeled through three dimensions:
social networks and communication practices, tracking infrastructures, and the technical characteristics of the CVEs
coordinated.

Method : Given a period between 2008 and 2016, a sample of over five thousand CVEs is used to model the delays with
nearly fifty explanatory metrics. Regression analysis is used for the modeling.

Results: The results show that the CVE coordination delays are affected by different abstractions for noise and
prerequisite constraints. These abstractions convey effects from the social network and infrastructure dimensions.
Particularly strong effect sizes are observed for annual and monthly control metrics, a control metric for weekends, the
degrees of the nodes in the CVE coordination networks, and the number of references given in NVD for the CVEs
archived. Smaller but visible effects are present for metrics measuring the entropy of the emails exchanged, traces to
bug tracking systems, and other related aspects. The empirical signals are weaker for the technical characteristics.

Conclusion: Software vulnerability and CVE coordination exhibit all typical traits of software engineering coordination
in general. The coordination perspective elaborated and the case studied open new avenues for further empirical
inquiries as well as practical improvements for the contemporary CVE coordination.

Keywords: vulnerability, open source, coordination, social network, CVE, CWE, CVSS, NVD, MITRE, NIST

1. Introduction

Software bugs have a life cycle.1 In a relatively typical
life cycle, a bug is first introduced during development with
a version control system, then reported in a bug tracking
system, and then again fixed in the version control sys-
tem. Also software security bugs, or vulnerabilities, follow
a similar life cycle. Unlike conventional bugs, however,
vulnerabilities often require coordination between multiple
parties. Coordination is visible also during the identifica-
tion and archiving of vulnerabilities with unique CVEs.

There are four ways to obtain these universally recog-
nized vulnerability identifiers. For obtaining a CVE, (a) an
affiliation with an assignment authority (such as Mozilla or

∗Corresponding author.
Email address: juanruo@utu.fi (Jukka Ruohonen)

1 This paper is a rewritten and extended version of an earlier
conference paper [95] presented at IWSM Mensura 2017.

Microsoft) is required, but coordination may be done also
by (b) contacting such an authority, making (c) a direct
contact to the MITRE corporation, or (d) using alternative
channels for public coordination [100]. During the period
observed, the public channel referred to the oss-security
mailing list. The typical workflow on the list resembled the
simple communication pattern illustrated in Fig. 1.

Listxy MITRE NVD

“There is a

vulnerability...”

“Use CVE-2016-6526”

(a) (b)

Time

Figure 1: Coordination via oss-security (2008 – 2016)

Information and Software Technology, 2018, vol. 103, pp. 239–257, https://doi.org/10.1016/j.infsof.2018.06.005 July 27, 2020

ar
X

iv
:2

00
7.

12
35

6v
1

 [
cs

.S
E

]
 2

4
Ju

l 2
02

0

https://doi.org/10.1016/j.infsof.2018.06.005

Coordination is one of the major inhibitors of software
development [38]. In the ideal case, the timeline from the
leftmost circle would be short in terms of the timestamp
that is recorded for a reported vulnerability to appear in
NVD. In the future, robots might do the required coordina-
tion and evaluation work, but, recently, the time lags have
allegedly been long. These delays have also fueled criti-
cism about the whole tracking infrastructure maintained
by MITRE and associated parties (for a recent media take
see [55]). The alleged delays exemplify a basic charac-
teristic of coordination: the presence of coordination of-
ten appears invisible to outsiders until coordination prob-
lems make it visible [62]. The recent criticism intervenes
with other transformations. These include the continuing
prevalence of so-called vulnerability markets [92], includ-
ing the increasingly popular crowd-sourcing bug bounty
platforms [52, 89]. Governmental interests would be an-
other example [1]. The CVEs assigned are commonly used
also to track exploitable vulnerabilities on criminal under-
ground platforms [4]. A further example would be the use
of social media and the resulting information leakages of
the sensitive information coordinated [55, 97, 104]. These
and other factors have increased the volume of discovered
vulnerabilities for which CVEs are requested.

Reflecting these challenges, the coordination of CVEs
through the mailing list ended in February 2017. To some
extent, it is reasonable to conclude that oss-security lost
its appeal as an efficient coordination and communication
medium for CVE identifiers. To answer to the challenges,
new options were provided for public CVE tracking [79],
and larger reforms were implemented at MITRE.

Motivated by these practical challenges, the paper ex-
amines the CVE coordination through the oss-security

mailing list between 2008 and 2016. The paper continues
the earlier case study [95] by explicitly focusing on the
timeline (b) in Fig. 1. In other words, the present pa-
per observes the time between CVE assignments on the
mailing list and the later publication of these identifiers
in NVD. Although the previous study revealed interesting
aspects about social networks for open source CVE coor-
dination, it also hinted that the coordination delays might
be difficult to model and predict. Modeling of the delays
is the goal of the present paper. To empirically model
the delays, nearly fifty metrics are derived in this paper
for proxying three dimensions of coordination: (i) social
networks and communication practices, (ii) tracking in-
frastructures within which the vulnerabilities had often
already appeared prior to oss-security, and (iii) the
technical characteristics of the vulnerabilities coordinated.
Before elaborating these dimensions in detail, the opening
Section 2 discusses the background and introduces the case
studied. The research approach used to study the case is
described in Section 3. Results are presented in Section 4
and further discussed in Section 5.

2. Background

Software engineering coordination is a fundamental part
of the grand theories in the discipline [38]. The following
discussion will briefly motivate the general background by
considering some of the basic coordination themes in terms
of software vulnerabilities and their coordination. After
this motivation, the case studied is elaborated from a theo-
retical point of view. The discussion ends to a formulation
of three research questions for the empirical analysis.

2.1. Vulnerability Coordination

Coordination can be defined as a phenomenon that orig-
inates from dependencies between different activities, and
as a way to manage these dependencies between the activi-
ties [36]. Software engineering is team work. As team work
implies social dependencies between engineers, there is al-
ways some amount of coordination in all software engineer-
ing projects involving two or more engineers. There are
also technical dependencies in all software products. Early
work on software engineering coordination focused on the
reduction of such technical dependencies in order to im-
prove task allocation and work parallelism [14]. However,
not all technical dependencies can be eliminated. For this
reason, later work has often adopted a socio-technical per-
spective for studying software engineering coordination.

The augmentation of technical characteristics with so-
cial tenets is visible at a number of different fronts. One
relates to the research questions examined. Examples in-
clude synchronization of work and milestones, incremen-
tal integration of activities, arrangement of globally dis-
tributed teams, frequent deliveries, and related project
management processes [53, 63, 81]. Another relates to the
research methodologies used. While interviews and sur-
veys are still often used [14, 53, 81], techniques such as
social network analysis have become increasingly common
for examining software engineering coordination [12, 101].
Despite of these changes, one fundamental theoretical
premise has remained more or less constant over the years.

Coordination requires communication, and coordination
failures are often due to communication problems [14, 115].
The consequences from coordination failures vary. Typical
examples include schedule slips, duplication of work, build
failures, and software bugs [12, 14]. Communication ob-
stacles, coordination failures, and the resulting problems
are well-known also in the security domain.

A good example would be incident and abuse notifica-
tions for vulnerable Internet domains: it is notoriously
difficult to communicate the security issues discovered to
the owners or maintainers of such vulnerable domains [16].
Analogous problems have been prevalent in vulnerability
disclosure, which refers to the practices and processes via
which the vulnerability discoverers make their discoveries
known to the vendors whose products are affected either
directly or via a third-party coordinator. Although there
have long been recommendations and guidelines [20], it
is still today often difficult to communicate vulnerability

2

discoveries to vendors [85]. A substantial amount of effort
may be devoted to coordinate the disclosure and remedi-
ation of high-profile vulnerabilities, but difficulties often
occur for more mundane but no less important vulnerabil-
ities. Some vendors are reluctant to participate in vulner-
ability disclosure—and some vendors even avoid patching
their software products altogether. Even legal threats are
still today not unheard of. While vulnerability disclosure
is a prime example of coordination (failures) in the soft-
ware security context, it has only a narrow scope.

As Steven M. Christey—the primary architect behind
the current CVE tracking—has argued, the term vulnera-
bility coordination is preferable because vulnerability dis-
closure only captures a small portion of the activities re-
quired to handle and archive vulnerabilities [19]. In fact,
vulnerability coordination is a relatively frequent activity
among the integrative software engineering activities car-
ried out by open source developers [2]. Bug reports must
be handled in a timely manner for security issues. Evalua-
tion is needed to assess the versioned products affected. Of
course, also fixes must be written, but fixes may further re-
quire careful backtracking within version control systems,
debugging, reviews from peers, testing done by peers and
users alike, and coordination between business partners or
third-party open source software projects. Then, erratas,
security advisories, or other notes must be written, iden-
tifiers must be allocated to uniquely track the notes and
to map these to other identifiers, preparations may be re-
quired for answering to user feedback, and so forth. These
are all examples of the software engineering activities that
are typically present in the software vulnerability context.

For empirical software engineering research, the identi-
fiers used to track vulnerabilities are particularly relevant.
The most important identifier is CVE, in terms of both
research and practice. For open source projects, having
a single canonical identifier helps developers and users to
coordinate their efforts. Given the inconsistency issues
affecting open bug trackers [86, 108], CVEs help at ad-
dressing questions such as: “well it sounds like this one
but maybe it’s that other one?” [100]. For a security
professional, CVEs are ubiquitous entries in a curriculum
vitae. For research, CVEs provide the starting point for
connecting the distinct engineering activities into a coher-
ent schema. While there is an abundant amount of exist-
ing research operating with CVE-based research schemas,
thus far, only one attempt [95] has been made to better
understand the primary schema; software and security en-
gineering coordination is required for CVEs themselves.

2.2. CVE Coordination Through a Mailing List

Software development teams tend to produce software
products that reflect the communication structure of the
teams, to paraphrase the famous law formulated by Melvin
E. Conway [23]. Although the law is not directly applica-
ble to the context of CVE coordination, the oss-security
case supports a weaker variant of the same basic assertion.

This variant might be defined as a statement that a com-
munication structure tends to reflect the type of software
engineering work and the medium used for communication.

The type of work done and the medium both character-
ize also the social network structure of the CVE coordina-
tion through the mailing list. Both limit also the applica-
bility of common theoretical interpretations. For instance,
knowledge sharing is a typical way to motivate research on
open source social networks [50, 57, 109], but sharing of
knowledge was not the main purpose of the oss-security

mailing list during the period studied.
The primary purpose of the list was to coordinate the as-

signment of CVE identifiers for discovered and usually al-
ready disclosed software vulnerabilities. This coordination
was done by explicitly requesting CVE identifiers, which
were then assigned by MITRE affiliates based on a brief
evaluation. In terms of communication practices, this co-
ordination practice often culminated in short replies, such
as “use CVE-2016-6526” [78], made by MITRE affiliates
to previously posted CVE requests. Participants typically
kept MITRE’s cve-assign@mitre.org email address in
the carbon copy field when they posted a request, fur-
ther using a subject line that identified the message as
a request. While longer discussions were not unheard
of, these communication practices indicate that knowledge
sharing has only limited appeal for framing the case the-
oretically. Exchanging information about abstract identi-
fiers does not necessarily imply thorough discussions about
the technical details of the vulnerabilities coordinated. In
other words, data does not equate to information, and in-
formation does not equal knowledge.

The coordination work through the list produced clear
core social network components [95]. This observation is
classical in the open source context [22, 24, 57, 110], but
the contextual interpretation is still relevant. Due to the
way CVEs are assigned, the cores centered to MITRE affil-
iates. By using a network representation described later in
detail, the core social network components are illustrated
in Fig. 2. Excluding the use of MITRE’s email address
without an explicit sender, there are two identifiable indi-
vidual participants with degrees higher than 800, meaning
that these two participants both coordinated at least eight
hundred CVEs each. Both participants are MITRE affili-
ates. What is more, there are only a few CVEs that link
the three core participants to each other. This observa-
tion indicates that task allocation and related coordination
techniques apply also to the case studied.

These core social network components are a good exam-
ple of so-called communication brokers who help at resolv-
ing coordination obstacles in software engineering [116].
Such brokers integrate information from multiple sources.
This integrative engineering work often leads to a social
network structure with relatively high level of centrality,
low level of clustering, and star-like centers within which
the integrative work is located [82]. This theoretical char-
acterization applies well also to the social networks for the
CVE coordination through the mailing list.

3

Steven M. Christey

Kurt Seifried

cve-assign

CVE
Core participant

Figure 2: The Core Participants (one hop from the labeled vertices)

Thus, the type of software engineering work carried out
is an important factor characterizing the corresponding so-
cial network structures. In terms of development mailing
lists, non-core participants may post as many messages as
core participants [25], but this observation does not gener-
alize to all cases [34], including the case studied. Although
coordination requires communication, coordination tends
to result in different network structures than communica-
tion required for other work (or leisure) activities. A com-
munication medium used for coordination presumably also
affects the emerging network structure. For instance, so-
cial networks constructed from bug tracking systems indi-
cate that many individuals may report bugs even though
the actual development may be concentrated to a small
core group [120]. A communication medium also places
restrictions over who can participate, how much can be
communicated, and what is communicated [12, 84]. While
oss-security is open for anyone to participate, the com-
munication volume and the content of messages exchanged
are both important for further elaborating the case.

The integrative coordination work done on the list re-
flected not only social but also loose technical dependen-
cies between different tracking infrastructures. The classi-
cal consumer-producer abstraction for software engineer-
ing coordination [62, 63] is useful for framing these techni-
cal dependencies theoretically. According to this abstrac-
tion, there exists a prerequisite constraint : the work activ-
ity of a producer must be usually completed before work
can start on the consumer side [36, 62]. In terms of the
case studied, the participants (producers) who requested
CVEs provided sufficient technical information to justify
the requests for the MITRE affiliates (consumers). If the
information was sufficient for a request, the prerequisite
constraint was satisfied, and the vulnerability in question
later appeared in NVD with the CVE requested. Instead
of in-depth knowledge sharing, the sufficient information
was usually delivered via hyperlinks to other open source
tracking infrastructures within which a given vulnerability
had already been discussed. Consequently, the discovery,

disclosure, and patching of the vulnerabilities coordinated
had almost always occurred before information appeared
on the mailing list.

2.3. Research Questions

The preceding discussion motivates three questions
worth asking about the delays between CVE requests on
the mailing list and the later appearance of these identifiers
in the central tracking database. Given the medium used
and the type of software engineering coordination done,
these questions can be framed by separating the two terms
in the concept of socio-technical coordination. The first
question addresses the social dimension:

RQ1 Have the CVE coordination delays been affected by the
social networks and communication practices between
the participants on the oss-security mailing list?

The remaining two questions address the technical di-
mension in socio-technical coordination. Given the inte-
grative work done and the consumer-producer abstraction,
it is worth asking the following question about the delays:

RQ2 Did traces to other tracking infrastructures affect the
coordination delays during the period observed?

The third and final research question approaches the
technical dimension from a more direct perspective:

RQ3 Were the coordination delays affected by the technical
characteristics of the vulnerabilities coordinated?

The analytical meaning behind the three questions is
illustrated in Fig. 3. It should be noted that causal infer-
ence is not attempted; hence, no arrows are drawn in the
figure between the three explanatory dimensions.

3. Approach

In what follows, the research approach taken to study
the CVE coordination delays is elaborated by introducing
the empirical dataset, the operationalization of the delays,
and the construction of the social networks observed. After
this machinery has been installed, the approach is further
elaborated by describing the explanatory metrics and the
statistical methodology used to model the delays.

3.1. Data

The dataset is compiled from two sources. All email
messages posted on oss-security were obtained from the
online Openwall archive [77]. These messages are cross-
referenced with CVE identifiers to the second data source,
NVD [74]. The sampling period runs from the first wel-
come message in February 2008 to the emails posted in
December 31 2016. This sampling interval corresponds
with the historical period during which the mailing list
was used for CVE assignments.

4

Coordination

delays

Tracking

infrastructures

Social

networks

Technical

characteristics

Time delays from

oss-security

to archival in NVD

Severity of

vulnerabilities,

types of program-

ming errors

Traces to other

coordination media,

bug trackers, etc.

Communication

patterns, social

relations, etc.

RQ1 RQ2

RQ3

Given controls for longitudinal changes:

Figure 3: Hypothetical Relations and the Corresponding Research Questions

There were a little over sixteen thousand messages
posted during this time interval. For each message deliv-
ered in the hypertext markup language (HTML) format,
a twofold routine is used for pre-processing the archival
data (see Fig. 4). The first pre-processing subroutine ex-
tracts the actual messages from the HTML markup, fur-
ther omitting all lines referring to quotations from previous
messages posted on the mailing list. To some extent, also
forwarded messages are excluded based on simple but pre-
viously used heuristics [118]. Due to the markup language,
this pre-processing routine is likely to yield some inconsis-
tencies. However, the consequences for the empirical anal-
ysis should be relatively small because no attempts are
made to pre-process email threads. This choice is largely
imposed by the use of the online archive. In particular,
the fields Message-ID, In-Reply-To, and References are
not delivered via the online interface, which prevents the
use of common (meta-data) techniques for parsing email
threads [34, 112]. Although content-based alternatives ex-
ist for reconstructing threaded email structures [28, 98],
only the senders of emails are considered in order to im-
prove data quality and to simplify the data processing.

Pre-process

(message bodies)

Message

(HTML)

Archive

(16,345 messages)

Identify

(participants and CVEs)

(a) Include only lines enclosed
between <pre> and </pre>

(b) Exclude lines starting with gt;

and lines after Forwaded message

or Original message strings

(c) Participants via From:[^&?]*

(strip and apply fuzzy matching)
(d) CVEs via a regular expression

(?:CVE|CAN)[-][0-9]{4}-[0-9]{4,}

Figure 4: Pre-processing in a Nutshell

The second subroutine is used for identification. The
From email header field is used for identifying the indi-
vidual participants by using the first match from a simple
Python regular expression. Although the matching itself is
simple, it should be emphasized that all senders are identi-
fied according to their names rather than their addresses.
This option is often preferred because individuals’ email
addresses tend to vary [12, 73, 109]. The choice is again
also imposed by the online archive, which obfuscates the
email addresses for spam prevention and related reasons.
Consequently, additional pre-processing techniques [71] for
mapping identified names to addresses cannot be used.

Furthermore, Levenshtein’s [54] classical distance met-
ric between two names, say L(x, y), is a decent choice for
accounting small inconsistencies [122]. If s1 and s2 denote
two full names with lengths l1 and l2, a similarity score
is computed through δ = 1.0− L(s1, s2)/max{l1, l2} [18].
If the scalar δ then exceeds a threshold value 0.8, two
names are taken to refer to the same individual. Although
the threshold is subjective, it captures some typical cases,
such as “John Doe” who occasionally writes his name as
“John, Doe” when sending emails. The few outlying cases
that exceeded the δ = 0.8 threshold were further evaluated
manually. This additional check revealed no obvious ap-
proximation mistakes. In addition, “Christey, Steven M.”
and “Steven M. Christey” were merged manually.

Also CVEs are identified with a regular expression,
which is a typical approach for searching vulnerabilities
from heterogeneous sources [4, 58]. The expression takes
into account both the old and deprecated candidate (CAN)
syntax as well as the recently made syntax change that al-
lows an arbitrary amount of digits in the second part of
CVE identifiers [66, 67]. Even though forwarded messages
and direct quotations to previous emails are approximately
excluded, it should be noted that there can be many-to-
many relations between messages and CVEs. For instance,
a lengthy security advisory posted on the list may contain a
large amount of individual CVE-referenced vulnerabilities.

5

Such cases are included in the sample. Finally, only those
CVEs are qualified that have also valid entries in NVD.
Most of the invalid entries in the database refer to identi-
fiers that were assigned but which were later rejected from
inclusion to the database. Given that these disqualified
CVE assignments cause different biases [19], all rejected
identifiers were excluded from the empirical sample. The
matching of these invalid entries was done by searching for
the string REJECT in the summary field provided by NVD.

3.2. Coordination Delays

There are multiple ways to measure the efficiency of
software engineering coordination [53]. In the context of
software bugs in general, a good example would be the
validity of bug reports. Bug tracking infrastructures typ-
ically reserve multiple categories for classifying invalid re-
ports. These categories include classes for already fixed
bugs, irreproducible bugs, and duplicate reports, among
other groups. If a large amount of bug reports end up into
such classes, coordination would be generally inefficient.

As coordination deals with dependencies, it is no sur-
prise that also social network structures of bug reporters
have been observed to affect the probability of valid bug
reports [120]. Although the generalizability of this obser-
vation seems limited [10], there are good reasons to suspect
that an analogous effect is present in the software vulner-
ability context. Because attribution is particularly impor-
tant for vulnerabilities and monetary compensations are
relatively common, it is no wonder that invalid—or even
outright fake—reports have been a typical menace affect-
ing vulnerability coordination [19, 52]. For this reason,
vulnerability reports from established discoverers likely in-
crease the validity of the reports as well as the trust placed
on the reports. This trust provision is also reflected on the
CVE assignment authorities granted for a few individual
security researchers.

Due to the sensitiveness of the information coordinated,
the availability of open data is limited about the internal
vulnerability tracking systems used by software vendors,
MITRE, and other actors. Many open source projects also
limit the visibility of security bugs, or otherwise try to
constrain the exposure of public information.

These data limitations have affected also the ways to
quantify longitudinal vulnerability information. For in-
stance, the efficiency of vulnerability disclosure can be ap-
proximately measured with a time difference between a
disclosure notification sent to a software vendor and the
vendor’s reply [7, 90]. Analogously, patch release delays
can be measured by fixing the other endpoint to the dates
on which vendors released patches for the vulnerabilities
disclosed to the vendors [64, 107]. Similar delays can be
measured also in terms of initial bug reports and later CVE
assignments based on the reports [113]. Further examples
include the timing of security advisories [93], the dates
on which signatures were added to intrusion detection and
related systems [11], and exploit release dates for known

vulnerabilities [1, 4, 15]. All these different dates convey
different viewpoints on the coordination of vulnerabilities.

In this paper, analogously, the empirical interest relates
to the following per-CVE time differences (in days):

yi = TNVDi
− Toss-securityi , (1)

given

TNVDi ≥ Toss-securityi for all i = 1, . . . , n (2)

vulnerabilities observed. The timestamp TNVDi
records

the date on which the i:th CVE was first stored to NVD.
The second timestamp Toss-securityi refers to the earliest
date on which this CVE was posted on the mailing list.
The restriction in (2) excludes already archived CVEs that
were later discussed on the mailing list. Thus, the integer
yi ≥ 0 approximates the length of the path (b) in Fig. 1.
In theory, also the path (a) in Fig. 1 could be measured,
but the data from the online archive makes it difficult to
identify the initial CVE requests. This limitation does not
affect the validity of the delay metric, but it does affect
the interpretation given for it.

The metric in (1) approximates the time delays be-
tween the initial CVE assignments done through the
oss-security mailing list and the usually later appear-
ance of the requested CVEs in NVD. Therefore, yi focuses
on the internal coordination done by MITRE affiliates,
the NVD team, and other actors involved in the coordina-
tion. One way to think about this internal coordination
is to consider the delay metric as an indirect quantity for
measuring how fast work items in a backlog or an inven-
tory are transferred to complete deliveries [62, 88]. Due to
data limitations, however, it is currently neither possible
to observe the internal within-MITRE (or within-NVD)
coordination directly nor to explicitly measure the work
items in the CVE backlog. Therefore, the delay metric
used provides a sensible but not entirely reliable way to
approximate the typical coordination delays that affected
one particular CVE coordination channel.

3.3. Bipartite Email and Infrastructure Networks

The socio-technical coordination and communication
characteristics are proxied by observing so-called task-
based [116] or person-task [101] social networks. Thus, the
underlying social network structure is bipartite, meaning
that there are two types of vertices. An edge connecting
any two vertices always contains both types; there are no
edges that would connect a vertex of one type to a vertex
of the same type. In addition, the network structure is
unweighted and undirected. More formally:

Gs = (P ∪A,E), (3)

where Gs denotes an observed social network constructed
from the messages that were posted on the mailing list,
from the first message posted in 2008 to the last message
in 2016. The two disjoint vertex sets P and A refer to

6

participants and CVE identifiers, respectively. If a partic-
ipant p ∈ P has sent a message containing a CVE identifier
a ∈ A, an undirected edge, (p, a) = (a, p), is present in the
edge set E. Therefore, individual participants are linked
together through CVE identifiers (see Fig. 5). Due to the
bipartite structure, it holds that P ∩A = ∅ and

|E| =
∑
p∈P

Deg(p) =
∑
a∈A

Deg(a), (4)

where
Deg(x) =

∑
(x,y)∈E

y. (5)

Furthermore, another network is constructed from the
uniform resource locators (URLs) embedded in the hyper-
links present in the emails that contained also CVEs. The
structure is again undirected, unweighted, and bipartite:

Gd = (D ∪B,F), (6)

where D denotes a set of domain names extracted from
the URLs sent by participants in P , B denotes another
set of CVEs, and F is an edge set containing edges from
the domain names to the CVEs. If a participant p ∈ P
sent an email containing a b ∈ B and a domain name
d ∈ D extracted from a URL in a hyperlink, an undirected
edge (b, d) = (d, b) is present in the set F . Thus, CVEs
are linked also to domain names through the participants
who posted messages containing both CVE identifiers and
hyperlinks. Therefore, B ⊆ A and n = |A| ≥ |B| because
the subset of CVE identifiers stored to B are required to
also have mappings to domain names.

p ∈ P

a1 ∈ A a2 ∈ A

Solar Designer

CVE-2008-1685 CVE-2013-1899

Gs

d ∈ D

a1 ∈ B b ∈ B

cve.mitre.org

CVE-2008-1685 CVE-2008-4688

Gd

Figure 5: Example Networks

The network Gs is a social network in the traditional
sense; even though participants are linked to each other
through abstract identifiers, the participants are still hu-
man beings. The network Gd, in contrast, resembles more
the so-called domain name system graphs within which do-
main names are connected to each other via Internet proto-
col (IP) addresses or by other technical relations [94, 103].
Consequently, it would be possible to manipulate Gd by
resolving the addresses of the domain names or by con-
sidering only the second-level domain names [96]. Given
the historical context, however, no attempts are made to

resolve the domain names, many of which are nonexistent
today. Instead, only three semantic validation checks are
enforced: (a) the length of each d ∈ D is asserted to be at
least three characters; (b) each d is required to contain a
dot character; (c) and no entry in D is allowed to refer to
a semantically valid IPv4 address.

3.4. Explanatory Metrics

The three research questions are evaluated by regressing
the coordination delays y1, . . . , yn against the metrics enu-
merated in Table 1. Six models (M) are used for the statis-
tical computations; the integer k denotes the cumulative
number of metrics included in the consecutively estimated
models, including the intercept. The table shows also the
scale of the metrics; there are a few continuous (C) metrics
but most of the metrics are dichotomous (D) dummy vari-
ables. The metrics enumerated can be further elaborated
according to the models within which these first appear.

3.4.1. Control Metrics

Temporal aggregation of social network data should be
done only after a careful consideration [73]. Previous work
in the oss-security context also indicates that the social
networks for the open source CVE coordination changed
over the years [95]. In contrast to what has been claimed
to characterize open source projects [71], the coordination
effort did not diminish over time. In fact, the list be-
came more popular, which resulted in more participants
and more coordinated CVEs. These transformations also
changed the social network structure, although the core
of the network structure remained centered to MITRE af-
filiates. A notable change occurred also in the structure
of this network core: Kurt Seifried from Red Hat joined
the CVE editorial board [68] and took an active role also
on oss-security. This activity reduced the reliance on a
single MITRE affiliate for the CVE coordination through
the list, resulting in the network cores illustrated in Fig. 2.

Instead of explicitly modeling these changes through
separate annual social networks—as has been typical in
applied social network research [90, 95, 110, 121], the lon-
gitudinal dimension is approximately controlled with eight
dummy variables. Each of these is zero for the i:th identi-
fier unless the CVE identifier was assigned on a given year
between 2009 and 2016 according to the corresponding
Toss-securityi timestamp used in (1). The initial year 2008
acts as the reference category against which the effects of
these annual dummy variables are compared against.

Given the fairly complex time series dynamics aris-
ing from the archiving of vulnerabilities to NVD and re-
lated tracking infrastructures [37, 106], a further set of
eleven dummy variables is included for controlling poten-
tial monthly variation in the coordination delays. The
Toss-security1 , . . . , Toss-securityn timestamps are again used
for computation, and January acts as the reference month.

The third and final longitudinal control metric is named
WEEKEND. It scores a value one for a CVE posted to

7

Table 1: Explanatory Metrics

RQi Mj Name Scale Description

– M1 2009, . . . , 2016 D True for CVEs assigned on a given year according to Toss-security.

(k = 21) Feb, . . ., Dec D True for CVEs assigned on a given month according to Toss-security.

WEEKEND D True for CVEs assigned on Saturday or Sunday according to Toss-security.

RQ1 M2 SOCDEG C The degree of all CVE-labeled vertices in Gs.

(k = 25) MITREDEV D True for CVEs in the neighborhood of the three labeled vertices in Fig. 2.

MSGSLEN C The amount of characters divided by 100 in the emails mentioning a CVE.

MSGSENT C For a given CVE, the Shannon entropy of the emails mentioning the CVE.

RQ2 M3 INFDEG C The degree of CVE-labeled vertices in Gd (zero for any b ∈ B but b 6∈ A).

(k = 31) NVDREFS C Number of reference URLs given in NVD for the CVEs observed.

VULNINF D True for CVEs linked to vulnerability infrastructures via Gd.

BUGS D True for CVEs linked to bug tracking and related systems via Gd.

REPOS D True for CVEs linked to version control and related systems via Gd.

SUPPORT D True for CVEs linked to vendors’ support channels via Gd.

RQ3 M4 IMPC D True for CVEs having a partial or a complete impact on confidentiality

(k = 34) IMPI D True for CVEs having a partial or a complete impact on integrity

IMPA D True for CVEs having a partial or a complete impact on availability

M5 EXPNET D True for CVEs that may be exploited only with a network access.

(k = 37) EXPCPLX D True for CVEs with a high or a medium access complexity for exploitation.

EXPAUTH D True for CVEs that can be exploited only through authentication.

M6 CWE-264 D True for CVEs in the domain of permissions, privileges, and access controls.

(k = 47) CWE-119 D True for CVEs in the domain of buffer-related bugs.

CWE-79 D True for CVEs in the domain of cross-site scripting (XSS).

CWE-20 D True for CVEs in the domain of input validation.

CWE-200 D True for CVEs in the domain of information leaks.

CWE-399 D True for CVEs in the domain of resource management bugs.

CWE-189 D True for CVEs in the domain of numeric bugs.

CWE-352 D True for CVEs in the domain of cross-site request forgery (CSRF).

CWE-89 D True for CVEs in the domain of structured query language (SQL) injection.

CWE-310 D True for CVEs in the domain of cryptographic bugs.

the mailing list on Saturday or Sunday according to the
coordinated universal time, taking a value zero otherwise.
The rationale relates to observations that the days of week
may affect the likelihood of introducing bugs during soft-
ware development [102]. Although the empirical evidence
is mixed regarding this assertion [29], it is reasonable to ex-
tend it toward vulnerability coordination. For instance: if
the i:th requested CVE would have otherwise ended up to
NVD rapidly after two days, it may be that an additional
delay, say ε > 0, is present in case the request was posted
on a weekend, such that yi = 2 + ε. The same rationale
applies to the monthly effects. In other words, annual holi-
days presumably taken by the MITRE affiliates and others
participants may well affect the coordination delays.

3.4.2. Social Network and Communication Metrics

Four metrics are used for soliciting an answer to RQ1.
The first is the amount of participants linked to CVEs:

SOCDEG = [Deg(a1 ∈ A), . . . ,Deg(an ∈ A)], (7)

where n = |A| and the set A is assumed to be ordered. In
other words, the metric equals the degree of the CVE-
labeled vertices in Gs. This degree centrality conveys
a clear theoretical rationale. In the software engineer-
ing context this rationale relates to the saying “too many
cooks spoil the broth”. The essence behind the saying is
that increasing number of participants increases the coor-
dination requirements, which translate into delays in com-
pleting software engineering tasks [13, 38]. There exists
also some evidence for an assertion that bug resolution
delays increase with increasing number of participants in
the resolution processes [10]. Although the existing em-
pirical evidence seems weak, the same dictum can be ex-
tended to a further hypothesis that “too many developers”
increase the probability of introducing vulnerabilities dur-
ing software development [65]. Given analogous reasoning,
SOCDEG can be expected to lengthen the coordination
delays. If a given a ∈ A has a high degree, meaning that
many participants posted messages containing the CVE,

8

it may be that the vulnerability in question was partic-
ularly interesting or controversial. Either way, a longer
delay could be expected for such a vulnerability.

In theory, also other vertex-specific centrality metrics
could be used for modeling the delays. There are a couple
of reasons to avoid additional centrality metrics, however.
The first reason relates to interpretation ambiguities. For
instance, the so-called closeness centrality is often used for
quantifying information flows among a group of human
participants [8]. In the context of sender-receiver type of
email networks [59, 105], this quantification rests on the
assumption that a reply to an email constitutes an infor-
mation flow. In reality, however, the lack of a reply does
not imply the absence of an information flow; a partic-
ipant may read an email without replying [73]. In addi-
tion to these theoretical limitations, the bipartite structure
of Gs makes the interpretation of many vertex centrality
metrics challenging. For instance, the so-called between-
ness centrality is often interpreted to reflect communica-
tion gatekeepers and information brokers [13, 84], but it
is difficult to theorize how a CVE identifier would be a
gatekeeper. The second, more practical reason stems from
multicollinearity issues induced by the inclusion of addi-
tional centrality metrics. As is typical [96, 99], many of the
centrality metrics are correlated. In particular, SOCDEG
is highly correlated with the betweenness centrality values.

Instead of explicitly computed centrality, the second so-
cial network metric takes a simpler approach to quantify
the concept of core developers in the open source context.
The definitions for such developers differ. For instance,
some authors have identified core developers with a cutoff
point for vertex degrees [57, 110], while others have relied
on documents about developer responsibilities and commit
accesses [21, 25]. In the present context the relevant social
network core is composed by the MITRE affiliates. Thus,
MITREDEV is a dummy variable that scores one for all
CVEs linked to the three labeled participants in Fig. 2.

The two remaining metrics are not explicitly related to
social networks per se, although both of these still proxy
communication practices. Namely: the metric MSGSLEN
counts the length of strings in all emails posted with a
given CVE identifier divided by one hundred, while the
metric MSGSENT records the Shannon entropy of these
emails. Both metrics have been used previously in the
software engineering context [8]. The effect of both met-
rics upon yi can be also expected to be positive. Given the
rationale of the mailing list for coordinating CVE identi-
fiers, lengthy email exchanges and increasing entropy are
both likely to increase the coordination delays. In other
words, high values for these two metrics both run counter
to the short “use CVE-2016-6527”[78] communication pat-
terns preferred on the list during the period observed.

3.4.3. Infrastructure Metrics

Six metrics are used for soliciting an answer to RQ2.
The first of these, INFDEG, is defined analogous to (7)
but by using the vertex set B present in the network Gd.

Thus, this metric counts the number of semantically valid
domain names in the adjacency of the CVE identifiers ob-
served. The analytical meaning is similar to the number of
hyperlinks in reports posted within bug tracking systems,
which have been hypothesized to reflect bugs that are par-
ticularly difficult to remedy [8]. By translating the same
hypothesis to the vulnerability coordination context, the
number of domain names extracted from the hyperlinks
could be expected to increase the coordination delays. Ac-
cordingly, a CVE that accumulates many hyperlinks may
correspond with a vulnerability that is particularly diffi-
cult to interpret. Another explanation may be that the sig-
nal of relevant information is lost to the noise of numerous
hyperlinks. However, the effect of INFDEG could be alter-
natively speculated to shorten the delays. The rationale
for this alternative speculation relates to the prerequisite
constraints in typical software engineering coordination.

A requested CVE identifier is likely to end up in NVD
in case it is backed by sufficient and valid technical infor-
mation. In addition to INFDEG, these prerequisite con-
straints can be also retrospectively approximated through
the references provided in NVD to the primary informa-
tion sources. Like the historical [15] and contemporary [87]
databases, NVD maintains a list of reference sources that
is frequently polled for new vulnerability information [19].
If a vulnerability appears in multiple sources, it is probable
that a CVE for the vulnerability appears rapidly in NVD
due to information gains about the technical details. Thus,
the metric NVDREFS counts the number of NVD’s refer-
ence sources for all CVEs observed. Even when a CVE was
coordinated through oss-security, shorter delays can be
expected for an identifier with multiple alternative sources
for confirming the corresponding vulnerability.

Table 2: Infrastructure Regular Expressions

Metric Regular expression for all d ∈ D

VULNINF cert., exploit-db.com, first.org,

mitre.org, nist.gov, osvdb.org

BUGS bugs., bugzilla., gnats., issues.,

jira., redmine., trac., tracker.

REPOS code., cvs., cvsweb., download.,

downloads., ftp., git., gitweb.,

hg., packages., svn., webcvs., websvn.

SUPPORT blog., blogs., dev., doc., docs.,

forum., forums., help., info., lists.,

support., wiki.

The same rationale can be used for justifying a more
fine-grained look at the hyperlinks explicitly posted on the
mailing list. The four remaining infrastructure metrics are
dummy variables that approximate the content behind the
domain names stored to the set D in Gd. Given a domain
name neighborhood of each CVE identifier in the vertex

9

b ∈ B

d1 ∈ D d2 ∈ D d3 ∈ D

d4 ∈ D d5 ∈ D d6 ∈ D

CVE-2008-4688

www.openwall.com cve.mitre.org

bugs.gentoo.org

www.milw0rm.com www.mantisbt.org

mantisbt.svn.sourceforge.net

Figure 6: An Example Domain Name Neighborhood

set B, the value of these metrics is zero unless at least one
domain name in the neighborhood matches the regular
expressions listed in Table 2.

To further elaborate the operationalization of these met-
rics, Fig. 6 shows the neighborhood of a vertex labeled as
CVE-2008-4688 in B ∈ Gd. For this CVE, the INFDEG
metric takes a value six because there are six domain
names linked to the identifier. Given the regular expres-
sions, also the metrics VULNINF, BUGS, and REPOS
each score a value one due to the vertices d2, d3, and d6 (for
the corresponding email see [76]). Of course, the expres-
sions used are only approximations for automatically prob-
ing the nature of the primary tracking infrastructures. For
instance, hosting services such as GitHub are mostly (but
not entirely) excluded due to the matching primarily based
on subdomains. Nevertheless, these infrastructure met-
rics convey a clear theoretical expectation. For instance,
patches are often provided faster for high-profile vulner-
abilities that affect multiple vendors, particularly in case
computer emergency response teams are involved [90, 107].
For analogous reasons, VULNINF could be expected to de-
crease the coordination delays observed. Given the open
source way of coordinating defects in open bug trackers,
also BUGS can be expected to show a significant negative
impact upon the delays. In other words, a good bug report
often goes a long way in satisfying a prerequisite constraint
for a CVE assignment in the open source context.

3.4.4. Vulnerability Metrics

The remaining metrics are used for evaluating whether
the severity and technical characteristics of the vulnerabil-
ities coordinated affect the delays. Given the existing bug
tracking research, there are good reasons to expect a corre-
lation. Although the empirical evidence seems to be again
somewhat mixed [10], the severity of bugs have been ob-
served to correlate with resolution delays in bug tracking
systems [124, 125]. Furthermore, the complexity of source
code has been observed to correlate with bug resolution
times [51]. In terms of the metrics used, however, the bug

tracking literature differs from vulnerability research.
Most bug tracking systems contain categories for assess-

ing the severity and impact of bugs. The severity assign-
ments within these systems are typically done either by
bug reporters or by the associated developers. Due to
the human work involved, the severity assignments have
been observed to be relatively inconsistent and unreli-
able [108]. In contrast to bug tracking systems, the sever-
ity of vulnerabilities archived to NVD are evaluated by
experts by using the Common Vulnerability Scoring Sys-
tem (CVSS). Although it remains debatable whether the
severity assignments are suitable for assessing the secu-
rity risks involved [6, 119], the assignments themselves are
highly consistent across different databases and evaluation
teams [40]. Therefore, in technical terms, CVSS provides
a good and reliable framework for seeking an answer to
the question RQ3.

The metrics in the models M4 and M5 are all based
on the second version of the CVSS standard [31]. (It is
worth also remarking that only data based on this ver-
sion is provided in NVD for the historical archival ma-
terial relevant to the case studied.) This CVSS version
classifies the severity of the vulnerabilities archived ac-
cording to two dimensions: exploitability possibilities and
impact upon successful exploitation. The impact dimen-
sion contains three metrics (confidentiality, integrity, and
availability). Each of these can take a value from three op-
tions (NONE, PARTIAL, or COMPLETE). For instance, success-
fully exploiting the recently discovered and disclosed high-
profile Meltdown vulnerability results in complete loss of
confidentiality, although integrity and availability remain
unaffected [75]. Due to multicollinearity issues, the three
impact metrics IMPC, IMPI, and IMPA are based on col-
lapsing the three value categories according to:

g(x) =

{
0 if x is NONE,

1 if x is PARTIAL or COMPLETE.
(8)

An analogous operationalization is used for the three
dummy variables EXPNET, EXPCPLX, and EXPAUTH
(see Table 1). These approximate the exploitability di-
mension based on the access vector (whether exploitation
requires a network or a local access), access complexity
(how complex are the access conditions for exploitation),
and authentication (whether exploitation requires prior
authentication) metrics in the CVSS v.2 standard.

The CVSS standard and the associated data from NVD
provide a wealth of information for approaching different
security questions, but it is unclear how the re-coded im-
pact and exploitability metrics may affect the coordination
delays. There exists some evidence for a conjecture that
the difficulty of reliable severity assessments vary in terms
of what is being assessed and who is doing the assessments.
This conjecture applies both to the CVSS framework [5]
and to quantitative security assessments in general [41].
However, analogous reasoning does not seem to hold in
the context of NVD and the second version of the CVSS

10

standard; the content of the standard does not notably af-
fect the delays for CVSS assignments [88]. In addition to
these empirical observations, it is difficult to speculate why
some particular CVSS metric would either increase or de-
crease the coordination and related delays [93]. For these
reasons, the CVSS metrics are used in the models without
prior theoretical expectations. The assumption merely is
that the severity of the vulnerabilities coordinated is sta-
tistically associated with the delays observed.

The final set of metrics is based on the Common Weak-
ness Enumeration (CWE) framework maintained and de-
veloped by MITRE in cooperation with the associated gov-
ernmental partners and volunteers [69]. In essence, this
comprehensive framework is used to catalog the typical
“root causes” (weaknesses) that may lead to exploitable
vulnerabilities in software products. The examples range
from buffer and integer overflows to race conditions and
software design flaws. By using a subset of frequent CWE
identifiers [70], NVD maintainers derive the underlying
weaknesses behind the vulnerabilities archived either dur-
ing the CVE coordination or in retrospect.

Currently, the CWE framework covers over 700 distinct
weaknesses. Partially due to this large amount, some of
the CWEs are difficult to evaluate in practice [33, 117].
This difficulty does not necessarily imply that the frame-
work itself would be problematic. Rather, many vulner-
abilities chain a lot of distinct weaknesses together. For
instance, CWEs can be used to exemplify that buffer over-
flow vulnerabilities posit a complex “mental model” for
developers due to the tangled web of distinct program-
ming mistakes involved [117]. Given analogous reasoning,
it can be hypothesized that NVD-based CWE information
can also explain a portion of the variation in the CVE
coordination delays. As an example: when compared to
XSS and CSRF vulnerabilities (as identified with CWE-79
and CWE-352), it may be that buffer overflow vulnerabili-
ties (CWE-119) result in slower coordination because such
vulnerabilities are usually technically more complex than
simple web vulnerabilities. In other words, the effort re-
quired for interpretation may vary from a vulnerability to
another, and such variation may show also in the coordi-
nation delays. To probe this general assumption, the final
model M6 includes the ten most frequent CWEs in the
sample. Given that about 90% of the CVEs in the sam-
ple have valid CWE entries in NVD, together these top-10
entries account for about 79% of the CWEs available.

3.5. Estimation

The coordination delay vector y = [y1, . . . , yn]′ repre-
sent count data: the observations count the days between
CVE assignments on the mailing list and the publication
of the CVEs assigned within the primary global tracking
database. Therefore, Poisson regression [88, 93] and re-
gression estimators for survival analysis [1, 107] have been
typical statistical estimation strategies in the research do-
main. Previous work in comparable settings [7, 26, 88, 90]

indicates that the ordinary least squares (OLS) regres-
sion often works also sufficiently well when the depen-
dent metric is passed through a transformation function
f(x) = log(x + 1). This simple OLS approach is taken as
the baseline for the empirical analysis. For all regression
models estimated, the explanatory metrics with continu-
ous scale are also transformed via the same function in
order to lessen skew.

Although frequently used in applied research, the OLS
approach contains also problems. In a sense, the trans-
formation function is redundant and should be avoided
in order to maintain the statistical properties of count
data. It also adds small but unnecessary complexity for
interpreting the parameter estimates. Furthermore, the
residual vector ε from the OLS model is assumed to be
independent and identically distributed from the normal
distribution with a mean of zero and variance σ2. This
basic assumption can be written as E(ε | Xj) = 0 and
E(εε′ | Xj) = σ2I, where E(·) denotes the expected value,
Xj the j:th model matrix for a given Mj from Table 1,
and I an identity matrix. If the assumption is satisfied,

β | Xj ∼ N(β, σ2[X′jXj]
−1), (9)

where β is a regression coefficient vector and N(·) refers
to the multivariate normal distribution. This distribu-
tional assumption allows exact inference based on t and
F distributions. In many empirical software engineering
applications the problem is not as much about the (asymp-
totic) normality assumption as it is about the unreliable
variance patterns typically present in the typically messy
datasets [44]. Thus, often, E(εε′ | Xj) = σ2V, where V is
a generally unknown non-diagonal matrix that establishes
some systematic pattern in the residuals. Such tendency
is generally known as heteroskedasticity.

For instance, some vulnerability time series are known to
exhibit time-dependent heteroskedastic patterns [91, 106].
In the present context heteroskedasticity is to be expected
due to the count data characteristics, and possibly also
due to the heavy use of dichotomous variables. Either way,
it is important to emphasize that asymptotic inference is
still possible under heteroskedasticity; the consistency of
β remains unaffected but the estimates are inaccurate. An
analogous consequence results from multicollinearity; the
stronger the correlation between a variable and other vari-
ables, the higher the variance of the regression coefficient
for the variable.

When heteroskedasticity is an issue, more accurate sta-
tistical significance testing can be done by adjusting the
variance-covariance matrix, Var(β | Xj) = σ2[X′jXj]

−1,
with well-known techniques based on the unknown V es-
timated from data. The OLS results reported use the
MacKinnon-White adjustment [61] conveniently available
from existing implementations [123]. Another point is
that rather analogous problems are often encountered with
count data regressions. For instance, the negative binomial
distribution is often preferable over the Poisson distribu-

11

tion [88]. Also the gamma distribution is known to charac-
terize related difference-based vulnerability datasets [39].
Furthermore, conventional methods for survival analysis
face some typical problems. Although not worth explic-
itly reporting, it can be shown that the Cox regression’s
so-called proportional hazards assumption fails for most
of the metrics in M1, . . . ,M6, for instance. Due to these
and other reasons, it beneficial to use a regression estima-
tor that makes no distributional assumptions. Quantile
regression (QR) is one of such estimators.

Ordinary least squares provides estimates for the condi-
tional mean. Quantile regression estimates quantiles. The
τ :th quantile is defined by

xτ = inf{x | F (x) ≥ τ}, 0 ≤ τ ≤ 1, (10)

where F (·) denotes a cumulative distribution function,
while the infimum operator is used to denote the smallest
real number for which the condition F (x) ≥ τ is satisfied.

If τ = 0.5, for instance, QR provides a solution β̂ for the
conditional median of y conditional on Xj . Estimation
minimizes the sum of absolute residuals:

min
β

n∑
i=1

ρτ (yi − β0 − x′i(j)β), (11)

where β0 is the intercept, x′i(j) is the i:th row vector from

the j:th model matrix Xj , and ρτ (x) = x[τ − I(x < 0)]
with 0 < τ < 1 and I(·) denoting an indicator func-
tion [3, 47]. The optimization of (11) is computed with
a so-called Frisch-Newton algorithm available in existing
implementations [48]. The benefits from QR are well-
known and well-documented. Among these are the lack
of distributional assumptions and the robustness against
outliers. Although asymptotic assumptions are still re-
quired for significance testing under heteroskedasticity, no
parametric assumptions are made regarding the residual
vector [45]. For applied research, quantile regression has
also an immediate appeal in that the whole range in the
conditional distribution of the explained variable can be
observed. This potential is also relevant for vulnerability
delay metrics, which typically (but not necessarily) tend
to be distributed from a long-tailed distribution.

There are a couple of additional points that still warrant
brief attention. First, potential non-linearities should be
accounted for also with QR. As the dataset contains many
variables but only five of these have a C scale (see Ta-
ble 1), non-linear modeling of the explanatory metrics can
be reasonably left for further work, however. The log(x+1)
transformation applied to these five variables also lessens
some of these concerns (particularly regarding MSGSLEN
and MSGSENT). Second, multicollinearity is always a po-
tential issue with typical empirical software engineering
datasets. Although the concern is not as pressing as with
software source code metrics [30], analogous datasets con-
taining social network and communication metrics allow
to also expect potential multicollinearity issues [8]. In-
stead of adopting techniques such as principal component

regression—which would make the interpretation of Fig. 3
difficult—the QR models are re-checked with the least
absolute shrinkage and selection operator (LASSO). For
quantile regression, LASSO amounts to optimizing

min
β0,β

n∑
i=1

ρτ (yi − β0 − x′i(j)β) + λ‖β‖1, (12)

where ‖·‖1 denotes the L1-norm and λ is a non-negative
tuning parameter [3]. Although cross-validation and other
techniques can be used for selecting the tuning param-
eter [88], the QR-LASSO regressions are estimated with
λ ∈ [1, 2, . . . , 100] using the full M6. This range captures
most of the regularization applicable to the dataset.

The rationale behind (12) follows the rationale of
LASSO in general: when λ increases, the quantile regres-
sion coefficients shrink toward zero. This regularization
makes LASSO useful as a variable selection tool for high-
dimensional and ill-conditioned datasets. When λ is suffi-
ciently large, some of the coefficients shrink to zero, leaving
a group of more relevant coefficients. The model selection
properties are not entirely ideal, however. When a coef-
ficient for a correlated variable is regularized to zero, the
coefficients of the other correlated variables are affected;
that is, LASSO tends to select one correlated variable from
a group of highly correlated variables [17]. It is worth to
remark that also the common alternatives contain prob-
lems. In addition to issues related to multiple compar-
isons, the expected heteroskedasticity presumably causes
problems for a stepwise variable selection algorithm par-
ticularly in case the algorithm uses statistical significance
to make decisions. Instead of relying on such algorithms, a
more traditional is adopted for the modeling and inference.

3.6. Modeling
Applied regression modeling has two essential functions.

It can be used to make predictions based on explanatory
metrics, or it can be used to examine “the strength of
a theoretical relationship” between the explained metric
and the explanatory metrics [32]. Already because pre-
diction is not a sensible research approach for a historical
case study, this paper leans toward the examination of
theoretical relationships based on classical statistical in-
ference. The two functions cannot be arguably separated
from each other, however. Given the notorious data limi-
tations affecting vulnerability archiving [19], the inevitable
noise introduced by the collection of online data, and many
related reasons, a watchful eye should be kept for assert-
ing the presence of a signal in terms of prediction. The
magnitudes of the regression coefficients, the effect sizes,
are used to balance the final subjective judgment calls re-
garding the research questions RQ1, RQ2, and RQ3.

The six models M1, . . . ,M6 are fitted consecutively.
This hierarchical modeling approach [8] is also known as
a bottom-up or specific-to-general modeling strategy [60].
For comparing the six OLS models, the adjusted coeffi-
cients of determination (adj. R2) and Akaike’s informa-
tion criterion (AIC) values are used. Higher and lower

12

values, respectively, indicate better performance accord-
ing to these two common evaluation statistics. Both pe-
nalize the performance by the number of parameters. Al-
though pseudo-R2 measures are available for quantile re-
gression [47], AIC is used to summarize the general signal-
to-noise-type of performance of four quantile regressions
estimated for each of the six models. The following quan-
tiles are used in order to have probes across a wide range
of the conditional distribution of the coordination delays:

τ = [0.25, 0.50, 0.75, 0.90]. (13)

It should be noted that neither censoring nor transfor-
mations are applied for the delays when estimated with
QR. Consequently, the predicted values may be also neg-
ative, which is theoretically impossible. As prediction is
not a goal, this limitation can be accepted.

The specific-to-general strategy is used also for formal
testing with two analytical dimensions. First, the nested
structure is exploited to test parameter restrictions be-
tween models. The testing is done by comparing (re-
stricted) Mj−1 against (unrestricted) Mj for 1 < j ≤ 6.
The procedure follows the standard (Wald’s) logic to com-
pare nested models [47]. In fact, also the test statistics are
delivered via F -like statistics [45]. Second, QR provides
also means to test whether the coefficients are equal for
a given Mj across the whole (13) or subsets thereof. For
instance, to evaluate whether the effect of WEEKEND
remains constant across the proxied conditional range of
the coordination delays, the twentieth coefficients from
{β̂τ1 , β̂τ2 , β̂τ3 , β̂τ4}j for the j:th model would be used to

test that β̂20jτ1 ' β̂20jτ2 ' β̂20jτ3 ' β̂20jτ4 . As it is reason-
able to speculate that the effect of the explanatory metrics
differ particularly at the tails, the coefficients in the fol-
lowing sets are used for the between-quantile testing:

S1 = { β̂τ1 , β̂τ2}j , (14)

S2 = { β̂τ1 , β̂τ2 , β̂τ3}j ,
S3 = { β̂τ1 , β̂τ2 , β̂τ3 , β̂τ4}j .

The bootstrap procedure available from the implemen-
tation used [48] is used to compute the statistical signif-
icance for the between-model tests. To accompany the
MacKinnon-White adjustment for the OLS estimates, the
same bootstrap procedure is used also for reporting the
statistical significance of the coefficients from the QR re-
gressions. Unfortunately, analogous procedure has not
been implemented for the between-quantile tests. The con-
ventional approach [45] is thus used instead.

Finally, the regression analysis is accompanied with a
brief classification experiment to further assess the gen-
eral performance. Following the existing bug tracking re-
search [35, 124], this experiment is conducted by split-
ting the coordination delays into low-delay and high-delay
groups according to median. Although this sample split-
ting is a good example of data manipulation that can be

avoided with quantile regression [46], it provides a sim-
ple additional assertion regarding the overall performance
across the six models. Classification accuracy is a suffi-
cient evaluation metric for this simple purpose. Estima-
tion is done with a readily available and well-known ran-
dom forest classifier [49, 56]. Ten-fold cross-validation is
used during training. Given that prediction of new data
is not a realistic scenario for the historical oss-security
case studied, testing is done with a randomly picked set
containing ten percent of the CVEs observed. The same
test set is used for all six classification models.

4. Results

The results are disseminated by first presenting a few
relevant descriptive statistics. A summary of the regres-
sion analysis follows. In addition, four computational
checks are presented about the statistical performance.

4.1. Descriptive Statistics

The sample contains n = 5, 780 identifiers once the ex-
clusion criteria in (2) is enforced (see Table 3). These were
discussed by about five hundred unique participants who
posted hyperlinks containing 4, 642 unique domains. The
mean and median delays were 77 and 15 days, respectively.
The values for (13) are 4, 15, 92, and 226 days. As can
be seen from the histogram in the outer plot of Fig. 7,
the delay distribution indeed has a long tail. This tail
contributes to the large standard deviation of 147 days.
Thus, there is a large majority group of CVEs that were
coordinated rapidly and a small but important group of
CVEs for which the coordination was significantly delayed.
For a few outlying CVEs, the coordination has taken even
over four years. To balance this remark, it can be noted
that about 10% of the cases observed attain a value zero,
meaning that these CVEs appeared in NVD during the
same day when these were requested on the mailing list.

Table 3: Sample Characteristics

Quantity Value

|A| = Number of CVEs 5,780

|P | = Number of participants 496

|D| = Number of domain names 4,642

As can be seen from the inner plot in Fig. 7, the trans-
formation function f(x) = log(x + 1) does not yield nor-
mally distributed delays, although the shape of the delay
distribution is still better suited for OLS regression af-
ter the transformation. To examine whether immediate
multicollinearity issues are also visible, Fig. 9 displays the
absolute correlation coefficients between all explanatory
variables. (As with the regression analysis, the transfor-
mation function is used also for the continuous variables
marked with the symbol C in Table 1.) The interpretation
is simple: the bigger a circle and the darker a color, the

13

Delay (days)

0 500 1000 1500 2000

Fr
eq

ue
nc

y

0

1000

2000

3000

4000

5000

log(delay + 1)

De
ns

ity

0.00

0.05

0.10

0.15

0.20

0 2 4 6

Figure 7: Coordination Delays

2008 2010 2012 2014 2016

5.4 2.3 54.5 192.1 94.9 86.5 47.2 46.2 95.6

Year

Mean delays (days)

De
lay

 (d
ay

s)

0

500

1000

1500

2000

0

1000

2008 2016

Frequency

Year

Figure 8: Annual Coordination Delays

stronger the correlation between any two metrics. Given
this simple visual decoding guide, there are two notable
correlations that warrant a multicollinearity concern.

The first is between MITREDEV and MSGSENT. The
correlation between these two metrics reflects the typical
“use this identifier” replies made by the MITRE affili-
ates. In other words, such replies tend to result in a lower
entropy for the messages referencing CVEs. The second
notable correlation is between INFDEG and MSGSLEN.
Also this correlation is logical: posting many hyperlinks
increases the length of the messages. Despite of these cor-
relations, the regression estimates do not change notably
when only MITREDEV and INFDEG (or, equivalently,
MSGSENT and MSGSLEN) are included in the models.
The same applies to the few visible correlations between
the CVSS and CWE metrics. For these reasons, the re-
sults reported in the subsequent section are based on the
original model specifications summarized in Table 1.

To examine the longitudinal variation, the outer plot in
Fig. 8 shows the delays across the period observed. This il-
lustration clearly shows that the delays started to increase
from 2010 onward, but the increases were mostly caused by

outlying CVEs. The arithmetic mean delays shown on the
upper x-axis indicate that the average annual delays have
been below one hundred days. The annual median delays
are all below 60 days. These averages align roughly with
the so-called grace periods (the time vendors are given to
patch their products before public release of information)
typically used in the security industry during vulnerabil-
ity disclosure. Although the lengths of these grace periods
vary, an upper limit of about three months seems to cap-
ture most explicitly reinforced policies [64, 90]. Finally, the
inner plot in Fig. 8 shows that the increasing delays and
the increasing variation corresponded with the increasing
amount of CVEs coordinated. The increased coordination
volume in turn corresponded with the increased number
of participants [95]. These longitudinal changes allow to
expect that the baseline model M1 explains a relatively
large share of the total variation in the delays. This ex-
pectation provides a good way to start the dissemination
of the results from the regression analysis.

4.2. Model Performance

The statistical performance is somewhat modest re-
gardless of the model. Analogous to interpreting effect
sizes [42], adjectives such as modest are subject to inter-
pretation, of course. Values R2 < 0.3 are neither atypical
in the vulnerability research domain [7] nor uncommon
in empirical software engineering experiments in general.
Such values are commonly seen also in social sciences, in-
cluding economics [43]. In this sense, the about 28% of the
total variation explained by the OLS model M6 indicates
modest but typical performance for regressions involving
human beings. This observation can be seen from Table 4,
which shows the adjusted coefficients of determination, the
AIC values, and the differences between the AIC values of
the consecutively estimated models. The latter two are
shown also for each of the four per-model QR regressions.

Four further points can be made about the performance.
First, as expected, the longitudinal control variables pro-
vide most of the explanatory power. When compared to
M1, the social network and communication metrics in-
crease the performance by about one percentage point ac-
cording to the OLS estimates. The infrastructure metrics
subsequently increase the performance by about three per-
centage points according to the adjusted R2 values. Sec-
ond, the conditional median (τ = 0.5) and the conditional
log-transformed mean (OLS) models indicate comparable
behavior in terms of ∆AIC. Third, the QR estimates in-
dicate that the longer the delays, the bigger the perfor-
mance gains from M2 and M3. Particularly when the tail
is probed with τ = 0.9, the social network, communication,
and infrastructure metrics reduce the AIC values substan-
tially. In contrast, when short delays are proxied with
τ = 0.25, these metrics do not bring performance gains.
Last: at best, there are only small improvements after M3,
and there are also cells with positive ∆AIC increments.

However, all but one of the consecutively estimated
nested models yield statistically significant rejections of

14

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch
Ap

ril
M

ay
Ju

ne
Ju

ly
Au

gu
st

Se
pte

m
be

r
Oc

to
be

r
No

ve
m

be
r

De
ce

m
be

r
W

EE
KE

ND
SO

CD
EG

M
IT

RE
DE

V
M

SG
SL

EN
M

SG
SE

NT
IN

FD
EG

NV
DR

EF
S

VU
LN

IN
F

BU
GS

RE
PO

S
SU

PP
OR

T
IM

PC
IM

PI
IM

PA
EX

PN
ET

EX
PC

PL
X

EX
PA

UT
H

CW
E-

26
4

CW
E-

11
9

CW
E-

79
CW

E-
20

CW
E-

20
0

CW
E-

39
9

CW
E-

18
9

CW
E-

35
2

CW
E-

89
CW

E-
31

0
CW

E-
59

CW
E-

22
CW

E-
94

CW
E-

28
7

CW
E-

12
5

2008
2009
2010
2011
2012
2013
2014
2015
2016

January
February

March
April
May

June
July

August
September

October
November
December

WEEKEND
SOCDEG

MITREDEV
MSGSLEN
MSGSENT

INFDEG
NVDREFS
VULNINF

BUGS
REPOS

SUPPORT
IMPC
IMPI

IMPA
EXPNET

EXPCPLX
EXPAUTH
CWE-264
CWE-119

CWE-79
CWE-20

CWE-200
CWE-399
CWE-189
CWE-352

CWE-89
CWE-310

CWE-59
CWE-22
CWE-94

CWE-287
CWE-125

Figure 9: Correlations Between Explanatory Metrics (absolute values of Spearman’s rank correlation coefficients)

Table 4: Model Performance

OLS QR

(mean) τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

Mk Adj. R2 AIC ∆AIC AIC ∆AIC AIC ∆AIC AIC ∆AIC AIC ∆AIC

M1 0.240 21841 – 64775 – 68490 – 73136 – 77920 –

M2 0.250 21774 -67 64772 -3 68472 -18 72956 -180 77032 -888

M3 0.276 21572 -202 64771 -1 68428 -44 72757 -199 76561 -471

M4 0.278 21563 -9 64776 +5 68426 -2 72740 -17 76544 -17

M5 0.277 21567 +4 64781 +5 68431 +5 72741 +1 76545 +1

M6 0.281 21552 -15 64796 +15 68433 +2 72721 -20 76504 -41

the between-model parameter restrictions. In other words,
95% of the hypotheses that the smaller (restricted) mod-
els would be adequate compared to the larger models are
rejected according to the bootstrapped computations. It
may also be that information criteria measures such as AIC
have problems in differentiating between models when the

overall performance is modest [43]. The turn to statistical
significance motivates to also take a look at the residuals
from the full M6 in the form of Fig. 10. The residuals
are rather randomly scattered across the x-axes only for
the conditional median regression. For τ = 0.25, there
is a ∩-shaped pattern. For τ = 0.75 and particularly for

15

-10 0 5 15

τ = 0.25

Predicted values

Re
sid

ua
ls

0

500

1000

1500

-20 20 60

τ = 0.5

Predicted values
Re

sid
ua

ls

0

500

1000

1500

0 100 300

τ = 0.75

Predicted values

Re
sid

ua
ls

0

500

1000

1500

0 400 800

τ = 0.9

Predicted values

Re
sid

ua
ls

-1000

-500

0

500

1000

Figure 10: Residuals and Fitted Values (QR, M6)

τ = 0.9, there exists a more visible linear heteroskedas-
ticity pattern; the longer the delays estimated, the larger
the residuals. It is beyond the scope of this paper to re-
view and evaluate how the QR-based inference performs
under the heteroskedasticity patterns observed. Neverthe-
less, it seems reasonable to prefer the conditional median
regressions and proceed with caution particularly when in-
terpreting the τ > 0.5 quantile regressions.

4.3. Regression Estimates

The regression estimates from the full unrestricted
model are shown in Fig 11. The accompanying Fig. 12
shows the results from the between-quantile tests. As
noted in the previous section, these tests as well as the
statistical significance of the coefficients should be inter-
preted tentatively. While keeping this point in mind, the
following enumeration summarizes the key observations.

• The effects of the longitudinal control metrics are con-
sistently strong. When compared to 2008, the in-
creased delays particularly in 2011, 2012, and 2016
are visible especially with respect to the τ = 0.9 quan-
tile regression. The same information is conveyed in
Fig. 8. There exists also monthly variation in the de-
lays. In addition to annual holidays, another reason
may relate to security conferences and related events
that tend to spike the public disclosure of new vul-
nerabilities [37]. In any case, it is simpler to interpret
the positive effect of WEEKEND. When compared to
other days of the week, the median delays have been
about two weeks longer for requests made on week-
ends. The effect of WEEKEND also increases at the
tails of the conditional delay distribution.

• The social network and communication metrics ex-
hibit strong effects. In particular, the assumption

(Intercept)

2009

2010

2011

2012

2013

2014

2015

2016
February

March
April

May

June
July

August

September

October
November

December

WEEKEND

SOCDEG

MITREDEV

MSGSLEN

MSGSENT

INFDEG

NVDREFS
VULNINF

BUGS

REPOS

SUPPORT

IMPC

IMPI

IMPA

EXPNET

EXPCPLX
EXPAUTH

CWE-264

CWE-119

CWE-79

CWE-20

CWE-200

CWE-399

CWE-189

CWE-352

CWE-89

CWE-310

OLS τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

-3.2

-0.1

1.8

3.0

2.4
2.0

1.4

1.4
2.5

0.8

0.5

0.2

0.5

0.2

0.3

0.1

0.4

0.5

0.4

0.2

0.5

1.0

-0.2
< -0.01

2.5

0.1

-0.6
< 0.01

-0.3

-0.1
< -0.01

< -0.01

-0.1

-0.1
< 0.01

< -0.01

< -0.01

-0.2

-0.2

-0.3

-0.2

-0.1

-0.4
< 0.01

-0.3

-0.4
< 0.01

-62.2

-0.2

3.3

7.6

5.9

2.9

1.8

1.8

9.1

3.1

2.4
0.9

2.3

2.7
1.3

0.7

3.0

4.5

2.4
1.5

2.1
1.5

-2.0

0.9

34.5

-1.0

-1.5

0.4

-1.5

-0.2

-0.2

0.4

-0.7

-0.4
< -0.01

< -0.01

-0.5

-0.6

-0.8

-0.5

-1.2
-1.0

-1.6

1.3

-0.3

-1.6

-0.5

-54.9

-3.2

13.8

48.1

18.6

15.5

4.1
1.9

46.0

20.9

10.1

4.0

11.6

4.0

6.5

3.9

8.1

14.4

11.4
5.0

13.7

19.0

1.1
0.3

34.4

4.1

-11.1
-0.4
-5.5

-2.2
-0.4

-1.1
-3.9

-0.9

-0.9

1.0
< -0.01

-4.4

-2.7

-7.4
-5.0

-3.3

-7.1
-0.2
-5.5

-7.6

0.2

78.7

-13.6

23.9

241.2
86.2

46.2

3.2

5.9

103.9

37.0

25.1

32.5

27.3

0.7

9.7

5.9

8.4

0.5

2.0

-13.3

42.8

148.9

-0.2

-14.1
-21.0

23.2

-36.9

4.7
-21.3

-6.0

3.7

-7.1
-7.8

-11.6

-2.3

6.7

4.1
-13.4

-7.6

-32.7

-6.9

-9.2

-17.4
-0.5

-25.6

-11.6

0.1

617.4

-23.9

43.6

437.6

148.6

86.0

28.5

88.9

156.4

53.2

4.5

0.2

1.5

-38.3

-32.2

-47.9

-40.8

-34.3

4.9

-62.3

63.3

372.2

-5.6

-45.3

-298.2

76.6

-56.1

-12.7
-29.3

-22.7
-14.3

-19.6

2.0

-10.5

-4.4
-2.9

12.8

-36.5

-16.3

-48.2

-13.7

1.2
-17.8

-13.0

-40.4

-29.2

9.8

Figure 11: Regression Coefficients (M6, darker blue values denote
p < 0.05, MacKinnon-White standard errors for the OLS regression
and bootstrapped standard errors for the quantile regressions)

16

True

False

False

False

False

True

True

False

False

False

True

False

True

False

True

False

False

False

True

False

False

False

True

True

False

False

True

False

True

True

True

False

True

True

True

True

False

True

False

False

True

False

True

False

False

True

False

False

False

False

False

True

True

False

False

False

False

False

True

False

True

False

False

False

False

False

False

True

False

True

False

False

True

False

True

True

True

True

True

True

True

True

False

True

False

True

True

False

True

False

False

True

False

False

False

False

False

False

False

False

False

False

False

False

True

False

False

False

False

False

False

False

False

True

False

False

False

False

False

False

False

True

False

True

True

True

False

True

False

True

False

True

True

False

True

False

False

True

2009

2010

2011

2012

2013

2014

2015

2016
February

March
April

May

June
July

August

September

October

November

December

WEEKEND

SOCDEG

MITREDEV

MSGSLEN

MSGSENT

INFDEG

NVDREFS

VULNINF

BUGS

REPOS

SUPPORT

IMPC

IMPI

IMPA

EXPNET

EXPCPLX

EXPAUTH

CWE-264

CWE-119

CWE-79

CWE-20

CWE-200

CWE-399

CWE-189

CWE-352

CWE-89

CWE-310

S1 S2 S3

Figure 12: Between-Quantile Tests (given the full unrestricted M6,
the cells show whether p ≥ 0.05 for testing the null hypotheses that
the slope coefficients are equal with respect to the sets in Eq. 14)

about “too many cooks” seem to hold well; the ef-
fect of log(SOCDEG+1) is large particularly for long
coordination delays. Also the communication surro-
gates log(MSGSLEN + 1) and log(MSGSENT + 1)
show large effects. The signs vary, however. Because
the coefficients are positive for τ ≤ 0.5 and negative
for τ ≥ 0.75, the prior theorization in Subsection 3.4.2
should not be as unequivocal as was presented.

• From the infrastructure metrics, the coefficients for
INFDEG, NVDREFS, and BUGS are statistically sig-
nificant for each regression. The coefficient magni-
tudes are also notable. If a CVE request was accom-
panied with a hyperlink to a bug tracking system, the
median delay was about five to six days shorter, for
instance. As was expected (see Subsection 3.4.3), the
signs are also negative for NVDREFS and BUGS but
positive for INFDEG. It seems that hyperlinks can
also increase the noise, which tends to increase the
CVE coordination delays.

• The CVSS and CWE metrics show diverging results.
On one hand, only three of the coefficients for the
CVSS metrics are statistically significant in the five
M6 regressions. The effect sizes are also small, and
mostly equal according to the between-quantile tests.
On the other hand, many of the CWE metrics attain
statistically significant coefficients with large magni-
tudes. All of the CWE metrics that are statistically
significant have negative signs. As these observations
apply also for the predominantly web-related weak-
nesses (CWE-79, CWE-89, and CWE-352; to some
extent, also CWE-20), it seems that mundane low-
profile vulnerabilities are generally coordinated faster.
As was discussed in Subsection 3.4.4, interpretation is
not easy, however. The difficulty of interpretation fur-
ther increases because some of the CWE metrics likely
proxy the effects of the CVSS metrics due to multi-
collinearity (see Fig. 9). All in all, it can be concluded
that the coordination delays vary also in terms of the
technical characteristics of the vulnerabilities coordi-
nated. As will be shown in the next section, perfor-
mance can be also slightly increased with additional
weaknesses, although the signals from the CVSS and
CWE metrics still remain somewhat weak.

4.4. Computational Checks

Four computational checks are made to assess the ro-
bustness of the conclusions. The first check relates to the
number of CWEs included; the model M6 includes the
ten most frequent CWEs in the sample, but there are 55
unique CWEs in total. The summary shown in Fig. 13
displays the performance when separate models are esti-
mated by adding 5, 10, 15, . . . , 55 weaknesses to the fifth
model specification. The case with ten weaknesses thus
equals M6. The OLS performance increases up to around
25 weaknesses. For the median QR regression, all of the

17

fifty-five CWEs seem to steadily reduce the AIC values.
The negative ∆AIC increments are also relatively large
compared to those in Table 4. These improvements should
not be exaggerated, however. The adjusted R2 values from
the OLS regressions still do not reach the 0.3 threshold,
for instance.

OLS

CWEs included

AI
C

5 10 15 20 25 30 35 40 45 50 55

21520

21530

21540

21550

21560

21570

A
dj

us
te

d
R

2

0.278

0.280

0.282

0.284

0.286

0.288

AIC
Adjusted R2

τ = 0.5

CWEs included

AI
C

5 15 25 35 45 55

68300

68350

68400

AIC

τ = 0.9

CWEs included

AI
C

5 15 25 35 45 55

76400

76450

76500
AIC

Figure 13: Model Performance with Varying Number of CWEs

The second check relates to the classification of low-
delay and high-delay groups (see Subsection 3.5). The
split according to median results in a roughly balanced
metric for classification: 2, 904 of the CVEs observed at-
tain a delay less than or equal to the median delay and
2, 876 a delay higher than the median delay of 15 days.
The accuracy of classifying these two groups is shown in
Table 5. The accuracy rates increase steadily up to the
fourth model and decrease thereafter. These classification
results agree with the regression results shown in Table 4.

Table 5: Classification Performance (median split)

Model

M1 M2 M3 M4 M5 M6

Accuracy 0.62 0.67 0.71 0.75 0.73 0.73

The third check is about the annual variation. In con-
trast to subsetting the explained metric, segmenting a
model matrix into subsets according to the conditioning
explanatory metrics is a sensible regression modeling ap-
proach [46]. Thus, to examine whether also the model per-
formance varies annually, all six models are estimated with
OLS in annual subsets, omitting the eight yearly dummy
variables present in the original model specifications. For
instance: if M̃1 denotes the first subset-model without the

Table 6: OLS Performance in Annual Subsets (adj. R2)

Subset Model

Year M̃1 M̃2 M̃3 M̃4 M̃5 M̃6

2008 0.10 0.32 0.40 0.40 0.40 0.40

2009 0.21 0.45 0.48 0.48 0.48 0.48

2010 0.11 0.15 0.20 0.21 0.22 0.22

2011 0.15 0.22 0.34 0.34 0.38 0.38

2012 0.28 0.31 0.32 0.33 0.34 0.34

2013 0.07 0.32 0.42 0.42 0.44 0.45

2014 0.23 0.22 0.25 0.25 0.25 0.26

2015 0.15 0.17 0.18 0.18 0.19 0.21

2016 0.03 0.05 0.16 0.16 0.16 0.20

k 13 17 23 26 29 39

2008 2010 2012 2014 2016

Percent of
coefficients

larger than or
equal to seven

in absolute value
0

25

50

75

100
M~ 6

τ = 0.5
β̂0 excluded

Figure 14: Large Effects in Annual Subsets (QR, M̃6, τ = 0.5)

0 20 40 60 80 100

λ

τ = 0.25
τ = 0.5
τ = 0.75
τ = 0.9

0

25

50

75

100

M6

β̂0 excluded

Percent of
coefficients

smaller than or
equal to 0.01

in absolute value

0 20 40 60 80 100

λ

τ = 0.25
τ = 0.5
τ = 0.75
τ = 0.9

0

25

50

75

100
M6

β̂0 excludedPercent of
coefficients

larger than or
equal to seven

in absolute value

Figure 15: QR Effects with LASSO (M6)

annual dummy variables, there are k = 21−8 = 13 param-
eters in the model and its regression coefficient vector. The
results from these subset OLS regressions are summarized
in Table 6. The table should be only read horizontally by
comparing values in a given row across the columns; the
different sample sizes in the annual subsets (see Fig. 8)
do not allow to make sound comparisons across the years.
Given this interpretation guide, the results are clear. For
the majority of years, there are no notable performance

18

gains after the model M̃3. Another way to look at the an-
nual variation is to check how well the large effect sizes of
the annual dummy variables (see Fig. 11) balance the ef-
fects of the other metrics. For this purpose, the median QR
regression for the subset model M̃6 can be briefly exam-
ined. Even when keeping in mind that the coefficients are
not directly comparable as some of the metrics have differ-
ent scales, the summary shown in Fig. 14 roughly tells that
the large effects are indeed pronounced during those years
when the CVE coordination was delayed. Given that the
majority of metrics show strong effects during these four
years, the annual dummy variables seem to control rela-
tively well the coefficient magnitudes reported in Fig. 11.

The fourth and final check is about (12). The four hun-
dred QR-LASSO regressions estimated are summarized in
Fig. 15 for M6. The upper plot indicates that even with
a modest regularization such as λ = 20, about a quar-
ter of the coefficients are close to zero. Given that a
week seems like a reasonably strong effect size with prac-
tical relevance, the lower plot indicates that the regular-
ization seems to stabilize around λ ≤ 40 for τ < 0.9.
For the τ = 0.9 regressions, which generally gather the
strongest effects (see Fig. 11), the applicable regulariza-
tion seems to continue further. For the conditional me-
dian QR-LASSO regressions, only eight coefficients are
larger than or equal to seven in absolute value at λ = 30.
These are: the annual dummy variables for 2011, 2012,
2013, and 2016, the monthly February dummy variable,
WEEKEND, SOCDEG, and NVDREFS. These belong to
the longitudinal control metric group, the group of social
network and communication metrics, and the infrastruc-
ture metric group. None of the CVSS and CWE metrics
pass this subjective threshold.

5. Discussion and Conclusions

The results presented allow to answer positively to each
three research questions RQ1, RQ2, and RQ3. If the an-
swers should be ordered in terms of importance of the cor-
responding statistical effects, the order would follow the
numbering of the questions. The remainder of this paper
summarizes the main findings, discusses the limitations,
and points out a couple of prolific but challenging research
paths for further work.

5.1. Main Findings

The main empirical findings can be summarized and the-
orized with the following five points.

1. The first point is clear: even though nearly fifty ex-
planatory metrics were considered, the statistical per-
formance was relatively modest for explaining the
CVE coordination delays. Less than one third of
the total variation in the delays is explained by the
OLS regression models estimated. The median quan-
tile regression results largely agree. Analogous results

were also obtained by classifying CVEs with a low-
delay and high-delay split according to median. The
adjusted coefficient of determination is not an ideal
statistic to make comparisons (especially when OLS
is not used), but it is still worth remarking that the
bug tracking research frequently attains values around
0.5 or even more [10, 26]. The modest performance
should not be interpreted as poor performance, how-
ever. Given the typical effect sizes seen in empiri-
cal software engineering research [42], some of the re-
gression coefficients and their standard errors indicate
consistent, accurate, and large effects upon the CVE
coordination delays.

2. The second point is likewise clear: most of the ex-
planatory power comes from metrics used to proxy
longitudinal variation. This result is not surprising.
In contrast, it would be surprising if a software engi-
neering study would not reveal longitudinal effects in
a period covering almost a decade. The result is also
familiar from comparable studies about vulnerability
coordination [88] and time series aspects of vulnera-
bility archiving [37, 106]. If avoiding delays is impor-
tant, the results can be also used to conjecture that
“do not request CVEs during weekends”. The lon-
gitudinal variation implies a further important take-
away message. Given that the efficiency of software
engineering coordination is always dependent also on
the volume of items being coordinated, it seems that
the oss-security case studied reflects the larger co-
ordination issues that have gained publicity in recent
years. By assumption, delays for CVE assignments
are largely explained by the mere amount of these
vulnerability identifiers requested. By implication, a
good theoretical metric for prediction would simply be
the amount of identifiers in an abstract CVE backlog.

3. The third point is about noise that tends to lengthen
the coordination delays. Both the social network
(RQ1) and the infrastructure (RQ2) effects mani-
fest themselves through different abstractions for such
noise. In terms of the former, noise increases when
there are “too many cooks” posting emails with high-
entropy content. Both factors tend to increase also
the CVE coordination delays. In the terms of the
latter, noise increases with emails containing multiple
hyperlinks to distinct tracking infrastructures within
which the vulnerabilities have already been discussed
or to which these have already been archived.

4. The fourth point relates to prerequisite constraints.
When satisfied, these constraints tend to balance the
positive effect of noise upon the delays by shortening
the coordination delays to some extent. For instance,
traces to bug tracking systems show a small but visi-
ble negative effect. The same applies regarding traces
about the information sources regularly polled by the
parties involved in the CVE tracking. For develop-

19

ers requesting CVE identifiers for their projects, the
practical takeaway message is conveyed by an advice
such as: “write good bug reports to backup CVE re-
quests”.

5. The fifth point relates to the technical characteristics
of the vulnerabilities coordinated. The social network,
communication, and infrastructure metrics (RQ1 and
RQ2) explain a few percentage points of the total
variation in the delays. Given roughly comparable
observations about the impact of social interactions
on software quality [8], these effects seem reasonable.
Although the results are somewhat mixed, the tech-
nical characteristics (RQ3) do not generally explain
the delays well. When backtracking to Fig. 2, the ex-
planation may be simple: for participants who have
assigned nearly thousand CVEs via oss-security

alone, it may be irrelevant whether a request is about
XSS or about buffer overflows. As there are still some
signals about the statistical relevance of the CVSS
and CWE metrics, another plausible theoretical ex-
planation may be that it is mentally easier to handle
vulnerabilities that fall explicitly into the scopes of
some particular CWEs. Given the common problem
of overloading a single vulnerability report with mul-
tiple distinct (security) issues [19], the final practical
takeaway message could be that: “try to avoid ambi-
guities when requesting CVE identifiers”.

All in all, software vulnerability coordination can be
concluded to exhibit typical characteristics of software en-
gineering coordination in general. Dependencies, social
relations, communication, and technical software elements
are all present. These are also the factors that with vary-
ing degrees correlate with different coordination problems,
including the CVE coordination delays observed.

5.2. Threats to Validity

Some limitations must be mentioned. According to a
common taxonomy, the validity of the results reported are
potentially exposed to threats to external validity, con-
struct validity, and internal validity [114]. The discussion
that follows is structured according to this taxonomy.

5.2.1. External Validity

External validity relates to generalizability. Insofar
as CVE assignments are considered, oss-security is a
unique case that was limited to one particular way of as-
signing CVE identifiers during one particular historical pe-
riod. Thus, neither the results nor the conclusions neces-
sarily apply to other ways to assign CVEs, including the
contemporary practices. While acknowledging this limita-
tion, it is important to underline that analogous threats
to external validity presumably continue to constrain also
further research on vulnerability coordination.

On one hand, research in this domain is dependent on
the openness (or lack thereof) of the internal tracking in-
frastructures used by MITRE and related parties. While

keeping in mind the sensitivity of the information tracked,
one question for practitioners to consider is whether data
could be partially opened by using embargo periods akin
to the grace periods used during vulnerability disclosure.
The so-called distributed weakness filing project is a good
step toward this direction [79]. On the other hand, empir-
ical research is more generally constrained by the lack of
robust open data on the software engineering activities re-
lated to vulnerability coordination. The point applies also
in the open source context. For instance, invitation-only
coordination media [80] and other types of information
hiding restrict the possibility of continuing the work [2]
on security-related integration work done in open source
projects. These constraints imply that further software
engineering research in the domain is presumably as much
about “reverse engineering” as it is about software and
security engineering processes and coordination practices.

5.2.2. Construct Validity

The reverse engineering tenet is visible also in terms of
construct validity. This type of validity relates to ques-
tions about how well the metrics used and the questions
asked reflect the theoretical ideas and research goals. The
most notable construct validity threat is directly related
to the operationalization in (1). Because CVE requests
were not explicitly modeled due to data limitations, even
with the restriction in (2), it is impossible to say whether
a CVE that appeared on the list was already disseminated
to MITRE via other channels. While the delays observed
should still provide a reasonable approximation, it is per-
haps more important to note that the metric used provides
only a limited viewpoint on the coordination. Unfortu-
nately, the lack of open data makes it difficult to study
more nuanced coordination aspects such as task alloca-
tion and work parallelism related to CVE coordination.
Bayesian methods and expert opinion [40, 41] may help at
resolving this constraint and related limitations.

Also some of the explanatory metrics are exposed to
modest construct validity threats. Without attempting to
participate in the current debates [6, 40, 119], it is reason-
able to assert that the CVSS and CWE data from NVD is
robust enough for the purposes of this paper. Construct
validity is a bigger issue for the few custom metrics derived.
Most of the social network and communication metrics
have been successfully used previously [8, 12]. The op-
erationalization was also deliberately restricted to metrics
that are easy to compute and interpret. Therefore, the ap-
proximations used for the infrastructure metrics are more
noteworthy. In particular, the regular expressions in Ta-
ble 2 are inadequate for explicitly linking different tracking
infrastructures together. While a subset of the CVEs dis-
cussed on oss-security could be explicitly linked to bug
tracking and related systems via repository mining tech-
niques [27, 72, 86], the historical period studied largely
prevents such linking because many of the trackers are
nonexistent today (see Subsection 3.4.3). In this sense,
the approximations are a necessary evil for this paper.

20

5.2.3. Internal Validity

Internal validity relates to questions about computa-
tional and statistical biases particularly when causal re-
lations are postulated. Three internal validity threats are
worth pointing out. First, even when causal inference is
not attempted, the data availability issues translate to po-
tential problems in terms of omitted variables and con-
founding factors. Second, not all options were examined
for thoroughly assessing the reasons behind the modest
performance. For instance, clustering could be used in
conjunction with regression analysis [9, 90]. Another op-
tion might be to examine different CWE-based ontolo-
gies [111, 117]. The third and final threat to internal va-
lidity relates to the statistical issues reported.

As is typical to software engineering datasets [30, 44],
non-normality, heteroskedasticity, and multicollinearity
were all present with varying degrees of severity. Further
work is required to examine these issues with respect to
generally more robust but still not invulnerable techniques
such as quantile regression and LASSO. Quantile regres-
sion addresses the distributional assumption, while the
heteroskedasticity patterns observed (see Fig. 10) would
be easy to explicitly adjust for in further work. The mul-
ticollinearity issue is more interesting. Given that the
CVSS (v. 2) metrics are alone challenging to adequately
handle in empirical research due to the various plausible
combinations between the variables, further work is also
required on variable selection in the software engineer-
ing context. The potential solutions should be system-
atic and algorithmic to ensure consistency of theoretical
arguments—otherwise the so-called researcher bias is in-
evitable for regression analysis with interacting variables.
By using combinations of CVSS metrics, combinations of
CWE metrics, combinations of CVSS and CWE metrics,
and other combinations, it would be possible to assert al-
most an unlimited amount of theoretical propositions.

Finally, the real issue is more subtle than what might
be remedied by merely changing a statistical modeling ap-
proach. There have been historical delays also for CVSS
assignments [88], there are delays between reporting bugs
in tracking systems, fixing these in version control systems,
and integrating the fixes to releases [26, 83], and so forth.
All such delays may affect also CVE coordination. While
statistical modeling is one thing, analytical understanding
of the complexities involved is another.

5.3. Moving Forward

The limitations discussed prompt a couple of points
about potential means for moving forward. First, it is
sensible to recommend a closer marriage between the soft-
ware vulnerability and bug tracking research domains.
The intersection between the domains is large but sel-
dom explicitly articulated. Such a marriage might also
remedy the somewhat modest statistical performance re-
ported. In this regard, a sensible conclusion is that the
information used was too limited for capturing the truly

relevant elements affecting the particular type of coordina-
tion observed. When looking at the bug tracking research
domain, some of the frequently incorporated dimensions
(such as the reputation of bug reporters and the text min-
ing of bug reports) seem prolific for pursuing further also in
the context of software vulnerabilities. These and related
dimensions are relevant for studying also more contempo-
rary questions such as those related to bug bounties.

Second, a marriage between two domains alone seems
insufficient for making more practical advances. Mining
of software repositories frequently provides valuable in-
sights about software engineering coordination through
case studies. Yet, as was briefly demonstrated, the practi-
cal problem is that there are hundreds (if not thousands) of
relevant repositories to mine. For advances with practical
relevance, affairs are required also with other computer sci-
ence domains such as information retrieval and web crawl-
ing. If one is to believe the current “mega trends”, maybe
some day, perhaps in a galaxy far away, also the coordina-
tion of abstract identifiers could be done by robots.

References

[1] Ablon, L. and Bogart, A. (2017). Zero Days, Thousands of
Nights: The Life and Times of Zero-Day Vulnerabilities and Their
Exploits. RAND Corporation, Santa Monica. Available online
in September 2017: https://www.rand.org/content/dam/rand/

pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf.
[2] Adams, B., Kavanagh, R., Hassan, A. E., and German, D. M.

(2016). An Empirical Study of Integration Activities in Distribu-
tions of Open Source Software. Empirical Software Engineering,
21(3):960–1001.

[3] Alhamzawi, R., Yu, K., and Benoit, D. F. (2012). Bayesian
Adaptive Lasso Quantile Regression. Statistical Modelling,
12(3):279–297.

[4] Allodi, L. (2017). Economic Factors of Vulnerability Trade and
Exploitation: Empirical Evidence from a Prominent Russian Cy-
bercrime Market. In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS 2017), pages 1483–
1499, Dallas. ACM.

[5] Allodi, L., Biagioni, S., Crispo, B., Labunets, K., Massacci, F.,
and Santos, W. (2017). Estimating the Assessment Difficulty of
CVSS Environmental Metrics: An Experiment. In Dang, T. K.,
Wagner, R., Küng, J., Thoai, N., Takizawa, M., and Neufhold,
E. J., editors, Proceedings of the International Conference on Fu-
ture Data and Security Engineering (FDSE 2017), Lecture Notes
in Computer Science (Volume 10646), pages 23–39. Springer.

[6] Allodi, L. and Massacci, F. (2014). Comparing Vulnerability
Severity and Exploits Using Case-Control Studies. ACM Trans-
actions on Information and System Security, 17(1):1:1–1:20.

[7] Arora, A., Forman, C., Nandkumar, A., and Telang, R. (2010).
Competition and Patching of Security Vulnerabilities: An Empir-
ical Analysis. Information Economics and Policy, 22(2):164–177.

[8] Bettenburg, N. and Hassan, A. E. (2013). Studying the Impact
of Social Interactions on Software Quality. Empirical Software
Engineering, 18(2):375–431.

[9] Bettenburg, N., Nagappan, M., and Hassan, A. E. (2014). To-
wards Improving Statistical Modeling of Software Engineering
Data: Think Locally, Act Globally! Empirical Software Engi-
neering, 20(2):294–335.

[10] Bhattacharya, P. and Neamtiu, I. (2011). Bug-Fix Time Predic-
tion Models: Can We Do Better? In Proceedings of the 8th Work-
ing Conference on Mining Software Repositories (MSR 2011),
pages 207–210, Waikiki. ACM.

21

https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf

[11] Bilge, L. and Dumitras, T. (2012). Before We Knew It: An
Empirical Study of Zero-Day Attacks in the Real World. In Pro-
ceedings of the 2012 ACM Conference on Computer and Commu-
nications Security (CCS 2012), pages 833–844, Raleigh. ACM.

[12] Bird, C. (2011). Sociotechnical Coordination and Collaboration
in Open Source Software. In Proceedings of the 2011 27th IEEE
International Conference on Software Maintenance (ICSM 2011),
pages 568–573, Williamsburg. IEEE.

[13] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swami-
nathan, A. (2006). Mining Email Social Networks. In Proceedings
of the 2006 International Workshop on Mining Software Reposi-
tories (MSR 2006), pages 137–143, Shanghai. ACM.

[14] Blincoe, K., Valetto, G., and Damian, D. (2015). Facilitating
Coordination between Software Developers: A Study and Tech-
niques for Timely and Efficient Recommendations. IEEE Trans-
actions on Software Engineering, 41(10):969–985.

[15] Bozorgi, M., Saul, L. K., Savage, S., and Voelker, G. M. (2010).
Beyond Heuristics: Learning to Classify Vulnerabilities and Pre-
dict Exploits. In Proceedings of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(KDD 2010), pages 105–114, London. ACM.

[16] Cetin, O., Gañán, C., Korczyński, M., and van Eeten, M.
(2017). Make Notifications Great Again: Learning How to No-
tify in the Age of Large-Scale Vulnerability Scanning. In Pro-
ceedings of the 16th Workshop on the Economics of Information
Security (WEIS 2017), San Diego. Available online in January
2018: http://weis2017.econinfosec.org/wp-content/uploads/

sites/3/2017/05/WEIS_2017_paper_17.pdf.
[17] Chia-Yen Lee, B.-S. C. (2017). Mutually-Exclusive-and-

Collectively-Exhaustive Feature Selection Scheme. Applied Soft
Computing, 68:961–971.

[18] Christen, P. (2012). Data Matching: Concepts and Techniques
for Record Linkage, Entity Resolution, and Duplicate Detection.
Springer, Berlin.

[19] Christey, S. and Martin, B. (2013). Buying Into the
Bias: Why Vulnerability Statistics Suck. In Presenta-
tion at Black Hat 2013, Las Vegas. available online
in January 2017: https://media.blackhat.com/us-13/

US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability\

-Statistics-Suck-Slides.pdf.
[20] Christey, S. and Wysopal, C. (2002). Responsible

Vulnerability Disclosure Process. Internet Engineering
Task Force (IETF), INTERNET-DRAFT, available on-
line in December 2017: https://tools.ietf.org/html/

draft-christey-wysopal-vuln-disclosure-00.
[21] Conaldi, G. and Lomi, A. (2013). The Dual Network Structure

of Organizational Problem Solving: A Case Study on Open Source
Software Development. Social Networks, 35(2):237–250.

[22] Conaldi, G., Lomi, A., and Tonellato, M. (2012). Dynamic
Models of Affiliation and the Network Structure of Problem Solv-
ing in Open Source Software Projects. Organizational Research
Methods, 15(3):385–412.

[23] Conway, M. E. (1968). How Do Committees Invent? Datama-
tion, 14(5):28–31.

[24] Crowston, K. and Howison, J. (2006). Hierarchy and Central-
ization in Free and Open Source Software Team Communications.
Knowledge, Technology & Policy, 18(4):65–85.

[25] Crowston, K. and Shamshurin, I. (2017). Core-Periphery Com-
munication and the Success of Free/Libre Open Source Soft-
ware Projects. Journal of Internet Services and Applications,
8(10):1–11.

[26] da Costa, D. A., McIntosh, S., Kulesza, U., Hassan, A. E., and
Abebe, S. L. (2018). An Empirical Study of the Integration Time
of Fixed Issues. Empirical Software Engineering, 23(1):334–383.

[27] Dashevskyi, S., Brucker, A. D., and Massacci, F. (2019). A
Screening Test for Disclosed Vulnerabilities in FOSS Components.
IEEE Transactions on Software Engineering, 45(10):945–966.

[28] Dehghani, M., Asadpour, M., and Shakery, A. (2012). An
Evolutionary-Based Method for Reconstructing Conversation
Threads in Email Corpora. In Proceedings of the IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), pages 1132–1137, Istanbul. IEEE.

[29] Eyolfson, J., Tan, L., and Lam, P. (2011). Do Time of Day and
Developer Experience Affect Commit Bugginess? In Proceedings
of the 8th Working Conference on Mining Software Repositories
(MSR 2011), pages 153–162, Honolulu. ACM.

[30] Fenton, N. E. and Neil, M. (1999). A Critique of Software Defect
Prediction Models. IEEE Transactions on Software Engineering,
25(5):675–689.

[31] FIRST (2007). A Complete Guide to the Common Vulnerability
Scoring System Version 2.0, FIRST.ORG. Available online in June
2015: https://www.first.org/cvss/cvss-v2-guide.pdf.

[32] Giacalone, M., Panarello, D., and Mattera, R. (2017). Mul-
ticollinearity in Regression: An Efficiency Comparison Between
Lp-Norm and Least Squares Estimators. Quality & Quantity,
52(4):1831–1859.

[33] Goseva-Popstojanova, K. and Perhinschi, A. (2015). On the Ca-
pability of Static Code Analysis to Detect Security Vulnerabilities.
Information and Software Technology, 68:17–33.

[34] Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., and van
Deursen, A. (2013). Communication in Open Source Software
Development Mailing List. In Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR 2013), pages
277–286, San Francisco. IEEE.

[35] Habayeb, M., Murtaza, S. S., Miranskyy, A., and Bener, A. B.
(2018). On the Use of Hidden Markov Model to Predict the
Time to Fix Bugs. IEEE Transactions on Software Engineering,
44(12):1224–1244.

[36] Howison, J. and Crowston, K. (2014). Collaboration Through
Open Superposition: A Theory of the Open Source Way. MIS
Quarterly, 38(1):29–50.

[37] Joh, H. and Malaiya, Y. K. (2017). Periodicity in Software
Vulnerability Discovery, Patching and Exploitation. International
Journal of Information Security, 16(6):673–690.

[38] Johnson, P. and Ekstedt, M. (2016). The Tarpit – A General
Theory of Software Engineering. Information and Software Tech-
nology, 70:181–203.

[39] Johnson, P., Gorton, D., Langerström, R., and Ekstedt,
M. (2016). Time Between Vulnerability Disclosures: A Mea-
sure of Software Product Vulnerability. Computers & Security,
62:278–295.

[40] Johnson, P., Lagerström, R., Ekstedt, M., and Franke, U.
(2017). Can the Common Vulnerability Scoring System be
Trusted? A Bayesian Analysis. IEEE Transactions on Depend-
able and Secure Computing, 15(6):1002–1015.

[41] Johnston, R., Sarkani, S., Mazzuchi, T., Holzer, T., and
Eveleigh, T. (2018). Multivariate Models Using MCMCBayes for
Web-Browser Vulnerability Discovery. Reliability Engineering &
System Safety, 176:52–61.

[42] Kampenes, V. B., Dyb̊a, T., Hannay, J. E., and Sjøberg, D. I.
(2008). A Systematic Review of Effect Size in Software Engineer-
ing Experiments. Information and Software Technology, 49(11–
12):1073–1086.

[43] Karlsson, P. S., Behrenz, L., and Shukur, G. (2019). Perfor-
mance of Model Selection Criteria When Variables are Ill Condi-
tioned. Computational Economics, 54:77–98.

[44] Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brere-
ton, P., Charters, S., Gibbs, S., and Pohthong, A. (2017). Robust
Statistical Methods for Empirical Software Engineering. Empiri-
cal Software Engineering, 22(2):579–630.

[45] Koenker, R. and Bassett, G. (1982). Robust Tests for Het-
eroscedasticity Based on Regression Quantiles. Econometrica,
50(1):43–61.

[46] Koenker, R. and Hallock, K. F. (2001). Quantile Regression.
Journal of Economic Perspectives, 15(4):143–156.

[47] Koenker, R. and Machado, J. A. F. (1999). Goodness of Fit
and Related Inference Processes for Quantile Regression. Journal
of the American Statistical Association, 94(448):1296–1310.

[48] Koenker, R., Portnoy, S., Ng, P. T., Zeileis, A., Grosjean,
P., and Ripley, B. D. (2018). quantreg: Quantile Regression.
R package version 5.3.5, available online in April 2018: https:

//cran.r-project.org/web/packages/quantreg/index.html.
[49] Kuhn, M. (2008). Building Predictive Models in R Using the

22

http://weis2017.econinfosec.org/wp-content/uploads/sites/3/2017/05/WEIS_2017_paper_17.pdf
http://weis2017.econinfosec.org/wp-content/uploads/sites/3/2017/05/WEIS_2017_paper_17.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability\-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability\-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability\-Statistics-Suck-Slides.pdf
https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://www.first.org/cvss/cvss-v2-guide.pdf
https://cran.r-project.org/web/packages/quantreg/index.html
https://cran.r-project.org/web/packages/quantreg/index.html

caret Package. Journal of Statistical Software, 28(5):1–26.
[50] Kuk, G. (2006). Strategic Interaction and Knowledge Shar-

ing in the KDE Developer Mailing List. Management Science,
52(7):1031–1042.

[51] Kula, R. G., Fushida, K., Kawaguchi, S., and Iida, H. (2010).
Analysis of Bug Fixing Processes Using Program Slicing Metrics.
In Babar, M. A., Vierimaa, M., and Oivo, M., editors, Proceedings
of the International Conference on Product Focused Software Pro-
cess Improvement (PROFES 2010), Lecture Notes in Computer
Science (Volume 6156), pages 32–46, Limerick. Springer.

[52] Laszka, A., Zhao, M., and Grossklags, J. (2016). Banishing
Misaligned Incentives for Validating Reports in Bug-Bounty Plat-
forms. In Askoxylakis, I., Ioannidis, S., Katsikas, S., and Meadows,
C., editors, Proceedings of the European Symposium on Research
in Computer Security (ESORICS 2016), Lecture Notes in Com-
puter Science (Volume 9879), pages 161–178, Heraklion. Springer.

[53] Lee, G., Espinosa, J. A., and DeLone, W. H. (2013). Task Envi-
ronment Complexity, Global Team Dispersion, Process Capabili-
ties, and Coordination in Software Development. IEEE Transac-
tions on Software Engineering, 39(12):1753–1771.

[54] Levenshtein, V. I. (1966). Binary Codes Capable of Correct-
ing Deletions, Insertions, and Reversals. Soviet Physics-Doklady,
10(8):707–710.

[55] Leyden, J. (2017). Most Vulnerabilities First Blabbed About
Online or on the Dark Web: Official Bug Notice? Sure, but not
Before I Get Cred and LOLs. The Register. Available online in De-
cember 2017: http://www.theregister.co.uk/2017/06/08/vuln_
disclosure_lag/.

[56] Liaw, A. and Wiener, M. (2002). Classification and Regression
by randomForest. R News, 2(3):18–22.

[57] Licorish, S. A. and MacDonell, S. G. (2014). Understanding the
Attitudes, Knowledge Sharing Behaviors and Task Performance of
Core Developers: A Longitudinal Study. Information and Soft-
ware Technology, 56(12):1578–1596.

[58] Linares-Vásquez, M., Bavota, G., and Escobar-Velásquez, C.
(2017). An Empirical Study on Android-Related Vulnerabilities.
In IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR 2017), pages 1–13, Buenos Aires. IEEE.

[59] Lubarski, P. and Morzy, M. (2012). Measuring the Importance
of Users in a Social Network Based on Email Communication Pat-
terns. In Proceedings of the IEEE/ACM International Conference
on Advances in Social Network Analysis and Mining (ASONAM
2012), pages 86–90, Istanbul. IEEE.

[60] Lütkepohl, H. (2007). General-to-Specific or Specific-to-General
Modelling? An Opinion on Current Econometric Terminology.
Journal of Econometrics, 136(1):319–324.

[61] MacKinnon, J. G. and White, H. (1985). Some
Heteroskedasticity-Consistent Covariance Matrix Estimators with
Improved Finite Sample Properties. Journal of Econometrics,
29(3):305–325.

[62] Malone, T. W. and Crowston, K. (1994). The Interdisciplinary
Study of Coordination. ACM Computing Surveys, 26(1):87–119.

[63] McChesney, I. R. (1997). Effective Coordination in the Software
Process – Historical Perspectives and Future Directions. Software
Quality Journal, 6(3):235–246.

[64] McQueen, M. A., McQueen, T. A., Boyer, W. F., and Chaf-
fin, M. R. (2009). Empirical Estimates and Observations of 0Day
Vulnerabilities. In Proceedings of the 42nd Hawaii International
Conference on System Sciences (HICSS 2009), pages 1–12, Hon-
olulu. IEEE.

[65] Meneely, A. and Williams, L. (2010). Strengthening the Empiri-
cal Analysis of the Relationship Between Linus’ Law and Software
Security. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM 2010), pages 9:1–9:10, Bolzano-Bozen. ACM.

[66] MITRE (2015a). CVE-ID Syntax Change. Available online
in December 2017: https://cve.mitre.org/cve/identifiers/

syntaxchange.html.
[67] MITRE (2015b). Frequently Asked Questions. Available online

in December 2017: https://cve.mitre.org/about/faqs.html.
[68] MITRE (2015c). Please welcome Kurt Seifried to the CVE Edi-

torial Board. Appeared originally in cve-editorial-board-list. Avail-

able online in September 2016: https://cve.mitre.org/data/

board/archives/2015-11/msg00002.html.
[69] MITRE (2018a). Common Weaknesses Enumeration. Available

online in January 2018: http://cwe.mitre.org/.
[70] MITRE (2018b). CWE VIEW: Weaknesses Originally Used

by NVD from 2008 to 2016. Available online in January 2018:
http://cwe.mitre.org/data/definitions/635.html.

[71] Ngamkajornwiwat, K., Zhang, D., Koru, A. G., Zhou, L., and
Nolker, R. (2008). An Exploratory Study on the Evolution of
OSS Developer Communities. In Proceedings of the 41st Annual
Hawaii International Conference on System Sciences (HICSS
2008), pages 305–315, Waikoloa. IEEE.

[72] Nguyen, V. H. and Massacci, F. (2013). The (Un)Reliability of
NVD Vulnerability Versions Data: An Empirical Experiment on
Google Chrome Vulnerabilities. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communi-
cations Security (ASIACCS 2013), pages 493–498. ACM.

[73] Nia, R., Bird, C., Devanbu, P., and Filkov, V. (2010). Validity of
Network Analyses in Open Source Projects. In Proceedings of the
7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), pages 201–209, Cape Town. IEEE.

[74] NIST (2017). NVD Data Feed and Product Integration. Na-
tional Institute of Standards and Technology (NIST), Annually
Archived CVE Vulnerability Feeds: Security Related Software
Flaws, NVD/CVE XML Feed with CVSS and CPE Mappings
(Version 2.0). Retrieved in 23 September 2017 from: https:

//nvd.nist.gov/download.cfm.
[75] NIST (2018). Common Vulnerability Scoring System Calcula-

tor: Version 2 – CVE-2017-5754. National Institute of Standards
and Technology (NIST), Available online in January 2018:
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator?

name=CVE-2017-5754&vector=(AV:L/AC:M/Au:N/C:C/I:N/A:N).
[76] Openwall (2008). CVE request: mantisbt <1.1.4: RCE.

Available online in January 2018: http://openwall.com/lists/

oss-security/2008/10/19/1.
[77] Openwall (2016a). Archive of oss-security Mailing List. Avail-

able online in September 2016: http://www.openwall.com/lists/
oss-security/.

[78] Openwall (2016b). Fwd: CVE request - samsumg android phone
SVE-2016-6244 Possible Privilege Escalation in telecom. Avail-
able online in September 2016: http://www.openwall.com/lists/
oss-security/2016/08/05/1.

[79] Openwall (2017a). MITRE is adding data intake to its CVE
ID process. Available online in December 2017: http://www.

openwall.com/lists/oss-security/2017/02/09/7.
[80] Openwall (2017b). Re: linux-distros subscription. Avail-

able online in December 2017: http://www.openwall.com/lists/

oss-security/2017/01/15/1.
[81] Paasivaara, M. and Lassenius, C. (2003). Collabora-

tion Practices in Global Inter-Organizational Software Develop-
ment Projects. Software Process Improvement and Practice,
8(4):183–199.

[82] Parraguez, P., Eppinger, S. D., and Maier, A. M. (2015). In-
formation Flow Through Stages of Complex Engineering Design
Projects: A Dynamic Network Analysis Approach. IEEE Trans-
actions on Engineering Management, 62(4):604–617.

[83] Perez, G. R., Robles, G., and Barahona, J. M. G. (2017). How
Much Time Did It Take to Notify a Bug? Two Case Studies:
ElasticSearch and Nova. In Proceedings of the IEEE/ACM 8th
Workshop on Emerging Trends in Software Metrics (WETSoM
2017), pages 29–35, Buenos Aires. IEEE.

[84] Poo-Caamaño, G., Knauss, E., Singer, L., and German, D. M.
(2017). Herding Cats in a FOSS Ecosystem: A Tale of Commu-
nication and Coordination for Release Management. Journal of
Internet Services and Applications, 8(1):1–24.

[85] Ring, T. (2015). White Hats Versus Vendors: The Fight Goes
On. Computer Fraud & Security, (10):12–17.

[86] Romo, B. A., Capiluppi, A., and Hall, T. (2014). Filling the
Gaps of Development Logs and Bug Issue Data. In Proceedings of
The International Symposium on Open Collaboration (OpenSym
2014), pages 1–4, Berlin. ACM.

23

http://www.theregister.co.uk/2017/06/08/vuln_disclosure_lag/
http://www.theregister.co.uk/2017/06/08/vuln_disclosure_lag/
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://cve.mitre.org/cve/identifiers/syntaxchange.html
https://cve.mitre.org/about/faqs.html
https://cve.mitre.org/data/board/archives/2015-11/msg00002.html
https://cve.mitre.org/data/board/archives/2015-11/msg00002.html
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/635.html
https://nvd.nist.gov/download.cfm
https://nvd.nist.gov/download.cfm
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator?name=CVE-2017-5754&vector=(AV:L/AC:M/Au:N/C:C/I:N/A:N)
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator?name=CVE-2017-5754&vector=(AV:L/AC:M/Au:N/C:C/I:N/A:N)
http://openwall.com/lists/oss-security/2008/10/19/1
http://openwall.com/lists/oss-security/2008/10/19/1
http://www.openwall.com/lists/oss-security/
http://www.openwall.com/lists/oss-security/
http://www.openwall.com/lists/oss-security/2016/08/05/1
http://www.openwall.com/lists/oss-security/2016/08/05/1
http://www.openwall.com/lists/oss-security/2017/02/09/7
http://www.openwall.com/lists/oss-security/2017/02/09/7
http://www.openwall.com/lists/oss-security/2017/01/15/1
http://www.openwall.com/lists/oss-security/2017/01/15/1

[87] Ruohonen, J. (2017). Classifying Web Exploits with Topic
Modeling. In Proceedings of the 28th International Workshop on
Database and Expert Systems Applications (DEXA 2017), pages
93–97, Lyon. IEEE.

[88] Ruohonen, J. (2019). A Look at the Time Delays in CVSS
Vulnerability Scoring. Applied Computing and Informatics,
15(2):129–135.

[89] Ruohonen, J. and Allodi, L. (2018). A Bug Bounty Perspec-
tive on the Disclosure of Web Vulnerabilities. In Proceedings
of the 17th Annual Workshop on the Economics of Information
Security (WEIS 2018), pages 1–14, Innsbruck. Available online
in June 2019: https://weis2018.econinfosec.org/wp-content/

uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf.
[90] Ruohonen, J., Holvitie, J., Hyrynsalmi, S., and Leppänen, V.

(2016a). Exploring the Clustering of Software Vulnerability Dis-
closure Notifications Across Software Vendors. In Proceedings of
the 13th ACS/IEEE International Conference on Computer Sys-
tems and Applications (AICCSA 2016), pages 1–8, Agadir. IEEE.

[91] Ruohonen, J., Hyrynsalmi, S., and Leppänen, V. (2015). The
Sigmoidal Growth of Operating System Security Vulnerabilities:
An Empirical Revisit. Computers & Security, 55:1–20.

[92] Ruohonen, J., Hyrynsalmi, S., and Leppänen, V. (2016b). Trad-
ing Exploits Online: A Preliminary Case Study. In Proceedings
of the IEEE Tenth International Conference on Research Chal-
lenges in Information Science (RCIS 2016), pages 1–12, Greno-
ble. IEEE.

[93] Ruohonen, J., Hyrynsalmi, S., and Leppänen, V. (2017a). Mod-
eling the Delivery of Security Advisories and CVEs. Computer
Science and Information Systems, 14(2):537–555.

[94] Ruohonen, J. and Leppänen, V. (2017). Investigating the
Agility Bias in DNS Graph Mining. In Proceedings of the 17th
IEEE International Conference on Computer and Information
Technology (IEEE CIT 2017), pages 253–260, Helsinki. IEEE.

[95] Ruohonen, J., Rauti, S., Hyrynsalmi, S., and Leppänen, V.
(2017b). Mining Social Networks of Open Source CVE Coordina-
tion. In Proceedings of the 27th International Workshop on Soft-
ware Measurement and 12th International Conference on Soft-
ware Process and Product Measurement (IWSM Mensura 2017),
pages 176–188, Gothenburg. ACM.

[96] Ruohonen, J., Šćepanović, S., Hyrynsalmi, S., Mishkovski, I.,
Aura, T., and Leppänen, V. (2016c). Correlating File-Based Mal-
ware Graphs Against the Empirical Ground Truth of DNS Graphs.
In Proceedings of the 10th European Conference on Software Ar-
chitecture Workshops (ECSAW 2016), pages 30:1 – 30:6, Copen-
hagen. ACM.

[97] Sabottke, C., Suciu, O., and Dumitraş, T. (2015). Vulnerability
Disclosure in the Age of Social Media: Exploiting Twitter for Pre-
dicting Real-World Exploits. In Proceedings of the 24th USENIX
Security Symposium, pages 1041–1056, Washington. USENIX.

[98] Schmid, M. R., Iqbal, F., and Fung, B. C. M. (2014). E-Mail
Authorship Attribution Using Customized Associative Classifica-
tion. Digital Investigation, 14(S1):S116–S126.

[99] Schoch, D., Valente, T. W., and Brandes, U. (2017). Correla-
tions Among Centrality Indices and a Class of Uniquely Ranked
Graphs. Social Networks, 50:46–54.

[100] Seifried, K. (2017). CVE-HOWTO. Available online in
December 2017: https://github.com/RedHatProductSecurity/

CVE-HOWTO.
[101] Sierra, J. M., Vizcáıno, A., Genero, M., and Piattini, M.

(2018). A Systematic Mapping Study about Socio-Technical Con-
gruence. Information and Software Technology, 94:111–129.

[102] Śliwerski, J., Zimmermann, T., and Zeller, A. (2005). When
Do Changes Induce Fixes? (On Fridays.). In Proceedings of the
International Workshop on Mining Software Repositories (MSR
2005), pages 1–5, Saint Louis. ACM.

[103] Stevanovic, M., Pedersen, J. M., D’Alconzo, A., and Ruehrup,
S. (2016). A Method for Identifying Compromised Clients Based
on DNS Traffic Analysis. International Journal of Information
Security, 16(2):115–132.

[104] Syed, R., Rahafrooz, M., and Keisler, J. M. (2018). What It
Takes to Get Retweeted: An Analysis of Software Vulnerability
Messages. Computers in Human Behavior, 80:207–215.

[105] Tang, G., Pei, J., and Luk, W. (2014). Email Mining: Tasks,
Common Techniques, and Tools. Knowledge and Information
Systems, 41(1):1–31.

[106] Tang, M., Alazab, M., and Luo, X. (2019). Big Data for Cy-
bersecurity: Vulnerability Disclosure Trends and Dependencies.
IEEE Transactions on Big Data, 5(3):317–329.

[107] Temizkan, O., Kumar, R. L., Park, S., and Subramaniam, C.
(2012). Patch Release Behaviors of Software Vendors in Response
to Vulnerabilities: An Empirical Analysis. Journal of Manage-
ment of Information Systems, 28(4):305–337.

[108] Tian, Y., Ali, N., Lo, D., and Hassan, A. E. (2016). On the Un-
reliability of Bug Severity Data. Empirical Software Engineering,
21(6):2298–2323.

[109] Toral, S. L., Mart́ınez-Torres, M. R., and Barrero, F. (2009).
Virtual Communities as a Resource for the Development of OSS
Projects: The Case of Linux Ports to Embedded Processors. Be-
havior & Information Technology, 28(5):405–419.

[110] Toral, S. L., Mart́ınez-Torres, M. R., and Barrero, F. (2010).
Analysis of Virtual Communities Supporting OSS Projects Using
Social Network Analysis. Information and Software Technology,
52(3):296–303.

[111] Tsipenyuk, K., Chess, B., and McGraw, G. (2005). Seven
Pernicious Kingdoms: A Taxonomy of Software Security Errors.
IEEE Security & Privacy, 3(6):81–84.

[112] Wang, Q. (2014). Link Prediction and Threads in Email Net-
works. In Proceedings of the International Conference on Data
Science and Advanced Analytics (DSAA 2014), pages 470–476,
Shanghai. IEEE.

[113] Wijayasekara, D., Manic, M., Wright, J. L., and McQueen,
M. (2012). Mining Bug Databases for Unidentified Software Vul-
nerabilities. In Proceedings of the 5th International Conference
on Human System Interactions (HSI 2012), pages 89–96, Perth.
IEEE.

[114] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. (2012). Experimentation in Software Engi-
neering. Springer, Heidelberg, revised edition.

[115] Wolf, T., Schroter, A., Damian, D., and Nguyen, T. (2009a).
Predicting Build Failures Using Social Network Analysis on De-
veloper Communication. In Proceedings of the IEEE 31st Inter-
national Conference on Software Engineering (ICSE 2009), pages
1–11, Vancouver. IEEE.

[116] Wolf, T., Schröter, A., Damian, D., Panjer, L. D., and Nguyen,
T. H. (2009b). Mining Task-Based Social Networks to Explore
Collaboration in Software Teams. IEEE Software, 26(1):58–66.

[117] Wu, Y., Gandhi, R. A., and Siy, H. (2010). Using Semantic
Templates to Study Vulnerabilities Recorded in Large Software
Repositories. In Proceedings of the 2010 ICSE Workshop on Soft-
ware Engineering for Secure Systems (SESS 2010), pages 22–28,
Cape Town. ACM.

[118] Wu, Y. and Oard, D. W. (2005). Indexing Emails and Email
Threads for Retrieval. In Proceedings of the 28th Annual Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2005), pages 665–666, Salvador.
ACM.

[119] Younis, A., Malaiya, Y. K., and Ray, I. (2016). Evaluat-
ing CVSS Base Score Using Vulnerability Rewards Programs. In
Hoepman, J.-H. and Katzenbeisser, S., editors, Proceedings of the
31st IFIP TC 11 International Conference on ICT Systems Se-
curity and Privacy Protection (IFIP SEC 2016), pages 62–75,
Ghent. Springer.

[120] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer,
F. (2013a). Categorizing Bugs with Social Networks: A Case
Study on Four Open Source Software Communities. In Proceed-
ings of the 35th International Conference on Software Engineer-
ing (ICSE 2013), pages 1032–1041, San Francisco. IEEE.

[121] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F.
(2013b). The Rise and Fall of a Central Contributor: Dynamics of
Social Organization and Performance in the GENTOO Commu-
nity”. In Proceedings of the 6th International Workshop on Co-
operative and Human Aspects of Software Engineering (CHASE
2013), pages 49–56, San Francisco. IEEE.

24

https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf
https://weis2018.econinfosec.org/wp-content/uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf
https://github.com/RedHatProductSecurity/CVE-HOWTO
https://github.com/RedHatProductSecurity/CVE-HOWTO

[122] Zangerle, E., Gassler, W., and Specht, G. (2013). On the
Impact of Text Similarity Functions on Hashtag Recommenda-
tions in Microblogging Environments. Social Network Analysis
and Mining, 3(4):889–898.

[123] Zeileis, A. (2004). Econometric Computing with HC and HAC
Covariance Matrix Estimators. Journal of Statistical Software,
11(10):1–17.

[124] Zhang, F., Khomh, F., Zou, Y., and Hassan, A. E. (2012). An

Empirical Study on Factors Impacting Bug Fixing Time. In Pro-
ceedings of the 19th Working Conference on Reverse Engineering
(WCRE 2012), pages 225–234, Kingston. IEEE.

[125] Zhou, B., Neamtiu, I., and Gupta, R. (2015). Experience Re-
port: How Do Bug Characteristics Differ Across Severity Classes:
A Multi-Platform Study. In Proceedings of the 26th International
Symposium on Software Reliability Engineering (ISSRE 2015),
pages 507–517, Gaithersbury. IEEE.

25

	1 Introduction
	2 Background
	2.1 Vulnerability Coordination
	2.2 CVE Coordination Through a Mailing List
	2.3 Research Questions

	3 Approach
	3.1 Data
	3.2 Coordination Delays
	3.3 Bipartite Email and Infrastructure Networks
	3.4 Explanatory Metrics
	3.4.1 Control Metrics
	3.4.2 Social Network and Communication Metrics
	3.4.3 Infrastructure Metrics
	3.4.4 Vulnerability Metrics

	3.5 Estimation
	3.6 Modeling

	4 Results
	4.1 Descriptive Statistics
	4.2 Model Performance
	4.3 Regression Estimates
	4.4 Computational Checks

	5 Discussion and Conclusions
	5.1 Main Findings
	5.2 Threats to Validity
	5.2.1 External Validity
	5.2.2 Construct Validity
	5.2.3 Internal Validity

	5.3 Moving Forward

