
An extensible collaborative framework for monitoring

software quality in critical systems

Marisol Garćıa-Vallsa, Julio Escribano-Barrenob, Javier Garćıa Munoza

aDepartment of Telematic Engineering, Universidad Carlos III de Madrid, Leganés,
Spain

bIndra Sistemas, 28018 Alcobendas, Spain

Abstract

Context: Current practices on software quality monitoring for critical software
systems development rely on the manual integration of the information provided
by a number of independent commercial tools for code analysis; some external
tools for code analysis are mandatory in some critical software projects that
must comply with specific norms. However, there are no approaches to
providing an integrated view over the analysis results of independent external
tools into a unified software quality framework.
Objective: This paper presents the design and development of ESQUF
(Enhanced Software Quality Monitoring Framework) suitable for critical
software systems. It provides the above enriched quality results presentation
derived not only from multiple external tools but from the local analysis
functions of the framework.
Method: An analysis of the norms and standards that apply to critical
software systems is provided. The detailed and modular design of ESQUF
adjusts to the integration requirements for external tools. UML is used for
designing the framework, and Java is used to provide the detailed design.
The framework is validated with a prototype implementation that integrates
two different and norm compliant external tools and their respective quality
results over a real software project source code.
Results: The integration of results files and data from external tools as well
as from internal analysis functions is enabled. The analysis of critical software
projects is made posible yielding a collaborative space where verification

Email addresses: mvalls@it.uc3m.es (Marisol Garćıa-Valls), jebarreno@indra.es
(Julio Escribano-Barreno), javiergm@it.uc3m.es (Javier Garćıa Munoz)

Preprint submitted to Elsevier December 18, 2018

engineers share information about code analysis activities of specific projects;
and single presentation space with rich static and dynamic analysis information
of software projects that comply with the required development norms.

Keywords: Software quality, Open source framework, Quality monitoring,
source code analysis, critical systems development

1. Introduction

In critical software projects, the software development process needs information
about almost every aspect across the different traversed phases. These
information include achievement of objectives, monitoring and control of
activities, project costs tracking, and technical quality assessment. The
obtained measures for all these values define the quality. In 1978, [2] already
stated the importance of measuring the software quality and defined a set of
important measures to assess the overall quality of a software project. Metrics
are of key importance in all engineering disciplines and, in particular, in
critical systems’ software development (see [3]); these provide a vital insight
into the development process to assess the level of maintainability, reliability
and even development progress. Metrics offer reproducible indicators useful
to estimate the quality, performance, management, and cost within a project.
By working with metrics in the software development, it is possible to analyze
the data to understand and improve the system behavior; moreover, it is
possible to predict future behaviours that will allow engineers to undertake
corrective actions at an early stage avoiding runtime effects.

Metrics have been studied and developed through the years, increasing
their relevance due to their applied use and the contrasted benefits to define
baseline quality indicators for serveral purposes. For example, the Capability
Mature Model Integration (CMMI) [4] for development, relies on the usage
of metrics (see [5]), and it is used for evaluating the maturity process of the
organizations.

The collection and processing of the metrics and other quality indicators
about a software project can involve a significant human effort [20]; this
highlights the need of automating the specification of metrics and subsequent
data collection that must later be processed. By using automatic analysis
tools (e.g. [6] for static code analysis), the effort in collecting quality information
is significantly reduced. However, there are few open source platforms that
support the automatic management of heterogeneous software quality information.

2

One of the most popular quality management platform is SonarQube [8][10]
that is becoming popular also due to its open source nature. Among the
functionality provided by SonarQube, it enables continuous inspection of
software projects and supports a number of languages, including Java, C,
C++, C#, PHP, and JavaScript. SonarQube provides some basic metrics
like complexity, duplicated code detection, or lines of code counting, among
others. However, this is a very generic functionality that requires to be
enhanced for software development projects of a certain complexity. There
are other research oriented platforms such as Alithea [12] that is an extensible
platform to integrate analysis for software engineering research, but it has
not a focus on critical software systems.

Highly complex projects such as those related to critical software development
require that these basic metrics be enhanced to provide the information
suited for each particular project. The reason is, for instance, that each
project may have to adjust to specific norms for the particular field. It
is, then, useful and needed to take information from heterogeneous sources
(like external tools that comply to the required norms) and to establish the
adequate methodology in order to enhance the functional power of a simple
quality framework to provide the required information with a suitable design
that makes it easily customizable; and that supports the collaboration of the
users.

Existing improvements to the SonarQube open source framework have
been undertaken as pure coding tasks, being the vast majority for Java
language; however, critical software systems code tend to use C/C++ (besides
other languages as e.g., Ada) for which there is practically no support in
the mainstream software quality frameworks community. Critical software
projects follow different norms and standards (e.g. DO178C[21]) for the
specific target application domain. Profiles such as MISRA C [44] and
MISRA C++ [45] are applied with the goal of meeting the requirements
of security, portability, and reliability of embedded software.

Up to the best of our knowledge, there are no contributions that provide
an approach to systematically design and develop multiple local and remote
integration of software quality information that is elaborated by heterogeneous
sources and tools that provide C/C++ code analysis. In this paper, we
present an approach to enrich the management of these data, offering it
to the verification engineers through a collaborative platform so that they
can remotely access to jointly participate on the code verification process of
specific projects. This has been performed by designing a modular framework

3

composed of a number of analyzer modules that provide the enhanced functionality
for the platform in order to integrate its own analysis results with the ones
from external analysis tools in a single presentation space. This platform,
named ESQUF (Enhanced Software QUality Framework) integrates metrics
ellaboration, coding rules checks, and coverage analysis. The design of this
platform is a modular one that allows to easily customize the integration of
any external code analysis tool. The result is the achievement of a more
complete set of information that can be managed in the projects to control
and monitor the software development process according to the needs of
each specific project. The information from the analysis of the project code
is then centralized in the platform that is, at the same time, a collaborative
environment that allows the remote work of teams of verification engineers.
We validate the framework on a specific integration with external information
sources that provide static analysis metrics. In our work, the rules, metrics,
and unit tests can also be extended to complement the provided ones. We
exemplify technical information related to software quality through actual
static and dynamic analyses on a real critical software project.

The new framework is validated against the following parameters that are
expected to be provided jointly: capacity of extracting meaningful metrics
from code from multiple external tools; provision of a joint, collaborative
presentation space; and adaptation to different coding norms and standards.

The paper is structured as follows. Section 2 describes the related work
in what concerns norms and practices related to technical quality of critical
software systems. Section 3 describes the characteristics of quality frameworks
for code analysis. Section 4 describes the proposed ESQUF framework.
Section 5 provides the design details of the ESQUF modules for supporting
external analysis tools integration. Section 6 validates the design through
a prototype implementation that monitors a real software project where
different DO-178C norm compliant code analysis tools are integrated in the
overall framework. Section 7 concludes this paper.

2. Software quality management in critical systems

Software quality can be analyzed through the source code by means of
metrics, compliance to the coding rules of the mandatory standards, and
by collecting the information about a series of pre-specified unit tests. The
software of critical software systems is developed according to strict adherence

4

of a set of norms which define the best practices that the software and the
development process must adhere to. This section describes some selected
work that is most related to our contribution: the existing norms and regulations
for critical software development; current tools for software code analysis;
and the engineering processes that describe the steps to the target software
development.

2.1. Critical systems’ norms and best practices

Technical metrics are collected through static analysis techniques. Software
static analysis is required in several norms related to critical systems. Some
of these standards are defined in Table 1.

Although there are a lot more than these, the norms refered to here are
a representative set of some of the major critical software systems in the
development of transportation systems that is later used in the development
of the validation scenario. The norms provided by Table 1 require the use
of static analysis techniques to comply with their objectives. Among others,
DO-178C ([21]) and DO-278A ([22]) define the guidelines and best practices
to be applied to the development of software for critical systems. Both DO-
178C and D0-278A introduce the use of metrics to be specified in the software
quality assurance plan as a way to assess quantitatively the characteristics of
the software within the project. For critical systems, metrics collection and
analysis allows engineers to prove that the developed software complies with
important norms, like North Atlantic Treaty Organization (NATO) AQAP-
2210 [23], and its spanish version PECAL-2210 ([25]), among others.

The norms applied in critical systems development may have to evolve
as new domains come into scene; this the case of cyber-physical systems
or social dispersed computing applications [19]. In these highly dynamic
environments, the design of the system cannot consider all possible situations
that will be encountered at execution time; but still, these systems need to
achieve some levels of predictability and guarantees. For these situations,
the approach is different and a number of works are appearing to utilize
verification at runtime based on formal approaches such as [17] using Petri
nets, or [18] using CLTLoc.

5

Table 1: Overview of the main norms and standards related to critical systems

Doc. No. Title Description

DO-178C Software Considerations
in Airborne Systems and
Equipment Certification
[21]

It is one of the most accepted international
standards. It includes additional objectives
and it is complemented with the supplements
[30], [31], [32] and [33]. The previous version
of this norm is DO-178B (Ref.[29])

DO-278A Guidelines for
Communication,
Navigation, Surveillance
and Air Traffic
Management [22]

Provides guidelines for non-airborne
Communication, Navigation, Surveillance
and Air Traffic Management (CNS/ATM)
systems. This document provides the
guidelines for the software assurance
activities to be conducted with non-airborne
CNS/ATM systems.

IEC 61508 Functional safety of
electrical/ electronic/
programmable electronic
safety-related systems [27]

Standard for Industry automation. It is
intended to be a safety standard applicable
to all kinds of industry. Includes the
complete safety life cycle. Used as basis for
other documents, as railway (CENELEC
50128[35]), automotive industries (ISO
26262[27]) or nuclear power plants (IEC
61513[28])

CENELEC
50128

Railway applications -
Communications, signalling
and processing systems [34]

Applied to railway industry. It specifies the
processes and technical requirements for the
development of software for programmable
electronic systems for use in railway control
and protection applications

2.2. Software quality monitoring based on code analysis

Achieving the highest possible quality of the software is of vital importance
in critical systems. This goal influences every aspect of software system
development such as the functionality, reliability, availability, maintainability,
and safety, among others. In critical software projects, quality assurance
has to be taken into account from the beginning of the development and it
has to be considered at each level of the software engineering process: from
specification to coding and integration.

6

The process of code-level quality monitoring of a software can be approached
from two different levels:
• Code analysis tools present a lower level of code quality monitoring in

which individual tools are selected to perform different checks on the
code. Each tool can be specialized in some particular analysis technique
over, mostly, some specific programming language. Its advantage is
that individual tools that perform sophisticated tests on the code can be
selected, from simple line counting [37] to memory leaks and potential
deadlock detection [14] or worst case execution time analysis [15]. The
ones that are suitable for critical projects are, most of the time, proprietary
and do not support their direct integration with other also especialized
tools.

• Quality monitoring platforms are a type of technology aimed a providing
a blackboard that can include different code analysis functions such
as [12, 10]. In this category, only SonarQube has the advantage of
facilitating the integration of functions implemented by multiple heterogeneous
developers; it is an open source quality management platform, used to
analyse and measure technical quality. Despite being an interesting and
needed technology, the number of supported languages is very limited.
Precisely, the available SonarQube functions are almost exclusively
targeted at Java language. Also, it is not integrated with the analysis
provided by other specialized external tools for code analysis using the
specific development standards for critical software systems.

This platform can be extended through plugins that allow to customize
and integrate it with other tools. The specific conception and development
of these plugins is a significant design effort that allows to ensure the correct
handling of the different phases involved in the software quality process.

The metrics and quality information with respect to a complex software
project typically requires different analysis techniques that generate results
and data from different sources, possibly also collecting data in different
ways. For some specific projects, it is more relevant to analyze dependencies
across the included packages such as [7] than to analyze the source code.
Information about the software is in the end collected in different ways by
means of different tools such as the ones presented in table ??.

As not a single code analysis tool is capable of providing all the required
data for a comprehensive software quality monitoring activity, engineers are

7

Table 2: Static analysis tools.

Tool Description Open source

Understand
([37])

Commercial tool for static code
analysis. Multi-language. Developed
by Scientific Toolworks, Inc.

—

LDRA ([38]) Static code analysis tool. Multi-
language. Developed by Liverpool
Data Research Associates (LDRA)

—

PC-Lint ([39] Static code analysis tool for the
C/C++ languages. Developed by
Gimpel Software.

—

Splint ([40]) Static code analysis tool for C
language.

X

PMD ([41]) Static code analyser for Java,
JavaScript, XML and XSL.

—

VectorCAST
([46])

Code Coverage Analysis. Developed by
Vector Software.

—

SonarQube
([10][8])

Quality management platform X

Astrée ([48]) Runtime error detection by abstract
interpretation for safety-critical C code

—

Eclair ([49]) Runtime errors in source code using
abstract interpretation, model checking
and constraint satisfaction

—

Frama-C ([50]) Code analyzer for C program analysis
without program execution

X

Polyspace ([51]) Static code analysis tool for C, C++,
and Ada using abstract interpretation

—

SPART
Examiner ([52])

A part of SPARK Toolset based on
SPARK language (a subset of the Ada
language) for Ada code analysis in high
integrity systems

X

8

obliged to set up a tool chain for code analysis; such tool chains comprise
a number of proprietary tools that are not automatically interoperable with
other tools. To overcome this, engineer teams establish the procedures and
principles for data collection across the tool chain and interpretation. Also,
model-based testing [1] is being used to alleviate this task although at a much
earlier step in the development. As a result, the SonarQube platform has
appeared as a platform to support advanced analysis; however, SonarQube
appears in a similar way to a blank sheet of paper, so that the required
techniques and methods to implement the needed functionality have to be
designed and integrated in it.

The tools mentioned here are used to statically analyze the code quality.
However, the metrics that they yield do not meet all the requirements across
different projects. In each project, different metrics can be required, or
different implementation languages can be used that vary from a project
(e.g. railway) to another (e.g. automotive). Then, a tool that is suitable
for a project may not be valid nor usable in a project on a different field
that must comply with other norms. Among the extremely wide range of
tools for code analysis, we have provided a selected set that is sufficienly
representative of the source code analysis spectrum for critical systems. The
first part of table 2 lists tools that are amongst the most used in commercial
critical software developments that support C analysis. However, for the sake
of generality, it should be acknowledged that there are other more theoretical
tools based on formal methods that are used in code analysis for projects in
different language and application domains. For this purpose, we have added
a second half to table 2 in which formal methods tools are shown. Among
these tools, we find Astrée, Frama-C, Eclair, Polyspace, Spark Toolset.

2.3. Limitations

There is a severe limitation in the current status of the software quality
management platforms. To illustrate it, let us see the example of SonarQube
where each user needs to have the tool installed locally; as such, the run-time
environment has little orientation to becoming a collaborative environment.
By collaborative, we mean the capacity to simultaneously support the remote
access of the users to several projects, each having a given number of other
users. Users are typically part of the verification team of a critical systems
software project.

Also, there are severe limitations to support the customizable integration
with external tools for code analysis to enrich the analysis functions and

9

the quality results presentation. Currently, there is no approach for making
software quality management platforms comply with the norms, regulations,
and best practices needed by critical software systems such as those provided
in section 2.1.

In its current form, open platforms such as SonarQube are fully customizable
frameworks as they merely contain a very basic set of functions that implement
the collection of metrics and data from software projects. Up to the best of
our knowledge, it lacks a systematic customization for particular projects
that have very specific information requirements such as critical software
systems. The currently available analysis functions of this platform are
almost exclusively focused at Java language that is not a programming
language used in the core parts of critical software systems.

3. Open source software quality frameworks

Software quality management platforms are typically provided as proprietary
tool chains that provide results of analyzing the source code files of the
project. Open source software quality frameworks are not specialized for
critical software projects where interaction with norm-compliant analysis
tools needs to be done. These platforms need to be multi-language, and
they should be capable of performing analysis over the source code such as
providing information about duplicated code, unit tests, coding standards,
code coverage, code complexity, comments to the code, and software design
and architecture.

The considered frameworks rely on two main functions: source code analysis
modules that are components that perform the basic analysis activities (such
as counting lines of code) and presentation modules that display the analysis
results. The most popular framework, SonarQube, provides an extendable
and customizable environment where analysis functions can be added to
provide different complementary views on the software quality. These additions
are realized through a set of components:

• Presentation configurators are the modules that configure the graphical
display of data resulting from the source code analysis, i.e., they enables
the customization of the analysis results presentation to the user. A
graphical module supports the specification of the visual format and
of the display locations of the presented data. Each graphical module
yields one of the square boxes that are shown. Each box contains

10

a number of data items whose display location and characteristics is
indicated in the widget code. For each new analysed project, a project
dashboard should be assigned for selecting, adding, or removing the
available graphical modules.

• Resource accessors are components that provide access to the files
to be analyzed: the project source code and the results files from
external analysis tools. Code accessors contain also the logic and
analysis functions over the source code or result files to extract more
complex data and metrics.

• Processors are the components that support the programming of additional
processing functions over the initial metrics (i.e. the initial analysis
results) provided by the resource accessors in order to derive more
complex metrics.

The framework allows to extend its functionality via plugins. A plugin is
an application integrated into a broader scope main application to add new
functionality or to customize the current functionality. In a software quality
framework, plugins are used to implement graphical modules for different
purposes such as supporting additional programming languages, or include
changes in dashboards, among others. The analysis over the source code of a
project can be executed at different times to check, for instance, the evolution
of the coding process. A plugin can be designed for presenting the evolution
of the development process; the results from different executions can be
stored in a data base, and the plugin logic can check the main differences
between analyses, offering the possibility of providing more information over
the project evolution.

4. Enhanced Software Quality Framework

4.1. Requirements

Critical software systems such as railway control software, aircraft systems
operation software, etc., are typically very large software projects that follow
strict norms through all their life cycle, and they must undergo heavy and
extensive verification activities prior to the production phase. An average
critical software project boils down to thousands of source code files that have
to be tested by an independent verification team that, for safety reasons, is
different from the development team. In real practice, the team of verification

11

engineers work on different individual tools for code analysis that are used
to pass the set of predefined tests for every single source code file. Typically,
engineers supervise and analyse the results of the code analysis from different
files to check whether all major tests have been passed. In this way, the
main driver and motivation for the requirements of our proposed framework
are: (1) the absence of a framework for easing the integration of analysis
results from heterogeneous sources and tools into a space on which engineers
can contribute their analysis results collaboratively; and (2) the difficulty in
integrating different norms into this framework that are mostly described in
text files as rules that apply on the different coding phases. Based on the
above, we now summarize the requirements of our enhanced software quality
framework (ESQUF):

• Execution of internal and external analysis functions. The tool must
have a set of analyzer modules to carry out the analysis of both, source
code and external files containing analysis results for external analysis
tools. These modules can be either plugins to external functions integration
or internal modules with additional functions.

• Interpretation of external analysis results. The tool must must be
capable of performing its own analysis over the source code and to
interpret results of other tools. This way, the results generated by the
tool will be richer.

• Web based presentation. The tool should have the posibility of presenting
results from data collection through a web page or app or document.

• Project evolution presentation over time. It is needed to have a data
base to collect information of the different analysis performed and it is
needed that these data are available and retrievable anytime and for
future execution.

4.2. Architecture of the proposed quality framework

Figure 1 presents the general design of the framework: it provides a unified
presentation space for engineer teams working on the software analysis; the
collaboration of the engineers is enabled by means of a remote web server
that accesses the source code to perform its own built in analysis functions,
together with the access to external analysis tools. The extended software

12

Figure 1: Platform overview

quality management plaftorm performs the activities shown in Figure 2 that
are split into online and offline ones. The platform supports the requirement
of using external specialized analysis tools in critical projects that comply to
specific required norms. The source code is analyzed by some external tools
and simultaneously it can be analyzed by the framework itself and its built
in functions. The external results are fed to the extended software quality
framework (ESQUF). The data about the obtained quality from both these
external tools and from the built in functions are presented in an integrated
maner from the framework.

Figure 3 provides an insight into the platform design, showing how the
analysis work is done precisely on the code. ESQUF components are represented
as rounded boxes with solid lines; SonarQube components are shown with
dashed lines, and the relation across ESQUF and SonarQube components is
shown by means of dashed arrows. The framework has two main types of
modules:
• Analyzer modules that perform the following activities:

– direct analysis of the source code files contained in a given project.

– processing of analysis results, i.e., this function further processes
the files containing quality results from previous analysis over the
code files; these analysis results files can be produced by other
tools or by the basic analysis functions of the framework.

13

Figure 2: Platform actitivies that are performed online and offline.

• Presentation module that handles the rendering of the analysis results;
this includes the grouping of the different analysis by types, e.g, source
code metrics, coverage results, etc. This module performs a partitioning
of the presentation area that is divided into locations for the presentaion
of the analysis results by types. It contains an applicator server that
graphically displays the data that results from the analysis in a browser
front-end.

• Data base interface module provides an abstraction to interact with
a specific repository of the analysis results that should be stored in
persistent storage. This module allows the plaform to be data base
independent.

• Workflow engine module provides an active control loop that guides
the platform execution across the different functions that it performs.
It also contains a collaboration function through which the plaform
coordinates the access from the posibly multiple users that have access
to it simultaneously.

The framework allows to extend its functionality via plugins. A plugin
is an application integrated into a main application of a broader scope to

14

Figure 3: Components of quality framework

add new functionality or to customize the current functionality. Typically,
plugins are used to implement the presentation configurators for different
purposes such as supporting additional programming languages, or include
changes in dashboards, among others. The analysis over the source code
of a project can be executed at different times to check, for instance, the
evolution of the coding process (see Figure 4). A plugin is designed for
presenting the evolution of the development process; the results from different
executions can be stored in a data base, and the plugin logic can check the
main differences between analyses, offering the possibility of providing more
information over the project evolution.

4.3. Functionality

Basic functions. ESQUF provides a set of basic functions as shown in
Figure 5 to provide the quality results of the project over its code analysis.
On the one hand, the general information about the analyzed project can
be seen together with some basic metrics, a coverage analysis and, at last,
the technical debt. Technical debt is an interesting metric as it provides an
estimation of the time required to fix the issues found in the analyzed project.
Additional quality information and norm compliance functions. In
software projects for critical systems, the specific standards that must be
applied require more complex metrics over the code. A few examples of these

15

Project
source code

Quality
analysis 1

Timeline

Quality
analysis n

#define “lt.h”!
int i;!
main(){ !
 …!
}!

lcount 1203!
nested 19!
coverage …!

Result 1

lcount 1803!
Nested 23!
coverage …!

Result n

Project
evolution

data

Figure 4: Project evolution presentation

Figure 5: Example of results analysis

are: complexity, nesting levels, function parameters, and other values derived
from the previous ones such as maximum, minimum and mean values for each
of the previous metrics. These are not provided by general purpose software
quality frameworks. There are some specialized tools that do provide a broad
range of complex metrics; and these are external to the framework and must,
therefore, be integrated. Besides the metrics and graphical data or results
from unit tests, information on the incorrect lines of code that indicate where
some programming rule has not been respected, are provided. This way it
is possible to see at a glance all the most relevant information of a project

16

and it will be easier to make a general assessment of the progress and of the
needed time to make the required corrections. Programming rules are fed to
the system according to the specific norm that should be fulfilled for a given
project.

We contribute to the needed functional enhancement of the quality management
platform SonarQube by designing and developing a module that is based on
a plugin that collects the analysis results from an external tool for static code
analysis. It is important that the module is designed to be used remotely
in the framework, so that collaborative working is enabled. The result is
that users view richer information over a software project code by using
SonarQube as the single front-end, presenting a number of metrics in the
project dashboard, as an additional widget.

ESQUF provides this additional information to what a mainstream software
quality framework provides. This requires a functionality that augments the
basic analysis facilities by designing enhancement modules that have the
following characteristics:

• plugins are designed to collect the analysis results from external tools
compliant with changing norms such as DO-178C and DO-178B;

• static and dynamic code analysis is performed over the project source
code;

• remote and collaborative working is supported by means of a web
interface;

• richer quality information is provided on a single front-end, presenting
a number of metrics in the project dashboard by using info accessors
to access source code and results files from other tools;;

• flexible presentation of quality information as presentation configurator
modules are used;

4.4. ESQUF structure, mappings, and activation

Structure. The designed module contains a ResourceAccessor to access the
analysis results generated by the external tools, and a PresentationConfig to
present the results in the project dashboard.

There are two ways to design a ResourceAccessor, as presented in the two
paths displayed in Figure 6. On the one hand, a ResourceAccessor template

17

can be used to directly acess the source code that will be analyzed; while
the access is performed the ResourceAccessor can contain additional logic
to also process and analyze the source code. Another possiblity is to use
a ResourceAccessor template either integrate (or perform some additional
processing over) the analysis results generated by an external tool.

Figure 6: InfoAccessor for access to both source code of a project and/or results files from
a previous analysis.

In what follows, the structure of a ResourceAccessor is provided. The
ResourceAccessor interface is a tagging component, i.e., a class extending
this interface is automatically a ResourceAccessor as it is obligued to implement
the analyse method to provide a customized functionality for the accessor.

public interface ResourceAccessor {
void ana lyse (Pro j e c t pr id) ;

}

Mappings. ESQUF is a platform independent design. Its main design is
based on SonarQube open source framework. For this purpose, this section
presents an overview mapping whereas the detailed mappings to SonarQube
constructs are further elaborated in section 5.

An ESQUF ResourceAccessor is mapped to a SonarQube Sensor that is
also a tagging component for implementing resource accesses.

public interface Sensor extends ResourceAccessor , BatchExtension
, CheckProject {

void ana lyse (Pro j e c t module , SensorContext context) ;
}

PresentationConfig components in ESQUF are mapped to Widgets of
SonarQube. These define the placement of displayed data on the screen.
Activation structure. The workflow engine of ESQUF (see Figure 3)
uses the Runner component of SonarQube web server. The workflow engine
determines the activation of the different components of the extensions and
pluggins in the appropriate order to execute their associated functions that
deliver the analysis and display results. Essentially, the workflow engine

18

executes the ResourceAccessor components that access the results files from
the external integrated tools for code analysis and perform further processing
on these data as indicated in its corresponding analyse function. The results
of the additional processing are displayed by the widgets of the presentation
module.

5. Analyzer modules

This section presents the design of ESQUF: metrics analyzer that is a
module that is designed to provide the basic project information; a norms
compliance module that is named rules analyzer that assures integration of
especialized tools according to the specific norms that a software project will
adhere to; and the coverage analyzer that provides dynamic code quality
analysis.

5.1. Integrated metrics analyzer

This analyzer is a module that supports the integration of the local analysis
functions with the quality analysis results of external analysis tools on a single
presentation space. This module is designed via a plug in that integrates the
external data and displays the resulting integrated metrics. It has a flexible
and modular design to allow any external tool to be integrated with minor
modifications.

The architecture of the analyzer is shown in Figure 7 that contains the
following classes:

• ExternalToolPlugin is the class containing the specification of the properties
of the analyzer module that are metric for the structured definition
of metrics in SonarQube and language that indicates the programming
language of the project source code. The code below shows the structure
of ExternalToolPlugin and the specification of a Property.

@Propert ies ({
@Property (

key = Plugin .EXTERNAL TOOL METRICS,
name = ” Metr ics path” ,
d e s c r i p t i o n = ”Path to the r e s u l t s o f e x t e r n a l t o o l

a n a l y s i s r e s u l t s . ” ,
g l o b a l = fa l se)

})
public f ina l class ExternalToolPlugin extends SonarPlugin {

19

Figure 7: Class diagram of metric plugin for a specific external metrics tool

20

public stat ic f ina l St r ing EXTERNAL TOOL METRICS = ” sonar .
e x t e r n a l t o o l . met r i c s ” ;

public L i s t getExtens ions () {
return Arrays . a s L i s t (

L i s tMet r i c s . class ,
Externa lToolMetr icSensor . class ,
MetricsRubyWidget . class) ;

}
}

• ListMetrics is the class that specifies all metrics to be used (displayed)
by the plugin. Metrics should be specified by name, type, description,
qualitative or quantitative and domain. Sensors later assign values to
each metric of the list as a result of the source code analysis done
by ESQUF or by some other external tool. In this module, this class
contains all metrics that are provided by the external tools.

• ExternalToolMetricSensor is the class that contains the functionality
to scan the quality results produced by the external analysis tools in
order to collect their metrics. This class is invoked when the workflow
module component is executed.

• MetricsRubyWidget is the class that contains the definition of the
properties of the widget, the title of the widget, and the the design
and display characteristics of the data to be included in the project
dashboard.

5.1.1. Metrics

The definition of Metric class contains a number of parameters of interest
such as: identifier for having a unique addressable identity, the type of data
(e.g., whether it is an integer value, Float, String, boolean, etc.), the name for
user friendliness, the domain (e.g. general or complexity), and an indication
of whether it is quantitative or qualitative.

The two main actions of the integrated analyzer module are the scanning
of the external analysis data that is performed by the file analyser class
(ExternalToolMetricSensor class); and the integrated results presentation
performed by the widget MetricsRubyWidget class. Both classes require to

21

have knowledge about the metrics that are defined in the external tool. Such
information is contained in the ListMetrics class.

ListMetrics class contains the set of metrics that are considered by the
external tool and by the integrated analyzer module, and a single method
getMetrics that will be able to list all of them.

ListMetrics class implements the interface Metrics.

public interface Metr ics extends BatchExtension , ServerExtens ion
{

List<Metric> getMetr i c s () ;
}

ListMetrics includes all metrics that have to be obtained by the sensor
in order to be stored in the ESQUF data base. Later, the presentation
configurators will be able to access these stored metrics.

5.1.2. Resource accessor

The logic to be performed by the ExternalToolMetricSensor is contained
in the analyse method. Initially, it has to access the external results data.
First, the properties of the metrics are read; then the metrics that it contains
are checked against the list of metrics given by ListMetrics. All matching
metrics are stored in the data base.

public void ana lyse (Pro j e c t Project , SensorContext sensorContext
) {

St r ing path = s e t t i n g s . g e t S t r i n g (ExternalToolPlugin .
EXTERNAL TOOL METRICS) ;

while (read != null) {
St r ing metr ic = /∗ Reading o f the name from the read

l i n e ∗/
Double va lue = /∗ Reading o f the v a l u e from the read

l i n e ∗/
switch (metr ic) {

case ”Max complexity ” :
measure = new Measure (L i s tMet r i c s .MAX COMPLE) ;
break ;

case ”Min complexity ” :
measure = new Measure (L i s tMet r i c s .MIN COMPLE) ;
break ;

(. . .)
/∗ Goes on f o r a l l supported metr ic s ∗/
(. . .)

22

default :
System . out . p r i n t l n (” Error : Metr ic ”+metr ic+” not

found”) ;
break ;

}
i f (measure != null) sensorContext . saveMeasure (measure) ;

/∗ Continues read ing ∗/
}

!
!

Integra)on!
!!!!!!!!in!!!!
!!!!ESQUF!
!!<<plugin>>!
!

Analysis
results

<<file.txt>>

Rule set
x

Analysis
results

<<web file>>

Rule set
y

Analyses MISRA-
C in x%

Analyses MISRA-
C in y%

Non-
conformities
Rule set x&y
<<web file>>

 ESQUF
<<Integrated>>

External Tool
<<Metrics>>

Figure 8: Integration of ESQUF with external tools

5.2. Integration of norms and coding rules

This section presents the design of the logic that supports the compliance
of the quality analysis to specific norms for critical software projects. This
functionality is provided by an integrated rules analyzer module that achieves
the integration of the local analysis results of ESQUF with the ones from
external analysis tools that implement these norms. This module allows new
rules from different criticality levels to be added to ESQUF to later analyze
the results files generated by external tools to present those parts of the
source code where there are some specific rules violations.

The architecture of the analyzer is shown in Figure 9 that contains the
following clases:

• ExternalToolRulesPlugin class is similar to the class ExternalToolPlugin
of the previous integrated metrics analyser module. A new property is
defined that indicates the path to the results file of the external tools.
In what follows, it is presented a summary of the class:

@Propert ies ({
@Property (

key = ExternalToolRulesPlug in .EXTERNAL TOOL RULES,
name = ” Rules path” ,

23

Figure 9: Class diagram rule plugin

24

d e s c r i p t i o n = ”Path to the r e s u l t s f i l e s o f the e x t e r n a l
t o o l s ” ,

g l o b a l = fa l se)
})
public f ina l class ExternalToolRulesPlugin extends

SonarPlugin {

public stat ic f ina l St r ing EXTERNAL TOOL RULES = ” sonar .
e x t e r n a l t o o l . r u l e s ” ;

public L i s t getExtens ions () {
return Arrays . a s L i s t (

ExternalToolSensor . class ,
CRuleRepository . class) ;

}
}

• CRuleRepository class contains the information about the rules repository
that will be included in ESQUF. Within this module it is defined:
the programming language (e.g. CLanguage for C), an indentifier or
key, a name, and the path to the rule repository. Rules are specified
in a flexible and portable format by using XML format (5.2.1). The
invocation to define sets all the properties.

public f ina l class CRuleRepository implements
R u l e s D e f i n i t i o n {

public stat ic f ina l St r ing REPOSITORY KEY = ”CRules” ;
private f ina l RulesDef in it ionXmlLoader

ru l e sDe f in i t i onXmlLoader ;

public ExternalToolCRuleRepository (
RulesDef in it ionXmlLoader ru l e sDe f in i t ionXmlLoader) {

ru l e sDe f in i t i onXmlLoader = ru le sDe f in i t ionXmlLoader ;
}

public void d e f i n e (R u l e s D e f i n i t i o n . Context context) {
NewRepository repo = context . c r ea t eRepos i t o ry (

REPOSITORY KEY, CLanguage .KEY) . setName (”Example”) ;
}

}

• CLanguage class defines the programming language that will be interpreted
by ESQUF in the corresponding analysis. As for the type of critical

25

systems that we target at, C is used; however, other languages are
possible (e.g. C indicated as ”c”, C++ indicated as ”c++”, or Java
indicated as ”java”, among others). Also, the extensions used by the
files of the programming language must be indicated.

public class CLanguage implements Language {
public stat ic f ina l St r ing KEY = ”c” ;
private St r ing name ;
private St r ing key ;
private St r ing [] f i l e S u f f i x e s = new St r ing [2] ;
public CLanguage () {

this . name = ”C” ;
this . key = KEY;
this . f i l e S u f f i x e s [0] = ”c” ;
this . f i l e S u f f i x e s [1] = ”h” ;

}
}

• ExternalToolSensor is the sensor class of this plugin that analyzes the
external tool results file and marks the rules are violated toghether with
the corresponding line of code of the source file. This class is invoked
when the the workflow module of ESQUF is run.

5.2.1. Rules

The rules file is integrated inside this analyzer module. Each rule has an
identifier (i.e., a key); a priority (i.e., info, minor, major, critical, or blocker)
depending on the severity of the rule; a name; a configuration key; and a
description. The rules file has the following format:

<r u l e s>
<r u l e key=”no comments” p r i o r i t y=”MINOR”>
<name>Comments are not permitted</name>
<con f i gkey>NOCOMMENTS</ con f i gkey>
<d e s c r i p t i o n>

<p>This l i n e i s a comment and comments are not permitted</p>
</ d e s c r i p t i o n>

</ r u l e>
<r u l e key=”example” p r i o r i t y=”INFO”>

<name>Var iab le not i n i t i a l i z e d</name>
<con f i gkey>VAR INIT</ con f i gkey>
<d e s c r i p t i o n>
<p>This v a r i a b l e has not been as s i gned a value .</p>

</ d e s c r i p t i o n>

26

</ r u l e>
</ r u l e s>

5.2.2. Resource accessor

The central element of the accessor is the analyse method that is invoked
by the ESQUF workflow module. analyse processes the quality results file
from the external tool. The accessor reads the result lines one by one and
stores the information into the ESQUF data base; also, further processing
to these external results files can be done by additional logic that could be
contained in analyse.

public void ana lyse (Pro j e c t pro j e c t , SensorContext sensorContext)
{
int v i o l a t i o n L i n e = 0 ;
S t r ing v i o l a t i onText = null ;
S t r ing v io lat ionLongText = null ;
[. . .]
Language l = new CLanguage () ;

repos i toryKey = CRuleRepository .REPOSITORY KEY;
while ((read != null) && (repos i toryKey != null)) {

v i o l a t i onText = (read . s p l i t (”\ t ”)) [4] ;
v i o l a t i o n L i n e = I n t e g e r . pa r s e In t (. . .) ;
Rule r u l e = null ;

i f ((v i o l a t i onText != null) && (! v i o l a t i onText . equa l s (””)))
r u l e = ru l eF inde r . findByKey (repos itoryKey , v i o l a t i onText) ;

else
pr in tEr ro r (v io la t i onText , l i n e) ;

[. . .]
}

This method has to be adapted to interpret the results of the rule checking
of the specific external tool that is integrated. The logic can be modified
accordingly for further processing over the external results files. In the
following, it is shown the part in which a non compliance to a rule (a rule
violation) is detected.

v i o l a t i o n v i o l a t i o n = Vio l a t i on . c r e a t e (ru le , r e s ou r c e) ;
v i o l a t i o n . setMessage (v io lat ionLongText) ;
v i o l a t i o n . s e tL ine Id (v i o l a t i o n L i n e) ;
sensorContext . s aveV io l a t i on (v i o l a t i o n) ;

27

ESQUF fins the rules in the repository searching by the key that has been
assigned to a rule in its XML definition.

5.3. Dynamic analysis

Dynamic code analysis refers to the tests performed at the running code.
There are two types of tests: unit tests of type pass/fail execution where
given some input conditions, the system checks whether the expected output
is obtained; or coverage analysis in which a set of tests are defined to analyze
what percentage of the code is actually executed and what percentage of
unreachable statements there are.

5.3.1. Unit tests

Here, it is described the integration of external unit tests specifications
and results in ESQUF framework. Unit tests are performed to the code
to detect whether specific functions and code chunks provide the expected
results given some specified input conditions and values. This type of test
is essential to assess the deterministic behavior of a program and system,
disclosing any initially unforeseen side effects that may be present in the first
versions of the project code.

The important properties of this module are the indication of the location
of the input data that contains the analysis results of the external tools used
for unit test execution, and the placement of the results files of ESQUF.

@Propert ies ({
@Property (

key = UnitTestExternalToolPlugin .
EXTERNAL TOOL UNIT TEST FILE,

name = ”DB path” ,
d e s c r i p t i o n = ”Path to the r e s u l t s f i l e s o f the e x t e r n a l

t o o l s ” ,
g l o b a l = fa l se)

})
@Property (

[. . .]
key = CoverageExternalToolPlugin .

EXTERNAL TOOL UNIT TEST DELETE,
[. . .]) ,
@Property (

key = CoverageExternalToolPlugin .
EXTERNAL TOOL UNIT TEST PATH,

[. . .] })

28

Figure 10: Class diagram of the unit test module/plugin

Figure 10 shows the class diagram for the unit test module that contains
the following main classes:

• UnitTestExternalToolPlugin that is the main class;

• UnitTestResourceAccessor is the class responsible of analyzing both
quality data and/or source code files.

• ReaderDBUnitTest that interfaces with the data base of the system to
collect the data about the specific tests to be run; then, it produces the
analysis results of this tests that will be provided for display.

Resource accessor.

UnitTestResourceAccessor imports the data of the unit tests performed by
external tools. For its effective and modular realization over a given software
quality framework, this class is linked to the specific resource accessing
runtime. E.g., for SonarQube, this class implements the Sensor interface.
This class logic is run by ESQUF workflow engine. Its main methods are:

• analyse is the most relevant function of the accessor as it carries out
the analysis over the external results files and stores the results. It
collects the path to the files to be analyzed generated by the external
tool and launches its analysis.

• shouldExecuteOnProject that indicates to the workflow engine whether
the analysis method (analyse) is used in the current project; this indicates
that the resource accessor logic should be run.

29

public boolean shouldExecuteOnProject (Pro j e c t p r o j e c t) {
St r ing s r c = s e t t i n g s . g e t S t r i n g (UnitTestExternalToolPlugin .

EXTERNAL TOOL COVERAGE FILE) ;
S t r ing path = s e t t i n g s . g e t S t r i n g (

UnitTestVectorExternalToolPlugin .EXTERNALTOOL UNIT TEST PATH
) ;

[. . .]
}

Data storage.

ReaderDBUnitTest collects the information of the test cases provided by the
external tools. An example of such a test is the following: if a function that
contains a loop of n repetition is invoked with a specific value of variable
n, then it is expected that the function will execute the instructions inside
the loop exactly n times. After reading the test cases, this class generates
portable code with information about the quality results of each unit test
that has been run in the system. This results file will be interpreted by the
display plugins for the overall dynamic analysis. Test cases are stored in a
relational data base that is accessed via queries.

5.3.2. Coverage analysis

This section explains the integration in ESQUF of external coverage analysis
from external tools that perform dynamic code analysis. The coverage analysis
is done based on three types: (i) statement coverage (e.g. an else part is not
executed in an if-then-else statement); (ii) condition coverage (e.g. a switch
statement with a condition code being empty); or (iii) condition/decision
modification (e.g. check whether in a complex condition that contains a
number of or, and, etc., all the possible cases have been tested.

There are a number of external tools that are used in critical systems for
coverage analysis such as [46] and [47] .

The design of the logic that supports the performance of dynamic code
analysis is shown below. This functionality is provided by an coverage
analyzer module that achieves the integration of the local analysis results
of ESQUF with the ones from external analysis tools. This module allows
new tests to be performed and later added to ESQUF platform for further
analysis and presentation.

The architecture of the coverage module is shown in Figure 11 that contains
the following clases:

30

Figure 11: Class diagram of the coverage analysis module/plugin

• CoverageExternalToolPlugin that is the main class;

• CoverageResourceAccessor that contains resource accessor logic for further
data processing; it is invoked by EQUF workflow module when a project
analysis is started.

• ReaderDB is a class for reading the data contained in the quality results
generated by the external tools for coverage analysis. These data are
converted into a suitable format that the ESQUF framework can read
that is mapped to the GenericTestCoverage class that presents the
quality results on the web.

The class CoverageExternalToolPlugin defines the properties of the plugin
together with a Lis of other classes that should also be run as part of the
analysis logic. The properties defined are: route to the external tool result
files; route where to store the files generated by the plugin; decision on
whether to eliminate the generated files after the analysis execution.

@Propert ies ({
@Property (

key = CoverageExternalToolPlugin .EXTERNAL TOOL COVERAGE FILE
,

name = ”DB path” ,
d e s c r i p t i o n = ”Path to the r e s u l t s f i l e s o f the e x t e r n a l

t o o l s ” ,
g l o b a l = fa l se)

}) ,
@Property (

[. . .]

31

key = CoverageExternalToolPlugin .
EXTERNAL TOOL COVERAGE DELETE,

[. . .]) ,
@Property (

key = CoverageExternalToolPlugin .EXTERNAL TOOL COVERAGE PATH
,

[. . .] })

Resource accessor

CoverageSensor manages the access to the analysis results files for external
tools, i.e., it imports the coverage results data. This class is run by ESQUF
workflow module. Two of its main functions are:

• analyse is the most important function of the accessor as it performs
further analysis over the external results files and stores the obtained
results in ESQUF framework.

• shouldExecuteOnProject that receives the project identifier that must
be analyzed, and it provides an indication to ESQUF framework of
whether further analysis (i.e., analyse function) must be run for this
project.

public boolean shouldExecuteOnProject (Pro j e c t p r o j e c t) {
St r ing s r c = s e t t i n g s . g e t S t r i n g (CoverageVectorCASTPlugin .

VECTORCAST COVERAGE FILE) ;
S t r ing path = s e t t i n g s . g e t S t r i n g (CoverageVectorCASTPlugin .

VECTORCAST COVERAGE PATH) ;
[. . .]
}

The class ReaderDB is also important to the collection of the external tools
results and it performs the persistent storage of the final coverage analysis
results. The storage of the final results is done in XML files that are later
interpreted by the GenericTestCoverage plugin of the core quality framework.

6. Validation

The validation criteria for ESQUF focuses on providing a new framework
that is capable of offering new capabilities for software testing. This capability
is shown by designing and implementing the prototype presented in this
section for a given software project. This prototype implementation validates
this feasibility of:

32

1. achiving a rich presentation space for facilitating the monitoring of the
verification process of software projects for critical systems;

2. achieving an extensible and evolvable platform by adding analyzer
modules that integrate external analysis tools;

3. supporting the integration of different norms and language profiles by
extension of the framework through analyzers;

4. the integration of dynamic analysis results together in the same presentation
space; and

5. achieving a collaboration space in the verification of software projects
over a real critical software project;

6.1. Analysis scenario

The validation criteria is based on the achievement of the foreseen rich
presentation space for monitoring the verification of the source code of critical
software projects by integrating external tools that perform different specific
analysis techniques for static and dynamic analysis for C code under the
required norms and standards. This is encompased by the first and second
validation criteria. The prototype implementation of ESQUF is used to
analyze a real project developed under standards [21] and [23]. As external
tools, both [37] and [46] have been used which provide static analysis; this
will prove the third point of the validation criteria.

Figure 12 shows the validation scenario for ESQUF, that is a small scale
prototype of a real critical systems software project requiring a unified view
over the quality results of the code derived from complex metrics analysis
of an external tool such as [37] (metrics tool indicated in Figure 12); and
also [37] is used to obtain the quality results derived from the analysis of a
MISRA C subset for coding rules compliance under DO-178C (Norms/rules
tools indicated in Figure 12);and a coverage analysis performed by the tool
[46].

[37] has been selected as the external tool to validate the analyser module
that integrates different sources of analysis results. [37] is a powerful static
analysis tool that offers rich information to the verification engineers with
respect to the characteristics of the source code of a given project that
are not given by hardly any open source software quality framework. This
difference is particularly evident for specific programming languages such as
C, as this tool provides analysis for C language whereas there are hardly
open analysis functions for any open source analysis tool in C and C++

33

Norms/rules tool ESQUF

lcount 1203!
nested 19!
coverage …!

Result

Line 1 exit!
Line 9 comm!

Result

Coverage tool

Metrics tool

Line 8
unreachable !

Result

Figure 12: ESQUF validation scenario with required critical systems functions

language. Some of the rich set of metrics provided by this tool for a C
project are: max/min/average complexity of a function, number of nested
loops, or average number of function parameters, among others.

6.2. Metrics

The first and second validation points are addressed by the development
of the integration of the Metrics analyzer module. The first step to integrate
code analysis for metrics into the ESQUF framework was to develop an
extension of the external tools metrics to obtain the quality results files to be
fed to ESQUF. The output file of [37] has a structure similar to the following
one:

Resu l t s Entity Line Column Check
Number o f Resu l t s : N
Pro j e c t V io l a t i on
Max complexity : (Value) ” Free t ext ”
Average complexity : (Value) ” Free t ext ”
Min complexity : (Value) ” Free t ext ”
Max ne s t ing : (Value) ” Free t ext ”
Max number o f l i n e s : (Value) ” Free t ext ”
Average ne s t ing : (Value) ” Free t ext ”
Min ne s t ing : (Value) ” Free t ext ”
Min number o f l i n e s : (Value) ” Free t ext ”

34

Max number o f parameters : (Value) ” Free t ext ”
Average l i n e s : (Value) ” Free t ext ”
Average parameters : (Value) ” Free t ext ”
Min number o f parameters : (Value) ” Free t ext ”

The above file structure shows all metrics that the integrated analyser
module is able to process; the presentation may be done for all or for a
subset of all metrics. The text marked as Free text to include comments is
not analysed by the integrated analyser module. The order in which the
metrics appear is (a priori) not important although it is in deed application
specific; the name and parenthesis with the metric value are the key data
items to be collected and presented by ESQUF.

The class ExternalToolMetricSensor of the integrated analyser module
is extended to derive the class UnderstandMetricSensor that supports the
specific characteristics of this specific external metrics tool. Consequently,
when the workflow engine of ESQUF is executed, this class reads the required
output file from the external metrics tool to derive its analysis metrics and
the software quality results.

For the class MetricsRubyWidget that defines the properties to customize
the widget and the data display, the data for the metrics tool is given:

• getId() returns an identifier to the external tool [37] that is UnderstandMetrics

• getTitle() returns UnderstandMetrics.

• getTemplatePath() sets the path to where the content file of [37] is.

Figure 13 shows the results presented in the presentation configurator that
is designed for presentation of the metrics from the external tool.

Using ESQUF built-in metrics, it is possible to see that the project contains
172 source files with 1952 functions. It contains 60309 code lines, including
23579 executable statements. The results of the metrics collected with the
use of the developed plugin were the following:

The results reported by the project analysis (see table 3) provide richer
information to the user that, in this case, is a verification engineer. In
this specific project validation example, it is suggested that, for example,
although the average complexity of the source code is not too high, there is at
least one function whose complexity is to high and needs to be reviewed. The
rest results can be used to evaluate if the project source code characteristics
are within the limits specified by the project standards.

35

Figure 13: Display of the integrated analysis results from the metrics external tool

Table 3: Metrics results
Complexity

Average 3,8
Minimum 1
Maximum 103

Nesting
Average 1,7
Minimum 1
Maximum 8

Lines
Average 20,9
Minimum 1
Maximum 446

Input parameters
Average 1,7
Minimum 0
Maximum 11

6.3. Rules and norms compliance

The third validation criteria is addressed in this subsection. In the following
example, a specific results file for MISRA C rules analysis is shown.

Resu l t s Entity Line Column Check
Number o f Resu l t s : N
main . c

36

comments are not permitted var 2 4 no comments
e x i t statement i s not permitted ex 14 3 example
example . c
comments are not permitted vars 8 1 no comments

The class ExternalToolRulesPlugin of the integrated analyser module is
extended to derive the class CRuleRepository that maps to the characteristics
of the required rules that have to be applied. Then, the workflow engine of
ESQUF will invoke this class that, in turn, reads the required output file
from the external rules analysis tool; as a result, software quality results on
the fulfillment of the specific rules that apply to the norms profile that has
been selected (e.g., MISRA C) is obtained and visualized in ESQUF unified
presentation display.

Figure 13 shows the results presented in the presentation configurator that
is designed for presentation of the metrics from the external tool.

Figures 14 and 15 show the quality analysis results displayed by ESQUF
after the analysis of coding rules compliance. Figure 14 shows the source
code display from ESQUF web interface, with the corresponding indications
about rule compliance error; source code presentation helps engineers in rapid
visualization of problems that will be reported to the programming team. In
Figure 15, the presentation configurator is provided showing the collected
data results for the rule compliance; the number of violations of rules in
the source code is presented with a classification into violations that are
blocker, critical, major, minor, or irrelevant (info). This classification helps
verification engineers to classify the requests made to the programming team.

Figure 14: Example of presentation of source code with non compliance

The framework supports to easily include different coding profiles, norms,
and programming languages by following the structure presented in section
5.2 in which, for example, more rules can be added to the MISRA C profile
or even other language profiles can be applied instead.

6.4. Dynamic analysis

37

Figure 15: ESQUF presentation of quality results with respect to norms compliance

The fourth validation criteria is addressed in this subsection as coverage
and unit test analysis are performed by an external coverage tool [46] that
provides rich information with respect to a number of tests to be done to the
source code.

The class CoverageExternalToolPlugin of the integrated analyser module
is extended to derive the class CoverageVectorCASTPlugin that supports
the characteristics of the external coverage tool that is integrated for this
critical software project analysis. In addition, the class CoverageSensor that
maps precisely to the coverage results obtained from the external tool and
read through the ReadDB class. Similarly, UnitTestExternalToolPlugin of the
integrated analyser module is extended to derive the class UnitTestVectorCASTPlugin
that supports the characteristics of the external coverage tool that is integrated
for this critical software project analysis. In addition, the class CoverageSensor
that maps precisely to the coverage results obtained from the external tool
and read through the ReadDB class.

A set of unit tests are designed on a per-project basis. The framework
should present the coverage of the executed unit tests, the percentage of lines
of code that the tests have covered, and the percentage of conditions that
have been evaluated. Figures 16 and 17 present the results of the coverage
analysis in a broader presentation scope.

Figure 16 shows the view of the framework that is shown to all members of
the verification team that are the users of it. This proves the validation of the
collaborative property, as the users can simultaneously access the information
of a given project that will be stored in the ESQUF server, that allows them
to monitor the progress of the verification of a given software project to later
ellaborate and order the needed changes in given source code files to the
development team.

6.5. Discussion

38

Figure 16: ESQUF presentation of coverage analysis

Figure 17: Further coverage information presentation

The prototype implementation described in this section targets the validation
of ESQUF. Table 4 summarizes the validation parameters of ESQUF framework.

Table 4: Validation summary

Validation parameter Present Description

Metrics presentation X Function count, complexity, nesting,
etc.

Multiple external tools X Understand, VectorCast
Single presentation space X Results presentation through widgets
Collaborative space X Web interface remotely accessible
Coding norms and
standards

X DO178C, AQAP2210

The objective of ESQUF has been to provide an extensible framework
that brings in new characteristics to those tools and frameworks that support
code testing. The main contribution of ESQUF has been to provide all these
parameters (as shown in Table 4) all together. None of the tools in the
market and literature provide these in an integrated manner:

39

• Metrics presentation; a number of metrics are presented that encompas
those that indicate the complexity of source files and software projects,
nesting levels, function count, line count, block count, duplications, etc.

• Multiple external tools integration; in this prototype implemenation,
it has been shown how Understand and VectorCast (two commercial
tools) are integrated into the framework in a way that their analysis
results are displayed jointly for a same software project.

Single presentation space; widgets are used to present external tools’
results in customized formats.

• Collaborative space; a web interface is provided through a web server
that can be used to share the same view of the engineering team over
the projects.

• Coding norms and standards; in the prototype, the software project is
analyzed against norms DO178C and AQAP2210.

7. Conclusions

The paper has presented the design and implementation of a modular
integrated software quality analysis framework specifically targeted at critical
software projects that have especial requirements. Firstly, critical systems
have extensive C language usage, whereas the majority of existing software
quality analysis frameworks are focusing solely on Java code. Secondly,
critical systems development require to use external analysis tools for specific
parts of the code; then they require to integrate them in a single presentation
framework. Additionally, critical software projects are made by large teams
of engineers in very different tasks ranging from programming to the monitoring
of the verification and testing processes. Therefore, this requires to achieve
a single collaborative working space that supports the remote access of the
engineers and the interaction of the verification teams working on different
projects. Lastly, different parts of a software systems have to comply with
different development standards and norms. Therefore, it should be easy
to incorporate different coding profiles, norms, and programming languages
into the analysis framework.

This paper has presented the design and prototyping of ESQUF that is
a software quality framework that has the above mentioned characteristics.

40

The inclusion of static and dynamic software quality results helps in manageing
the technical quality information of projects; stakeholders can review the
related information without the need of individually checking the results
reported by different tools. In this case, ESQUF provides a single presentation
framework for static and dynamic analysis that include metrics, rule compliance
for different coding profiles, and coverage analysis. ESQUF has showed that
it can be easily particularized for specific external analysis tools, collecting
their information and displaying it in a single space.

This situation leads to a more efficient project management and clarity
of the information. This work supports the easy customization of specific
critical software projects in order to comply with the norms that are mandatory
in their domain.

This work has analysed the use of the metrics collection and the analyser
module within a continuous integration development practice, as a way to
improve software quality and, therefore, reduce the risk in the software
projects.

ESQUF is applicable to all projects with the need of technical quality data
collection where external tools are mandatory to collect some information
not provided initially by the used quality management plattform; it has been
prototyped and validated in a real project that requires compliance with
norms related to the development of critical software (like DO-178C [21] and
software quality, like AQAP-2210 [23].

References

[1] Havva Gulay Gurbuz, Bedir Tekinerdogan. Model-based testing for
software safety: a systematic mapping study. Software Quality Journal.
Springer. DOI: 10.1007/s11219-017-9386-2 2017.

[2] Joseph P. Cavano and James A. McCall. A framework for the
measurement of software quality. In Proceedings of the ACM Software
quality assurance workshop on Functional and performance issues. DOI
10.1145/800283.811113 1978.

[3] D. Coleman, D. Ash, B. Lowther, P. Oman. Using metrics to evaluate
software system maintainability. IEEE Computer, vol. 27(8), pp. 44-49.
August 2002.

41

[4] CMMI Product Team. CMMI for Development, version 1.3. Improving
processes for developing better products and services CMU/SEI-2010-TR-
033, ESC-TR-2010-033. 2010.

[5] N. Fenton, J. Bieman. Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[6] V. Balachandran. Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation. Proc. of International Conference on Software
Engineering (ICSE). 2013.

[7] D. di Ruscio, P. Pelliccione. A model-driven approach to detect faults in
FOSS systems. Journal of Software: Evolution and Process, vol. 27(4),
pp. 294–318. April 2015.

[8] G. A. Campbell, P. P. Papapetrou. SonarQube in Action. Manning
Publications. ISBN-9781617290954. 2013.

[9] SonarQube Documentation. http://docs.codehaus.org/display/SONAR/Documentation
(2015)

[10] –. SonarQube v6. http://www.sonarqube.org/ [Last retrieved 2017]

[11] P. Krutchen. Contextualizing agile software development. Journal of
Software: Evolution and Process, vol. 25, pp. 351-361. 2013.

[12] Georgios Gousios, Diomidis Spinellis. Alitheia Core: An extensible
software quality monitoring platform. In Proc. of the 31st International
Conference on Software Engineering (ICSE ’09). IEEE Computer Society,
Washington, DC, USA, 579-582. DOI: 10.1109/ICSE.2009.5070560 2009.

[13] P. M. Duvall, S. Matyas, A. Glover. Continuous integration: improving
software quality and reducing risk Pearson Education. ISBN 13: 978-0-
321-33638-5. 2007.

[14] –. Valgrind. Code analysis tool. valgrind.org [Last retrieved 2018]

[15] Rapita Systems. RapiTime user guide. www.rapitasystems.com . 2017.

42

[16] J. Garćıa-Munoz, M. Garćıa-Valls, J. Escribano-Barreno. Improved
Metrics Handling in SonarQube for Software Quality Monitoring. 13th

Int’l Conference on Distributed Computing and Artificial Intelligence
(DCAI). In Advances in Intelligent Systems and Computing, vol. 474,
pp. 463–470. Springer. June 2016.

[17] M. Garćıa-Valls, D. Perez-Palacin, R. Mirandola. Pragmatic cyber
physical systems design based on parametric models. Journal of Systems
and Software, vol. 144, pp.559–572. Elsevier. October 2018.

[18] M. M. Bersani, M. Garćıa-Valls. Online verification in cyber-physical
systems: Practical bounds for meaningful temporal costs. Journal of
Software: Evolution and Process, vol. 30(3). Wiley. March 2018.

[19] M. Garćıa-Valls, A. Dubey, V. Botti. Introducing the new paradigm of
Social Dispersed Computing: Applications, Technologies and Challenges.
Journal of Systems Architecture. DOI: 10.1016/j.sysarc.2018.05.007 .
2019.

[20] Stephen H. Kan. Metrics and Models in Software Quality Engineering
(2nd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. 2002.

[21] RTCA Inc. Software Considerations in Airborne Systems and Equipment
Certification. RTCA Inc. DO-178C. 12/13/2011.

[22] RTCA Inc. / EUROCAE. Software Integrity Assurance Considerations
for Communication, Navigation, Surveillance and Air Traffic
Management (CNS/ATM) Systems. DO-278A. 12/13/2011.

[23] AQAP 2210. NATO Supplementary Software Quality Assurance
Requirements to AQAP 2110 1st edition, November 2006.

[24] AQAP 2110 NATO Quality Assurance Requirements for Design,
Development and Production 2nd edition, November 2006.

[25] PECAL-2210 Requisitos OTAN de aseguramiento de la Calidad del
software, suplementarios a la PECAL 2110 First Edition, November
2007.

43

[26] PECAL-2110 Requisitos OTAN de aseguramiento de la Calidad para el
diseño, el desarrollo y la producción Second Edition, November 2006.

[27] IEC 61508. Functional safety of electrical/electronic/programmable
electronic safety-related systems. April 2010.

[28] IEC. Nuclear power plants. Instrumentation and control important to
safety. General requirements for systems. IEC 61513 Ed.2.0. 25/08/2011.

[29] RTCA Inc. DO-178B. Software Considerations in Airborne Systems and
Equipment Certification. RTCA Inc. DO-178B. 1992.

[30] RTCA Inc. Software Tool Qualification Considerations. DO-330.
12/13/2011.

[31] RTCA Inc. Model-Based Development and Verification Supplement to
DO-178C and DO-278A. DO-331. 12/13/2011.

[32] RTCA Inc. Object-Oriented Technology and Related Techniques
Supplement to DO-178C and DO-278A. DO-332. 12/13/2011.

[33] RTCA Inc. Formal Methods Supplement to DO-178C and DO-278A

[34] CENELEC. Railway applications - Communications, signalling and
processing systems. CENELEC. 2001.

[35] ISO Road Vehicles - Functional Safety. ISO-26262.11/11/2011.

[36] IEC Medical Device Software- IEC, May 2006.

[37] Scitools Understand Information available at: https://scitools.com/.
[Last retrieved: 19/02/2015]

[38] LDRA Information available at: http://http://www.ldra.com/. [Last
retrieved: 19/02/2015]

[39] PC-Lint Information available at: http://www.gimpel.com/html/index.htm.
[Last retrieved: 19/02/2015]

[40] Splint Information available at: http://www.splint.org/. [Last retrieved:
19/02/2015]

44

[41] PMD Information available at: http://pmd.sourceforge.net/. [Last
retrieved: 19/02/2015]

[42] Maven Information available at: http://maven.apache.org/. [Last
retrieved: 19/02/2015]

[43] Jenkins Information available at: http://jenkins-ci.org/ [Last retrieved:
19/02/2015]

[44] Misra C http://www.misra.org.uk/forum/viewforum.php?f=179 (2015)

[45] Misra C++. http://www.misra.org.uk/forum/viewforum.php?f=184
(2015)

[46] Vector Cast. http://www.vectorcast.com/

[47] Cantata ++. http://www.qa-systems.com/cantata.html

[48] David Delmas, Jean Souyris. Astrée: From Research to Industry. Proc.
of International Static Analysis Symposium (SAS), pp. 437–451. Lecture
Notes in Computer Science, vol. 4634. 2007.

[49] Robert Seacord. Secure coding in C and C++. SEI Series in software
Engineering, 2nd ed. Addison-Wesley Professional. 2013.

[50] CEA List, INRIA Saclay. Frama-C. http://frama-c.com (Last accessed
June 2018)

[51] Alain Deutsch. Static verification of dynamic properties. Polyspace
Technologies. 2014.

[52] John W. McCormick, Peter C. Chapin. Building High Integrity
Applications with SPARK 2014. Cambridge University Press. 2015.

45

