
 1

A Systematic Literature Review of Test Breakage Prevention and Repair
Techniques

Javaria Imtiaz, Salman Sherin, Muhammad Uzair khan, Muhammad Zohaib Iqbal

Software Quality Engineering and Testing (QUEST) Laboratory,

National University of Computer and Emerging Sciences, Islamabad, Pakistan

 {javaria.imtiaz, salman.sherin, uzair.khan, zohaib.iqbal}@questlab.pk

Abstract:

Context: When an application evolves, some of the developed test cases break. Discarding

broken test cases causes a significant waste of effort and leads to test suites that are less effective

and have lower coverage. Test repair approaches evolve test suites along with applications by

repairing the broken test cases.

Objective: Numerous studies are published on test repair approaches every year. It is important

to summarise and consolidate the existing knowledge in the area to provide directions to

researchers and practitioners. This research work provides a systematic literature review in the

area of test case repair and breakage prevention, aiming to guide researchers and practitioners in

the field of software testing.

Method: We followed the standard protocol for conducting a systematic literature review. First,

research goals were defined using the Goal Question Metric (GQM). Then we formulate research

questions corresponding to each goal. Finally, metrics are extracted from the included papers.

Based on the defined selection criteria a final set of 41 primary studies are included for analysis.

Results: The selection process resulted in 5 journal papers, and 36 conference papers. We

present a taxonomy that lists the causes of test case breakages extracted from the literature. We

found that only four proposed test repair tools are publicly available. Most studies evaluated their

approaches on open-source case studies.

Conclusion: There is significant room for future research on test repair techniques. Despite the

positive trend of evaluating approaches on large scale open source studies, there is a clear lack of

results from studies done in a real industrial context. Few tools are publicly available which

lowers the potential of adaption by industry practitioners.

Keywords:

Test case repair, Regression Testing, Automated Testing, Systematic Literature Review

1. Introduction

Testing is an important activity to assure the quality of software systems. Modern software

development practices like DevOps, continuous integration and development encourage

automated execution of test cases by requiring test engineers to develop test scripts. This leads to

several advantages such as automated test execution, test effort reduction, efficient usage of

resources and an easy to use regression test suite. Availability of test scripts that can be executed

 2

automatically improves the efficiency of testing, but can lead to significant challenges in the

maintenance of the test scripts. As the system under test (SUT) evolves, a number of test scripts

can fail due to changes in the SUT. Therefore, the test suite needs to evolve along with the SUT.

For regression testing to be effective, the test suite must be updated to keep pace with the

changes in SUT. Each introduced change may lead to failed test cases. Some tests fail due to the

presence of faults or bugs in the application code. However, some tests may stop prematurely

due to modifications in the application code such as repositioning or renaming of existing

elements, locator and layout changes, etc. Such premature stopping of test cases due to changes

in the SUT is referred to as test breakage. The broken test cases cannot be executed on the

updated SUT without fixing the implementation of the test cases (the test scripts). The existing

literature classifies the regression test suite as usable, unusable and obsolete test scripts [1]. The

usable test cases conform to the existing functionality because they are not affected by the

changes made in the evolved (modified) version of SUT. The unusable/broken test cases contain

at least one statement that cannot be executed successfully. Such un-executable statement(s) may

break the whole test case but the test case can be ‘fixed’ by applying repairing transformations to

the test case implementation. Obsolete test cases fail to execute on the updated version and are

not repairable, for example, they correspond to functionality that has been removed from the

SUT. The changes that break test cases can be structural or logical [2]. Structural changes deal

with the layout and structure of the application whereas the logical changes deal with

modification in business logic or functionality.

Discarding broken test cases after modifications highly affect the quality of the regression test

suite. This reduces the size of the test suite and requires significant effort in re-writing and re-

recording test scripts from scratch. Even small modifications can lead to a large number of

broken test cases, in some cases up to 74% of the test suite [3]. Discarding the broken test cases

therefore leads to a significant increase in the cost of testing and may reduce the quality of the

test suite. Therefore, repairing broken test scripts is an important task [4].

Over the past decade, researchers and practitioners have proposed different techniques for

automated repairing of broken test scripts of evolving software systems [3, 5-7]. Broadly, the test

script repair approaches perform three essential steps, (i) examine and classify difference

between the original and modified versions of the evolving SUT, (ii) identify the broken test

scripts, (iii) repair the broken test scripts using repairing transformations.

In this paper, we systematically identify, summarize and evaluate the existing literature to find

gaps in the area and to position new research activities. We present a Systematic Literature

Review (SLR) [8] in which we review 41 papers on test breakage prevention and automated

repairing of test scripts. SLRs are used to investigate, categorize, and evaluate the existing

literature in a particular research area by applying well-defined inclusion and exclusion

techniques. The contribution of this study is twofold. First, it helps new researchers in a

structured understanding of the area by indexing the existing studies and by providing new

research directions. Second, it helps practitioners to understand state-of-the-art tools, techniques

and their appropriate usage. More specifically, we provide the following contributions in the area

of test script repair:

 3

● We identify the test case repair approaches presented in the literature and classify the

studies in terms of the type of contribution made, kind of approaches, and testing

frameworks used for writing and recording test scripts.

● We classify the causes behind test case breakages that are presented in the literature and

provide a taxonomy of commonly identified changes that can result in test breakage.

● We report on the evaluation of test breakage prevention and test script repair techniques.

We document any identified empirical evaluations, benchmark case studies and the

widely used metrics to evaluate the quality of the proposed techniques.

● We provide implications of existing test repair techniques for practitioners based on the

available evidence on the application of test repair techniques and tools.

● Finally, we offer new directions for future research by identifying the gaps in the area.

The rest of the paper is structured as follows. Section 2 presents the research methodology and

the research questions used in this study. Section 3 discusses the answers to our research

questions and the results of the review. Section 4 presents a discussion on our findings and take

away for researchers and practitioners. Section 5 presents the related work and section 6

discusses different threats to validity. Finally, Section 7 concludes the paper with a discussion of

potential future directions.

2. Research Methodology

We perform a Systematic Literature Review (SLR) by following widely accepted guidelines

given in [8-10]. Based on the guidelines, given in [9], we conducted this study in three steps, i.e.,

Planning, Conducting and Reporting. To clearly articulate the aims of the study, we use the

Goal-Question-Metric (GQM) paradigm, given in [10]. Table 1 depicts our review protocol for

conducting this SLR.

Table 1 Research protocol used in this study

Phases Steps

Planning  Goals

 Research Question

 Selection of Online-Digital Libraries

 Formulation of the Query String

 Definition of Inclusion and Exclusion criteria

Conducting  Study Selection

 Metrics/Attributes identification

 Data Extraction

 Data Synthesis

Reporting  Dissemination of results

 Report formatting

 4

2.1 Planning the Review

2.1.1 Goals

The aim of this review is to identify, review and synthesize the current state-of-the-art in the

field of test case evolution. We aim to identify the recent trends and limitations, to evaluate the

maturity of the area and discuss the opportunities for future research from the point of view of

researchers and practitioners. Based on the objective of the study, we identify the following

research goals:

G1: To systematically map (classify) the state-of-the-art in the area of test case breakage

prevention and test case repair.

G2: To study the common changes or causes of test case breakages in evolving applications.

G3: To study the nature of the published evidence on the effectiveness of the approaches, their

evaluation, the tools being used, and subject applications.

Goals G1, G2, and G3 focus on gathering in-depth knowledge of test case repair research and

empirical evaluation(s) performed to validate the proposed approaches. Based on the

aforementioned goals of the study, we have formulated and grouped our research questions in

five categories. Research questions in each category are further decomposed into multiple sub-

research questions to rigorously extract and analyze the information.

2.1.2 Research Questions

RQ 1: What is the current state-of-the-art in the field of test case repair? The RQ is further

divided into sub-questions as follows:

● RQ 1.1: Type of research contribution: What are the contributions of different studies

in the field of preventing test case breakage and test case repair and how many studies

present techniques, tools, frameworks, guidelines, and processes? To answer this

question, we have adopted the classification proposed by Petersen et al. in [12] by

extracting contribution facet from each paper and classifying the paper in the

corresponding class.

● RQ 1.2: Type of research method: What type of research methods have been used in

the published studies on test repair? We answer this aspect of research by using the

guideline of Petersen et al. [12] to classify the research approach of studies. Each paper is

placed in one or more of the following categories: validation research, evaluation

research, solution research, opinion research and experience research.

● RQ 1.3: Test case repair tools: What tools exist to repair the broken test cases of

evolving applications? Availability of tools has important implications for practitioners.

The answer to this RQ provides a list of test case repair tools developed and used in the

studies.

 5

● RQ 1.4: Test frameworks: How many of the techniques are specific to certain testing

frameworks and how many are test repair techniques at a generic level that can be applied

to any testing framework? This RQ classifies the techniques as generic solutions that are

not tied to a particular framework and others which are tightly coupled with certain

testing frameworks such as Selenium, JUnit, etc.

● RQ 1.5: Automation level: What is the automation level of techniques proposed in the

area? It classifies whether proposed techniques are manual, automatic or semi-automatic

(requiring some manual intervention).

● RQ 1.6: Type of approaches used to deal with test repairs: What type of approaches

have been used to deal with test case repair? These approaches can be classified into

broader categories such as model-based approach, search-based approach, and heuristics-

based approaches, etc. However, we allow for overlap between the categories.

RQ2: Causes of test case breakages: What are the common causes of test case breakages in

the evolving applications? In this RQ, we investigate the common causes of test case breakage

identified in the included literature. The answer to RQ provides a taxonomy of causes of broken

test cases that are reported in the literature.

RQ3: What types of SUT have been used for the evaluation of test case repair and breakage

prevention approaches? In answer to this research question, we list the case studies used for the

evaluation of techniques proposed in the covered primary studies and to identify if they are

academic, open source or industrial case studies. To answer this question, we have formulated

the following sub-questions:

● RQ 3.1: Characteristic of SUT: What is the type, scale and size (in terms of LOC) of

each software system whose test cases are being analyzed in the included studies?

● RQ 3.2: Type of metrics: What are the metrics used for assessing the cost-effectiveness

of test case repair approaches?

● RQ 3.3: Share of industrial case studies: What percentage of work cite evidence from

applying the approaches on real industrial case studies? We differentiate between

evidence from open source case studies (which might also be used commercially but are

analyzed in lab settings) and evidence from evaluations in an actual industrial context.

2.1.3 Selection of online-digital libraries

A search for the relevant articles was carried out to answer the research questions. We focused

on major digital libraries (given in Table 2) and augmented the search process using a well-

defined methodology of snowballing used by other studies [13-16]. For snowballing we follow

the guidelines by Wohlin et al. [17]. Suitable repositories were identified based on previous

research experience and suggestions provided by Chen et al. [18]. The automated search process

resulted in a number of duplicate studies in the initial search but we preferred a conservative

approach over reducing redundancy in the initial search results. The search query formulation is

discussed in subsection 2.1.4.

 6

Table 2 Digital libraries and search engines

Source URL

Google Scholar https://scholar.google.com.pk/

IEEE Xplore http://ieeexplore.ieee.org/

ACM Digital Library http://dl.acm.org/

Springer Link http://link.springer.com/

Wiley Online Library http://onlinelibrary.wiley.com/

Science Direct http://www.sciencedirect.com/

2.1.4 Formulation of query string

In order to include relevant publications in the pool of papers, all authors of this paper identified

and proposed potential search keywords in several iterations. We performed keyword-based

article extraction which provides relevant results. The search string was formulated through the

following steps:

1. Identify search keywords from research questions.

2. Identify search keywords in relevant paper’s titles, abstracts.

3. Identify synonyms and alternative words of search terms.

4. Connect identified keywords using logical ANDs and ORs operators.

Following keywords and their synonyms are identified (after consolidating the suggestions of all

authors) to formulate the query string: (test case, test suite, test scripts, repair, co-evolve,

maintenance, broken, unusable, obsolete). All synonyms were linked by inserting OR operator

and different search terms were connected through AND operator. The final main query string is

as follows:

("Test case" OR "test suite" OR "test script") AND ("repair" OR "coevolve" OR

"maintenance") AND ("broken" OR "obsolete" OR "unusable")

The different variations of formulated search string were then provided to six search engines for

an automated search. Search was performed on full text according to the guidelines provided by

each database. Additionally, we also perform manual searching to mitigate the risk of missing

articles. The manual search includes the following steps.

● We verified the selection of studies by cross-checking the references of the papers.

● The personal web pages and Google Scholar profiles (where available) of active

researchers of the area were visited.

● The publication archives of specific venues where the higher number of papers is

published (from the initial set of retrieved primary studies) were explored.

2.1.5 Defining inclusion and exclusion criteria

To select the relevant papers, we developed inclusion and exclusion criteria. We applied the

criteria to the studies retrieved in the previous phase of source selection by reading the title,

http://ieeexplore.ieee.org/

 7

abstract and keywords of the studies. Each paper was reviewed by at least two authors of this

paper before inclusion or exclusion into the final selection. Any conflicts in the inclusion and

exclusion of studies were resolved through multiple group discussions and review meetings.

After the application of inclusion and exclusion criteria, 41 studies were retained for analysis out

of 589 total studies. The details of study selection are given in section 2.2.1.

Our inclusion and exclusion criteria are as follows:

● IC1: Studies which propose any technique, framework or tool for test case repair and

breakage prevention.

● IC2: Studies written in English.

● IC3: Studies which are available in full texts.

● IC4: Studies which are available in multiple versions, only the most recent was included.

● IC5: Studies which are peer reviewed.

The exclusion criteria are:

● EC1: Studies that do not propose any technique, framework or tool for test case repair

and breakage prevention.

● EC2: Studies not written in English.

● EC3: Studies not available in full text.

● EC4: Duplicate studies were removed.

● EC5: All presentations, magazine articles, tutorials, lecture notes, editorials and other

non-peer reviewed articles.

2.2 Conducting the Review

2.2.1 Selection of studies

Initially, we retrieved a total of 589 studies from the digital search by applying the query strings.

At first step, duplicate studies (i.e., a paper present in more than one database) were removed

from the initial pool of studies (IC4, EC4), resulting in the removal of 176 duplicate papers. In

the next step, irrelevant literature was removed from the remaining set of 413 studies on the basis

of title and abstract reading (IC1, EC1, IC2, EC2), which resulted in remaining 213 studies.

Consequently, we have removed grey literature (presentations, magazine articles, tutorials,

lecture notes, editorials and other non-peer reviewed articles) and studies not available in full

text by thoroughly reading the introduction and conclusion of the papers (IC3, EC3, IC5, EC5)

resulting in a total of 39 studies. To reduce the bias in the selection of studies, the first two

authors performed a selection of studies independently and the results were then matched. Any

disagreements between the authors in the selection of studies were discussed and resolved in

follow up meetings by all authors where each author presented arguments for including or

excluding a study. To further reduce the risk of missing any relevant work, the last two authors

of this paper performed snowballing following the guidelines given by Wohlin et al. [17].

Snowballing resulted in two more papers being included in the final set of 41 studies for further

analysis. Figure 1 illustrates the protocol of study selection.

 8

Figure 1: Protocol for study selection

2.2.2 Metrics

We performed a comprehensive analysis of the included studies to collect data to answer the

research questions. Initially, we have defined the metric through research questions and then data

was extracted against each metric from the papers and recorded in the spreadsheets.

Subsequently, we maintained a data extraction form where we record the data against each

attribute. Each study was reviewed at least by two reviewers (authors of the current study). Any

conflicting papers were discussed with the third author (acting as tie-breaker) before the final

decision was made. Table 3 shows the mapping of research questions with the identified

metrics. Columns of the Table show goals, research questions, metrics and their possible values.

We have identified the following metrics from the research questions such as ‘Type of research

contribution, ‘Type of research methods, ‘Test case repair tools', ‘Test frameworks, ‘Automation

level', ‘Type of approaches used to deal with test repairs’, ‘Causes of test case breakages’ and

‘Characteristic of SUT’.

2.2.3 Type of Research Contribution (corresponding to RQ 1.1)

Our initial goal was to identify the nature of articles in this domain and we extract the type of

contribution made by each article. Possible values for this metric include technique, tool,

framework, suggestions and processes [15]. This metric will help us to identify the distribution

of effort between developing new test case repair techniques and tools.

 9

2.2.4 Type of Research Method (corresponding to RQ 1.2)

This metric was used to access the type of research method used in each paper and is adapted

from Peterson et al. [19]. It will help in identifying the maturity of the field that whether the

papers have proposed some solutions without extensive validations or evaluated their approach

through rigorous empirical methods. The possible values for this metric can be:

▪ Solution Proposal: A novel solution was proposed for a particular problem and its

applicability was evaluated on a small case study.

▪ Validation Research: A novel technique was proposed and validated in a lab setting

through an experiment.

▪ Evaluation Research: A novel technique was evaluated comprehensively through

extensive experiments.

2.2.5 Test Case Repair Tools (corresponding to RQ 1.3)

We extracted the information regarding test case repair tools presented in each article. We

assessed whether studies have proposed a new tool or extended existing tools which were

developed in their previous works. We have also identified the developed tools and checked

whether or not these tools are publicly available for download. This metric will present

information about the test case repair tools developed and proposed in the area of test case repair

and breakage prevention that are available to practitioners.

2.2.6 Test Framework (corresponding to RQ 1.4)

The metric ‘Test framework’ was used to extract data about which type of test cases are repaired

by each technique. This metric will identify the most popular testing frameworks and tools in the

area, for example, Selenium, QTP and JUnit. Furthermore, we have classified the frameworks on

the basis of broad platforms, i.e., Mobile, Web and Desktop.

2.2.7 Automation Level (corresponding to RQ 1.5)

This metric is used to extract the automation level of each published technique. It will help to

identify whether each proposed technique is manual, semi-automated or automated for repairing

the broken test scripts.

 Manual Approaches: Test case repair approaches which are fully tester-assisted

o Manual identification of a correspondence between the broken element and the

test breakages.

o Perform manual actions to fix the broken test scripts.

 Semi-Automated Approaches:

o Automatically identify the correspondence between modified and new elements.

o Perform manual actions to fix the broken test scripts.

 Automated Approaches:
o Automatically detect the occurrence of breakages.

o Automatically generate potential test fixes.

o The validation of potential fixes may be manual.

 10

2.2.8 Type of approaches used to deal with test repairs (corresponding to RQ 1.6)

This metric is used to assess the type of approach used in the papers. These approaches can be

model-based, search-based, heuristic-based, computer vision-based, symbolic and concolic

execution-based. This metric will identify the popular approaches used by different test case

repair techniques. We allow for potential overlap between the categories.

▪ Model-based Approach: This category contains those studies which have used

behavioral models to repair the test scripts. These models can be UML diagrams, control,

and event flow graphs etc.

▪ Search-based Approach: This category contains studies which have used meta-

heuristic algorithms (such as evolutionary algorithm e.g. genetic algorithm) to repair the

broken test scripts.

▪ Heuristic-based Approach: This category contains approaches to problem-solving

which is a practical method but not guaranteed to be optimal, still sufficient for the

immediate goal of repairing test cases.

▪ Computer Vision-based Approach: This category contains studies which have used

image recognition techniques to identify and control GUI components.

▪ Symbolic and Concolic execution-based Approaches: This category contains studies

which have used some kind of program analysis techniques (such as static and dynamic

code analysis) for repairing the test scripts.

2.2.9 Causes of test case breakages (corresponding to RQ 2)

Each study targets some specific set of changes for repair. We have extracted all identified

changes from the studies which can cause test breakages. Each study aims to repair test scripts

for a specific domain, such as web applications, mobile apps etc. We organize the causes of test

breakages with respect to domains in Section 3.7. Each change is identified as structural or

logical [2].

 Structural Changes: Structural changes affect the layout, and appearance of the

application.

 Logical Changes: Logical changes affect the business logic of the application.

2.2.10 Characteristic of SUT (corresponding to RQ 3.1. RQ 3.2, RQ 3.3)

We collected the information related to the SUT (used for the evaluation or validation of

approaches) in each of the included studies. Possible values for this metric are the number of

subject applications, their names, size of SUT (in LOC), language and nature of SUT (such as

open-source, industrial or a toy case study. We also identify the common metrics used for

assessing the cost-effectiveness of test case repair approaches.

 11

Table 3 Systematic map developed and used in our study

3. Results and Discussion
In this section, we answer each of our research questions by using the extracted data.

3.1. Type of Research Contribution (RQ 1.1)

Overall, we identified 41 relevant studies from the selected sources, as shown in Table 13. Figure

2 shows the division of studies based on the type of contribution for all the 41 included studies in

this paper. 39 studies proposed test case repair and breakage prevention techniques, 15 studies

contributed test repair tools and two studies contributed frameworks, for example, S1 and S2.

This shows that most of the research work is focused on contributing new techniques or

Goals
Research

Questions
Metrics Possible outcomes

Goal 1

RQ 1.1
Type of research

contribution

Technique

Tool

Taxonomy

Framework

Processes

Guidelines

RQ 1.2
Type of

research method

Solution Proposal

Validation Research

Evaluation Research

RQ 1.3
Test Case repair

tools

Type of Test Framework

Type of Repairs/Modifications

Test Case Execution

Language

Available for download

Published Year

RQ 1.4 Test framework

Selenium

JUnit

Selenium WebDriver

QTP

RQ 1.5 Automation Level

Manual

Semi-Automated

Automated

RQ 1.6 Approach Used

Model-based

Search-based

Heuristic-based

Computer Vision-based

Symbolic and Concolic Execution

Goal 2 RQ 2
Causes of Test case

Breakages

Code level changes

Web GUI level changes

GUI level changes for desktop applications

Mobile GUI level changes

Goal 3 RQ 3.1,

RQ 3.2,

RQ 3.3

System Under Test

Name of SUT

Size of SUT (LoC)

Description of SUT

Frequency of the SUTs used in studies

Type of the SUT (i.e. open source, experimental)

Language

Application Domain (web, mobile, desktop)

Metrics

 12

improving previous techniques. Some of the papers were classified in more than one class, for

example, S4 contributed a tool as well as a technique. The 15 studies (about 36%) which

contributed tools also proposed techniques and therefore are classified under two classes, i.e.,

test case repair technique and test case repair tool. For example, S9 proposed a test repair

technique and also developed a tool called ATOM. Section 3.3 provides a detail discussion on

test case repair tools proposed in the included studies.

Figure 3 shows a different classification of the contribution made by the included studies. The

existing literature can be categorized mainly into three classes, i.e., (i) studies that discuss

mechanisms for avoiding test breakages, (ii) studies that discuss detection approaches for broken

test cases, and (iii) studies that present approaches for test case repair. For example, S1 can be

classified under ‘Test breakages repair' as it provides the technique for repairing broken test

cases. S36 discusses test breakages detection and is classified under ‘Test breakages detection'.

S28 discusses mechanisms for the avoidance of such breakages and therefore is classified under

‘Test breakages avoidance'. Some of the studies like S27 presented avoidance as well as a

detection mechanism for test breakages and are classified in both the classes. Similarly, S5

presented avoidance as well as a repair mechanism for broken test cases, therefore, classified

under repair and avoidance techniques. It can be seen that 29 (about 70%) studies discussed test

repair mechanisms whereas nine studies (about 21%) discussed test breakages avoidance

mechanisms and a few studies (5 out of 41, about 12%) examined detection of broken test cases.

Figure 2 Type of contributions vs. number of papers

 13

Figure 3 Classes of test case breakages vs. number of papers

3.2. Type of Research Facet (RQ 1.2)

Figure 4 shows the distribution of studies by research facet. In the area of test case repair, most

of the research is dominated by validation research, about 63% (26) of the studies are mapped to

validation research. This shows that studies are not only proposing the solutions but are also its

applicability and effectiveness on subject applications. For example, S12 provides an automatic

repair approach, implemented in a tool called TestCareAssistant and is evaluated by applying to

the test cases of six different subject applications. There is a reasonable share of studies (6

studies, 14%) that are mapped to evaluation research. For example, S18 provide a GUI test script

repair technique implemented in a tool called SITAR, which is extensively evaluated on open

source subject applications by providing limitations and benefits of the proposed technique.

Moreover, 21% (9) studies are categorized as solution research, for example, S3 provides an

approach evaluated on small case studies. Validation research is more popular in the area which

shows higher attention towards sufficient empirical evaluations conducted by the papers. We

also found a number of works that focus entirely on empirical evaluations of test breakage

prevention and test repair approaches. These are discussed separately in the related works

Section.

 14

Figure 4 Research facet vs. number of papers

3.3. Test Case Repair Tools (RQ 1.3)

The development of automated tools is important for the transformation of academic research

into its practical application in the industry. Without such automated tools test case repair

techniques face significant challenges in industrial adaption. Table 4 summarizes different

characteristics of existing test repair frameworks and tools developed for different types of

applications. Overall, 15 tools are listed in which five tools (S2, S8, S10, S18 and S34) provide

repairs for test cases of GUI-based application. Furthermore, five tools (S4, S5, S19, S23 and

S39) provide repairs for code-based changes, two tools (S9 and S38) provide repairs for broken

test scripts of mobile application and three tools (S20, S21 and S37) repair unusable test scripts

for evolving web applications. We also searched these tools online, to check, whether they are

available for the use of other researchers and practitioners. We conducted an online search on

May 01, 2018 for tools where the authors explicitly mention that the tool is available for public

download. Surprisingly, only four (S5, S19, S23, and S37) out of 15 tools were available for

download.

Tools that are available for repairing the breakages of GUI test scripts are REST, GUIAnalyzer,

Maintenance tool (called as maintenance tool by the study), FlowFixer and SITAR. S34

presented a tool called REST which is used as a plugin for eclipse to maintain and evolves GUI

test scripts to test new versions. S2 proposed a Java-based tool, GUIAnalyzer, to provide a

general solution for GUI test case maintenance by using the set of heuristics. S8 contributes a

maintenance tool to automatically repair the GUI test scripts without any human intervention.

Another study S10 provides GUI test evolution using FlowFixer, which suggests replacement

actions for broken workflows. S18 presented a tool named SITAR uses a model-based technique

to iteratively repair the obsolete low-level QTP scripts.

Tools such as ReAssert (S23), TESTEVOL (S5), TestCareAssistant (S19), TestFix (S4) and

ITRACK (S39) are proposed to repair broken JUnit test scripts. Most of the tools from this

category are focused on repairing the failing assertions. ReAssert suggests repairs in failed test

scripts such as to replace literal values, change assertion methods, or replacing one assertion with

 15

several to pass the test. TestCareAssistant automatically repairs test cases broken by altering

method signatures, by changing the number or type of the input parameters of the method.

TestFix uses search-based algorithms to repair the broken JUnit tests by adding or deleting

method calls. TESTEVOL enables the test-suite evolution and repairs the JUnit test cases by

automatically applying test addition, deletion, and modifications without any human assistance.

ITRACK matches the entities between two versions and identifies the existing test suite that

needs to be changed to fix broken method calls by replacing the entities.

Tools that are available for repairing the breakages of mobile applications ATOM and

CHATEM. S9 developed a tool ATOM to automatically maintain GUI test scripts of mobile

apps for regression testing. S38 proposed a java-based tool, CHATEM, automatically extracts

the changes between the two GUIs and generates maintenance actions for each change. Tools

available to support web test breakages are WATER (S21), WATERFALL (S20) and VISTA

(37). These tools are used to suggest potential repair actions for broken test scripts of capture-

and-replay tools. WATER uses the browser's DOM tree to repair the broken Selenium test scripts

for evolving web applications. It analyses the difference between two test executions, and then

suggests repair for broken test scripts. WATERFALL uses WATER approach to repair the

breakages due to the intermediate commits between the two major releases of web applications.

VISTA repairs the DOM-based locators in web tests. It does so by tracking the broken web

element across application versions using its visual appearance through the application of

computer vision.

The growing trend of test case repair tools can be seen in the final column of Table 6. Most of

the tools based on differential testing which executes whole test suite on both the original and

modified version of applications for identification of broken or failed test cases. Such techniques

have a higher execution cost as they require all test cases to be executed for the identification of

broken test cases. In the case of larger test suites, with fewer changes, the cost of execution may

become higher than repairing the test scripts. Another limitation of the existing techniques is that

they are language dependent. For instance, S18 and S21 repairs QTP and Selenium IDE test

scripts respectively. Both are capture-and-replay tools and share common characteristics (for

example, capture the steps of actions on the web application user interfaces, which can later be

replayed). Generic tools need to be developed to automatically provide test repairs, independent

of the underlying testing framework for wider applicability. Interestingly, all 15 tools that we

found were developed in java.

 16

Table 4 Test case repair tools

Name Study Type
Type of modification

made to repair scripts

Test Case

Execution
Domain Available Year

REST S34
GUI Test

Scripts

Guide test personnel

through changes in test

scripts

Yes
GUI based

applications
No 2008

GUIAnalyzer S2
GUI Test

Scripts

Update GUI event

sequences
No

GUI based

applications
No 2009

ReAssert S23 JUnit

Replace literal values in

tests, changing assertion

methods, or replacing

one assertion with other

Yes
Desktop

applications
Yes 2009

Test Care

Assistant
S19 JUnit

Compilation errors lead

certain changes in the

method declaration

Yes
Desktop

applications
Yes 2011

WATER S21 Selenium

Suggest repairs for

assertion failures and

element disposition

Yes
Web

applications
No 2011

TESTEVOL S5 JUnit

Change method

sequences

and assertions values

Yes
Desktop

applications
Yes 2012

Maintenance

Tool
S8

GUI Test

Script

Take user feedback to

repair test scripts
Yes

GUI based

applications
No 2012

FlowFixer S10
GUI Test

Scripts

Suggest replacement

actions
Yes

GUI based

applications
No 2013

TestFix S4 JUnit
Generate values to pass

assert statements
Yes

Desktop

applications
No 2014

SITAR S18 QTP

Use repairing

transformations and

human input

No
GUI based

applications
No 2016

WATERFALL S20 Selenium

Suggest repairs for

assertion failures and

element disposition

Yes
Web

applications
No 2016

ATOM S9
GUI Test

Script

Update GUI event

sequences
No

Mobile

applications
No 2017

VISTA S37 Selenium

Suggest repairs for the

broken test flow in the

same page, widget

shifted to neighboring

page or removed.

Yes
Web

applications
Yes 2018

 17

CHATEM S38
GUI Test

Script

Update GUI event

sequences
No

Mobile

applications
No 2018

ITRACK S39 JUnit

Repair broken method

calls by using the

replacing entities
No

Desktop

applications
No 2017

3.4. Test Frameworks (RQ 1.4)

This research question identifies the type of test scripts and testing frameworks which are mostly

targeted by the repair approaches. Overall, 14 approaches repair test cases generated via JUnit

framework, six repair approaches targeted Selenium scripts for repairing and two repair

approaches targeted QTP scripts. For example, S3 presented an approach for repairing JUnit test

cases and S8 for repairing Selenium test cases. Similarly, the approach presented in S14 repair

test cases generated through QTP. There are 17 approaches categorized in ‘others’ that have not

mentioned any specific target framework, nor could we infer the target framework from the

paper. For example, S2 did not mention that the proposed approach repairs test cases for any

particular target framework. Therefore, such approaches are categorized in ‘Others’. Figure 5

shows the type of test scripts repaired by the proposed approaches in the included studies. So far,

JUnit is the most popular test framework targeted by most of the approaches. Figure 6 shows the

distribution of platforms targeted by the included papers. Most of the published works focus on

test breakage prevention and test repair of desktop applications. We found 7 papers that target

web applications and 2 papers that explicitly cover mobile applications. Another 2 papers could

not be placed in any of the categories due to their generic nature and lack of information that

could be extracted. These are therefore mapped to others category. The two papers targeting test

case repair for mobile applications target ROBOT test framework. Both the papers are from the

same group of researchers. We did not find any works with other mobile application testing

frameworks such as Appium, etc.

Figure 5 Type of test framework vs. number of papers

 18

Figure 6 Type of test scripts vs. target platform

3.5. Automation Level (RQ 1.5)

Automation techniques are important for reducing test case repair efforts. We have assessed the

level of automation of the existing techniques and have classified them as manual, semi-

automatic and automatic, shown in Figure 7. By automated, we mean that the tool should

automatically perform detection of test breakages and automatically generating potential test

fixes. These fixes may be validated manually. There are twelve studies (30%) that provide

automation of test case repair and were classified as automated approaches. For example, S21

proposes WATER tool to automatically suggest repairs for broken test scripts of web

applications.

Techniques that contain manual steps, such as manual construction of the model in their

approaches are classified as semi-automated, for example, S9 developed a tool, ATOM that

requires manual construction of the event sequence model (ESM). This approach can be

challenging at times as it requires knowledge about not only the changes, but also how the base

version application. Nineteen studies (46%) provided semi-automated techniques. There were 10

studies (24%) that presented manual techniques for test case repair and were classified as

manual. For example, S22 presented a technique that directs the testers in manually repairing

broken test sequences for GUI. Such techniques require lots of human effort and time for

repairing broken scripts. To summarize, numerous techniques have proposed automated

techniques in the existing literature but mostly semi-automated techniques have been proposed

that contain manual steps in their approaches.

 19

Figure 7 Type of automation vs. number of studies

3.6. Type of approaches for test repairs (RQ 1.6)

Our results indicate that most of the studies 36% (15) used model-based approaches in their test

repair techniques, for example S22 has used a control flow graph to model the event sequence of

the GUIs of the original version and the modified version to identify the changes and to check

whether a test case is usable on modified GUI or not. About 34% (14 studies) have used

symbolic and concolic execution approaches, for example, S23 has used dynamic symbolic

execution to modify the values of assertions to make the test case pass. About 19% (8) studies

used heuristic-based approaches, for example, S2 has provided some heuristics to solve the

problem of maintaining GUI test cases. Five studies have used search-based approaches, for

example, S4 has used the genetic algorithm for fixing broken JUnit tests.

Figure 8 Type of approaches and percentages

 20

Some studies use more than one approach, for example, S22 uses a model-based approach and

propose heuristics to repair test cases. Recently a new paper (S37) is published that uses

computer vision-based approach for repairing the GUI test script. Overall, model-based and

symbolic execution-based approaches are the most popular approaches used by studies in their

test repair techniques, as shown in

Figure 8. Table 5 shows the summary of common weaknesses and strengths of the approaches

used in the studies.

Table 5 Approaches strengths and weaknesses

Approach Strengths and Weaknesses

Model-based

approach

+ Ensure generalizability and provide tool-independent solutions [6].

- Requires expertise to design models [19].

Search-based

approach

+ Provide the most optimized solution to the problem [20].

- Computationally expensive [21].

Heuristic-based

approach

+ Can be used with any other repair techniques [22].

- May not provide accurate and generalize solution [23].

- It needs practitioner’s experience and knowledge to apply heuristics efficiently

[24].

Computer

Vision-based

approach

+ Visual locators might be the best choice when the visual appearance is more

stable than the structure [25].
- Image processing algorithms are known to be quite computation-intensive and

often reported as one of the weaknesses of visual testing [26].

Symbolic &

Concolic based

approach

+ Explore different feasible paths [5].

- These approaches are affected by path explosion problem [27].

3.7. Causes of test case breakages (RQ 2)

Software systems undergo several changes during their evolution. Unfortunately, such changes

might affect the corresponding test cases. Some studies are available in the literature which has

classified the causes of test breakages. For example, [28] provides a taxonomy of the causes of

record and reply test breakages for evolving web application. Record and Replay tools record the

interaction with the web browser while performing specific tasks. However, they are vulnerable

to changes and will break during the test execution [29]. We extract the causes of test case

breakages and collect them into a single taxonomy. Our taxonomy subsumes the taxonomy of

causes of test case breakages for web applications presented in [28] and covers both desktop

applications and mobile applications based on the data extracted from 41 included studies.

Such taxonomies help researchers to guide their test repair techniques for repairing maximum

causes of breakages. It also helps to evaluate the maturity of approaches and clarifying key issues

in the area. Without knowing the causes of broken test cases, it would not be possible to propose

new approaches to repair them. Figure 9 shows the common causes of test breakages in all

domains. The most common types of changes are the addition, deletion or modification of

elements.

 21

We summarize all identified causes of test breakages from the existing literature and re-classify

them into coarse-grained classes on the basis of similarities among the causes, as shown in Table

6, Table 7 and Table 8. In order to integrate and classify the existing causes of test case

breakages, two of the authors of this paper studied the presented causes in selected studies

(where applicable) and labeled each cause of test breakage for creating the taxonomy

independently. Subsequently, these labels were then refined through multiple review and group

meetings of all authors for organizing them into hierarchies. For example, S8 is focused towards

repairing the changes related to the method signature, class hierarchies and addition or deletion

of overridden/overloaded methods. The targeted changes from each study were identified and

grouped in some high-level classes with the consensus of all authors of the study.

Table 6 presents the type of code changes which can break their corresponding test cases. S6 is

the only study which provides test repairs for almost all of the changes mentioned in the Table.

S23 and S24 mostly deal with breakages related to method-level changes. We can conclude that

“Method-Level Changes” (such as changes in the declaration of method parameters and return

values, insertion and removal and type changes) are the prominent causes of test breakages for

desktop applications. We did not find any work that focusses specifically code level changes for

mobile and web applications. However, due to the nature of the approaches, it can be inferred

that mobile and web applications will also share the same causes. Therefore, the approaches that

fix and repair test breakage based on such changes should also be applicable to mobile and web

applications.

Table 7 shows the causes of test breakages for testing web applications. Most of the techniques

provide repairs for the broken HTML locators (such as id, name and XPath) and it also shows

that web locators are a prominent cause of web test breakages. Changes related to pop-up boxes,

page reloading and session expiry are neglected by the web test repair techniques. Table 8 shows

the causes of test breakages due to GUI evolution of software systems. A number of test repair

techniques provide fixes for the structural GUI evolution such as repositioning of GUI elements,

enable or disable buttons, and other GUI layout changes. We found some instances of overlap

between the causes of test breakages in this category between desktop, mobile and web

applications. For example, the changes classified under event-related changes are common for all

three platforms. Similarly, repositioning of graphical elements is also common to all three

platforms. We did not find any works that address repairing of test cases broken as a result of

session related changes (for example, user inactivity time increased or decreased), changes to

Java scripts pop-ups, etc., despite being common in web applications.

As a consequence of classifying the reported causes in higher level classes, we hope to let

researchers and practitioners infer whether a given technique may be applied on a SUT from a

domain for which it was not originally intended. For example, S9 uses a model-based approach

to repair broken GUI test scripts of mobile applications. This approach constructs an event

sequence model (ESM) to abstract possible event sequences in a GUI and a delta ESM (DESM)

to abstract the changes made to a GUI. By using delta DESM, it automatically updates test cases

for the updated version. The use of modeling methodology makes it generalizable to be applied

to other GUI-based desktop applications. VISTA (S37) uses computer vision-based approach to

suggest repairs for broken capture and replay test scripts. As capture and replay test scripts share

common characteristics like <locator, value, action>, this technique can also be used to repair

 22

other automated test scripts such as Selenium and QTP. Similarly, code level techniques such as

those proposed by S4, S5, S6, S23 and S24 can also be applied mobile applications, web

applications as well as desktop applications, even though the papers themselves do not provide

any such application evidence.

Figure 9: Common causes of test breakages

 23

Table 6: Common causes of code level test breakages

Table 7: Common causes of web test breakage (modified from [28])

Level Description Ref

Level Code-Level breakages

Platform

Desktop Mobile GUI

Class-Level

Changes

C1: Add New Class

C2: Remove Class

C3: Change Class Type (e.g. static, normal, abstract etc.)

C4: Rename Class

C5: Combine Class

C6: Interface Implementation

C7: Extension of Class Hierarchy

C8: Update Class Hierarchy

S6
Not

Any

Not

Any

Method-Level

Changes

C9: Add New Method

C10: Method Parameter Added

C11: Method Parameter Deleted

C12: Add new condition

C13: Add overloaded method

C14: Add overridden method

C15: Assertion added

C16: Expected value modified

C17: Method Call deleted.

C18: Change Method Declaration

C19: Change Method Parameters type

C20: Change Method Return Type

C21: Change number of parameters

C22: Method Type Conversion (e.g. abstract, interface etc.)

C23: Change Access Specifier

C24: Merge Methods

C25: Move Methods

S4, S5,

S6, S23,

S24,

S28,

S39

Not

Any

Not

Any

Attribute-Level

Changes

C26: Add Attribute

C27: Delete Attribute

C28: Rename Attribute

C29: Move Attribute

C30: Modify Attribute

C31: Change Attribute Type (e.g. static, const)

S6, S23,

S24

Not

Any

Not

Any

 24

Locator based

breakages

C1: Addition/Deletion of new web elements.

C2: Rename element

C3: Adjust the position of the element. (E.g. change access

path, replace the element and move an element from location to

other).

C4: Modification of web element attribute (E.g. id, href,

Alternative text, name, type, value, class and on Click).

C5: Addition/Deletion/Modification of an ancestor of an

element in the DOM tree (e.g. div).

C6: Addition/Deletion of element – (Unable to find specified

indexed element).

S8, S19,

S20, S28,

S33, S36,

S21, S37,

S41

Value/Action

related Changes

C7: Adding Verification condition (the e.g. value used by

previous test case as an input is no longer accepted for updated

version).

C8: Adding new web element in next version. (E.g. some fields

were optional in version V but are mandatory in version V’.)

C9: Modify drop-down list.

C10: Delete option from drop-down list.

C11: Modify code (e.g. unable to match/compare actual value

with expected).

S37, S20,

S21

JavaScript Popup

boxes

C12: The absence of expected popup box.

C13: Presence of unexpected popup box.

Not

targeted

by any

paper

Page Reloading

C14: Modify code (lack of time delays sufficient to allow its

next version to succeed).

C15: User session timeout because of shorter time.

Not

targeted

by any

paper

Session related

Changes

C16: User inactivity time is increased in version V’.

C17: User inactivity time is decreased in version V’.

Not

targeted

by any

paper

Table 8: Common causes of GUI-related changes

Level
Description Platform

Desktop Mobile Web

Event-related

changes

C1: Events cannot be dispatched once triggered.

C2: Actions that look similar but have different results.

C3: Different UI actions that may perform the same task.

C4: Presence or absence of confirmation modal dialog in an

updated version.

C5: New action added, action deleted, action modified

C6: The execution time of specific action/service is

different in an updated version.

S1,

S10,

S28

S9 S27

Structural

Changes

C7: Buttons become disabled due to some action.

C8: Deletion or relocation of elements

C9: Modify a button, add a button, and delete a button.

S1, S7,

S9, S3,

S18,

S9 S27

 25

 C10: Identifier and text changes inside the visual hierarchy

of activities.

C11: Layout and graphics change.

C12: Repositioning screen elements.

C13: Altering the selections in a drop-down list.

S16,

S28,

S22,

S34,

S29,

S14,

S25

3.8. System under Test (RQ 3.1)

As discussed in section 3, and shown in Table 9, we have extracted the following attributes for

applications used in empirical evaluations.

a) Name of SUT

b) LoC size of SUT

c) Brief description of SUT

d) Frequency of the SUT used in studies

e) Type of the SUT, i.e. open source, experimental or commercial.

f) Language in which SUT is developed.

g) Domain

It can be noticed from the Table (highlighted in bold) that the largest case study used in the

domain of mobile applications is Baidu Music having 5577 LoC. In web application Tikiwiki is

the largest case study having 873000 LoC and in the experiment with the desktop applications,

JFreeChart is used as a large case study having 217357 LoC.

Table 9 Characteristics of SUT

S.no. Name
Size

(LOC)
Description

Frequency

of usage as

case study

Type Language Domain

1
PHP address

book
4000

Web-based application for

managing and organizing

addresses and contacts.

8
Open

source
PHP Web

2 Collabtive 68000

Web-based software for

managing geographically

distributed teams to

collaborate and work.

8
Open

source
PHP Web

3 PMD 65279 Static code analyser 7
Open

source
Java Desktop

4 JFreeChart 217357 Chart generation library 5
Open

source
Java Desktop

5 Xtream 24655

Download manager for

increasing the download speed

up to 500%.

4
Open

source
Java Desktop

6 MantisBT 90000
One of the most popular web-

based bug tracking system
4

Open

source
PHP Web

7 Claroline 277000 A web-based collaborative e- 4 Open PHP/MyS Web

 26

learning application. source QL

8
Meeting room

booking system
9000

Web-based application for

reservation of rooms for

meetings

4
Open

source
PHP Web

9
PHP password

manager
4000

Web-based secured password

manager
5

Open

source
PHP Web

10 Lucene 1642 Open source search engine 3
Open

source
Java Web

11 JodaTime 63922 Java date and time API 3
Open

source
Java Web

12 Joomla 312978 Content management system 3
Open

source

PHP/MyS

QL
Web

13 CrosswordSage 3220

A tool to build professional

crosswords with great word

suggestion capabilities

4
Open

source
Java Desktop

14 FreeMind 24665 Mind mapping software 3
Open

source
Java Desktop

15 Common Lang 5500

Lang provides a host of helper

utilities for the java. Lang

API.

2
Open

source
Java Desktop

16 Common Math 9550
Java library for mathematics

and statistics
2

Open

source
Java Desktop

17 Gson 6500

Java library used to convert

java objects into JSON

representation

2
Open

source
Java Desktop

18 Barbecue 8842
Java library for generation of

barcode
2

Open

source
Java Desktop

19 Jedit 5017 Text editor 2
Open

source
Java Desktop

20 Gantt project 3777 Project management software 2
Open

source
Java Desktop

21 PHPFusion 256899
Light-weight content

management system
2

Open

source
PHP Web

22 PHPAgenda 43831

A tool for managing

appointments, holidays and to-

do lists, etc.,

2
Open

source
PHP Web

23 Dolibar 42010
Web-based Enterprise and

CRM software
2

Open

source
PHP Web

24 TerpPaint 13315
Paint program with clipboard

operations
1

Open

source
Java Desktop

25 TerpPresent 44591
An alternative to power point

application
1

Open

source
Java Desktop

26 TerpWord 22806
An alternative to Microsoft

word
1

Open

source
Java Desktop

27 TerpSpreadSheet 6337
A spreadsheet program with

cells and tables
1

Open

source
Java Desktop

28 Ant 93800

Java library for driving

processes describe in build

files

1
Open

source
Java Desktop

29 Maven 105100

Software Project management

tool based on project object

model.

1
Open

source
Java Desktop

30 Strut 110200
Framework for java-based

web applications
1

Open

source
Java Desktop

 27

31
Spring

Framework
183100

A framework for developing

java applications
1

Open

source
Java Desktop

32 Handicapp 3403

A tool for listening and

displaying the pronounced

words of a speaker

1
Open

source
Java Mobile

33 Toile 2 Vert 3389
A tool for finding bike point,

to recharge an electric bike
1

Open

source
Java Mobile

34 BiliBili 1844 Application for sharing video 2
Open

source
Java Mobile

35 Gnotes 1489 Simple notes application 2
Open

source
Java Mobile

36 Wannianli 2397 A simple calendar application 2
Open

source
Java Mobile

37 YoudaoNote 3200 Cloud based note tool 2
Open

source
Java Mobile

38
Wechat

Phonebook
3532 Phone book application 2

Open

source
Java Mobile

39 ChangBa 2800 Karaoke application 2
Open

source
Java Mobile

40 Baidu Music 5577 Music player 2
Open

source
Java Mobile

41 365 calender 1207 Calendar application 2
Open

source
Java Mobile

42 Ctrip 4400 Online travel agent 2
Open

source
Java Mobile

43 WizNote 4936 Cloud based IMS 2
Open

source
Java Mobile

44 TickTick 1750 To-do list application 2
Open

source
Java Mobile

45 JabRef 38992
Reference management

system
1

Open

source
Java Desktop

46 JMSN 11290 Java Microsoft MSN clone 1
Open

source
Java Desktop

47 Twister 492

Application that allow users to

write programs and download

stock quotes

1
Open

source
C# Web

48 mRemote 538
Application for managing

remote connections
1

Open

source
C# Web

49
University

directory
920

Application that provides

information about different

university

1
Open

source
C# Web

50 Budget tracer 343
Software for tracking budget

categories
1

Open

source
C# Web

51 Jmol 2800

Software for molecular

modelling and chemical

structures

1
Open

source
Java Desktop

52 AdblockIE 2400
Ad blocker for Internet

Explorer
1

Open

source
C# Web

53 CSHgCmd 2740 C# interface to mercurial 1
Open

source
C# Web

54 Fudg-Csharp 3800 Binary message encoding 1
Open

source
C# Web

55
GCalExchangeS

ync
7300

Google calendars along with

exchange server

interoperability

1
Open

source
C# Web

 28

56 Json.Net 4350 JSON serialization 1
Open

source
C# Web

57 MarkdounSharp 2250 Text to HTML convertor 1
Open

source
C# Web

58 NerdDinner 3900 A website for lunch plan 1
Open

source
C# Web

59 NGChart 2800 Wrapper for google charts API 1
Open

source
C# Web

60 Nhaml 4900 Template system for XHTML 1
Open

source
C# Web

61 ProjectPilot 6200
Source code statistics and

metrics
1

Open

source
C# Web

62 SharpMap 8800 Geopatial mapping 1
Open

source
C# Web

63 FreeCol 95404 4X video game 1
Open

source
Java Desktop

64 TikiWiki 873000
Wiki-CMS-Groupware

solution
1

Open

source
PHP Web

65 OrangeHRM 207000 HR management system 1
Open

source
PHP Web

Figure 10 shows the histogram of the 34 studies, which have conducted empirical evaluations

and the number of subject applications they have used. S24 used the most number (17) of subject

applications in its empirical evaluation. Furthermore, five studies (S5, S7, S12, S36, S41) uses

six subject applications, four studies (S1, S15, S20, S35) uses seven subject applications, three

studies (S3, S10, S40) uses five subject applications and three studies (S7, S12, S30) uses five

subject applications in their empirical evaluations. Consequently, S33 uses eight subject

applications, S6 uses nine subject applications, S9 uses 11 subject applications, S38 uses 16

subject applications and S24 uses 17 subject applications.

Figure 10 Number of case studies used by each study

Figure 11 shows the size (LOC) of SUT’s used in each study. It is good to see that more than

half (about 60%) of the studies used non-trivial SUT’s (equal to or more than 10k) for evaluating

 29

their techniques. The study that uses largest SUT with 873000 LOC (named as TikiWiki) is S33,

which was published in 2016.

Figure 11 LOC of SUT's vs. Number of studies

We hypothesized that the size (LOC) may be increasing in new studies. To assess our hypothesis

visually we have drawn a scatter plot, as shown in Figure 12, of years vs. size (LOC). Each dot

in the Figure represents the LOC for each study w.r.t. year. In this context, we can argue that, in

general, the size of SUT is increasing with time, i.e., newer papers are evaluating their

approaches on multiple larger case studies which increases the confidence in their results.

Figure 12 Years vs. LOC of SUT’s

Table 10 shows the list of most frequently used case studies and their respective number of

downloads. The download statistics indicate (although imprecisely) that almost all frequently

used case studies have a number of actual users. Therefore, these case studies are considered as

industrial applications. Rigorous evaluation of test repair approaches on large case studies that

have a number of actual users indicates the maturity of the area.

 30

Table 10 Stats of frequently used case studies

Frequently Used Case Studies
Usage

Frequency
Last Update Downloads

Total

Commits

Php address book 8 Sep 11, 2016 153861 575

Collabtive 8 Sep 19,2017 619729 153

PMD 7 Jun 26,2018 11634080 272

JFreeChart 5 Apr 13,2013 4404388 3646

PHP password manager 5 July 9,2018 133235 435

Xtream 4 July 16,2018 2370167 2590

MantisBT 4 July 16,2018 2312232 11274

Claroline 4 May 26,2018 356699 4965

Meeting room booking system 4 Apr 15, 2012 439173 8

Crossword Sage 4 July 9,2018 7565 NA

Lucene 3 July 9,2018 8000 approx. 30375

joda-time 3 May 30, 2018 468558 2073

Joomla 3 July 16, 2018 95000000 approx. 30622

FreeMind 3 Jun 28, 2015 23049691 66

3.9. Empirical evaluation metric (RQ 3.2)

Empirical evaluation of the proposed technique is essential for determining its applicability and

suitability. To measure the effectiveness of test case repair technique, different studies have used

multiple metrics. These metrics are used as criteria for assessing the effectiveness of the

proposed test case repair technique. We have extracted these metrics from all 27 studies which

have provided empirical evaluations. Table 11 shows the list of common metrics that studies

have used/proposed for the purpose of measuring the effectiveness of test repair techniques.

These metrics include test case length, test case execution time, code coverage (i.e. uniqueness of

event sequences and branch coverage), screens and connection coverage (used mostly in the

domain of mobile application testing) and false positives/negatives.

● Test case length: This metric is used to compute the length of test cases before and after

the repair. In the context of GUI element coverage, longer test cases reduce the number

of test cases necessary to achieve the test objectives [30]. This metric helps to evaluate

the strength of approaches in maintaining the same number of steps in the test case. For

example, a previous test case covers functionality by triggering four events/actions, but

the repaired test case needs to trigger five events/actions for executing the complete test

case. Hence, we can say that the repair test case has a maximum length than that of the

previously broken test case.

● Test case execution time: This metric is used to estimate the execution time of the

repaired test suite on the modified versions. A significant difference in resulted time

when compared to the original test suite shows the strength or weakness of repaired

approach. For instance, S28 measure the change in execution time of original test scripts

of version 1.0 and compares it with the execution time of repaired test scripts of version

2.0.

● Code coverage: Studies used this metric to compare code coverage before and after the

repair process. This metric measure if the test repair techniques improve or decrease the

coverage of SUT.

 31

● Screens and connection coverage: This metric is mostly used for mobile application

where the intention is to test every screen (number of screens added/deleted) and

connections (number of connections added/deleted/modified).

● False positives and false negatives: These metrics were mostly used in heuristics-based

approaches. For instance, in the context of test case evolution, false negatives are the

elements from the original GUI window identified as no longer existing in evolved GUI

when in fact they actually do. False positives are the elements from the original GUI

window which are identified to have been preserved (with little modifications) in evolved

GUI but actually they are no longer present.

Table 11 Metrics used/proposed for the purpose of effectiveness measurement.

Metrics Paper Reference

Test case length S1

Test case Execution time S1, S5

Code coverage S1, S5, S9, S18

Screens and connection coverage of mobile apps S9

False Positive, False Negative S2

3.10. Share of industry case studies (RQ 3.3)

Only a few studies have reported the use of ‘real industrial case study’ for evaluation of their

proposed test case repair approaches. Majority of the studies with empirical evaluation have

shown the applicability of their approaches by using open source applications. Some of these

open source applications are close enough to the real industrial case study, for example,

TikiWiki. However, there is a need for conducting empirical studies to assess the

effectiveness of the proposed approaches on real industrial case studies.

4. Research findings

In this section, the findings of each research question are provided in the summarized form.

 RQ 1.1 Type of research contribution: Most of the research work is focused

towards the contribution of new techniques or improving upon previous techniques

on test repair. Fewer papers focussed on test breakage prevention. Of the published

work, almost 55% of the studies have discussed test repair mechanisms whereas 31%

of studies discussed test breakages and mechanisms to avoid test breakage. Only a

few studies (12%) examined broken test case detection. Most of the published work

can be classified as validation research and focuses on demonstrating the applicability

of the proposed approach. We found 13 empirical evaluations that seek to establish

evidence on the effectiveness of the approaches and identify which are the most

effective approaches in a given context. These are discussed separately in the related

works section. This information is critical for practitioners that are looking for a

solution to the test suites maintenance problem for evolving applications. There is a

 32

lack of empirical evidence concerning which test repair tools are suitable for adaption

by practitioners. We did not find any paper that reports the experience of using test

repair in real industry projects. Similarly, there is little to no discussion on the cost of

test repair, in particular comparison of automated test repair with semi-automated and

manual approaches. Such a cost-effort analysis is an important factor for

practitioners. There is a significant lack of controlled experiments and industry

reports on whether test repair is feasible or not. Finally, where more than one tool is

available for example for test repair of Selenium test cases, there is no evidence of

which repair tools are most suitable or produce better results. Such results would be

of great value to industry professionals.

 RQ 1.2 Type of research method: Majority of the studies were validated on open-

source applications. The inclusion of large-scale open source case studies is a positive

indication as such case studies are closer to industry applications. Additionally,

empirical evaluations with open source subject application allow their replication. On

the other hand, lack of reported results in real industry context reduces the confidence

of practitioners on the maturity of proposed approaches. In particular, a number of

approaches are presented as generic, without actual evidence of their application on

specific case studies using a particular test framework. Researchers need to provide

evidence on the application of their approaches and their feasibility using popular test

frameworks. While we found a number of works that focus on JUnit and Selenium

frameworks, other common testing frameworks such as APM, TestComplete,

Espresso are not covered.

 RQ 1.3 Test Case Repair Tools: We discovered that most of the approaches target

end-to-end (E2E) test scripts that operate at the GUI level and test the application as a

whole from the point of view of the end user. However, from our observations, it

emerges that most of the techniques have been proposed in the desktop domain,

whereas the web and mobile domain are still understudied platforms. This is a

positive indicator for practitioners involved in developing GUI based test cases. For

researchers, we have identified a significant research gap in the domain of repairing

web and mobile application test suites. Moreover, despite the claims of tools being

publically available, at the time of our search, we only found a few tools that are still

available for download. In particular, we did not find any tool available for download

that can repair test cases of mobile applications. Such lack of tools is a significant

hindrance in converting academic research into industry practices.

 RQ1.4 Type of Test Framework: We have identified the type of testing frameworks

targeted by test repair approaches. Out of 11 tools reported in the literature, JUnit is

the most frequent target framework for desktop applications. To our surprise, we only

found 3 tools out of 15 that targets repairing of Selenium test cases, which is a

popular open source testing framework for web applications. There were two reported

tools that repair test cases of mobile applications by the same authors, repair test

cases for the Robot test framework. No other testing framework for mobile

applications is covered. This further strengthens the observation from RQ1.3 that

there is a significant scope of industry application and experience papers. With a

 33

growing focus on automated testing of web applications, there is a critical need of

tools that support test case repair to help in evolving the test suites.

 RQ 1.5 Automation Level: We identified that there is little or no empirical evidence

on how these manual, semi-automated and automated approaches perform in terms of

efficiency. Is it more efficient to repair the test cases or to simply throw them away

and write new ones? Without empirical evidence on the effort required to repair test

cases practitioners may be reluctant to adopt the proposed approaches. Furthermore,

there is a significant scope of future research on automated validation of proposed test

repairs. Any proposed repairs should not change the semantics of the test case.

Currently, this validation is done manually.

 RQ 1.6 Type of Approaches used in Test Repair Technique: Model-based and

symbolic execution-based approaches are the most popular approaches used by

studies in their test repair techniques. Other approaches like search and heuristic

based are less used in the area. In our opinion, an interesting future research direction

could be to focus on how emerging data science technique can be applied in the area,

particularly for applications that are being maintained for long time periods and

consequently having a rich version history that may be used for mining.

 RQ 2.1 Causes of Test Case Breakages: We have provided a detailed taxonomy of

changes/modifications in the applications which can break the existing test cases. We

extracted test breakages repaired by each approach from papers and classified them

into different classes and sub-classes. For a web application, the taxonomy presented

in [28] is adopted. It is noticeable that researchers have proposed approaches for

repairing specific test breakages in test suites. For practitioners, no tool is presented

in the literature which repairs (close to) all identified changes/test breakages and that

provides a generic solution. Most of the work tends to focus on desktop applications,

there is a significant overlap in the causes of test case breakages between all three

platforms. Consequently, it might be possible to apply some of the approaches

proposed for repair desktop application test cases on test cases of mobile applications

and vice-versa. This taxonomy can help researchers to improve existing approaches

for test case repair and propose strategies according to the changes.

 RQ 3.1 Characteristics of SUT: We have found 27 studies which were evaluated on

a wide range of web applications (SUTs) for their validations. This makes the tool or

technique comparisons quite challenging in this field due to non-uniformity of the

case studies. We have listed all subject applications used for empirical evaluation in

the area. Most of the subject applications were developed in Java and their multiple

versions and test cases are available. Most published empirical studies have used at

least five or greater number of subject applications for the evaluation of their

proposed approaches. We found a positive trend that more than half (about 60%) of

the studies used large SUTs (equal to or more than 10k) for evaluating their

techniques.

 34

 RQ 3.2 Evaluation Metrics for Empirical Studies: We have identified different

evaluation metrics from the empirical studies published in the area. This can help

researchers and practitioners to effectively evaluate and compare different test case

repair approaches based on the evaluation metrics.

 RQ 3.3 Share of Industry Case Studies: We have analysed the empirical studies in

the area and found that no technique in the area is evaluated on an actual industrial

case study. However, the most frequently used case studies are large scale open

source studies that have a significant number of users (determined from the number

of downloads). Therefore, the applications can be considered as good representative

of industry applications. However, from a practitioner’s perspective evaluation in real

industry context is still an important aspect missing from the available literature. In

particular, there is a lack of experience reports on challenges in applying these

techniques on industry projects.

5. Related Work
To the best of our knowledge, there is currently no systematic review or literature survey in the

area of test case evolution. However, numerous SLRs have been proposed in the area of software

testing that we discussed in this section. Also, we discuss empirical studies in the area of test

case repair.

a. SLRs in Software Testing

There are a number of systematic reviews in different sub-areas of software testing [31]. For

example, Dogan et al. [32] conducted an SLR on web application testing to identify, analyze and

classify state-of-the-art techniques for testing of web applications. Kanewaka et al. [33]

systematically gathered literature on the challenges and proposed solutions to testing of scientific

software. Catal et al. [34] presented a systematic literature review on test case prioritization

techniques using a genetic algorithm. The paper summarizes the existing techniques of the

genetic algorithm for test case prioritization. Narciso et al. [35] conducted an SLR on the

techniques of test case selection and state that random testing, genetic algorithm and greedy

algorithm are the most commonly reported methods. Machado et al. [36] presented a systematic

review on the strategies used in testing of software product lines. Rafi et al. [37] summarize the

benefits and limitations of automated software testing by analyzing papers that presented

techniques for test automation. Khan et al. [38] conducted an SLR on the reporting quality of

model-based testing techniques.

b. Empirical Studies in the area of Test Case Repair

We identified 13 empirical studies published in the area of test case repair, shown in Table 12.

Here we provide a brief overview of existing secondary studies (e.g., empirical studies/taxonomy

papers), focusing on different aspects of test case maintenance. For example, S42 presented an

empirical analysis of Capture/Replay web testing and programmable web testing to evaluate their

development time and test case maintenance effort. S43 presented a detailed taxonomy of causes

of web test breakages. S44 conducted an empirical study to identify what costs are associated

with automated GUI-based testing. S45 provides the fine-grained co-evolution patterns between

production and test code. S46 has evaluated the feasibility of repairing broken test scripts

 35

automatically by studying maintenance operations on test scripts. S47 performed an empirical

analysis to assess the robustness of visual and DOM-based web locators during code evolution.

S48 presented an exploratory assessment to identify the causes of the fragility of UI automated

tests for mobile applications. S49 studied the use of an optimal greedy algorithm to generate the

robust XPath locators for web testing. S50 presented an extensive empirical study of the

prevalence and maintenance of Selenium-based functional tests for web applications. S51

reported an experiment on an industrial case study, for investigating the potential benefits of

adopting the page object pattern to improve the maintainability of Selenium WebDriver test

cases. S52 has experimentally assessed the effectiveness of tool-based approach versus the

manual approach for maintaining GUI directed test scripts. S53 presented the comparison of two

test case generation algorithms (genetic and concolic) to examine the reuse of existing regression

test cases by considering several factors (e.g. the order in which the code elements are targeted in

the generation of test cases). S54 conducted an experiment to quantify the maintenance effort

required to repair Selenium WebDriver test suites adopting different locators.

Table 12 Related Work: Empirical Studies

ID Author Title Year

S42 Leotta et al. [39] Capture-Replay vs. Programmable Web Testing: An Empirical

Assessment during Test Case Evolution

2013

S43 Hammoudi et al. [40] Why Do Record/Replay Tests of Web Applications Break? 2016

S44 Alegroth et al. [41] Maintenance of automated test suites in industry: An empirical

study on Visual GUI Testing

2016

S45 Marsavina et al. [42] Studying fine-grained co-evolution patterns of production and test

code

2014

S46 Christophe et al. [43] Study on the Practices and Evolutions of Selenium Test Scripts 2013

S47 Leotta et al. [25] Visual vs. DOM-based web locators: An empirical study 2014

S48 Coppola et al. [44] Automated Mobile UI Test Fragility: An Exploratory Assessment

Study on Android

2016

S49 Leotta et al. [23] Meta-Heuristic Generation of Robust XPath Locators for Web

Testing

2015

S50 Christophe et al. [45] Prevalence and maintenance of automated functional tests for web

applications

2014

S51 Leotta et al. [46] Improving test suites maintainability with the page object pattern:

An industrial case study

2013

S52 Grechanik et al. [47] Experimental assessment of manual versus tool-based

maintenance of GUI-directed test scripts

2009

S53 Xu et al. [48] Directed Test Suite Augmentation: An empirical investigation 2009

S54 Leotta et al. [49] Comparing the maintainability of selenium WebDriver test suites

employing different locators: a case study

2013

6. Threats to validity

In this section, threats to the validity of this SLR and the measures taken to minimize them are

discussed.

Internal threats validity: One of the internal threats to this study is study selection. We have

followed a systematic search process for searching papers and including them in our final

 36

selection. We have used different query strings to search in six major digital libraries for research

papers and have used a rigorous inclusion and exclusion criteria for the final selection of our

studies. Despite such a systematic process for the selection of studies, there are still chances of

missing out some relevant study due to the way search strings are formed. There could also be

studies published in languages other than English. We restricted our search only to manuscripts

published in English.

Researcher’s bias is another internal threat in the selection of primary studies. To reduce the

threat each paper was reviewed by at least two authors of this study and all the conflicts in the

selection of papers were discussed and resolved through multiple review and group meetings

with all the authors of the study.

External threats validity: Generalizability in SLR can be interpreted as well the selected studies

represent the area being studied. To ensure generalizability, we follow well-defined practices for

conducting a systematic literature review and by including papers from all common databases

and search engines. Snowballing was used on selected case studies to ensure that no studies are

omitted that are relevant to the topic.

Conclusion threat validity: Conclusion validity of SLR deals with whether correct conclusions

are drawn through systematic and repeatable treatments [16]. In order to confirm the reliability

of the treatments, all the primary studies were reviewed carefully by at least two authors to

reduce the bias in data extraction, which can lead to incorrect conclusions. Disagreements

regarding the extracted data were resolved by consensus among the authors. The reported graphs

and tables are directly generated from the extracted data in a spreadsheet to ensure its traceability

with data. The systematic approach followed in this study ensures replicability and the results of

any similar study will have no major deviations from our classification decisions. Additionally,

we have made the extracted data available in an online Google spreadsheet (http://bit.do/eDsL6)

for researchers to download and explore.

7. Conclusion

The goal of the study is to gather, analyze and classify the current state of the art in software test

repair techniques. This review can help practitioners in many ways. It provides an overview of

the state-of-the-art in the area and can be used as a catalog of existing test case repair techniques

and tools. We have identified the published test case repair techniques, tools and their

characteristics (metrics/attributes). Furthermore, it is found that researchers have focused on

model-based and symbolic execution-based approaches to repair test cases. Most of the

identified test repair techniques target test repair of GUI based applications. Despite the

popularity of web applications and mobile applications, we found less research focus on test

suites repair for mobile and web applications. Web and mobile applications represent a

significant market share and more and more companies are moving towards automating their test

suites. Techniques and tools that support test suites maintenance for web and mobile applications

are therefore of significant interest to practitioners. Out of 15 proposed tools, available in the

literature, we only found 4 tools that are publicly accessible. None of the tools proposed for

repair test cases of mobile applications were available for download at the time of submission of

this paper. Access to viable tools is an important consideration for the practitioners that are

http://bit.do/eDsL6)

 37

interested in evaluating and using a given approach. Without the tools being publicly available, it

is difficult for a practitioner to evaluate its usefulness. Another important observation is on the

nature of the case studies used for evaluating the proposed approaches. We found that empirical

evaluations were done on open source case studies. We identified a positive trend of using large

scale open source case studies for evaluation. Use of such large-scale case studies that have a

number of active users increases the confidence in the results of the presented approach and is a

loose indicator of growing maturity of research in the domain. Such studies would be a good

approximation of industry case studies, we feel that researchers and practitioners would benefit

significantly from experience reports and evaluation done in real industry settings. We found a

significant lack of evidence on the comparison between the various tools and which tools and

approaches are more suited for a given context. We found a number of manual, semi-automated

and automated approaches that aim to repair test cases. However, we did not find evidence on the

cost-effectiveness of such approaches. There is a need for controlled experiments and industry

case studies to compare the effectiveness of the proposed test repair and breakage prevention

approaches.

Table 13 List of selected studies

ID Author Title Year

S1 Huang, Si [50] A Framework for Automatically Repairing GUI Test Suites 2010

S2 McMaster et al. [22] An Extensible Heuristic-Based Framework for GUI Test Case

Maintenance

2009

S3 Gao et al. [51] Analyzing Refactorings’ Impact on Regression Test Cases 2015

S4 Xu et al. [20] Using Genetic Algorithms to Repair JUnit Test Cases 2014

S5 Pinto et al. [52] Understanding Myths and Realities of Test-suite Evolution 2012

S6 Mirzaaghaei et al. [53] Supporting Test Suite Evolution through Test Case Adaptation 2012

S7 Huang et al. [54] Repairing GUI test suites using a genetic algorithm 2010

S8 Cunha and Maria Ana Casal

[55]

Automatic maintenance of test scripts 2011

S9 Li et al. [56] ATOM: Automatic Maintenance of GUI Test Scripts for

Evolving Mobile Applications

2017

S10 Zhang et al. [57] Automatically repairing broken workflows for evolving GUI

applications

2013

S11 Atif Memon [58] Automatically repairing event sequence-based GUI test suites

for regression testing

2008

S12 Mirzaaghaei et al. [59] Automatically repairing test cases for evolving method

declarations

2010

S13 Rapos et al. [60] Examining the co-evolution relationship between Simulink

Models and their test cases

2016

S14 Priya et al. [61] GUI Test Script Repair in Regression Testing

S15 Gove et al. [62] Identifying infeasible GUI test cases using support vector

machines and induced grammars

2011

S16 Grechanik et al. [63] Maintaining and evolving GUI-directed test scripts 2009

S17 Yang et al. [64] Specification-Based Test Repair Using a Lightweight Formal

Method

2012

S18 Gao et al. [6] SITAR: GUI Test Script Repair

S19 Mirzaaghaei et al. [65] TestCareAssistant: Automatic Repair of Test Case

Compilation Errors

2011

S20 Hammoudi et al. [66] WATERFALL: an incremental approach for repairing record-

replay tests of web applications

2016

S21 Choudhary et al. [7] WATER: Web Application TEst Repair 2011

S22 Atif Memon and Mary Lou Regression testing of GUIs 2003

 38

Soffa [3]

S23 Daniel et al. [5] ReAssert: Suggesting repairs for broken unit tests 2009

S24 Daniel et al. [67] On test repair using symbolic execution 2010

S25 Atif Memon [68] Using tasks to automate regression testing of GUIs 2004

S26 Chen et al. [4] When a GUI regression test failed, what should be blamed? 2012

S27 Dhatchayani et al. [69] Test case generation and reusing test cases for GUI designed

with HTML

2012

S28 Jiang et al. [70] Assuring the model evolution of protocol software

specifications by regression testing process improvement

2011

S29 Daniel et al. [71] Automated GUI Refactoring and Test Script Repair 2011

S30 Hao et al. [72] Is this a bug or an obsolete test? 2013

S31 Mayan et al. [73] Novel Approach to Reuse Unused Test Cases in a GUI Based

Application

2015

S32 Evans et al. [74] Differential testing: A new approach to change detection 2007

S33 Leotta et al. [75] ROBULA +: an algorithm for generating robust XPath

locators for web testing

2016

S34 Xie et al. [76] REST: A Tool for Reducing Effort in Script-based Testing 2008

S35 Tan et al. [77] relifix: Automated repair of software regressions 2015

S36 Leotta et al. [25] Reducing Web Test Cases Aging by means of Robust XPath

Locators

2014

S37 Stocco et al. [78] Visual Web Test Repair 2018

S38 Chang et al. [79] Change-Based Test Script Maintenance for Android Apps 2018

S39 Nguyen et al. [80] Interaction-Based Tracking of Program Entities for Test

Case Evolution

2017

S40 Leotta et al. [81] Using multi-locators to increase the robustness of web test

cases

2015

S41 Yandrapally et al. [82] Robust test automation using contextual clues 2014

References:

1. M. Mirzaaghaei, "Automatic Test Suite Evolution". 2012.

2. M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. , "Chapter five-approaches and tools for

automated end-to-end web testing". Advances in Computers 101 (2016): 193-237.

3. A.M. Memon and M.L. Soffa, "Regression testing of GUIs". Proceedings of the 9th

European software engineering conference held jointly with 10th ACM SIGSOFT

international symposium on Foundations of software engineering - ESEC/FSE '03, 2003:

p. 118.

4. J. Chen, M. Lin, K. Yu, B. Shao, "When a GUI regression test failed, what should be

blamed?". 5th International Conference on Software Testing, Verification and Validation,

ICST 2012. 2012. p. 467-470.

5. B. Daniel, V. Jagannath, D. Dig, "ReAssert: Suggesting repairs for broken unit tests".

International Conference on Automated Software Engineering, 2009: p. 433-444.

6. Z. Gao, Z. Chen, Y. Zou, "SITAR: GUI Test Script Repair". IEEE Transactions on

Software Engineering, 2016. 42: p. 170-186.

7. S.R. Choudhary, D. Zhao, H. Versee, A. Orso, "WATER : Web Application TEst

Repair". First International Workshop on EndtoEnd Test Script Engineering, 2011: p. 24-

29.

 39

8. B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

"Systematic literature reviews in software engineering–a systematic literature review".

Information and software technology 2009: p. no. 1 (2009): 7-15.

9. B. Kitchenham, S.L. Pfleeger, L.M. Pickard, "Preliminary guidelines for empirical

research in software engineering". Software Engineering,. IEEE Transactions on, 2002.

28(8): p. 721-734., 2002.

10. R.V. Solingen, V. Basili, G. Caldiera, and H. D. Rombach. "Goal question metric (gqm)

approach". Encyclopedia of software engineering (2002).

12. K. Petersen, R.Feldt., S. Mujtaba, M. Mattsson, "Systematic mapping studies in software

engineering".International Conference on Evaluation and Assessment in Software

Engineering (EASE), 2008, pp. 71–80. , 2008.

13. Muhammad Uzair Khan, Salman Sherin, Muhammad Zohaib Iqbal, and Rubab Zahid.

"Landscaping systematic mapping studies in software engineering: A tertiary

study." Journal of Systems and Software 149 (2019): 396-436.

14. H. Munir, K. Wnuk, and P. Runeson, "Open innovation in software engineering: a

systematic mapping study". Empirical Software Engineering, 2016. 21(2): p. 684-723.

15. K. Petersen, S. Vakkalanka, and L. Kuzniarz, "Guidelines for conducting systematic

mapping studies in software engineering: An update". Information and Software

Technology, 2015. 64: p. 1-18.

16. V. Garousi and M.V. Mäntylä, "A systematic literature review of literature reviews in

software testing". Information and Software Technology, 2016. 80: p. 195-216.

17. C. Wohlin, "Guidelines for snowballing in systematic literature studies and a replication

in software engineering". International conference on evaluation and assessment in

software engineering. 2014. ACM.

18. L. Chen, M. A. Babar, and H. Zhang, "Towards an evidence-based understanding of

electronic data sources". 2010.

19. J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, "Empirical assessment of

MDE in industry". 33rd international conference on software engineering. 2011. ACM.

20. Y. Xu, B. Huang, G. Wu, M. Yuan, "Using genetic algorithms to repair JUnit test cases".

Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 2014. 1: p. 287-

294.

21. S. Ali, L.C. Briand, H. Hemmati, R.K.P. Walawege, "A systematic review of the

application and empirical investigation of search-based test case generation". IEEE

Transactions on Software Engineering, 2010. 36(6): p. 742-762.

22. S. McMaster and A.M. Memon, "An extensible heuristic-based framework for gui test

case maintenance." In Software Testing, Verification and Validation Workshops, 2009.

ICSTW'09. International Conference on, pp. 251-254. IEEE, 2009., 2009.

23. M. Leotta, A. Stocco, F. Ricca, P. Tonella, "Meta-heuristic generation of robust XPath

locators for web testing". Search-Based Software Testing (SBST), 2015 IEEE/ACM 8th

International Workshop on. 2015. IEEE.

24. D. Ferguson, M. Likhachev, and A. Stentz, "A guide to heuristic-based path planning".

International workshop on planning under uncertainty for autonomous systems,

international conference on automated planning and scheduling (ICAPS). 2005.

25. M. Leotta, D. Clerissi, F. Ricca, P. Tonella, "Visual vs. DOM-based web locators: An

empirical study". International Conference on Web Engineering. 2014. Springer.

 40

26. E. Börjesson and R. Feldt. "Automated system testing using visual gui testing tools: A

comparative study in industry". 2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation. 2012. IEEE.

27. C. Cadarand K. Sen, "Symbolic execution for software testing: three decades later".

Communications of the ACM, 2013. 56(2): p. 82-90.

28. M. Hammoudi, G. Rothermel and P. Tonella, "Why do Record/Replay Tests of Web

Applications Break?" 2016 IEEE International Conference on Software Testing,

Verification and Validation (ICST), Chicago, IL, 2016, pp. 180-190. doi:

10.1109/ICST.2016.16

29. M. Leotta, D. Clerissi, F. Ricca, P. Tonella, "Approaches and tools for automated end-to-

end web testing". Advances in Computers. 2016, Elsevier. p. 193-237.

30. S. Carino and J.H. Andrews. "Evaluating the effect of test case length on GUI test suite

performance". 10th International Workshop on Automation of Software Test. 2015. IEEE

Press.

31. K. Petersen, "Systematic Mapping Studies in Software Engineering". Evaluation and

Assessement in Software Engineering. 2008.

32. S. Doğan, A.B. Can, and V. Garousi, "Web application testing: A systematic literature

review". Journal of Systems and Software, 2014. 91: p. 174-201.

33. U. Kanewala and J.M. Bieman, "Testing scientific software: A systematic literature

review". Information and software technology, 2014. 56(10): p. 1219-1232.

34. C. Catal, "On the application of genetic algorithms for test case prioritization: a

systematic literature review". 2nd international workshop on evidential assessment of

software technologies. 2012. ACM.

35. E.N. Narciso, M.E. Delamaro, and F.D.L.D.S. Nunes, "Test case selection: A systematic

literature review". International Journal of Software Engineering and Knowledge

Engineering, 2014. 24(04): p. 653-676.

36. I. do Carmo Machado, J.D. McGregor, Y.C. Cavalcanti, E.S. de Almeida, "On strategies

for testing software product lines: A systematic literature review". Information and

Software Technology, 2014. 56(10): p. 1183-1199.

37. D.M. Rafi, K.R.K. Moses, K. Petersen, M. Mantyla, "Benefits and limitations of

automated software testing: Systematic literature review and practitioner survey". in

Proceedings of the 7th International Workshop on Automation of Software Test. 2012.

IEEE Press.

38. M. Uzair khan, S. Iftikhar, M.Z. Iqbal, S. Sherin "Empirical studies omit reporting

necessary details: A systematic literature review of reporting quality in model based

testing". Computer Standards & Interfaces, 2018. 55: p. 156-170.

39. M.Leotta, D. Clerissi, F. Ricca, P. Tonella, "Capture-replay vs. programmable web

testing: An empirical assessment during test case evolution". in Reverse Engineering

(WCRE), 2013 20th Working Conference on. 2013. IEEE.

40. M. Hammoudi, G. Rothermel and P. Tonella. "Why do record/replay tests of web

applications break?" in Software Testing, Verification and Validation (ICST), 2016 IEEE

International Conference on. 2016. IEEE.

41. E. Alégroth, R. Feldt and P. Kolström, "Maintenance of automated test suites in industry:

An empirical study on Visual GUI Testing". Information and Software Technology,

2016. 73: p. 66-80.

 41

42. C. Marsavina, D. Romano, and A. Zaidman. "Studying fine-grained co-evolution patterns

of production and test code". Source Code Analysis and Manipulation (SCAM), 2014

IEEE 14th International Working Conference on. 2014. IEEE.

43. L. Christophe, C. De Roover, and W. De Meuter, "Study on the Practices and Evolutions

of Selenium Test Scripts". BENEVOL 2013, 2013: pp. 13.

44. R. Coppola, E. Raffero, and M. Torchiano. "Automated mobile UI test fragility: an

exploratory assessment study on Android". in Proceedings of the 2nd International

Workshop on User Interface Test Automation. 2016. ACM.

45. L. Christophe, R. Stevens, C. De Roover, W.D. Meuter, "Prevalence and maintenance of

automated functional tests for web applications". Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on. 2014. IEEE.

46. M. Leotta, D. Clerissi, F. Ricca, "Improving test suites maintainability with the page

object pattern: An industrial case study". in Software Testing, Verification and Validation

Workshops (ICSTW), 2013 IEEE Sixth International Conference on. 2013. IEEE.

47. M. Grechanik, Q. Xie, and C. Fu, "Experimental assessment of manual versus tool-based

maintenance of gui-directed test scripts". International Conference in Software

Maintenance (ICSM) 2009. IEEE International Conference on. 2009.

48. Z. Xu, Y. Kim, M. Kim, M.B. Cohen and G. Rothermel, "Directed test suite

augmentation: An empirical investigation". Software Testing Verification and Reliability,

2009, 25 (2): pp. 77-114.

49. M.Leotta, D. Clerissi, F. Ricca, C. Spadaro, "Comparing the maintainability of selenium

webdriver test suites employing different locators: A case study". in Proceedings of the

2013 international workshop on joining academia and industry contributions to testing

automation. 2013. ACM.

50. S. Huang, "A Framework for Automatically Repairing GUI Test Suites". (2010).

51. Y. Gao, H. Liu, X. Fan, Z. Niu, and B. Nyirongo, "Analyzing Refactorings' Impact on

Regression Test Cases.". In Computer Software and Applications Conference

(COMPSAC), 2015 IEEE 39th Annual, , IEEE, 2015. vol. 2, pp. 222-231.

52. L.S. Pinto, S. Sinha, and A. Orso, "Understanding Myths and Realities of Test-suite

Evolution". Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, 2012. 1: pp. 33:1-33:11.

53. M. Mirzaaghaei, F. Pastore, and M. Pezz, "Supporting Test Suite Evolution through Test

Case Adaptation". International Conference on Software Testing, Verification and

Validation, 2012.

54. S. Huang, M.B. Cohen, and A.M. Memon, "Repairing GUI test suites using a genetic

algorithm". ICST 2010 - 3rd International Conference on Software Testing, Verification

and Validation, 2010: p. 245-254.

55. M.A.C. Cunha, "Automatic maintenance of test scripts". 2012.

56. X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and Xuandong Li. , "ATOM:

Automatic Maintenance of GUI Test Scripts for Evolving Mobile Applications". In

Software Testing, Verification and Validation (ICST), 2017 IEEE International

Conference on, IEEE, 2017.: p. pp. 161-171.

57. S. Zhang, H. Lü, and M.D. Ernst, "Automatically repairing broken workflows for

evolving GUI applications". Proceedings of the 2013 International Symposium on

Software Testing and Analysis - ISSTA 2013, 2013: p. 45.

 42

58. A.M. Memon, "Automatically repairing event sequence-based GUI test suites for

regression testing". ACM Transactions on Software Engineering and Methodology, 2008.

18: p. 1-36.

59. M. Mirzaaghaei, F. Pastore, and M. Pezze. "Automatically repairing test cases for

evolving method declarations". in Software Maintenance (ICSM), 2010 IEEE

International Conference on. 2010. IEEE.

60. E.J. Rapos and J.R. Cordy, "Examining the co-evolution relationship between Simulink

Models and their test cases". Proceedings - 8th International Workshop on Modeling in

Software Engineering, MiSE 2016, 2016: p. 34-40.

61. G. Priya and B. Rao, "GUI Test Script Repair in Regression Testing". ermt.net.

62. R. Gove and J. Faytong, "Identifying infeasible GUI test cases using support vector

machines and induced grammars". Proceedings - 4th IEEE International Conference on

Software Testing, Verification, and Validation Workshops, ICSTW 2011, 2011: p. 202-

211.

63. M. Grechanik, Q. Xie, and C. Fu, "Maintaining and evolving GUI-directed test scripts".

Proceedings - International Conference on Software Engineering, 2009: p. 408-418.

64. G. Yang, S. Khurshid, and M. Kim, "Specification-Based Test Repair Using a

Lightweight Formal Method". 2012: p. 455-470.

65. M. Mirzaaghaei and F. Pastore, "TestCareAssistant : Automatic Repair of Test Case

Compilation Errors".

66. M. Hammoudi, G. Rothermel, and A. Stocco, "WATERFALL: an incremental approach

for repairing record-replay tests of web applications". Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering - FSE

2016, 2016: p. 751-762.

67. B. Daniel, T. Gvero, and D. Marinov, "On test repair using symbolic execution".

Proceedings of the 19th international symposium on Software testing and analysis -

ISSTA '10, 2010: p. 207.

68. A.M. Memon, "Using tasks to automate regression testing of GUIs". Conferernce on

Artificial intelligence and Applications (AIA), 2004.

69. M. Datchayani, A.X.A. Rayan, Y.palanichamy, and B. Zacharias, "Test case generation

and reusing test cases for GUI designed with HTML". Journal of Software, 2012. 7: pp.

2269-2277.

70. B. Jiang, T.H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, X. Li, W.K. Chan, "Assuring the

model evolution of protocol software specifications by regression testing process

improvement". Software: Practice and Experience, 2011. 41(10): pp. 1073-1103.

71. B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezze, "Automated GUI

refactoring and test script repair". in Proceedings of the First International Workshop on

End-to-End Test Script Engineering. 2011. ACM.

72. D. Hao, T. Lan, H. Zhang, C. Guo and L. Zhang, "Is this a bug or an obsolete test?"

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2013. 7920 LNCS: pp. 602-628.

73. J, A.Mayan and K.L. Priya, "Novel Approach to Reuse Unused Test Cases in a GUI

Based Application". International Conference on Circuits, Power and Computing

Technologies. 2015.

74. R.B. Evansand A. Savoia, "Differential testing: A new approach to change detection".

Aids, 2007: p. 549-552.

 43

75. M. Leotta, A. Stocco, F. Ricca, P. Tonella, "ROBULA + : an algorithm for generating

robust XPath locators for web testing". 2016: p. 177-204.

76. Q. Xie, M. Grechanik, and C. Fu, "REST : A Tool for Reducing Effort in Script-based

Testing". International Conference on Software Maintenance, 2008.

77. S.H. Tan and A. Roychoudhury, "Relifix: Automated repair of software regressions".

Proceedings - International Conference on Software Engineering, 2015. 1: p. 471-482.

78. A. Stocco, R. Yandrapally, and A. Mesbah. "Visual Web Test Repair". Proceedings of

the 26th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2018). ACM. 2018.

79. N. Chang, L. Wang, Y. Pei, S.K. Mondal, and X. Li, "Change-Based Test Script

Maintenance for Android Apps". 2018 IEEE International Conference on Software

Quality, Reliability and Security (QRS). 2018.

80. H.A. Nguyen, T.T. Nguyen, T.N. Nguyen, H.V. Nguyen, "Interaction-Based Tracking of

Program Entities for Test Case Evolution". Software Maintenance and Evolution

(ICSME), 2017 IEEE International Conference on. 2017. IEEE.

81. M. Leotta, A. Stocco, F. Ricca, P. Tonella, "Using multi-locators to increase the

robustness of web test cases". Software Testing, Verification and Validation (ICST),

2015 IEEE 8th International Conference on. 2015. IEEE.

82. R. Yandrapally, S. Thummalapenta, S. Sinha, S. Chandra, "Robust test automation using

contextual clues". in Proceedings of the 2014 International Symposium on Software

Testing and Analysis. 2014. ACM.

