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ABSTRACT 

Context: Several goal-oriented languages focus on modeling stakeholders’ objectives, interests or 
wishes. However, these languages can be used for various purposes (e.g., exploring system solutions 
or evaluating alternatives), and there are few guidelines on how to use these models downstream to 
the software requirements and design artifacts. Moreover, little attention has been paid to the 
empirical evaluation of this kind of languages. In a previous work, we proposed value@GRL as a 
specialization of the Goal Requirements Language (GRL) to specify stakeholders’ goals when dealing 
with early requirements in the context of incremental software development. 

Objective: This paper compares the value@GRL language with the i* language, with respect to the 
quality of goal models, the participants’ modeling time and productivity when creating the models, 
and their perceptions regarding ease of use and usefulness. 

Method: A family of experiments was carried out with 184 students and practitioners in which the 
participants were asked to specify a goal model using each of the languages. The participants also 
filled in a questionnaire that allowed us to assess their perceptions.  

Results: The results of the individual experiments and the meta-analysis indicate that the quality of 
goal models obtained with value@GRL is higher than that of i*, but that the participants required less 
time to create the goal models when using i*. The results also show that the participants perceived 
value@GRL to be easier to use and more useful than i* in at least two experiments of the family.  

Conclusions: value@GRL makes it possible to obtain goal models with good quality when compared 
to i*, which is one of the most frequently used goal-oriented modeling languages. It can, therefore, be 
considered as a promising emerging approach in this area. Several insights emerged from the study 
and opportunities for improving both languages are outlined. 
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1. Introduction 
The increasing complexity of software systems has led to the emergence of modeling languages with 
which to increase the understanding between stakeholders and software engineers. It has been 
recognized that goal-oriented modeling is useful to understand the organizational context of a system 
and the objectives that the system should achieve through cooperation among the actors in the 
intended software and its environment [1]. Goal models make it possible to specify why systems are 
being constructed by providing the rationale required to justify the need for the software requirements. 
The specification of goals also provides a criterion for requirements completeness, i.e., the 
requirements can be judged as complete if they are sufficient to establish the goals that they are 
refining [1].  

Goal modeling is being used in projects in various domains (e.g., data warehouses or security) and 
with a particular purpose (e.g., reasoning or alternative selection). The corresponding modeling 
language, therefore, often needs to be extended in order to incorporate new modeling elements related 
to a particular domain or to adjust it to practical situations during early requirements modeling [2]. 
For example, the i* language [3] has been extended to support early requirements modeling in the 
domain of autonomic computing systems [4]. 

In a previous work [5], we extended the Goal Requirements Language (GRL) to deal with early 
requirements in the context of incremental software development†. GRL is a simplified variation of 
the i* framework [3] and, together with Use Case Maps (UCM), constitutes the URN (User 
Requirements Notation), which is an ITU-T international standard [6]. The variations made to the i* 
language were mainly motivated by the need to reduce its complexity and ambiguity, and to align 
objectives and intentions to business processes and scenarios as part of the standardization process. 
The contribution of our approach (value@GRL) is the specialization of GRL by using a subset of its 
modeling elements and a set of guidelines with which to model and prioritize intentional elements. 
The prioritization of intentional elements consists of determining which elements (i.e., goal, soft-goal, 
and task) are more important for a given actor. In this context, we consider a prioritized goal model to 
be a “value model” that can be used to select the business processes that will be included in a 
particular increment. 

Although goal models have principally been used in requirements analysis, their usefulness may be 
enhanced if exploited during other phases of the software development process and used as part of the 
entire system lifecycle [7], e.g., architectural design, code development, and testing. Horkoff et al. [8] 
performed a systematic review of goal modeling languages in order to better understand how they can 
be integrated into downstream system development. They concluded that, although much work has 
been done in this area, the work is still fragmented, follows separate strands of goal-orientation, and is 
often in the early stages of maturity. Moreover, little attention has been paid to the empirical 
evaluation of this kind of languages. According to Carver et al. [9] and Campbell and Stanley [10], 
experiments in Software Engineering (SE) need to be replicated in different contexts, at different 
times and under different conditions before they can produce generalizable knowledge. 

In this paper, we present a family of controlled experiments whose objective is to compare 
value@GRL and i* [3] with respect to the quality of goal models, the participants’ modeling time and 
productivity when creating the models, and their perceptions regarding ease of use and usefulness 
after using both languages. The family consisted of a controlled experiment [11] and three replications 
                                                
† Incremental software development involves breaking up the development plan into smaller, working pieces 
(i.e., increments). These increments are then developed, implemented, and tested. 



 

 

 

 

   
 

carried out with students and practitioners. We selected i* because it is one of the most frequently 
used goal modeling languages [7], [12]. The results provide empirical evidence concerning the 
conditions in which these languages are most effective. 

This study extends that of Abrahão et al. [11] by providing the following new contributions:  

1. Three replications are presented. The value of replications has been widely recognized as a 
means of achieving a greater validity and reliability of experimental results [13], [14]. Here, 
the concept of replication has been extended to that of the ‘family of experiments’, in which 
multiple similar experiments that pursue the same goal were carried out. 

2. The data analysis of individual experiments is presented in a unified manner. We have 
adopted the same analysis strategy for each experiment.  

3. A meta-analysis aggregating the results from the individual experiments is presented. 
4. A thorough discussion of the results is reported. The practical implications of our results are 

discussed from the perspectives of both practitioners and researchers. 

This paper is organized as follows. In Section 2, we provide an overview of the two goal-oriented 
modeling languages being compared. We then discuss related literature concerning existing studies 
comparing goal-oriented languages. In Section 3, we present the family of experiments by providing 
an overview of the baseline experiment, along with the design and execution of the three replications. 
This section also highlights the differences among the experiments. In Section 1, we present the data 
analysis of the individual experiments, while the results of the family of experiments are discussed in 
Section 5. The threats to validity are discussed in Section 6, while Section 7 presents our conclusions 
and future directions. 

2. Background and related work 
As this study focuses on comparing two goal-oriented languages, we shall first introduce these two 
languages, after which we shall discuss existing studies comparing goal-oriented modeling languages. 

2.1 The goal-oriented modeling languages compared 

Several languages with which to model requirements have been proposed over the last 25 years. 
These languages employ different approaches, including scenario-based and goal-oriented modeling 
approaches. The main goal-oriented approaches discussed in literature include KAOS [15], GBRAM 
[16], NFR framework [17], i* [3], and variations of i* (e.g., GRL [6] or Tropos [18]). These 
approaches have been discussed in a survey of existing goal modeling languages [19]. The concept of 
goal is a first class entity in these languages, and is usually defined as a condition or state of affairs in 
the world that the stakeholders would like to achieve. 

2.1.1 i* (iStar) 

The i* framework [3] was originally developed in order to model and reason about organizational 
environments and their information systems, which are composed of heterogeneous actors with 
different and possibly competing goals. We have employed [3] and [20] to summarize the main 
concepts of i*, which are: actors, intentional elements, intentional links, and dependencies. 

Actors can be humans, hardware, software, or combinations thereof. The central idea of i* is that 
actors depend on each other for goals to be achieved, for resources to be provided, for tasks to be 
performed, and for soft-goals to be satisfied. An actor can be classified as: 



 

 

 

 

   
 

● Role, which represent an abstract characterization of the behavior of a social actor within a 
particular specialized context or domain of endeavor. 

● Agent, which represent an actor with concrete, physical manifestations, such as a human 
individual. 

● Position, which represent a set of roles typically played by one agent. We say that an agent 
occupies a position and a position is usually said to cover a role. 

In addition, actors are often not isolated and may be linked through actor links: plays, is-part-of, or 
is-a, which represent the concepts of responsibility, composition, and inheritance, respectively. 

Intentional elements are used to represent the actors’ intentionality within their boundary. The 
boundary accurately delineates what is under the actor’s control; whateer needs that are not inside the 
boundary must be fulfilled in collaboration with other actors through dependencies. Five types of 
intentional elements can be defined: 

● Goal, which represents a state of the world that is sought to be achieved. 
● Soft-goal, which represents a goal whose fulfillment is not clear-cut; instead, its satisfaction 

condition is subject to interpretation. This subjectivity is the difference between a goal and a 
soft-goal. 

● Task, which represents an activity whose execution is prescribed according to certain 
established procedures. 

● Belief, which represents a condition about the world that an actor holds to be true. The 
difference between a goal and a belief is that the latter is not a condition that an actor wishes 
to achieve. 

● Resource, which represents a physical or intentional entity that is produced or provided by an 
actor. 

Intentional links are used to connect the intentional elements of cooperating actors. There are 
three types: 

● Means-end link, which offer a way in which to identify alternative means to achieve a goal. 
● Decomposition link, which allow tasks to be decomposed into simpler intentional elements.  
● Contribution link, which express how intentional elements contribute to the satisfaction of a 

soft-goal. Contribution can be positive or negative, and can be an implication or simply a 
connection, yielding seven types of contribution links (Make, Some+, Help, Unknown, Break, 
Some-, and Hurt). 

Dependencies are connections between actors. One of them, denominated as the depender, 
depends on a second actor, denominated as the dependee, for the accomplishment of a particular 
internal intention. The dependency is characterized by an intentional element (dependum), which 
represents the reason for dependency. Dependencies can be defined for goals, soft-goals, tasks and 
resources. 

Finally, in order to deal with large models, i* proposes two kinds of models:  

● The Strategic Dependency model (SD), which depicts external relationships among actors, 
while remaining silent as regards the internal makeup of the actors. 

● The Strategic Rationale model (SR), which allows the goals, tasks, resources, and soft-goals 
of each actor to be modeled as internal elements to be achieved.  

Fig. 1 shows an excerpt from the i* goal model (Strategic Rationale) for the Green Route system, 
which was taken from Estrada et al. [21]. This application proposes the ideal route for a user, avoiding 



 

 

 

 

   
 

routes with high levels of pollution, floods, pollen, etc., thus making it possible to, for instance, obtain 
the preferred routes for people with respiratory diseases.  

This goal model includes four actors: User, Green Route, FIWARELab, and geographic 
information system (GIS). The User actor has the goal of discovering the best route. A User could 
achieve his/her main goal by providing his/her profile, historical information, and real time 
environmental data. The Green Route actor’s main goal is to determine the best route for the User 
actor. To achieve this goal, the Green Route actor uses the User’s available information and requests 
additional environmental and geographical data from the FIWARE Lab and GIS actors, respectively. 
In this i* model, several external goals and resources (outside the actors’ borders) are required in 
order to attain the User’s main goal (e.g., the resource User information, the goal Determine route 
based on a user profile). 

 
Fig. 1. i* goal model for the Green Route system. 

2.1.2 Value@GRL 

The value at Goal-Oriented-Requirements Language (value@GRL) is a specialization of the GRL 
language created in order to support the modeling of goals when dealing with early requirements in 
the context of incremental software development. This specialization consists of using a subset of the 
GRL modeling elements and providing guidelines for the modeling and prioritization of the 
intentional elements of the stakeholders involved. We consider a prioritized goal model to be a value 
model, i.e., a model that represents intentional elements that have a prioritized value from a 
stakeholder’s point of view. This value model may be used to prioritize business processes and 
features that will be included in a given increment as part of an incremental software development 
process. 



 

 

 

 

   
 

The process employed to model with value@GRL includes four main activities: goal modeling, 
goal model prioritization and propagation, high-level business process modeling and business process 
prioritization. 

It is recognized that nearly half (47%) of unsuccessful software development projects fail to meet 
their goals owing to inaccurate requirements management [22]. In addition, the quality of a software 
system depends to a great extent on the degree to which it fulfills its requirements [7]. These 
requirements are often captured, modeled and analyzed as (stakeholder) goals [7]. It is, therefore, 
important to ensure the quality of goal models, as these models may be used to provide a criterion for 
requirements completeness. They can also be used as input to the forthcoming software development 
activities (e.g., business process modeling, conceptual modeling, software design). In this work, we 
consequently focus on the first activity in the value@GRL modeling process by comparing the goal 
models obtained with value@GRL and i*. For more details regarding the other activities in the 
value@GRL process, please refer to [5].  

Value@GRL is oriented toward specifying the stakeholders’ interests with regard to the system to 
be developed. There are three categories of concepts in value@GRL: actors, intentional elements and 
intentional links. 

Actors represent entities (stakeholders or systems) in the domain of interest, which have intentions 
and may perform actions to achieve their objectives. This concept is similar to that defined for i* (see 
Section 2.1.1). However, we identify three different types of actors: 

● Main, which represents the stakeholder that will drive the specification of the goal model. This 
is the main stakeholder for which the system is to be developed. This actor is labeled with the 
tag «main». 

● External, which represents collaborators or affected stakeholders who have goals that the 
system actor may take into consideration in order to satisfy its own values. These actors are 
labeled with the tag «external». 

● System, which represents the system to be developed, including the set of goals and operations 
needed to satisfy the objectives of the actors involved. This actor is labeled with the tag 
«system». 

The different types of actors help identify the boundaries of the system to be developed for the 
main actor and, how the external actors will assist the system actor in achieving its goals.  

Intentional elements describe an actor’s intention and capabilities. This concept is similar to that 
defined for i* in Section 2.1.1. However, we consider only three types of elements: goal, soft-goal, 
and task, and they are always represented inside the boundary of a given actor.  

Intentional links are used to relate intentional elements to each other. This concept is similar to that 
defined for i* in Section 2.1.1. However, we consider only the decomposition and contribution links 
with the same semantics as i* (see Section 2.1.1). In addition, we also consider the dependency link in 
this category, since it allows us to establish relationships among intentional elements but from 
different actors (see Section 2.1.1). 

Fig. 2 shows an excerpt of the goal model using value@GRL for the Green Route system, which 
was previously modeled with i* and was introduced in Section 2.1.1. The goal model includes four 
actors: the User (main actor) interested in discovering the best route; the Green Route (system actor) 
interested in determining the optimal route based on the user profile and the characteristics of the 
route; the FIWARELab (external actor) interested in providing access to environmental data and 



 

 

 

 

   
 

publishing open data for other users; and finally, a GIS (external actor) that provides geographical 
information regarding the routes. The Green Route system (system actor) must explicitly take into 
account these actors’ goals in order to know which one of them will be considered during the 
development of the software system, and to what extent and priority.  

Some of the most noteworthy syntactical differences between value@GRL and GRL are: it 
distinguishes among different types of actors (system, main and external); considering only three 
types of intentional elements (goal, soft-goal, and task); and it uses only three types of intentional 
links (contribution, decomposition, and dependency). Despite the syntactical similarities between 
value@GRL and GRL (and also i*), the main difference lies in the purpose of modeling, which is to 
represent the intentional elements for actors regarding the software system to be developed. This 
purpose led us to reduce the number of modeling elements to be used by focusing only on those 
intentional elements and intentional links that affect or are affected by the software system to be 
developed. 

 
Fig. 2. value@GRL goal model for the Green Route system. 

2.2 Existing studies comparing goal-oriented languages 

Much attention has been paid to the area of goal-oriented Requirements Engineering (RE) [2], [8] in 
the last two decades, and several studies that compare goal-oriented languages have been published. 
According to Siau and Rossi [23], these studies can be classified in three groups: feature comparison 
[19], [24], [25], [26], theoretical and conceptual evaluations [27], [28], [29] and empirical studies 
[12], [30], [31], [32], [33]. 

Green Route <<System>> 



 

 

 

 

   
 

2.2.1 Feature comparison 

The first group of studies is based on ‘‘feature comparison’’, i.e., a comparison of goal-oriented 
languages according to a certain set of criteria. One example is the study performed by Kavakli and 
Loucopoulos [19] in which the authors selected 15 goal modeling languages and classified them 
according to four dimensions: usage (regarding the objectives of using goal modeling in RE), subject 
(revealing the notion of a goal and its nature), representation (regarding how goals are represented), 
and development (concerning how goal models are created and evolve). This comparison provides a 
broader view of the goal-oriented modeling area. 

Regev and Wegmann [24] compared several meanings of goal and related concepts presented in 
GRL, KAOS, and GBRAM. They proposed a set of principles to explain the goal-oriented behavior 
and established more precise definitions for goal-oriented languages. As a result, new concepts for 
goal-oriented RE terms were defined, such as: achievement goal, maintenance goal, soft-goal and 
belief. Although this was a first step toward defining more precise definitions, more research is still 
required in order to study the relationships among norms, beliefs, and goals.  

Horkoff and Yu [25] surveyed available approaches for goal-oriented modeling (e.g., i*, GRL, 
Tropos, NFR, KAOS) and classified them according to several criteria (e.g., satisfaction analysis, 
metrics, planning, simulation). They also proposed guidelines that would assist in the use of these 
approaches, grouped into domain understanding, communication, model improvement, scoping, 
requirement elicitation, requirements improvement, and design, but the proposed guidelines need to 
be validated in practice. 

Teruel et al. [26] performed a comparison of three goal-oriented approaches (i.e., the NFR 
framework, i*, and KAOS) to determine which is the most suitable to model requirements for 
Computer Supported Cooperative Work systems (CSCW). The evaluation of the approaches was 
carried out by using 9 features, including: functional and non-functional requirements representation; 
collaborative systems characteristics; awareness representation; importance of requirements; model 
complexity and traceability. These features are based on the DESMET evaluation framework. They 
were evaluated and a score was computed for each feature and goal-oriented approach. According to 
the results obtained, the approaches analyzed are not fully appropriate to model collaborative system 
characteristics. i* is the only approach that attained a positive score for the features related to 
collaborative systems analyzed. 

Overall, the drawback of this type of studies is their subjectivity when developing the comparison 
criteria and their interpretation. 

2.2.2 Theoretical and conceptual evaluation 

The second group of studies that compares goal-oriented languages comprises theoretical and 
conceptual evaluation, which includes: (1) metamodeling – comparing the languages by mapping 
them onto an abstract language; (2) metric analysis, which focuses on analyzing the aspects of the 
languages as regards their complexity; and (3) ontological evaluation, which focuses on matching the 
languages with ontological constructs.  

With regard to the metamodeling category, Ayala et al. [27] compare i*, GRL, and Tropos with the 
objective of defining a reference framework based on noises, silences, ambiguities, and the 
contradictions of these languages. These languages were compared according to fourteen criteria (e.g., 
types of models, types of actors, intentional elements, relationships) and a metamodel with which to 



 

 

 

 

   
 

embrace the commonalities was proposed. The findings are useful for identifying characteristics and 
guiding the selection of these languages.  

In the case of the metrics analysis category, Al-Subaie and Maibaum [28] performed a qualitative 
evaluation of KAOS and its supporting tool, Objectiver. The method’s effectiveness was measured as 
the degree of coverage of KAOS in relation to RE objectives (e.g., pertinence, correctness, 
traceability, and understandability). An objective that was "fully achieved", therefore, scored A; 
otherwise, it scored E, if it “failed to be achieved”. Although this study provides an initial qualitative 
evaluation of KAOS, the authors did not perform any statistical analyses. 

With regard to ontological evaluations, Matulevičius et al. [29] compared the syntax and semantics 
of GRL and KAOS using the Unified Enterprise Modeling Language (UEML) approach. The authors 
defined the semantics of both languages on top of the UEML ontology and provided a path toward 
automated transformations with which to translate GRL into KAOS models, and vice-versa. One 
drawback of this study is that the proposed semantics still need to be evaluated with users of these 
languages. 

2.2.3 Empirical studies 

The third group comprises empirical studies that include individual controlled experiments or a family 
of experiments, whose goal was to compare two or more goal modeling languages empirically. Table 
1 lists the studies reviewed, including information on the languages compared, the type of 
participants, the sample size, the measures, and the conclusions. 

Table 1. Summary of studies comparing goal-oriented modeling languages. 

Study Languages Type of 
participants 

Sample 
size 

Estimated 
construct 

Main conclusions 

[12] - i* 
- KAOS 

– Undergraduate 
students 

 

19 – Quality 
 

KAOS had a higher quality to 
create models, although i* goal 
models had more quality. 

[30] - i* 
- CSRML  
 (i* extension) 

– Undergraduate 
students 

– PhD students 
 

84 – Understandability  
 

CSRML improves the 
understandability of CSCW 
requirements models when 
compared to i*. 

[31] - i* 
- KAOS 

– Undergraduate 
students 

 

38 – Understandability  
 

The understandability of i* is 
higher than that of KAOS for 
modeling TR systems. 

[32] - i* 
- TRiStar     
(i* extension) 

– Undergraduate 
students 

– Software 
developers 

69 – Understandability 
Effectiveness 

– Understandability 
Efficiency 

TRiStar has a higher effectiveness 
and efficiency than i* for specifying 
TR systems requirements. 

[33] - i*  
- i* variant 
(with 
modules) 

– Non-experts 
data warehouse 

– Experts on i* 

49 – Understandability 
– Manageability 

 

The i* variant (with modules) 
increases the modularity and 
scalability of the models which, in 
turn, increases the error correction 
capability, and makes complex 
models easier to understand. 

[11] - i* 
- value@GRL 
(GRL 
specialization) 

– Master CS 
students 

– Master 
Business 
Management 
students 

40 – Quality 
– Productivity 
– Perceived Ease of 

Use 
– Perceived 

Usefulness 

value@GRL obtained goal models 
with a higher quality than i* 
although their productivity is 
similar. Participants perceived 
value@GRL to be easier to use and 
more useful than i*. 



 

 

 

 

   
 

Matulevičius and Heymans [12] performed an empirical study that compared i* and KAOS in 
order to discover which language was of better quality. The authors adapted the semiotic quality 
framework [34] to evaluate the quality of the language used to create models and the quality of the 
models created by the languages. The results showed that KAOS had a higher quality to create models 
(although the statistical tests were not significant) and i* goal models had a better quality. In addition, 
there is a lack of methodological guidelines with which to assist users in using the languages.  

Teruel et al. [30] proposed an i* extension called CSRML (Collaborative Systems Requirements 
Modeling Language) and performed a family of three experiments to analyze the understandability of 
RE languages for CSCW (Computer Supported Cooperative Work) systems. The goal was to test 
which language (i* or CSRML) has a better understandability to model CSCW systems' requirements. 
The authors measured understandability using a comprehension questionnaire. According to their 
results, CSRML improves the understandability of CSCW requirements models when compared to i*. 

Morales et al. [31] evaluated i* and KAOS to determine their understandability levels when 
specifying Teleo-Reactive (TR) systems. They performed a controlled experiment in which 
understandability was measured by employing true/false questionnaires regarding two TR systems 
specified with both languages. The results showed that i* has a better understandability than KAOS 
when modeling reactive systems requirements.  

In a similar study, Morales et al. [32] reported a family of three experiments whose objective was 
to evaluate the understandability when modeling TR systems with i* and TRiStar, which is an 
approach proposed by the authors. Two variables were used to evaluate the models’ understandability: 
effectiveness (the number of correct answers attained by the subjects) and efficiency (the number of 
the subjects’ correct answers divided by the time needed to understand a TR diagram). The results 
show that TRiStar has both a higher effectiveness and efficiency as regards specifying TR systems 
requirements when compared to i*. 

Finally, Maté et al. [33] proposed the inclusion of modules in i* to improve the goal-oriented 
analysis for data warehouse systems. These modules are included in i* according to a set of 
guidelines. The authors evaluated their proposal by performing two questionnaire-based experiments, 
the first carried out within 28 participants and the second with 21 participants. According to their 
results, even when applying modularity concepts, the scalability of models increased, as did the time 
required to perform different tasks on the models. Furthermore, they reported a reduced error rate 
when identifying the scope of an element present in the model. Finally, their results showed that most 
participants had a tendency to group elements into packages at different levels of abstraction, so as to 
avoid adding them to a global scheme. 

2.2.4 Discussion 

Most of the evaluations performed in the goal modeling area to date are studies that compare 
characteristics of the languages. These studies provide a global view of the goal modeling languages 
and their characteristics. However, empirical evidence is required in order to understand which 
language is better in a given context. 

To the best of our knowledge, only a few studies [12], [30], [31], [32], [33] have performed an 
empirical evaluation when comparing goal-oriented approaches. This information coincides with the 
recent results of a systematic mapping of goal-oriented RE approaches [8], in which, of a set of 246 
papers, only 7% of them presented evaluations in the form of controlled experiments. Most of the 
studies compared i* with another language, but these results are not conclusive, suggesting that more 



 

 

 

 

   
 

experimentation is needed. Overall, the participants in the studies reviewed are mainly students and 
the sample size of the experiments is small. What is more, most of the studies used only one or two 
measures to assess the language’s effectiveness. 

In order to improve the body of knowledge concerning goal modeling approaches, we performed 
an experiment [11] to evaluate the quality, productivity, perceived ease of use and perceived 
usefulness of i* and value@GRL. Unlike other experiments, we involved software engineers and 
business analysts who are the typical users of these languages. The goal of the current study is to 
validate the results of the previous experiment [11] by performing three replications in different 
settings and a meta-analysis that aggregated the empirical findings obtained in the individual 
experiments. 

3. The family of experiments 
A family of experiments is useful to answer questions that are beyond the scope of individual 
experiments and permits the generalization of findings from various studies, thus providing evidence 
with which to confirm or reject specific hypotheses [13]. We, therefore, conducted a family of 
experiments to compare value@GRL and i*.  

3.1 Goal 

On the basis of the Goal-Question-Metric (GQM) template [35], the goal of our family of experiments 
was to analyze goal models specified with value@GRL and i* for the purpose of assessing them with 
respect to the quality of the resulting models, the participants’ modeling time, productivity, perceived 
ease of use, and perceived usefulness from the point of view of novice software engineers and business 
analysts and software industry professionals in the context of  Undergraduate and Master’s degree 
students in Computer Science (CS) and Master’s degree students in Business Management.  

Although experienced modelers and practitioners would have been preferable, we focused on the 
profile of novice goal modelers since one of our objectives is to provide a goal language that will help 
less experienced modelers to specify high-quality models. The research questions addressed are: 

● RQ1: Which language allows modelers to create goal models with a higher quality?  
● RQ2: Which language allows modelers to be faster? 
● RQ3: Which language allows modelers to be more productive? 
● RQ4: Which language is perceived to be easier to use? 
● RQ5: Which language is perceived to be more useful? 

3.2 Context selection 

The context of this study is the specification of two goal models created by novice software engineers 
and business analysts, and software professionals. The context is defined by (i) the goal-oriented 
languages selected, (ii) the experimental objects (i.e., goal models to be specified); and (iii) the 
selection of participants. 

3.2.1 Goal-oriented languages compared 

We compared value@GRL and i*, which is one of the most frequently used goal-modeling languages 
[7], [12]. We focused on the first activity of value@GRL (i.e., goal modeling), which is concerned 
with the specification of a goal model. This activity corresponds to the main purpose of i*. 
Specifically, we focused on the i* Strategic Rationale (SR) model because it shows all the internal 



 

 

 

 

   
 

elements of actors, including goals, soft-goals, tasks, and resources that contribute to the analysis of 
alternatives and the fulfillment of dependencies. Note that i* is undergoing standardization and that an 
updated version of the language, denominated as i* 2.0 [36] has been recently proposed. This version 
has minor differences with respect to the seminal one (e.g., richer types of contribution links). 
However, i* 2.0 was released at the time when the pilot study of our family was executed (May 2016). 
The baseline experiment was executed in November 2016 (see Fig. 3). In this work, we, therefore, 
used the original version of i*, as at that time there was still no evidence regarding the use and likely 
adoption in practice of the new version. 

3.2.2 Experimental objects 

The goal models to be specified were selected from requirements engineering literature: 
● O1 – Green Route [21]: the purpose of this system is to help a user determine the best route to 

follow to reach a destination, taking into account the user profile (e.g., health conditions, 
disabilities) and preferences. This system was presented in Section 2.1.1. 

● O2 – Lattes Scholar [37]: the purpose of this system is to present publications from an 
author’s curriculum and their citations by searching in the Brazilian Scientific CV repository, 
entitled Lattes, and the Google Scholar databases. 

3.2.3 Participants selection  

The following groups of participants were identified in order to facilitate the generalization of results: 
● Novice Software Engineers: 28 Master’s degree students enrolled on a Computer Science 

Master’s degree program at the Department of Computer Science, Universitat Politècnica de 
València (UPV), Spain, and 124 undergraduate students, all Computer Science students at the 
UPV.  

● Novice Business Analysts: 12 students enrolled on a Master’s degree in Business Management 
at the Faculty of Business Administration and Management at the UPV.  

● Software Industry Professionals: 20 software designer and developer practitioners who 
participated in a professional Master of Science (MSc) degree program in Software 
Engineering at the National University of Asunción (UNA) in Paraguay. 

The participants included in this study were selected by means of convenience sampling. Since we 
focused on the profile of novice modelers, we selected groups of participants with no previous 
knowledge in goal modeling. Nevertheless, we verified this assumption by means of a pre-
questionnaire intended to determine the respondents' demographics and experience with goal 
modeling. All the participants were volunteers and were aware of the practical and pedagogical 
purposes of the experiment, but the research questions were not disclosed to them. The participants 
were not rewarded for their effort. 

3.3 Design of individual experiments 

Fig. 3 summarizes our family of experiments, including the context of each experiment, the number of 
participants involved, and the place where the experiments took place. The figure also shows the 
execution order of the experiments.  

Since experimental conditions are hard to control in Software Engineering, one way in which to 
satisfy the statistical requirement of replications is that of running internal replications (in the same 
place and by the same experimenters) [38]. Having more internal replications of the same experiment 
considerably reduces the Type I error, and identical replications are also required to be able to 



 

 

 

 

   
 

estimate the effect size under study [38]. A Type I error (α-error, false positives) occurs when the null 
hypothesis (H0) is rejected in favor of the alternative hypothesis (H1), when the 'null' hypothesis is 
actually true. The effect size indicates the magnitude of the observed effect or relationship between 
variables. 

 
Fig. 3. Overview of our family of experiments. 

Our family was, therefore, composed of the baseline experiment that was conducted at the 
Universitat Politècnica de València (UPV1) and three differentiated internal replications (i.e., UPV2, 
UNA and UPV3) performed in different settings. These replications were operational, as we varied 
some dimensions of the experimental configuration [39]. In UNA and UPV3, we varied the 
experimenter and the population, while only the population was varied in UPV2. This allowed us to 
verify whether the results are independent of the participants’ profile and the experimenters. 

In the following, we present the experiments, which were designed according to the experimental 
process proposed by Wohlin et al. [40]. With regard to the replications, we discuss only their 
differences with respect to the baseline experiment. For replication purposes, the experimental 
materials can be found at https://goo.gl/wMPH1e. 

3.3.1 Baseline experiment (UPV1) 

The aim of the experiment was to evaluate whether participants applying our proposed language in 
order to create goal models (i.e., value@GRL) may obtain higher performances and report better 
perceptions than when using i*.  

3.3.1.1 Context selection 

We used both the systems described in Section 3.2.2 as experimental objects and applied the goal 
modeling languages described in Section 3.2.1. The system requirements and the corresponding goal 
models (taken from literature) can be found on the website, along with the experimental materials. 
These models were validated by an assessment group composed of one independent expert on goal 
modeling and two of the authors of this paper.  

According to Systems Theory [41], the complexity of a system can be assessed by considering the 
number of different types of elements and the number of different types of relationships between 
them. The system complexity also depends on the problem domain being represented, because it can 
influence the participants’ understandability.  

The two object systems we chose are from two different application domains that do not require 
specialized knowledge to understand them. These systems have a similar complexity, based on the 
metrics shown in Table 2. The assessment group was also responsible for judging the complexity of 



 

 

 

 

   
 

the solutions for both systems, and considered them to be comparable in terms of the number of 
elements and relationships, and the problem domain. 

Table 2. Description of the systems. 

 #Actors #Goals #Soft-Goals #Tasks #Resources #Links 
Green Route (i*) 4 10 2 15 3 25 

Green Route 
(value@GRL) 4 4 2 15 - 26 

Lattes Scholar (i*) 5 6 6 18 9 34 
Lattes Scholar 
(value@GRL) 5 5 8 18 - 34 

3.3.1.2 Participants 

The experiment included 40 participants with two different profiles: 

● Novice software engineers: 28 Master’s degree students enrolled on a Software Engineering 
Master’s degree program at the Dept. Computer Science, UPV, Spain. A pre-questionnaire 
was administered to the participants in order to assess their experience. 18 participants 
reported that they had professional experience in software development, varying between 2 to 
6 years, with an average of 3 years, but that they had no previous knowledge of goal 
modeling. The participants were chosen by means of convenience sampling. They attended 
the Fall 2016 course on Empirical Software Engineering with a focus on comparing modeling 
approaches. The participants were asked to carry out the experimental task as part of the 
laboratory exercises of the course.  

● Novice business analysts: 12 students enrolled on a Master’s degree in Business, Product 
and Service Management at the Faculty of Business Management, UPV, Spain. They had 
competencies and skills in modeling business processes involving organization areas and 
functions such as Logistics and Operations, Marketing, and Finances, using tools such as 
Quality Function Deployment to design products and services. Since they would need to 
interact with other organization specialists, they were motivated to communicate with IT 
specialists and software developers. Indeed, they attended a course on Information Systems in 
Organizations and were invited to carry out the experimental task as part of a workshop on 
goal modeling. 

3.3.1.3 Selection of variables 

The main independent variable (or factor) was Language, which was a nominal variable that could 
assume two possible values: value@GRL and i*. The secondary independent variable is the 
experimental object, with two possible values: Green Route and Lattes Scholar.  

There are two types of dependent variables: performance-based and perception-based variables.  
Performance-based variables assess how well the participants perform the experimental task. In our 
case, these variables were: quality of goal models, modeling time and productivity. 

Several quality evaluation frameworks with which to evaluate conceptual models have been 
proposed in literature (e.g., [42], [43]). The Lindland et al. [43] framework suggests that a systematic 
evaluation of quality considers a model’s syntax (how well the model adheres to the rules of the 
modeling language), semantics (how well the model reflects the reality modeled) and pragmatic (how 



 

 

 

 

   
 

well the model is understood and used). In this study, we deal with the first two dimensions of 
Lindland’s framework: syntactic and semantic quality. 

The Quality variable assesses the syntactic and semantic quality of goal models created with 
value@GRL and i* in terms of correctness (whether the model conforms to the rules of the language) 
and completeness (whether the model contains all the correct modeling elements required to represent 
the stakeholders’ goals). This variable was measured by using an information retrieval based approach 
[44] that has been used in other SE experiments [45], [46], [47], and [48] to compare models created 
by participants with an Oracle (the correct set of models created by an expert) regarding each type of 
graphical elements (e.g., actors, goals, soft-goals, tasks and links). This was done by employing 
Equations (1) and (2): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)*)+),- = 	
|12324256	∩	82324256|

|12324256|
	,           (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙)*)+),- = 	
|12324256	∩	82324256|	

|82324256|
	,       (2) 

where Pelement indicates graphical elements of a given type modeled by a participant and Oelement 

indicates the known correct set of expected type of graphical element that belongs to an Oracle. 
Accordingly, precisionelement measures the correctness of a graphical element belonging to a given goal 
model and recallelement measures the completeness of a goal model with respect to its graphical 
elements. Precision and recall quantitatively summarize two dimensions of the quality of a model. 
We, therefore, used their harmonic mean [44] to attain a balance between the correctness and 
completeness of each graphical element within a goal model by employing Equation (3): 

𝐹 −	𝑀𝑒𝑎𝑠𝑢𝑟𝑒) = 2 ∗	 BC)DEFEG,2324256∗	C)DH**2324256
BC)DEFEG,2324256I	C)DH**2324256

∗ 100	,     (3) 

where F-Measuree summarizes the accuracy of each graphical element in the goal model regarding 
its graphical elements when compared with an Oracle. Quality is then computed as the arithmetic 
mean of all the F-Measures for the different types of graphical elements in the model. All the 
measures above assume values of between 0% and 100%. Whatever the measure is, values close to 
100% mean that the participants’ goal models were very similar to the Oracle. Conversely, values 
close to 0% indicate that the goal models were very dissimilar to the Oracle. 

The quality variable was defined in order to give the same relevance to the correctness and 
completeness of goal models with respect to the actors, objectives and tasks, and the links among 
them. In order to show how the defined measure works, we provide an example of its calculation. Fig. 
2 shows a goal model that corresponds to the first Oracle for the value@GRL experimental object 1. 
Table 3 shows a summary of Oelements and Pelements, the intersection between Oelements and Pelements, 
precision, recall, the F-Measuree for each type of element, and the mean of all F-Measures, which is 
the quality of the modeled solution produced by the participant. The first Oracle for value@GRL was 
evaluated by the assessment group before the experiment (one for each object).  

For i*, the first Oracle was extracted from [21], [37]. Fig. 1 shows a goal model that corresponds 
to the first Oracle for the i* experimental object 1. Table 4 shows a summary of Oelements and Pelements, 
the intersection between Oelements and Pelements, precision, recall, the F-Measuree for each type of 
element, and the mean of all F-Measures, which is the quality of the modeled solution produced by 
the participant.  



 

 

 

 

   
 

Table 3. Example of quality calculation for Oracle 1 of the value@GRL experimental object 1. 

value@GRL elements 
for Oracle 1 

Oelements in 
Oracle 1 

Pelements Pelements	∩
	Oelements 

precision recall F-Measuree 

Actor 4 5 4 0.80 1.00 88.88 
Goal 4 6 4 0.66 1.00 80.00 
Soft-goal 3 4 1 0.25 0.33 28.57 
Task 14 13 11 0.84 0.78 81.48 
Positive contribution 4 9 3 0.33 0.75 46.15 
Dependency 9 6 1 0.16 0.11 13.33 
And 14 8 0 0.00 0.00 0.00 
Or 1 1 1 1.00 1.00 100.00 
Mean of all F-Measures 54.80 

 

Since the first Oracle for both value@GRL and i* might have been biased by the modelers’ 
expertise and a goal model can have several correct solutions, we only considered these first Oracles 
as a baseline, which may evolve by adding new correct solutions provided by the participants.  

The assessment group was, therefore, also responsible for determining whether the goal models 
created by the participants matched one of the Oracles, or whether a new Oracle should be added to 
the baseline (thus increasing the total number of correct solutions for a particular experimental 
object). Disagreements among the assessment group members were resolved by consensus. In order to 
assess the quality of a goal model provided by a participant, the F-measure of his/her solution was, 
therefore, calculated by considering all the possible Oracles on the baseline, and the highest result was 
selected. 

Table 4. Example of quality calculation for Oracle 1 of the i* experimental object 1. 

i* elements for Oracle 1 Oelements in 
Oracle1 

Pelements Pelements ∩ 
Oelements 

precision recall F-Measuree 

Actor 4 2 2 1.00 0.50 66.66 
Goal 10 2 2 1.00 0.20 33.33 
Soft-goal 2 3 2 0.66 1 80.00 
Task 15 7 6 0.85 0.40 54.54 
Resource 3 2 1 0.50 0.33 40.00 
Help 2 2 0 0.00 0.00 0.00 
Dependency 9 4 3 0.75 0.33 46.15 
Decomposition 11 5 3 0.60 0.27 37.50 
Means-end 3 1 0 0.00 0.00 0.00 
Mean of all F-Measures 39.79 

The Modeling Time variable was measured as the total time (in minutes) taken by a participant to 
create a goal model using a particular language.  

The participants’ Productivity (PROD) was calculated as the ratio between the quality of the goal 
model and the time taken to apply the language (Quality / Modeling Time). This measure is related to 
the timing of the modeling task, but also reflects the ability to create a goal model correctly and 
completely. A higher value of this measure reflects better productivity. Quality is measured in terms 
of percentages while time is measured in minutes. As an example, if a participant scored 100% in 
quality and took 20 minutes to do so, the participant’s productivity is 5 (i.e., PROD = 100 / 20).  



 

 

 

 

   
 

Furthermore, two perception-based variables were employed to assess the participants’ 
perceptions of their performance when using value@GRL or i*. These variables are based on the 
Technology Acceptance Model (TAM) [49], which is a widely applied and empirically validated 
model [50]: 

● Perceived Ease of Use (PEOU): the degree to which modelers believe that using a goal 
modeling language will be effort-free. 

● Perceived Usefulness (PU): the degree to which modelers believe that using a specific goal 
modeling language will increase their job performance within an organizational context. 

Table 5 shows the items defined to measure the perception-based variables. The items defined for 
each construct were combined in a survey, consisting of nine questions. The items were formulated by 
using a 5-point Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree), using the 
opposing-statement question format. Various items within the same construct group were randomized 
to prevent systemic response bias [51]. The aggregated value of each subjective variable was 
calculated as the mean of the answers to the variable-related questions. The questionnaire also 
included open questions with which to obtain feedback from the participants. The survey is available 
at https://goo.gl/wMPH1e. 

Table 5. Items in the survey used to measure the perception-based variables. 

Item  Item Statement 
PEOU1 I found the procedure to apply the goal modeling language simple and easy to follow. 
PEOU2 The goal modeling language is easy to learn. 
PEOU3 In general, I found this goal modeling language ease to use. 
PU1 I believe this language would reduce the time and effort required to specify goal models. 
PU2 I believe that the goal models obtained by this language are clear, concise, and unambiguous. 
PU3 I believe this goal modeling language has enough expressiveness to represent the objectives 

and intentions of different stakeholders. 
PU4 I believe that this goal modeling language provides an effective means for specifying goal 

models. 
PU5 Using this goal modeling language would improve my performance when specifying goal 

models. 
PU6 In general, the goal modeling language is useful. 

3.3.1.4 Hypotheses formulation 

The null hypotheses of the experiment can be summarized as follows: 
● H10: Quality (value@GRL) = Quality (i*) 
● H20: Modeling Time (value@GRL) = Modeling Time(i*) 
● H30: Productivity (value@GRL) = Productivity (i*) 
● H40: PEOU (value@GRL) = PEOU (i*) 
● H50: PU (value@GRL) = PU (i*) 

The goal of the statistical analysis was to reject these hypotheses and possibly accept the 
alternative ones (e.g., H11 = ¬H10). All the hypotheses are two-sided because we did not postulate that 
any effect would occur as a result of the goal modeling language usage. 

3.3.1.5 Design 

We used a balanced between-subject design, i.e., a participant was part of either the experimental 
group or the control group. Table 6 shows the experiment design. The experiment consisted of two 
runs. The first of these was conducted with the experimental group while the second was conducted 



 

 

 

 

   
 

with the control group. Each run consisted of using one of the languages (i* or value@GRL) to model 
two different systems (i.e., Green Route and Lattes Scholar). We employed two systems in the hope 
that this would minimize the domain/system effect. We, therefore, had four treatments, owing to the 
combinations of language and system. We then randomly assigned one of the four treatments to each 
participant. The chosen design mitigated possible learning effects, since none of the participants 
repeated any language or system while carrying out the experiments. 

Table 6. Experiment design. 

 Run 1 (experimental group) Run 2 (control group) 
Treatments value@GRL, Green Route i*, Lattes Scholar 

value@GRL, Lattes Scholar i*, Green Route 

Various extraneous factors (also denominated as cofactors) may have had an undesirable effect 
on the effectiveness of the goal modeling language, and this effect might have been confused with the 
effect of Language. In this family of experiments, we analyzed the effect of the System (i.e., Object) 
cofactor, since the domain of the goal models used and the participants’ familiarity with the 
application domain of the systems could have affected the effectiveness of the goal modeling 
language. For the baseline experiment, we also analyze the effect of the Profile cofactor in order to 
assess whether the participants’ profile (novice software engineer or novice business analyst) 
influence the results.  

3.3.1.6 Operation 

A pilot experiment with four PhD students was conducted to assess the experimental planning, as a 
result of which several improvements were made to the materials. Prior to the experiment, the 
participants attended a training session concerning the use of the languages and performed an exercise 
regarding the modeling of a Meeting Scheduler system. The participants created their own models 
using the instructions provided, after which the experimenter constructed the model solution 
interactively with the participants. The entire training session took four hours.  

All the participants attended an introductory lesson in which detailed instructions on the 
experimental task were presented. A pre-questionnaire was administered to the participants in order to 
assess their experience. The results showed that they had no previous knowledge of goal modeling. 

The experiment was performed under controlled conditions in a laboratory at the UPV according 
to the balanced between-subjects design outlined in Table 6. As explained above, we had four 
combinations of treatments, but each participant was randomly assigned to only one of these 
treatments. The experiment was executed in two runs: one at the Department of Computer Science 
(CS) involving the CS students and another at the Department of Business Organisation involving the 
business analyst students (see Section 3.2.3). In the first run at the CS department, 14 participants 
applied value@GRL, and the other 14 participants applied i*, with 7 participants randomly assigned 
to each experimental object (O1 and O2). The participants attended only the training and experimental 
session of the language to which they had been assigned, signifying that those who applied 
value@GRL had no knowledge of i* (and vice versa).  

During the experiment, the participants were asked to carry out the experimental task and no time 
limit was imposed. They were allowed to consult the training materials. After specifying the goal 
model, the participants were asked to fill in the post-experiment survey. 



 

 

 

 

   
 

3.3.2 Second experiment (UPV2) 

The second experiment in our family was a strict internal replication of UPV1. The same 
experimental protocol was applied but to a different population, signifying that we varied only the 
participants, while the site, experimenters, design, variables and instrumentation remained the same. 
The purpose was to test the extent to which the study results could be generalized to other 
populations. The participants were 67 3rd–year students. They attended the Software Quality course 
in the Fall of 2017. The participants also attended a course on Model-Driven Engineering, where they 
acquired knowledge of software modeling. A pre-questionnaire was administered to the participants in 
order to assess their experience and the results showed that they had no previous knowledge of goal 
modeling. 

As in the baseline experiment, it took place in a single room and no interaction was allowed among 
the participants. With regard to the data validation, in order to maintain a balanced design, we 
discarded the data concerning three participants (who did not represent outliers, as they were selected 
randomly) to obtain a total of 64 participants, i.e., 16 samples in each group. 

3.3.3 Third experiment (UNA) 

The third experiment in our family was the second internal replication of UPV1. The participants 
were 20 Master’s degree students, all professional software engineers and managers from multiple 
companies who were enrolled on a professional MSc in SE at the National University of Asunción in 
Paraguay. The participants had an average of 6 years of experience in software engineering. However, 
despite having an average of four years of experience in software modeling with UML, they had no 
previous knowledge of goal modeling.  

The experiment was organized as part of the Software Quality and Metrics course with a special 
focus on assessing modeling approaches. A different experimenter was involved in this study but the 
same experimental design and materials were used. We, therefore, varied the site, the participants and 
the experimenter, although the design, variables, and instrumentation remained the same. 

3.3.4 Fourth experiment (UPV3) 

The fourth experiment in our family was the third internal replication of UPV1. The participants were 
60 undergraduate CS students enrolled on the Fall 2018 course on Software Quality at the Universitat 
Politècnica de València. This was the same context as the UPV2 experiment and in this replication, 
we varied only the participants. The site, design, variables, instrumentation, and experimenters 
remained the same and the results of the pre-questionnaire also showed that they had no previous 
knowledge of goal modeling.  

3.4 Experimental tasks and materials 

The experimental tasks consisted of specifying a goal model using one of the selected languages on 
two experimental objects. These tasks were structured to allow the comparison of both languages.  

We provided the participants with the mission and description of the system and then asked them 
to build the corresponding goal model by following the steps and guidelines of the language. In the 
case of i*, the experimental task consisted of: defining and drawing the actors; modeling the 
intentional elements (i.e., goals, soft-goals, tasks, and resources), and defining links between the 
intentional elements within the boundary of the actors and the links between the intentional elements 
of different actors. Similarly, for value@GRL, the experimental task consisted of: defining and 



 

 

 

 

   
 

drawing the actors (i.e., main actor, external actors, and the system actor); modeling the intentional 
elements (i.e., goals, soft-goals, and tasks) of the main and external actors; defining links between the 
intentional elements of the main and external actors, and modeling the system actor and its links. The 
participants were subsequently asked to fill in a questionnaire regarding their perceptions. 

The experimental material (available at https://goo.gl/wMPH1e) included the system missions and 
a set of documents to support the training sessions and the experimental tasks, along with the 
questionnaire.  

The training materials included: (i) a set of slides containing an introduction to goal modeling; (ii) 
a set of slides describing value@GRL along with an example of its use, and (iii) a set of slides 
describing i* along with an example of its use. They also included two booklets describing the 
requirements of a system (Meeting Scheduler) to be modeled and the experimental task to be 
performed with i* and value@GRL. These booklets helped us to gather the data concerning the 
experimental task. 

The documents supporting the training and experimental tasks also included: 
● Four kinds of booklets covering the four possible combinations of both goal languages and 

experimental objects (value@GRL-O1, value@GRL-O2, i*-O1, i*-O2). These booklets   
described the experimental tasks to be performed, described the requirements of each system 
and gathered the data appertaining to each experimental task.  

● Two appendices containing a detailed explanation of each goal modeling language.  
● A post-task experimental questionnaire with closed and open questions that allowed the 

participants to express their opinion of the language’s ease of use and usefulness.  

3.5 Family data analysis and meta-analysis 

The results of each individual experiment were collected using the booklets and the online 
questionnaire, and were then analyzed. We used descriptive statistics, violin plots, and statistical tests 
to analyze the data collected from each experiment. As is usual, in all the tests, we accepted a 
probability of 5% of committing a Type-I Error [52], i.e., rejecting the null hypothesis when it is 
actually true. 

The data analysis was carried out by considering the following steps: 
1. We first carried out a descriptive study of the measures for the dependent variables. 
2. We analyzed the characteristics of the data in order to determine which test would be most 

appropriate to test our hypotheses. Since the sample size of most of the experiments was less 
than 50, we applied the Shapiro-Wilk so as to test the normality of data and the Brown-
Forsythe Levene-type test to determine the homogeneity of variances.  

3. The results of the aforementioned tests were then employed as a basis on which to test the null 
hypotheses formulated. When the data were normally distributed and the variances were 
homogeneous, we used two-way Analysis of Variance (ANOVA) with interactions to analyze 
the data from each experiment by considering the Language (i.e., value@GRL vs. i*) and 
System (i.e., O1 vs. O2) factors and their interaction [40]. When the ANOVA assumptions 
could not be satisfied, we used the Mann-Whitney test to analyze the Language factor, as well 
as the System factor, and the Kruskal-Wallis test to analyze the means of the four treatments.  

4. When the test results suggested that there was a significant interaction between the factors or a 
significant difference in means, we performed a post-hoc analysis to determine which pairs 
were significantly different. For this purpose, we used the non-parametric Mann–Whitney or t-
test, depending on the normality of the data distribution. 



 

 

 

 

   
 

5. Furthermore, the statistical significances of the experiments were complemented with the 
magnitude of their effects. For this purpose, Cliff’s δ estimates [53] were obtained with a 
confidence interval of 95%. 

6. We analyzed the interaction of the Profile cofactor with the Language (main factor) in the 
UPV1 experiment. This analysis is described in Section 4.3. We again used two-way ANOVA 
with interactions to analyze the data by comparing the four treatments and their interactions 
[40]. When the ANOVA assumptions could not be satisfied, we used the Mann-Whitney test 
for independent samples.  

7. In order to strengthen the results of each individual experiment, we decided to aggregate them 
using a meta-analysis. We specifically performed an Aggregated Data (AD) meta-analysis 
based on Cliff’s δ, as the experimental conditions were similar for all the experiments. The 
findings of a recent study indicated that AD is suitable to analyze a family of experiments [14]. 
This analysis, which is detailed in Section 5.1, enabled us to obtain more robust results and to 
extract more general conclusions when considering the set of experiments in the family. 

The results of the individual experiments are outlined in Section 4, whereas the meta-analysis is 
presented in Section 5. 

4. Results 
In this section, we discuss the results of each experiment by quantitatively analyzing the data 
according to the hypotheses stated. The results were obtained by using SPSS v20 and R v3.5.0. A 
qualitative analysis based on the feedback obtained from the open questions of the post-task 
questionnaire is also provided. 

4.1 Descriptive statistics and exploratory data analysis 

Table A-1 shows a summary of the results of the goal modeling task performed in each individual 
experiment, divided by Language and System. At a glance, we can observe that the participants 
performed best and also achieved the best perceptions on ease of use and usefulness when using 
value@GRL, with the exception of the modeling time for the UPV1, UPV2 and UPV3 experiments, 
and PU for the UPV3 experiment. The overall comparison of the two languages without splitting by 
System is visually presented in Fig. 4 and Fig. 5 by means of violin plots. 

In order to measure the quality of the goal models created by the participants, the assessment group 
(composed of one independent expert on goal modeling and two of the authors of this paper) 
developed five additional i* Oracles for O1 and four for O2, five additional value@GRL Oracles for 
O1, and five additional value@GRL Oracles for O2. The assessment group measured the quality of 
the participants’ models against all the Oracles, and the highest quality score was selected. The quality 
scores for all the oracles and the raw data are available at https://goo.gl/wMPH1e. 

Fig. 4(a) and the Quality rows in Table A-1 show the median and mean values of F-measure 
respectively. For all the experiments in the family, these measures of central tendency are higher for 
value@GRL than for i* (the mean values range from 46.39 to 55.86 for value@GRL and from 33.51 
to 42.96 for i*).  

The practical meaning of this is that the participants obtained goal models with a higher quality 
when using value@GRL than when using i*. Otherwise, as can be observed in Fig. 4(b) and the 
Modeling Time rows in Table A-1, the participants obtained better central tendency results as regards 



 

 

 

 

   
 

the modeling time when using i* in all the experiments, with the exception of UNA, for which the 
modeling time results are better when using value@GRL. 

 
Fig. 4. Violin plots for the results related to the participants’ performance.  

 
With regard to the participants’ productivity, Table A-1 and Fig. 4(c) show that the participants’ 

productivity was somewhat greater when using value@GRL than when using i* in all the 
experiments. 

Table A-1 also presents a summary of the statistics regarding each of the perceived-based 
variables, according to each language and system. We measured these variables using a five-point 
Likert scale as an interval scale. The mean values indicate that value@GRL attained the participant’s 
best perceptions as regards ease of use and usefulness in all the experiments, with the exception of PU 
for UPV3, which are similar. Fig. 5 shows the distribution of the perceived-based variables per 
language as violin plots. The median for each method is shown as the horizontal segment in the box 
plot inside each violin plot. Fig. 5(a) shows that the participants perceived value@GRL to be easier to 
use than i* in UPV1, UPV2 and UNA, although their perceptions as regards ease of use in UPV3 are 



 

 

 

 

   
 

similar. Likewise, Fig. 5(b) shows that the participants perceived value@GRL to be more useful than 
i* in UPV1, UPV2 and UNA, although their perceptions as regards usefulness in UPV3 are similar.  

 
Fig. 5. Violin plots showing the distribution of the participants’ perceptions. 

4.2 Individual data analyses 

In order to test the formulated hypotheses, when the data were normally distributed and the variances 
were homogeneous, we analyzed the effect of the main factor (i.e., Language), the effect of System 
(cofactor), and their interactions on the measures of the dependent variables considered (i.e., Quality, 
Modeling Time, Productivity, PEOU, and PU) using the two-way ANOVA with interactions. When 
the ANOVA assumptions could not be satisfied, we used the Kruskal-Wallis test to compare the 
means of the four treatments (i.e., value@GRL_O1, value@GRL_O2, i*_O1, i*_O2), as explained in 
Section 3.5. 

Furthermore, the statistical significances of the experiments were complemented with the 
magnitude of their effects. The magnitude of an experiment effect can be expressed by the effect size 
measured as the standardized difference between two groups (d family) or as the correlation between 
two or more variables (r family) [54]. In the first family, Cohen’s d is the most common Standardized 
Mean Difference statistic, while Hedges’ g provides a measure of effect size weighted according to 
the relative size of each sample. The pooling of weighted standard deviations is used in the calculation 
of Hedges’ g [55]. However, when dealing with ordinal scale data, non-parametric measures such as 
Cliff’s δ are recommended [56]. Moreover, the non-parametric nature of Cliff’s δ reduces the 
influence of distribution shape, differences in dispersion, and extreme values [52]. In our study, two 
of the five variables studied were ordinal (i.e., PEOU and PU), while among the continuous variables, 
only Modeling Time was normally distributed in the four experiments. 



 

 

 

 

   
 

Cliff’s δ can be defined as the difference between the probability that a random observation from 
group one is greater than a random observation from group two and the probability that a random 
observation from group one is less than a random observation from group two [53]. In the four 
experiments in our family, the Cliff’s δ estimates were obtained with a confidence interval of 95% for 
each of the variables. Cliff’s δ is bounded, signifying that an effect size of 1 or -1 indicates the 
absence of an overlap between the two groups, whereas 0 indicates that the group distributions are 
equivalent. Furthermore, the sign indicates the direction of the effect. A positive sign means that the 
direction of the effect is in favor of the value@GRL language.  

The magnitude of the effect was assessed using the thresholds provided by Kraemer and Kupfer 
[57], i.e., |d| < 0.112 “negligible” (shown in gray), |d| < 0.276 "small" (red), |d| < 0.428 "medium" 
(yellow), otherwise "large" (green). These thresholds were taken into account by Kitchenham et al. 
[56] in their extended guidelines for effect size magnitude interpretation. With regard to the effect 
size, in the present study we considered medium and large effect sizes as practically significant, as 
suggested by the Cohen’s benchmarks [54], [58]. 

In the following subsections, the results obtained for each dependent variable are shown in Tables 
7 to 14 in which the “Experiment” column describes the baseline experiment and the three 
replications, “Language p-value” is the statistical significance obtained for the Language effect (main 
factor), “System p-value” is the statistical significance obtained for the System effect, and 
“Interaction p-value” is the statistical significance obtained for the interaction between Language and 
System. The tendency of the data if the null hypotheses regarding the effect of language and system 
are rejected is, meanwhile, shown in the “In favor of” columns. There is an additional column for the 
effect size for the main factor (Cliff’s δ estimates). The results obtained are also discussed.  

4.2.1 Testing quality of goal models  

Table 7 shows the results obtained after testing the effects of the language, system, and their 
interactions for the Quality variable. 

Table 7. Test results for Quality (H10). 

Experiment Language System Interaction  
p-value Cliff’s δ In favor of p-value In favor of p-value 

UPV1 0.000 $ 0.81 [0.54, 0.93] value@GRL 0.018 $ Green Route 0.353 $ 
UPV2 0.000 $ 0.55 [0.28, 0.74] value@GRL 0.213 $ - 0.023 $ 
UNA 0.007 $ 0.70 [0.19, 0.91] value@GRL 0.172 $ - 0.159 $ 
UPV3 0.002 # 0.44 [0.15, 0.67] value@GRL 0.224 # - 0.010 * 

   $ ANOVA; * Kruskal-Wallis; #Mann-Whitney 

The ANOVA test indicates that there is an interaction effect between language and system for 
UPV2. We then performed a post-hoc analysis using t-tests to detect which pairs of treatments are 
significantly different. The results suggest that there are two significant interactions, as shown in 
Table 8. Although there is a significant difference between the languages for the quality variable, this 
difference only occurs with the Lattes-Scholar system, where the quality of the goal models specified 
with value@GRL is higher. There is also a significant difference for the system factor only in the case 
of the i* language, where the quality of the goal models for the Green Route system is higher than the 
quality of the models for the Lattes Scholar system. 

 



 

 

 

 

   
 

Table 8. Test results for the post-hoc analysis for Quality. 

 Treatment pairs  UPV2 
p-value 

UPV3 
p-value 

Effect of 
language on 

system 

i*-Green Route vs. value@GRL-Green Route 0.181 & 0.003 # 

i*-Lattes-Scholar vs. value@GRL-Lattes-Scholar 0.000 & 0.115 # 

Effect of 
system on 
language 

i*-Green Route vs. i*-Lattes-Scholar 0.016 & 0.774 # 

value@GRL-Green Route vs. value@GRL-Lattes-Scholar 0.459 & 0.081 # 

 & t-test; # Mann-Whitney 

On the other hand, the Kruskal-Wallis suggests that there is a significant difference in the means 
between language and system for UPV3. The post-hoc analysis using Mann-Whitney suggests that 
there is one significant difference for the language (see Table 8) when the Green Route system is used 
in favor of Value@GRL. 

With regard to the system cofactor, the ANOVA test suggests that there is a significant difference 
in favor of Green Route for UPV1 in terms of the quality of the goal models created. 

With regard to the language factor, the test results shown in Table 7 suggest that the null 
hypothesis H10 can be rejected for all the experiments in the family, meaning that a significant 
statistical difference exists between the two languages in terms of the quality of the goal models 
created. Furthermore, this difference is significant in practice, since all the experiments have a “large” 
effect size (> 0.428) in favor of value@GRL. This means that the goal models specified by the 
participants using value@GRL were of higher quality than the goal models specified using i*. For this 
variable, the lowest effect size estimate was obtained for the experiment UPV3 and the highest for 
UPV1. 

These findings can probably be explained by the process provided by value@GRL, which guides 
the users on how to specify the goal models. In addition, this language contains a reduced number of 
intentional elements and links when compared to i*. The recall (completeness) of the participants 
modeling with value@GRL was, therefore, higher than with i*, thus affecting the overall quality in 
favor of value@GRL. As future work, we plan to verify whether using other software metrics to 
measure the quality of goal models may affect this result. 

4.2.2  Testing modeling time 

Table 9 shows the results obtained after testing the effects of the language, system, and their 
interactions for the Modeling Time variable. 

Table 9. Test results for Modeling Time (H20). 

Experiment Language System Interaction  
p-value Cliff’s δ In favor of p-value In favor of p-value 

UPV1 0.612 $ 0.08 [-0.29, 0.43] - 0.016 $ Lattes Scholar 0.198 $ 
UPV2 0.000 $ 0.48 [0.20, 0.69] value@GRL 0.508 $ - 0.391 $ 
UNA 0.000 $ -0.91 [-0.99, -0.52] i* 0.110 $ - 0.009 $ 
UPV3 0.015 $ 0.32 [0.02, 0.57] value@GRL 0.144 $ - 0.661 $ 

    $ ANOVA 

As mentioned before, a positive sign for the effect size means that the direction of the effect, 
depicted in the column “In favor of”, is on the side of the value@GRL language (and vice versa). 
Specifically, in the case of Modeling Time a positive sign means the worst scenario because lower 
modeling times are more suitable. 



 

 

 

 

   
 

The ANOVA test indicates that there is an interaction between language and system for UNA. We 
then performed a post-hoc analysis using t-tests to determine which pairs of treatments are 
significantly different. The results shown in Table 10 indicate that there is a significant difference 
between the time taken to model both systems with value@GRL and the time taken to model the same 
systems with i*. As it can be seen in Table A-1, value@GRL (mean = 52.6 min.) implies shorter 
modeling times than i* (mean = 84.8 min.) when Green Route system is used. There is also a 
significant difference for the system cofactor only in the case of the i* language, where the time 
needed to model Green Route (mean = 84.8 min.) is lower than the time needed to model Lattes 
Scholar (mean = 110 min.). 

Table 10. Test results for the post-hoc analysis for Modeling Time. 

 Treatment pairs UNA p-value 
Effect of language 

on system 
i*-Green Route vs. value@GRL-Green Route 0.022 & 

i*-Lattes-Scholar vs. value@GRL-Lattes-Scholar 0.000 & 
Effect of system on 

the language 
i*-Green Route vs. i*-Lattes-Scholar 0.049 & 

value@GRL-Green Route vs. value@GRL-Lattes-Scholar 0.178 & 
& t-test 

With regard to the system cofactor, the results suggest that there is a significant difference only for 
the UPV1 experiment, where the time taken to model the Green Route system is significantly lower 
than the time taken to model the Lattes Scholar system.  

With regard to the language factor, the test results shown in Table 10 suggest that the null 
hypothesis H20 can be rejected for all the experiments in the family with the exception of UPV1, since 
the p-value is greater than 0.05. In the other experiments, a difference exists between the two 
languages in terms of the time spent by the participants when applying the languages. In the case of 
UPV2 and UPV3, the effect sizes are “large” and “medium” respectively. Since the difference 
between value@GRL and i* regarding modeling time is positive, we can assume that the participants 
spent less time when using i*. Conversely, the UNA experiment have a negative difference, which 
means that the time needed to specify value@GRL models was lower than the time needed to specify 
i* models. In this case, the effect size can be assessed as “large”. A practical significance is, therefore, 
also confirmed in all these cases. 

4.2.3 Testing productivity 

Table 11 shows the results obtained after testing the effects of the language, system, and their 
interactions for the Productivity variable. For UPV1, the Kruskal-Wallis test indicates that there is a 
significant difference between the treatments employed in this experiment. 

Table 11. Test results for Productivity (H30). 

Experiment Language System Interaction 
p-value Cliff’s δ In favor of p-value In favor of p-value 

UPV1 0.025 # 0.41 [0.04, 0.69] value@GRL 0.003 # Green Route 0.002 * 
UPV2 0.502 # 0.10 [-0.19, 0.37] - 0.115 # - 0.237 * 
UNA 0.000 $ 0.88 [0.39, 0.98] value@GRL 0.662 $ - 0.086 $ 
UPV3 0.138 # 0.22 [-0.08, 0.49] - 0.037 # Green Route 0.076 * 

 $ ANOVA; * Kruskal-Wallis; #Mann-Whitney 

We then performed a post-hoc analysis using a Mann-Whitney test to identify which pairs of 
treatments are significantly different. The results presented in Table 12 indicate that although there is 



 

 

 

 

   
 

a significant difference for the language factor, this difference can only be observed when comparing 
the Lattes Scholar system, where the participants were more productive when they modeled this 
system using value@GRL. In addition, it can also be observed that, although there is also a significant 
difference between the system factor, this can only be appreciated for the i* language, where the 
productivity of the participants modeling the Green Route system is significantly higher than the 
productivity of the participants modeling the Lattes Scholar system. 

Table 12. Test results for the post-hoc analysis for Productivity. 

 Treatment pairs UPV1 p-value 
Effect of language 

on the system 
i*-Green Route vs. value@GRL-Green Route 0.314 # 

i*-Lattes-Scholar vs. value@GRL-Lattes-Scholar 0.014 # 
Effect of system on 

the language 
i*-Green Route vs. i*-Lattes-Scholar 0.002 # 

value@GRL-Green Route vs. value@GRL-Lattes-Scholar 0.190 # 
& t-test; # Mann-Whitney 

With regard to the system cofactor, the results suggest that there is also a significant difference for 
the UPV3 experiment, in which the participants’ productivity when modeling the Green Route system 
is significantly higher than the participants’ productivity when modeling the Lattes Scholar system. 

With regard to the language factor, the test results shown in Table 11 indicate that the difference 
between the two languages in terms of productivity is statistically significant for UPV1 and UNA (p-
value = 0.025 and p-value = 0.000, respectively), while it is not statistically significant for UPV2 and 
UPV3. The null hypothesis H30 can consequently be rejected for two out of the four experiments in 
the family: UNA and UPV1. In fact, the UNA experiment have a “large” effect size while the effect 
size of UPV1 is “medium”, both in favor of value@GRL. 

Although the modeling time when specifying goal models with i* was superior in two out of the 
four experiments, what in fact led to the difference in mean was the quality of the goal models (PROD 
= Quality/Modeling Time). The result obtained may suggest that the Master’s degree students and 
professional participants’ productivity was greater with value@GRL. The undergraduate students had 
a similar productivity when using the two languages. These results may indicate that more 
experienced participants benefit more from value@GRL, but this assumption should be validated in 
further experiments.  

4.2.4 Testing perceived ease of use 

Table 13 shows the results obtained after testing the effects of the language, system, and their 
interactions for the PEOU variable. The results show that there is no interaction between language and 
system in any of the experiments. 

Table 13. Test results for perceived ease of use (H40). 

Experiment Language System Interaction 
p-value Cliff’s δ In favor of p-value In favor of p-value 

UPV1 0.003 $ 0.50 [0.14, 0.74] value@GRL 0.171 $ - 0.645 $ 
UPV2 0.046 # 0.29 [0.00, 0.53] value@GRL 0.496 # - 0.214 * 
UNA 0.514 $ 0.10 [-0.42, 0.57] - 0.089 $ - 0.404 $ 
UPV3 0.596 # 0.08 [-0.21, 0.36] - 0.570 # - 0.852 * 

      $ ANOVA; * Kruskal-Wallis; #Mann-Whitney 
 



 

 

 

 

   
 

With regard to the system cofactor, no significant difference was found in any of the experiments 
for the ease of use perceived by the participants. Only with regard to the language factor did some 
significant differences arise. Indeed, the test results shown in Table 13 suggest that the difference 
between the two languages in terms of perceived ease of use is not statistically significant for UNA 
and UPV3 (p-value > 0.05), while we can assume that this difference is statistically significant for 
UPV1 and UPV2. For these two last experiments, UPV2 does not have a practical significance since 
the effect size is “small”, while UPV1 has a “medium” effect size in favor of value@GRL. 

In fact, the violin plots for UNA and UPV3 shown in Fig. 5(a) illustrate that the participants’ 
perceived ease of use was quite similar for both languages, as confirmed by the values of the mean of 
the data (ranging from 3.22 to 3.97) from Table A-1. This may suggest that the participants are neutral 
regarding the ease of use of the two languages. The analysis of the answers to the open questions in 
the post-experiment questionnaire revealed that the participants had some difficulties when using both 
languages. For example, participant ID 2GR4 said that “modeling with value@GRL is easy. However, 
it requires more training”, and participant ID 1GR2 said “to make i* easier to understand, 
dependencies should be drawn directly between intentional elements of different actors (without an 
intermediate intentional element)”. 

4.2.5 Testing perceived usefulness  

Table 14 shows the results obtained after testing the effects of the language, system, and their 
interactions for the PU variable.  

The ANOVA test indicates that there is an interaction effect between language and system for 
UPV1. We then performed a post-hoc analysis using t-tests to detect which pairs of treatments are 
significantly different. The results suggest that there are two significant interactions, as shown in 
Table 15.  

Table 14. Test results for perceived usefulness (H50). 

Experiment Language System Interaction 
p-value Cliff’s δ In favor of p-value In favor of p-value 

UPV1 0.017 $ 0.40 [0.04,0.67] value@GRL 0.389 $ - 0.038 $ 
UPV2 0.019 $ 0.37 [0.08, 0.60] value@GRL 0.133 $ - 0.761 $ 
UNA 0.011 # 0.67 [0.09, 0.91] value@GRL 0.168 # - 0.035 * 
UPV3 0.907 $ -0.02 [-0.30, 0.28] - 0.787 $ - 0.418 $ 

     $ ANOVA; * Kruskal-Wallis; #Mann-Whitney 

Although there is a significant difference between the languages for the PU variable, this 
difference only occurs with the Green Route system, where the usefulness perceived by the 
participants when using value@GRL is higher. There is also a significant difference for the system 
cofactor only in the case of the value@GRL language, where the perceived usefulness when modeling 
the Green Route system is significantly higher than the perceived usefulness when modeling the 
Lattes Scholar system. 

On the other hand, the Kruskal-Wallis suggests that there is a significant difference in the means 
between language and system for UNA. However, the post-hoc analysis using the Mann-Whitney test 
does not suggest any significant difference between the treatment pairs. 

 



 

 

 

 

   
 

Table 15. Test results for the post-hoc analysis for perceived usefulness variable. 

 Treatment pairs  UPV1        
p-value 

UNA         
p-value 

Effect of language 
on the system 

i*-Green Route vs. value@GRL-Green Route 0.005 & 0.056 # 
i*-Lattes-Scholar vs. value@GRL-Lattes-Scholar 0.816 & 0.170 # 

Effect of system 
on the language 

i*-Green Route vs. i*-Lattes-Scholar 0.445 & 0.391 # 
value@GRL-Green Route vs. value@GRL-Lattes-Scholar 0.018 & 0.110 # 

& t-test; # Mann-Whitney 

With regard to the system cofactor, no significant difference was found in any of the experiments 
for the usefulness perceived by the participants. With regard to the language factor, the test results 
shown in Table 14 suggest that the null hypothesis H50 can be rejected for all the experiments in the 
family with the exception of UPV3, since the p-value is greater than 0.05. In UPV1, UPV2, and UNA, 
a statistically significant difference exists between the two languages in terms of the usefulness 
perceived by the participants when applying the languages. A practical significance is also confirmed 
in favor of value@GRL. The effect size is “large” in the case of UNA, while UPV1 and UPV2 have a 
“medium” effect size. 

The analysis of the answers to the open questions in the post-experiment questionnaire revealed 
that the participants found value@GRL to be useful. For example, participant ID 2GR3 said 
“although representing the hierarchy of intentional elements inside an actor seems to be complex, I 
liked value@GRL”. It is worth mentioning that the participants with the business analyst profile in 
UPV1 highlighted that they found the two methods useful for communication purposes. However, 
H50 could not be rejected for UPV3. This contradicts the results obtained for UPV2, in which the 
participants with the same profile found value@GRL to be easy to use and useful. It is, therefore, 
necessary to investigate this issue in further experiments. 

4.3 Influence of profile 

Since several stakeholders may be involved in goal modeling, we wished to test whether the 
participants’ profile influenced the results. The influence of the Profile cofactor on the main factor 
(Language) was assessed only for UPV1, as this was the only experiment that involved participants 
with two different profiles: software engineers and business analysts. 

Table 16 presents descriptive statistics (minimum, maximum, mean, median, and standard 
deviation) for the dependent variables by language and profile. The cells in bold type indicate the 
participants’ values for each variable with the highest median and the lowest standard deviation. In 
the case of Modeling Time, the lowest median has been embellished since it implies the best situation. 
Upon comparing the language medians of these variables, it will be noted that the goal models 
specified by software engineers using i* have a higher quality than those specified by business 
analysts, while the opposite holds in relation to value@GRL. The standard deviation is higher for 
software engineers, which indicates that business analysts present a more uniform behavior when 
using value@GRL. In contrast, the standard deviation is higher for business analysts than software 
engineers when using i*. 

We can also observe that, on average, business analysts specified the goal models in less time than 
the software engineers. Nevertheless, the business analysts were, on average, more productive than 
software engineers when using value@GRL, while the software engineers were, on average, more 
productive than the business analysts when using i*. Again, the standard deviation in modeling time 
and productivity is higher for software engineers. 



 

 

 

 

   
 

With regard to the perception-based variables, the business analysts expressed, on average, a 
higher perception of ease of use and usefulness than the software engineers for both languages. One 
possible reason for this may be the fact that, since they modeled the systems in less time, this might 
have positively influenced their perceptions of these languages. Furthermore, business analysts may 
find these languages closer to their usual work practices and domain since the languages deal with the 
modeling of organizational objectives and stakeholders. 

Table 16. Descriptive analysis for the variables of the experiment by the profile. 
Variable  i* value@GRL 

 All Business 
Analysts 

Software 
Engineers 

All Business 
Analysts 

Software 
Engineers 

Quality Min 19.37 19.37 29.40 38.41 49.18 38.41 
Max 54.32 45.14 54.32 83.07 60.68 83.07 
Mean 38.69 31.23 41.89 55.86 55.00 56.22 
Mdn 39.08 29.95 40.13 53.94 55.50 52.98 
SD 9.11 9.96 6.81 10.97 4.52 12.95 

Modeling 
Time 

Min 24.00 30.00 24.00 27.00 37.00 27.00 
Max 74.00 63.00 74.00 68.00 47.00 68.00 
Mean 46.15 41.33 48.21 48.20 42.50 50.64 
Mdn 47.50 34.50 49.00 47.00 43.00 52.50 
SD 15.27 13.40 16.01 11.79 4.97 13.13 

Productivity Min 0.51 0.51 0.52 0.58 1.05 0.58 
Max 1.62 1.50 1.62 2.64 1.56 2.64 
Mean 0.92 0.81 0.97 1.25 1.32 1.23 
Mdn 0.82 0.66 0.95 1.21 1.33 1.12 
SD 0.38 0.37 0.38 0.48 0.23 0.56 

PEOU Min 2.00 3.67 2.00 3.00 3.33 3.00 
Max 5.00 5.00 5.00 5.00 5.00 5.00 
Mean 3.55 4.00 3.36 4.33 4.44 4.29 
Mdn 3.66 3.83 3.00 4.33 4.66 4.33 
SD 0.94 0.52 1.03 0.61 0.66 0.61 

PU Min 1.67 3.33 1.67 2.50 3.17 2.50 
Max 4.83 4.17 4.83 5.00 5.00 5.00 
Mean 3.34 3.78 3.15 3.96 4.25 3.83 
Mdn 3.50 3.91 3.08 4.00 4.50 4.00 
SD 0.90 0.36 1.00 0.74 0.70 0.74 

 

In order to determine the significance of the interaction effects between the factors, we used two-
way ANOVA with interactions when possible. Otherwise, we used the Kruskal-Wallis test to assess 
the difference of means between the treatments. The results summarized in Table 17 show that the 
effect of profile could not be confirmed in most of the cases (p-value > 0.05), i.e., the participants’ 
profiles had no statistical influence on the results. Only in the case of the variable PEOU, a significant 
difference between the means of the treatments was confirmed. 

Table 17. Interactions between language and profile. 
Variable Profile Interaction 

p-value In favor of p-value 
Quality 0.084 $ - 0.166 $ 
Modeling Time 0.107 # - 0.410 * 
Productivity 0.800 $ - 0.409 $ 
PEOU 0.331 # - 0.034 * 
PU 0.068 $ - 0.711 $ 

         $ ANOVA; # Wilcoxon; * Kruskal-Wallis  



 

 

 

 

   
 

We then performed a post-hoc analysis using a Mann-Whitney test to identify which pairs of 
treatments are significantly different. The results shown in Table 18 indicate that a significant 
difference can only be observed for the software engineers, who expressed a higher perception of ease 
of use for the value@GRL language when compared to the i* language. This could be owing to the 
fact that these types of participants were quicker to grasp goal modeling concepts with value@GRL 
than with i*, specifically with regard to the understanding and use of intentional links (e.g., when they 
had to connect different intentional elements). In particular, we observed that their initial draft of a 
goal model for their application system under development was of good technical quality and that 
they adequately represented the intention of the system to be built. 

Table 18. Test results for the post-hoc analysis for perceived usefulness variable. 

 Treatment pairs  UPV1 p-value 
Effect of language 

on the profile 
i*-Business Analyst vs. value@GRL-Business Analyst 0.286 # 

i*-Software Engineer vs. value@GRL-Software Engineer 0.015 # 
Effect of profile 
on the language 

i*- Business Analyst vs. i*-Software Engineer 0.180 # 
value@GRL-Business Analyst vs. value@GRL-Software Engineer 0.613 # 

# Mann-Whitney 

5. Family data analysis 
In this section, we present a meta-analysis that aggregates the empirical findings obtained in the 
individual experiments. We then answer the stated research questions for the family of experiments as 
a whole by considering the results obtained in each individual experiment and the meta-analysis. 

5.1 Meta-analysis 

This section provides the results of a meta-analysis carried out to aggregate the empirical findings 
obtained in the individual experiments. Of the various existing statistical methods used to aggregate 
results from interrelated experiments [55], the Aggregated Data (AD) meta-analysis allows more 
general conclusions to be obtained [14] and was, therefore, chosen for this study. A meta-analysis 
consists of a set of statistical techniques that can be used to combine and contrast the results of 
multiple studies. Effect size estimates are commonly used in meta-analysis studies to summarize the 
findings. 

Meta-analysis results are commonly displayed graphically as forest plots. In this regard, we used R 
[59], and specifically, the “effsize” package [60], to calculate the Cliff’s δ effect size, and the 
“metafor” package [61] to conduct the meta-analysis and create the forest plots or blobbograms.  

Fig. 6 and Fig. 7 show the forest plots obtained for the continuous and ordinal variables 
respectively considered in this study. The number of participants in the experiments is presented in 
the “Total n” column. The study results are visually displayed in the central column, in which the 
vertical line depicts that there is no difference between the outcomes for each language. The 
horizontal lines through the boxes depict the length of Cliff’s δ effect sizes with 95% confidence 
intervals. The size of the box is directly related to the influence of the study on the meta-analysis 
(“Weight” column). This experiment’s influence is determined by the study’s sample size and the 
precision of the study results provided as CI [62]. The blobbograms are, therefore, a graphical 
summary of the results also presented in Table 19, complemented with the aggregated meta-analysis 
perspective. 



 

 

 

 

   
 

There are two statistical models for meta-analysis, the fixed-effects (FE) model and the random-
effects (RE) model [63]. The diamond in the last row of the graph illustrates the overall result of the 
RE model meta-analysis. The overall estimate effect is the central line of the diamond, while the 
lateral tips of the diamond confine the associated CI. When the diamond crosses over the central 
vertical line of the graph, this means that there is no significant difference between the aggregated 
results of the two methods. 

Assessing the heterogeneity in a meta-analysis is a crucial issue because the presence of true 
heterogeneity can affect the statistical model for the meta-analysis [64]. Heterogeneity measures the 
variability between studies, i.e., it gives an indication of how comparable the studies in the meta-
analysis are and how consistent the overall meta-analysis is. Graphically, this can be checked when 
assessing the overlapping of the horizontal lines or whiskers in Fig. 6 and Fig. 7. Studies can, 
therefore, be considered as homogeneous if the CIs in all the studies overlap. Table 19 also shows 
heterogeneity statistics (Q statistic and I2) and the overall effect sizes (Cliff’s δ 95% CI) obtained in 
our meta-analysis for the RE models for each of the variables. 

Table 19. Heterogeneity statistics (Q statistic, I2) and overall effect sizes for the random-effects models for 
all the variables 

 Q test Q test p-value I2 Cliff’s δ RE model 
Quality 6.11 0.1064 50.7% 0.64 [0.46, 0.81] 
Modeling Time 105.75 < 0.0001 95.8% -0.01 [-0.64, 0.61] 
Productivity 22.92 0.0001 83.4% 0.41 [0.06, 0.76] 
PEOU 4.13 0.2481 30.9% 0.26 [0.07, 0.46] 
PU 8.18 0.0425 64.3% 0.34 [0.07, 0,60] 

 

When considering heterogeneity, the p-value of the Q test is frequently used as an indication of the 
extent of between studies variability [65]. A shortcoming of the Q statistic is that it has poor power to 
detect true heterogeneity among studies when the meta-analysis includes a small number of studies. 
This means that a non-significant result must not be taken as evidence of no heterogeneity. In fact, a 
p-value of 0.10 is sometimes used to determine statistical significance rather than the conventional 
level of 0.05. Additionally, it has excessive power to detect negligible variability with a high number 
of studies [66], [67].  

Since the Q statistic informs us only the statistical significance of true heterogeneity, it should not 
be reported alone. Higgins et al. [68] proposed the descriptive statistic I2 to reflect the ratio of true 
heterogeneity to total variance for the observed effect estimates, providing information on the 
percentage of variability that cannot be explained by random sampling or chance [63]. 



 

 

 

 

   
 

 

 

 
Fig. 6. Meta-analysis blobbogram for Quality, Modeling Time and Productivity. 

 



 

 

 

 

   
 

 

 
Fig. 7. Meta-analysis blobbogram for PEOU and PU. 

Taking into account both heterogeneity statistics reported in Table 19, along with the forest plots, 
the studies of the variables Modeling Time, Productivity, and PU can be considered as heterogeneous. 
Meta-regressions have been used to suggest reasons for observed heterogeneity [69]. As in any 
regression analysis, meta-regressions attempt to identify significant relations between the dependent 
variable and covariates of interest. Such an analysis is beyond the scope of this work. However, the 
heterogeneity observed for Modeling Time and Productivity is probably owing to the type of 
participants: the participants in UNA (professionals) are faster with i*, while the other participants are 
faster with value@GRL.  

With regard to the heterogeneity observed for PU, we could not find any plausible explanation for 
the difference observed in UPV3 in contrast to the other experiments that had a similar behavior, since 
the type of participant (3rd year Computer Science Bachelor’s Degree students), location and 
experimenter were the same as in the UPV2 experiment. Indeed, we plan to replicate this study to 
explore possible causes.  



 

 

 

 

   
 

In fact, only the RE values have been considered in Table 19 since the values of Cliff’s δ RE 
models are quite similar to those of the FE models when there is low heterogeneity. Three out of five 
variables have a practically significant overall effect size: “large” for Quality, and “medium” for 
Productivity and PU. In the case of the remaining variables, PEOU has a “low” effect size and the 
overall effect size for Modeling Time is “negligible”. 

In summary, the meta-analysis strengthens the overall results obtained in the individual 
experiments. The effect size estimates may also indicate that it will be necessary to perform further 
replications with a larger sample of participants. 

5.2. Answering the research questions 

A summary of the results obtained for each individual experiment and the meta-analysis is provided in 
Table 20. The most prominent result is that value@GRL proved to be more effective than i* as 
regards creating good-quality goal models.  

Although there are some interaction effects between language and system that affect the quality of 
goal models, these interactions only occur in the UPV2 and UPV3 experiments and three pairs of 
treatments, as shown in Section 4.2.1. With regard to the system cofactor, only in UPV is there a 
significant difference in terms of the quality of the goal models created, in favor of Green Route. 

Table 20. Summary of results of the family of experiments. 

 Individual Experiments Cliff’s δ RE 
model 

Hypotheses Hi (value@GRL) > Hi 
(i*) 

Hi 
(value@GRL) 

< Hi (i*) 

Hi (value@GRL) = 
Hi (i*) 

 

H1: Quality UPV1 (large), UPV2 
(large), UNA (large), 
UPV3 (large) 

- - Large 

H2: Modeling 
time 

UPV2 (large), UPV3 
(medium) 

UNA (large) UPV1 (negligible) Negligible 

H3: 
Productivity 

UPV1 (medium), UNA 
(large) 

 UPV2 (negligible), 
UPV3 (small) 

Medium 

H4: PEOU UPV1 (medium), UPV2 
(small) 

 UNA (negligible), 
UPV3 (negligible) 

Small 

H5: PU UPV1 (medium), UPV2 
(medium), UNA (large) 

 UPV3 (negligible) Medium 

 
Nevertheless, we found statistical and practical significance for hypothesis H1a in all the 

experiments in the family with a large effect, regardless of the participants' experience or background. 
The meta-analysis also confirmed that the Cliff’s δ RE model for the quality variable has a practical 
significance, with a large effect size. These results are promising, because participants from two 
different profiles (novice software engineers and business analysts) with relatively low training were 
able to create goal models with a good level of correctness and completeness. However, we plan to 
verify whether the use of other metrics whose purpose is to assess the quality of goal models may 
affect this result. 

With regard to modeling time, we found some interaction effects between language and system 
that affect this variable, but these interactions only occurred in the UNA experiment and three pairs of 



 

 

 

 

   
 

treatments. With regard to the system cofactor, there is a significant difference in UPV1, where the 
time taken to model Green Route was significantly lower than that required to model Lattes Scholar.  

Nevertheless, we found statistical and practical significance for hypothesis H2a in three out of the 
four experiments. In UPV2 and UPV3, the time needed to specify value@GRL models was higher 
than the time needed to specify i* models, while the participants in UNA spent less time when using 
value@GRL. As a consequence, the Cliff’s δ RE model for modeling time was found to be negligible. 
This suggests that the time spent by the participants when applying both languages was similar.  

With regard to the participants’ productivity, we found some interaction effects between language 
and system that affect this variable, but these interactions occurred only in the UPV1 experiment and 
two pairs of treatments. With regard to the system cofactor, there is a significant difference in UPV1 
and UPV3, where the participants’ productivity when modeling Green Route was significantly higher 
than the participants’ productivity when modeling Lattes Scholar.  

Nevertheless, we found statistical and practical significance for hypothesis H3a in the UPV1 and 
UNA experiments. The meta-analysis confirmed that the Cliff’s δ RE model for the productivity 
variable had a practical significance, with a medium effect size.  

In general, it would appear that the MSc students and practitioners were more productive than the 
undergraduate students. Since our sample size for this type of participants is limited when compared 
to the undergraduate students, we cannot draw any conclusions regarding the possible influence of 
experience in the modeling languages. In future experiments, we plan to investigate how the 
participants’ experience and ability in goal modeling influence modeling time, productivity and the 
quality of the goal models when using the languages selected. We should, therefore, involve 
participants with experience in goal modeling. Moreover, the participants’ productivity could be 
enhanced by providing tool support to assist the users when specifying and validating their goal 
models. Tool support is an important factor that impacts on the usage and acceptance of a goal 
modeling language. 

With regard to the participants’ perception of ease of use, the results show that there is neither an 
interaction effect nor a difference in means between language and system for this variable in any of 
the experiments. In addition, no effect of system was found in any of the experiments for this variable. 

With respect to the language factor, we found a statistical significance for hypothesis H4a in two 
experiments of the family (UPV1 and UPV2), but this difference had a practical significance only in 
the case of UPV1. The meta-analysis results show that the Cliff’s δ RE model for the PEOU variable 
did not have a practical significance (i.e., small effect size). These results suggest that both languages 
should be improved to make them easier to use. In fact, some participants highlighted that they 
experienced difficulties when using both languages owing to their qualitative nature, i.e., expressing 
the stakeholders’ intention using the constructs of the language. This was mentioned in their responses 
to the questionnaire. The main issues are related to difficulties in distinguishing the meanings of some 
constructs (i.e., goals and the means used to achieve them), representing dependencies among goals, 
determining the granularity of goal decomposition, solving conflicts among goals and stakeholders’ 
conflicts for a goal. Although this is an inherent problem of goal modeling languages in general, in 
order to make them easier for users, these languages need: i) formal semantics to ensure that the 
language elements cannot be misunderstood, or ii) well-defined yet informal constructs with practical 
guidelines on how to specify a goal model. Unfortunately, many goal-oriented languages are specified 
only through their abstract syntax and concrete syntax and lack guidelines and/or precise semantics 
beyond informal explanations.  



 

 

 

 

   
 

With regard to the participants’ perception of usefulness, we found an interaction effect in UPV1, 
but this interaction occurred only in two pairs of treatments. We also found a difference in means in 
UNA, but the post-hoc analysis does not suggest any significant difference between the treatment 
pairs. In addition, no effect of system was found in any of the experiments for this variable.  

Nevertheless, we found statistical and practical significance for hypothesis H5a in three (UPV1, 
UPV2 and UNA) out of the four experiments in the family. The meta-analysis confirmed that the 
Cliff’s δ RE model for the PU variable has a practical significance, with a medium effect size. An 
analysis of the individual responses to the questionnaire revealed that the participants scored low on 
the PU1 item for both languages (i.e., “I believe that the goal models obtained by this language are 
clear, concise, and unambiguous”). The overall level of agreement with this question was 35%, while 
for the other items it was over 50%. Further efforts are, therefore, required as regards assessing the 
understandability of goal modeling languages and improving their clarity. The Physics of Notations 
[70] could be exploited for this purpose, as it aspires to provide a theory with which to assess and 
design effective visual notations. 

We also tested whether the participants’ profile influenced the results, but the effect of this co-
factor was confirmed only in the case of software engineers who expressed a higher perception of use 
for the value@GRL language when compared to the i* language.  

All in all, the results are promising, as we obtained empirical evidence regarding in which contexts 
i* and value@GRL are more effective. We identified some interaction effects or significant 
differences in mean between the languages and systems for some dependent variables being studied. 
The results suggest that the effect of value@GRL or i* can vary from a system to another one. 
Besides, the effect of Green Route or Lattes-Scholar systems can vary from a language to another one. 
However, these differences occurred only in certain experiments and pairs of treatments. The 
variation may be caused by the reduced number of observations when considering treatment pairs or 
other factors such as the system domain or complexity. Hence, further experiments are needed to 
study the cause of variation. In general, the differences observed do not dramatically impact on the 
effects of i* and value@GRL as regards the quality, modeling time, productivity, and the perceived 
ease of use and usefulness of the participants when using these languages. 

6. Threats to validity 
In this section, we follow the recommendations of Wohlin et al. [40] to discuss some of the issues that 
might have threatened the validity of this family of experiments. 

6.1 Internal validity 

The main threats related to internal validity are: learning effect, participant experience, information 
exchange among participants, understandability of the materials, and instrumentation validity.  

The learning effect was mitigated by using two experimental objects for each experiment in the 
family. There were no differences on the participants’ experience since none of them had previous 
experience in creating goal models. We were able to prevent information exchange by using different 
experimental objects in the two runs and monitoring the participants during the experiments. The 
understandability of the materials was assessed by conducting a pilot study. The analysis of the 
interaction of the System cofactor with the Language (main factor) on the dependent variables 
presented in Section 4.2 shows that there are some interactions in certain experiments and pairs of 
treatments, but the selection of the experimental objects does not severely affect the instrumentation 



 

 

 

 

   
 

validity and the experimental results. We mitigated this threat by assessing the complexity of the 
experimental objects in the pilot study, and several mistakes were identified and corrected. Finally, in 
order to avoid a possible source of bias, the experimental materials were evaluated by an independent 
experienced Empirical Software Engineering researcher. 

6.2 External validity 

Threats related to external validity are: representativeness of the results, and the size and complexity 
of tasks that might affect the generalization of the results.  

The representativeness of the results could have been affected by the software systems used and 
the context of the participants selected. We selected two software systems from different domains. 
The experimental task can be considered realistic for small-sized projects and they are not trivial. The 
size and complexity of the tasks may also affect the external validity. We decided to use relatively 
small tasks since a controlled experiment requires the participants to complete the assigned tasks in a 
limited amount of time. However, we plan to conduct case studies with larger and more complex tasks 
in order to confirm or contradict the results obtained. 

With regard to the participants’ experience, the random heterogeneity of subjects is always present 
when experimenting with students and practitioners, and we are also conscious that they had no 
previous knowledge of the goal languages being compared. Although the knowledge of the students 
involved in our family could be assumed to be comparable to the knowledge of junior industry 
professionals, the working pressure and the overall environment within industry are different. 
Experiments in industrial contexts involving participants with experience in goal modeling are, 
therefore, necessary in order to increase our awareness as regards these results. 

6.3 Construct validity 

The construct validity of our family might have been influenced by both the measures that were 
applied during the quantitative analysis and the reliability of the questionnaire.  

We mitigated this by using measures that are commonly applied in other empirical software 
engineering studies, including controlled experiments [46] and a meta-analysis [45], [14]. In 
particular, Quality was measured using an information retrieval-based approach to avoid any 
subjective evaluation; Modeling Time was measure in minutes; Productivity was measured as a 
function of Quality and modeling time to create the goal models. The subjective variables (PEOU and 
PU) were based on TAM [49].  

The reliability of the questionnaire as regards assessing the subjective variables was tested using 
the Cronbach’s alpha test. For the UPV1 experiment, questions related to PEOU and PU obtained a 
Cronbach’s α coefficient of 0.805 and 0.867, and the result for the whole questionnaire was 0.741; for 
the UPV2 experiment, the result was 0.800 and 0.818, and 0.546 for the whole questionnaire; for the 
UNA experiment, the result was 0.789 and 0.632, and 0.624 for the whole questionnaire; finally, for 
the UPV3 experiment, the result was 0.850 and 0.592, and 0.567 for the whole questionnaire. Most of 
the results were higher than the threshold level (0.70) [71]. In addition, as indicated by Loewenthal 
[72], the α coefficient of 0.6 could be acceptable if the objective is scale development. 

Other threats to construct validity that might exist are the participants’ apprehension about being 
evaluated, and hypothesis guessing on their part. Evaluation apprehension has been avoided, since the 
students were not graded on the results obtained. In order to avoid hypothesis guessing, the students 
were not made aware that they were part of a study (they were invited to attend a workshop on goal 



 

 

 

 

   
 

modeling methods). The participants were volunteers and were aware of the practical and pedagogical 
purpose of the workshop, but the research questions were not disclosed to them. In addition, bias 
introduced into the study by expectancies on the part of the experimenter was mitigated while 
interacting with the participants. We followed the same protocol for each language. 

6.4 Conclusion validity 

With regard to the conclusion validity, the main threats are: the data collection and the validity of the 
statistical tests applied.  

In order to decrease the data collection threat, we applied the same data-extraction procedures in 
each individual experiment and ensured that each dependent variable was calculated consistently. 
With regard to the validity of the statistical tests proposed, we considered the recommendations of 
Maxwell [71]. The statistical tests were selected by considering the type and nature of the variables 
and were selected by checking that they followed the specific assumptions related to their use.  

7. Conclusions 
In this family of experiments, we have gained empirical evidence on how a recently proposed 
specialization of a goal-oriented modeling language (value@GRL) may help novice modelers when 
specifying goal models in comparison to a well-known language (i*).  

This evidence is a contribution to the body of knowledge on goal-oriented languages, since it 
provides factual data about which language is more suitable under certain conditions. In particular, we 
found evidence supporting the claim that the quality of the goal models created with value@GRL is 
significantly higher than that of i*. These results are promising, because participants from two 
different profiles (novice software engineers and business analysts) with relatively low training were 
able to create models with a good level of correctness and completeness. The results also showed that 
the participants judged value@GRL to be more useful than i*, although their perceptions on the ease 
of use of the two languages were similar. Moreover, the results show that neither the profile of the 
participants nor the system used greatly influenced their performance and perceptions when using i* 
and value@GRL. Nevertheless, more replications are needed to confirm or refute these results.  

From a research perspective, these results may be of interest to the requirements engineering 
community in general and to novice software engineers and business analysis in particular (since we 
have tested the usefulness of value@GRL for guiding novice modelers when performing goal 
modeling). It may, however, also be useful for researchers in the area who wish to replicate the 
experiments (the research package has been made available online). The evaluation strategy could 
also be relevant (and reused) by other researchers to evaluate other existing goal modeling languages.  

Our findings also have practical implications. We found that the modeling time required to create 
goal models with value@GRL is somewhat greater than the modeling time required to create goal 
models with i*. However, the participant’s productivity, which takes into account both the quality of 
the models created and the modeling time, is similar with both languages. Note that the effort required 
to create these models may decrease after the intensive adoption of the language by an organization. 
However, this should be assessed empirically. Indeed, we plan to carry out an empirical study to 
assess the effort involved when modeling with i* and value@GRL. As suggested by Jolak et al. [73], 
the creation of models consists of different cognitive activities: (i) designing, i.e., thinking about the 
design (ideation, key-design decision making), (ii) notation expression, i.e., expressing a design in a 
modeling notation and (iii) layouting, i.e., the spatial organization of model elements in a diagram. In 



 

 

 

 

   
 

order to better understand the effort needed to create goal models, we should run experiments to 
measure how much effort each of these cognitive activities requires. 

Other implications are related to education in the field of requirements engineering. Educators 
confront the need to choose between different modeling languages when teaching requirements 
analysis and specification. Understanding the strengths and weaknesses of each language, based on 
the results of studies like ours, may provide the basis required to select the language that is most 
appropriate for the teaching objectives. In particular, the results could guide educators to focus on 
certain aspects of a given language so as to better support students in overcoming related modeling 
difficulties. For instance, in our experiments, the participants had difficulties deciding which type of 
link to use when applying the two goal modeling languages. 

Nevertheless, we are aware that this study provides preliminary results on the effectiveness of 
value@GRL as a goal modeling language. Although the findings are promising, these results need to 
be interpreted with caution since they are only valid within the context established in this family of 
experiments. It is necessary to verify whether the same results hold if more complex experimental 
objects and practitioners experienced in goal modeling are used. Nevertheless, this study has value as 
a first family of experiments used to evaluate the goal modeling languages selected with the objective 
of providing evidence of their usefulness for modeling small and mid-sized software systems. 

In terms of future work, we plan to extend the GRL tool to support our process with regard to the 
modeling and prioritization of intentional elements. Owing to the release of a new version of i* [36], 
we believe that an interesting research direction will be to compare value@GRL with i* 2.0. This will 
allow us to extend the findings of our family of experiments by assessing whether the differences 
observed between value@GRL and i* still hold with the i* 2.0. Furthermore, it may be interesting to 
appraise whether the treatments have different effects when varying the type of participants 
(Computer Sciences vs. Business Administration and Management students, graduate vs. 
undergraduate students). Gathering new data and performing a subgroup analysis may consequently 
help explain differences regarding these additional factors. Further experiments are also needed to 
evaluate the other activities in the value@GRL approach. 
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Appendix A. Descriptive statistics 

In the following, we show descriptive statistics per language and system for each dependent variable 
and experiment in the family. 

Table A-1. Descriptive statistics for the variables in the family of experiments. 
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Quality Modeling Time Productivity PEOU PU 

Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD 

U
PV

1  

i*
 

All 19.37 54.32 38.69 9.11 24.00 74.00 46.15 15.27 0.51 1.62 0.92 0.38 2.00 5.00 3.55 0.94 1.67 4.83 3.34 0.90 
O1 23.05 54.32 40.99 9.62 24.00 63.00 38.50 12.78 0.63 1.62 1.15 0.39 2.00 5.00 3.67 1.02 1.67 4.50 3.18 0.95 
O2 19.37 50.27 36.39 8.42 34.00 74.00 53.80 14.09 0.51 1.01 0.70 0.19 2.00 5.00 3.43 0.90 2.00 4.83 3.50 0.86 

va
lu

e@
G

R
L All 38.41 83.07 55.86 10.97 27.00 68.00 48.20 11.79 0.58 2.64 1.25 0.48 3.00 5.00 4.33 0.61 2.50 5.00 3.96 0.74 

O1 49.18 83.07 60.97 11.31 28.00 62.00 45.80 10.28 0.80 2.64 1.42 0.53 3.67 5.00 4.57 0.47 3.17 5.00 4.33 0.56 

O2 38.41 64.68 50.74 8.26 27.00 68.00 50.60 13.23 0.58 1.58 1.09 0.37 3.00 5.00 4.10 0.67 2.50 4.50 3.58 0.72 

U
PV

2 

i*
 

All 25.76 74.96 42.96 11.38 32.00 75.00 51.56 9.91 0.37 1.49 0.87 0.29 2.00 5.00 3.55 0.80 2.17 5.00 3.53 0.60 
O1 29.14 74.96 47.67 11.24 32.00 75.00 51.88 11.37 0.58 1.49 0.96 0.30 2.67 4.67 3.69 0.58 2.17 4.17 3.39 0.49 
O2 25.76 58.64 38.26 9.69 36.00 70.00 51.25 8.57 0.37 1.33 0.77 0.26 2.00 5.00 3.42 0.97 2.17 5.00 3.67 0.68 
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lu

e@
G

R
L All 37.01 75.52 54.50 10.46 31.00 92.00 63.47 14.67 0.52 1.64 0.90 0.26 2.00 5.00 3.93 0.74 2.17 5.00 3.90 0.63 

O1 37.01 75.52 53.10 11.23 31.00 82.00 61.06 15.65 0.52 1.59 0.92 0.27 2.00 5.00 3.98 0.78 2.17 5.00 3.80 0.72 

O2 41.62 72.90 55.90 9.78 40.00 92.00 65.88 13.69 0.58 1.64 0.89 0.27 2.33 4.67 3.88 0.71 3.00 5.00 3.99 0.54 

U
N

A
 

i*
 

All 21.59 52.96 33.51 10.59 52.00 123.00 97.40 19.88 0.18 1.02 0.38 0.24 2.00 5.00 3.73 1.02 2.67 5.00 3.45 0.63 
O1 22.73 52.96 39.62 12.16 52.00 100.00 84.80 20.63 0.23 1.02 0.52 0.30 3.33 5.00 4.20 0.61 2.67 3.67 3.23 0.43 
O2 21.59 30.22 27.41 3.39 101.00 123.00 110.00 8.15 0.18 0.29 0.25 0.05 2.00 5.00 3.27 1.19 3.17 5.00 3.67 0.77 

va
lu

e@
G

R
L All 32.61 59.34 46.39 9.29 34.00 60.00 49.20 7.64 0.57 1.57 0.98 0.30 3.00 5.00 3.97 0.58 3.33 4.83 4.25 0.52 

O1 32.61 59.34 46.29 12.47 47.00 60.00 52.60 5.32 0.57 1.22 0.90 0.29 3.67 5.00 4.13 0.56 3.33 4.50 4.03 0.52 

O2 39.47 53.47 46.49 6.20 34.00 56.00 45.80 8.61 0.70 1.57 1.06 0.32 3.00 4.33 3.80 0.61 3.67 4.83 4.47 0.46 

U
PV

3 

i*
 

All 17.53 82.10 36.08 12.02 15.00 72.00 50.13 13.36 0.37 3.35 0.81 0.55 1.33 4.33 3.22 0.79 2.50 4.83 3.33 0.52 
O1 20.49 52.36 35.55 9.20 15.00 72.00 46.93 12.53 0.37 3.35 0.89 0.71 1.67 4.00 3.33 0.71 2.50 4.83 3.41 0.62 
O2 17.53 82.10 36.61 14.63 23.00 70.00 53.33 13.82 0.45 1.68 0.72 0.32 1.33 4.33 3.11 0.87 2.50 4.00 3.26 0.41 

va
lu

e@
G

R
L All 20.79 93.72 47.71 17.90 37.00 89.00 58.47 12.50 0.34 1.87 0.85 0.37 1.67 5.00 3.39 0.82 2.33 4.33 3.32 0.57 

O1 25.67 93.72 54.90 21.04 41.00 75.00 56.73 9.22 0.50 1.87 0.98 0.40 2.00 5.00 3.40 0.91 2.33 4.17 3.28 0.58 

O2 20.79 58.41 40.52 10.50 37.00 89.00 60.20 15.24 0.34 1.33 0.72 0.29 1.67 4.67 3.38 0.75 2.50 4.33 3.36 0.59 

O1 = Green Route; O2 = Lattes Scholar 

 


