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Abstract

Context: Over the last few years, there has been an increasing interest in the convergence
of cloud computing and the Internet of Things (IoT). Although software systems in this
domain have attracted researchers to develop a large body of knowledge on software archi-
tecture designs, there is no systematic analysis of this knowledge.

Objective: This study aims to identify and synthesise state-of-the-art architectural elements
including the design patterns, styles, views, quality attributes, and evaluation methodologies
in the convergence of cloud computing and [oT.

Method: We used systematic literature review (SLR) methodology for a detailed analysis
of 82 primary studies of a total of 1,618 studies.

Results: We extracted six architectural design patterns in this domain; among them, edge
connectivity patterns stand out as the most popular choice. The service-oriented architecture
is the most frequently applied style in this context. Among all applicable quality attributes,
scalability, timeliness, and security were the most investigated quality attributes. In addition,
we included nine cross analyses to address the relationship between architectural patterns,
styles, views, and evaluation methodologies with respect to different quality attributes and
application areas.

Conclusions: Our findings indicate that research on software architectures in this domain is
increasing. Although few studies were found in which industrial evaluations were presented,
industry requires more scientific and empirically validated design frameworks to guide soft-
ware engineering in this domain. This work provides an overview of the field while identifying
areas for future research.

Keywords: software architecture; complex systems; Internet of Things (IoT); cloud
computing; fog computing; edge computing

1. Introduction

The Internet of Things (IoT) allows a wide range of objects to interact with each other
via wireless communication technologies, thus enabling smart processes and advanced ser-

*Corresponding author
Email address: ahmad.banijamali@oulu.fi (Ahmad Banijamali)

Preprint submitted to Information and Software Technology January 27, 2020



vices [1, 2|. Pervasive service provision in IoT requires large-scale computing power and the
availability of resources [3], which can be provided by other technologies, such as cloud com-
puting. In recent years, researchers have increasingly focused on the convergence of cloud
computing and IoT to enable the remote management of IoT devices, anytime and anywhere
(2, 4, 5].

Figure 1 describes the concept of the convergence of cloud computing and IoT (hereafter
called CoT in this paper) and its underlying technologies. CoT leverages advanced services
by connecting heterogeneous devices that use communication technologies through conve-
nient and on-demand access to shared and configurable computing resources in the cloud
[6]. Within this context, IoT devices interact with remote cloud systems that are in charge
of collecting, processing, and making uniform data [7, 8]. The cloud acts as the front end to
access IoT devices to create complex processing for the IoT applications [2].

In addition, recent IoT application areas enable nearly real-time services, such as over-
the-air (OTA) updates and location awareness via low latency communications [9]. Therefore,
it is necessary to bring data processing from the cloud to the edge of the network and closer
to the devices through distributed tiny clouds in what is known as fog computing [10], which
enables new applications and services by the mass adoption of ToT [11].
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Figure 1: Cloud-IoT convergence (CoT)

Designing software architectures in the context of CoT includes challenges that stem
from emerging IoT and cloud technologies, distributed characteristics of CoT, and the ever-
growing demand for quality requirements, such as scalability, timeliness, and security [6, 12,
13]. By addressing these challenges, software architecture design has become an essential
discipline in this context. Architectures are used to create a comprehensive understanding
of the system and guarantee adequate levels of quality [14].

A large body of knowledge of software architectures has been developed in recent years
in several published studies that investigate how architectures can address the quality of
software systems in CoT. However, no previous study has provided a systematic overview
and analysis of the existing architectures of CoT.

This study aims to fill this gap and provide a comprehensive review of the body of existing
literature regarding software architectures in CoT. More specifically, the study identifies and
analyses previous publications on software architectures of CoT —including design patterns,
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styles, views, quality attributes, and evaluation methods— by collecting and synthesising
scientific contributions in a systematic manner. The objectives of this study are summarised
below:

e To analyse the intensity and characteristics of research pertaining to software archi-
tectures of CoT, including bibliographic data, research type, contribution type, and
study quality;

e To evaluate software architecture designs in CoT in scientific literature in order to:

o identify architectural design patterns, styles, and views in this domain;

o analyse the quality attributes addressed in CoT software architectures and their
relation with other architectural elements;

o review architectural evaluation methodologies in this domain;

e To summarise existing CoT models that have been discussed in the software architec-
ture literature.

This study provides researchers with a structured review of state-of-the-art software ar-
chitectures in the context of CoT. Specifically, the research aims to identify and analyse
primary studies, along with their applied research types and contribution types as well as
highlight research gaps in the CoT software architectures. The research findings will also
enable practitioners to restructure their design perceptions related to various CoT architec-
tural design elements, such as design patterns, styles, and views. The study strives to review
these architectural elements along with different quality attributes and application areas.

The remainder of this paper is organised as follows. Section 2 presents the background
and related work on the IoT, cloud computing, and their convergence. Section 3 elaborates
on the research methodology used in the research, including research objective and questions,
systematic literature review steps in this study, a pilot study, and threats to validity of the
results. Section 4 describes the findings from our literature review and nine cross analyses to
address the relationship between architectural elements, quality attributes, and application
areas. Section 5 describes further discussion of the results and recommendations for future
study. Finally, Section 6 concludes the results of the study.

2. Background and related work

This section first provides a brief overview of IoT, cloud computing, and the main mo-
tivations to converge these two technologies. Then, it presents a brief overview of relevant
literature reviews and surveys in this domain.

2.1. Related research and contribution to CoT

The ToT has impacted numerous aspects of our everyday life and behaviour [1]. It is
now a significant part of different domain applications, such as home automation, industrial
automation, health care, intelligent energy management and smart grids, and automotive
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to seamlessly incorporate a large number of heterogeneous smart devices and provide open
access to data for the development of innovative services [15]. The IoT has enabled self-
configuring capabilities in devices based on recent communication protocols in which physical
and virtual devices are seamlessly integrated into information networks [16].

The design of the IoT has evolved due to the convergence of emerging technologies,
real-time analytics, commodity sensors, and embedded systems [17]. In order to address the
design and architectural principles for smart objects in the IoT, previous research [18] iden-
tified a hierarchy of architectures and described three types of activity-aware, policy-aware,
and process-aware devices to demonstrate how the respective architectural abstractions sup-
port increasingly complex applications [18]. Another study applied the concept of IoT devices
to integrate sensors, actuators, and software agents related to the IoT information service
to present a software architecture that leads to the future of the IoT [19].

Despite the benefits of the IoT, it has several technological and research challenges,
such as lack of storage and computation power [20], scalability of distributed systems [21],
security, and accessibility [1]. As a solution to these issues, industries and researchers have
merged the IoT with the virtually unlimited capabilities and resources of the cloud [22].
Cloud computing creates the possibility of ubiquitous and on-demand network access to a
shared pool of configurable computing resources [2] that can be rapidly provisioned with
minimal management effort [23].

Recent years have seen growing efforts to provide a bridge between the cloud and the IoT
[22]. Using the CoT enables the accessing of anything —anywhere and at anytime — without
concerns about storage capacities, operational performance, processing capacity, or resources
[3]. The CoT indicates a new type of distributed system consisting of a set of smart devices
interconnected with a remote cloud infrastructure or software through the Internet [7]. The
technology deploys IoT applications in dynamic environments using sufficient computational
resources [12]. Fu et al. [12] indicated that cloud computing can help to conduct a system-
level comprehensive analysis of IoT spatial-temporal data collection from different locations.

As an important part of software systems, architectures create the fundamentals for a
mutual understanding of systems in which relevant decisions have a significant impact on
system qualities [14]. They provide reusable abstractions of those systems that are transfer-
able to other systems with similar requirements [24]. In this regard, many European Union
projects have been defined to make advances in the architectures of CoT and its under-
lying technologies that can be tailored for different application areas. For example, loT-A
(“Internet of Things - Architecture”)! developed an architectural reference model together
with the definition of an initial set of key building blocks for the IoT. [oT-A has combined
top-down reasoning about architectural principles and designed guidelines with simulation
and prototyping in exploring the technical consequences of architectural design decisions. As
another example, Cloud for Europe (C4E)? carried out a gap analysis to create a clear view
of the public sector requirements and usage scenarios for cloud computing. C4E provided a
list of obstacles for cloud computing and the services that can improve them. ClouT(“Cloud

https://cordis.europa.eu/project/rcn/95713_en.html
2https://cordis.europa.eu/project/rcn/109302_en.html
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of Things for empowering the citizen clout in smart cities”)? created a reference architecture
to leverage the cloud as an enabler to bridge the [oT with services to make cities smarter and
to help them face emerging challenges, such as efficient energy management and economic
growth and development.

2.2. Related work

This section provides a brief overview of previous literature reviews and surveys on the
software architectures of CoT and its underlying technologies. It gives readers an overview of
the results and research approaches to software architectures described in previous secondary
studies relevant to this domain.

As a literature review in the domain of IoT, Madakam et al. [25] have investigated IoT
architectures and enabling technologies for daily life. According to the authors, seamless IoT
architectures generally comprise hardware (e.g., sensors and actuators), middleware (e.g.,
storage and data analytic tools), and presentations (e.g., visualisation and interpretation
tools) [25]. Another study [26] surveyed major enabling technologies and applications of
[oT and extracted the relevant architecture, including four layers of sensing, networking,
services, and interfaces. The authors explained that IoT requires enabling technologies for
identification and tracking, communication, networks, and service management [26].

Whitmore et al. [27] conducted a survey and reported on the current state of research
on the IoT. They classified scientific literature into the following six categories: technol-
ogy (e.g., software, hardware, and architecture), application area (e.g., health and trans-
portation), challenges (e.g., security and privacy), business models, future directions, and
overviews/surveys. Their findings can be applied to identify and classify challenges that
threaten IoT diffusion [27].

In terms of secondary studies on cloud computing architectures, one study [28] synthe-
sised the previous literature on cloud computing from a business perspective and noted a
growing consensus about cloud computing characteristics and design principles. Rimal et
al. [29], who developed a taxonomy to describe cloud computing architectures, used the
taxonomy to investigate several existing cloud platforms. In another study [30], the authors
conducted a survey on mobile cloud computing and provided an overview of the technol-
ogy’s definitions, architectures, and applications. Jamshidi et al. [31] concluded that several
research gaps still exist regarding reliable frameworks for migration to cloud platforms [31].

Finally, Cavalcante et al. [32] conducted a mapping study on the interplay of IoT and
cloud computing. They identified relevant strategies to form a bridge between the IoT and
the cloud, and they provided a brief overview of architectural models in the CoT context. As
an interesting result, they noted that architecture is the main research topic in the context

of CoT [32].

3. Research methodology

A systematic literature review (SLR) was conducted to identify and analyse the primary
studies on software architectures of the convergence of cloud computing and IoT (CoT).

3https://cordis.europa.eu/project/rcn/109108_en.html
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An SLR is defined as a secondary study that applies a well-defined approach to determine,
assess and interpret scientific evidence related to a specific research question or topic area in a
way that is unbiased and repeatable [33]. This study has adopted the guidelines proposed by
Kitchenham and Charters [33]. Additionally, the guidelines by Petersen et al. [34] were taken
into consideration, particularly during the study classification process and the identification
of the research area. Figure 2 presents the research steps that were adopted from Kitchenham
and Charters [33] and customised for this study. For example, this research has conducted an
additional pilot study (comparable to Kitchenham and Charters [33]) to investigate possible
search strings.

di ~
Step 1 - Justification of the need for [ |
SLR and definition of research goals : ;
| Reviewscope 1 O
. E
Step 2 - Pilot study ¢ 2
L y <
N v &
Step 3 - Protocols development and ! . !
; o I Review protocol
research questions definition ! )
T (TTTTTTT T )
Step 4 - Identification of research : Retrieved :
(conducting search) | publication )
’:::::::::::‘
1 ]
Step 5 - Study selection 1 .Selecmd !
| primary study 1
N _o__ !
TT T T T T T T T T 3
. ion - pri | (G)
Step 6 - Data extractlo.n primary { smimobheare ) =
study properties 1 1
A ! (&
e e T e o
[ } ©
¢ ion - pri | =
Step 7 - Data e.xtractlon primary e e S
study quality assessment 4 | ©
e -
Step 8 - Data extraction - inductive { 1
coding : Classification :
: scheme - :
Step 9 - Data analysis and synthesis | ! RQ2 &3 :
(deductive coding based on themes) L] '
__________ 7
ic ___________ \
1
Step 10 - Reporting the review : Publication :
R e ’
DOCUMENTING

Figure 2: Systematic literature review steps

3.1. Objective and research questions

We adopted the Goal-Question-Metric (GQM) approach [35] to systematically define
the research objective in this study. A GQM goal is a measurement goal that is formalised
according to certain dimensions [36], which are presented in Table 1.
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Table 1: Research Objective

software architecture designs

characterisation

research intensity and characteristics, architectural design rep-
resentation elements, quality attributes, evaluation methodolo-
gies, and models

the researcher

the convergence of cloud computing and the IoT

Analyse
For the purpose of
With respect to

From the viewpoint of
In the context of

The consolidated objective of this research is defined in the following manner: “Analysing
the software architecture designs for the purpose of characterisation with respect to
research intensity and characteristics, architectural design representation elements, quality
attributes, evaluation methodologies, and models from the viewpoint of researchers in
the context of the convergence of cloud computing and the Internet of Things”. This

objective was translated into three research questions and their rationales, as presented in
Table 2.

Table 2: Research Questions

ID Question Rationale
RQ1 What are the intensity and char- Identifying and structuring primary
acteristics of research pertaining studies in terms of bibliographic data,
to software architectures in the research type, contribution type, and
context of CoT? study quality
RQ2 What software architectures Identifying, evaluating, and synthe-
have been investigated most in sising software architectural elements,
the context of CoT? such as patterns, styles, views, and
evaluation methods, considering vari-
ous quality attributes and CoT appli-
cation areas
RQ3 What CoT models have been To identify the existing CoT models in

provided in software architec- the software architecture literature.

ture literature?

With RQ1, we aim to obtain insight into the characteristics of and intensity of research
in software architectures of CoT. Our analysis includes bibliographic data, research type,
contribution type, and study quality (see Appendix B for more information on the classi-
fications). RQ2 addresses the need for a complete analysis of software architecture designs
in terms of design patterns, styles, views, application patterns, and evaluation methods
that were mostly applied in relation to different quality attributes and application areas in
the context of CoT. The last research question summarises existing CoT models that were
discussed in software architecture literature.



3.2. Search strategy

An important step in a systematic literature review is the identification of relevant studies
that can answer the research questions [37]. In order to develop and evaluate the search strat-
egy, different approaches are available in the literature [38]. In this study, we have adopted
and followed an iterative approach that allowed for the analysis and gradual improvement
of the search string.

Several iterations of the pilot study were conducted in various bibliographic databases (in
January and February 2018) to find the optimum search strategy that would minimise the
noise and appropriately retrieve relevant studies. The pilot study started with the following
search string: (“Internet of Things” OR IoT OR M2M OR “Machine to Machine” OR
“Machine-to-Machine” OR WoT OR “web of things”) AND (Cloud OR Fog OR Edge) AND
architecture. To address topics related to this research, the string comprises a combination
of various synonyms of the three main elements of the topic with the logical operator of
“AND”.

Using this search string led to a set of 4,310 articles from various bibliographic databases.
Our initial hypothesis was that the noise ratio must have been high because of the use of
broad separate terms in the search string. Obviously, many articles use these keywords but
do not fall within the scope of the present study. To evaluate this hypothesis in an objective
manner, an extra search with a similar search string was conducted in Google Scholar.
We then analysed the top 100 results to evaluate the effectiveness of the search string. To
reduce bias, two authors reviewed the set of 100 papers separately and recorded their votes
regarding the relevancy of the papers.

Fleiss’ kappa [39] was used to evaluate the consistency of the selection process through
an inter-rater agreement calculation. In addition, a publication from Landis and Koch [40]
was applied to describe the relative strength of agreement of the kappa statistics, where a
kappa value of less than 0 indicates no agreement, 0 to 0.20 is slight agreement, 0.21 to 0.40
indicates fair agreement, 0.41 to 0.60 shows moderate agreement, 0.61 to 0.80 indicates sub-
stantial agreement, and finally 0.81 to 1 is in almost perfect agreement. After we followed the
above-mentioned approach, the inter-rater agreement showed substantial agreement (Fleiss’
kappa K = 0.78) for determining the publications’ relevancy to the research topic. The au-
thors further discussed any differences in evaluation during a joint meeting to clarify these
disagreements.

The final pool of the pilot study comprised 54 studies (54%) that were relevant to the
scope of this study, to be investigated thoroughly afterwards. We realised that all relevant
studies used software at least in the article title, abstract, or keywords and had been pub-
lished since 2010. A previous study [22] also reported that the combination of IoT and cloud
was included in research titles after 2010.

In the next step of the pilot study, we extracted all keywords from the set of 54 relevant
studies to identify and analyse the keywords used by researchers in this field. Figure 3 shows
the results of the keyword analysis based on the frequency with which they appeared in the
set of 54 relevant studies.



Keyword Freq. Keyword Freq. Keyword Freq. Keyword Freq. Keyword Freq. Keyword Freq.
Internet of Things/loT 48 Cluster 2 |Citizen science 1 Intelligent perception 1 Performance 1 System and software infrastructure 1
Cloud computing/Cloud 34 Computer centres 2 |Cloud Cover 1 Intelligent transportation systems 1 Pervasive computing 1 |Telecommunication network routing 1
CoT/Cloud of Things 7 Manufacturing cloud 2 Cloud-assisted system 1 Internet of services (I0S) 1 Public awareness 1 Telemedicine 1
Fog Computing 7 Orchestration 2 Cloud-sensor architecture 1 JSON 1 Raspberry Pi 1 Topology 1
Architecture/software architecture 5 Platform/platform design 2 | Collaboration 1 Low power 1 Representational state transfer ~ 1 User scenarios 1
Cloud manufacturing 5 Semantic (interoperability, technologies) 2 | Computer netwark security 1 Manufacturing resource 1 Resilient cloud 1 WAMP 1
Edge Cloud/Fdge computing 5 Ubiquitous computing/Ubiquitous sensing 2 1C ised i ion 1 ing service 1 RESTful Web services 1 |Wearable Sensors 1
Healthcare (applications, industrial loT) 5 Web of Things/WoT 2 |Computing-oriented manufacturing 1 Manufacturing system 1 RFID 1 'WebSocket 1
Virtualisation/Virtual Functions 5 Web services 2 | Concept 1 MapReduce 1 SAaaS 1 Vehicle maintenance services 1
M2Mm 4 6LowPAN 1 Connected Objects 1 Micro Data Center 1 scalability 1 Vehicular cyber-physical systems 1
Sensor (networks, sensor-centric applications) 4 Access 1 iContext-awareness 1 Middleware 1 SDN 1 Vehicular networks 1
Service-oriented architecture/SOA 4 Advanced manufacturing systems 1 Cooperating Smart Objects 1 Mobile 1 Service delivery 1 'Wind Farm 1
wireless sensor networks 4 Agent-oriented Computing 1 |Decision-making 1 Modelling and Simulation 1 service-oriented manufacturing 1 iZighee 1
CoAP 3 Agricultural Information Cloud 1 Distributed cloud 1 Multi-cloud 1 Signal watermarking 1
Container 3 Ambient Aiding Living 1 'ECG monitoring 1 Next generation networking 1 Single-board Computer 1
Gateways/Smart gateway 3 Arduino 1 iE-health 1 OMALwM2M 1 Smart Agriculture 1
Mobile cloud/Mobile computing 3 Automobile service 1 |Event-based architecture 1 OneM2M 1 Smart Grid 1
Open source 3 Bigdata 1 |Federation 1 OpenStack 1 Smart home 1
Paas 3 Biomedical communication 1 'Framework 1 Patient Monitoring 1 Smart objects 1
Resource (allocation, description, management 3 Bluetooth 1 iFutureGrid 1 Peer-to-peer computing 1 Software Define Networking 1

Figure 3: Keywords analysis

This study hence modified and complemented the search string using additional criteria
and terms that were found both in the pilot study and in previous SLRs. This new search led
to a division of the search string into two combinations of terms, as presented in Table 3. The
total number of studies retrieved using these new search strings was 1,618. In comparison to
the pilot search string, the revised search string had less noise (the proportion of irrelevant
studies to all retrieved records) and a higher accuracy rate (the proportion of relevant studies
to all retrieved records).

Table 3: Search Keyword

Search string
Search string A: ((“Internet of things” OR IoT OR M2M OR “Machine to Ma-
chine” OR “Machine-to-Machine’” OR WOT OR “Web of Things”) AND (Cloud OR
“Fog computing” OR Edge)) AND architecture AND software

Search string B: (“Cloud of Things” OR CoT OR “Cloud manufacturing” OR
“Manufacturing Cloud”) AND architecture AND software

An automatic search method was used to retrieve the relevant studies in a number of
selected bibliographic databases as shown in Table 4. The selected databases include ACM
Digital Library, IEEE Xplore, Scopus, ISI Web of Science and Science Direct. According
to Dyba et al. [41] and Kitchenham and Brereton [42], IEEE Xplore and ACM as well
as two indexing databases will return the most relevant publications. Five aforementioned
databases were selected considering wide coverage of the software engineering literature. In
addition, this study reviewed all papers from other venues that were found highly relevant
to the field (i.e., “Future Internet of Things and Cloud (FiCloud)”, “Cloudification of the
Internet of Things (CIoT)”) to reduce the risk of missing relevant papers.



Table 4: Selected databases and number of retrieved papers (search date: 23.03.2018)

Database Filter Papers
ACM Digital Library ~ None 125
Scopus Limited to Title/Abstract/Keyword 553
IEEE Xplore Metadata 613
IST Web of Science Limited to Topic (TS) 295
Science Direct Limited to Title/Abstract/Keyword 32
Total 1,618

3.3. Screening of relevant papers

The screening process of the papers included establishing the inclusion/exclusion criteria,
defining the study selection process, and describing the snowballing process to minimise the
validity threat of missing relevant primary studies.

3.3.1. Selection criteria

We selected studies to be included in the literature review if they presented a scientific
contribution to the body of software architecture knowledge in the context of CoT. Specif-
ically, we included papers that were scientific and clearly stated the architectures in the
context of the convergence of cloud computing and IoT.

The selection criteria used in this study included both theoretical and empirical studies
[43]. The search results included:

1. studies that addressed the software architectures of CoT at any level of abstraction,
including design patterns, styles, views, scenarios, evaluation methods, quality at-
tributes, etc.

2. studies that identified procedures and techniques for software architecture management
of the CoT.

Accordingly, the following criteria were considered for exclusion:
1. studies that addressed either IoT or cloud computing but not their convergence;
2. studies that addressed topics other than software architectures;
3. articles that were duplicates;

4. non-peer-reviewed studies, including introductions to special issues, calls for papers,
keynote speeches, prefaces, standards, etc.;

5. studies that were not written in English.

As an example, papers that only discussed topics, such as data mining, data analytics, or
machine learning, were excluded.

10



3.3.2. Selection of primary studies

Figure 4 shows the process we followed to screen and select the primary studies. In order
to have an integrated list of studies from different databases, a reference management system
(RefWorks) was used to import all data into one spreadsheet document.

In the beginning stage, the first author evaluated all retrieved studies (1,618) and removed
all duplicate and non-English studies. All non-peer-reviewed studies, such as introductions
to special issues, calls for papers, keynote speeches, prefaces, and standards, were identified
and removed accordingly. A total of 934 primary studies remained at the end of this stage
to be thoroughly reviewed.

ISI Web of
Science
295

Science
Direct
32

ACM Digital
Library

( Total retrieved studies ]

(1618)
Exclusion criteria 3 -5
(on the basis of titles)

"Duplicates + non-English ¥ |

[
: excluded: 559 P T Not peer-reviewed ]
i remaining:1059 1 e » excluded: 125 :
"""""""""" \____remaining: 934____/
( Primary studies (934) ]
___________________ " Exclusion criteria 1 —2
! Title screening L T —
: excluded: 614 DU (" Abstract screening
\ ining: A ' luded: 207 1
\ remaining: 320 ] » excluded: ]
1

__.remaining: 113 ___

]

L Full-text screening 1
1 1
] excluded: 49 ]
. remaining: 64 4

Selected Primary
studies (64)

- Snowballing
] included: 18
1 remaining: 82 F:

A4

Final list of primary
studies (82)

Figure 4: Selection of primary studies

In the second stage, two authors separately analysed the titles of the studies based on the
first two exclusion criteria. Both authors concluded with two lists of included and excluded
papers. Afterwards, in a joint meeting, all differences in the votes were discussed, and any
disagreements were clarified in order to achieve a common understanding of the selection
process. A total of 320 papers were included in the next stage of abstract screening. During
the next stage, two authors separately reviewed the paper abstracts and provided a study
list containing inclusion and exclusion votes. In another joint meeting, the abstracts of
the papers on which two authors had voted differently were thoroughly reviewed, and any
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disagreements were discussed. After this meeting, we decided to include 113 papers to be
reviewed based on the full texts of the papers. The remaining records were then investigated
in the next step in which two authors separately reviewed the full text of the articles and
recorded their decisions. By crosschecking the votes and discussing any disagreements, the
authors agreed that 64 articles addressed the scope and inclusion criteria of this research.

3.3.3. Snowballing

The study selection process was complemented with a backward snowballing process [44,
45]. We then analysed the references of all 64 primary studies yielded by the study selection
process. The review included screening the title, publication venue, and (if necessary) the full
text to extract as much information as possible from the paper under examination. We also
reviewed all recent works from the authors of primary studies whenever they mentioned that
their studies were works in progress; we then included those authors’ future studies when
relevant. Additionally, all references of the new studies found in the snowballing process
were checked to reduce the risk of missing relevant papers. At the end of this stage, the
authors found and included 18 more papers within the final pool. Appendix A shows a list
of the selected primary studies.

3.4. Data extraction

Table 5 represents the properties used during the data extraction process. These proper-
ties were used to answer the research questions. The first column indicates the property ID;
the second one includes a short description of the property; the third column refers to the
cardinality of the relationship between an individual primary study and the data property;
and finally, the last column traces the relationship between an individual data property and
the relevant research question. The next section provides more information about the data
properties.

Table 5: Data properties

ID Title Cardinality RQ

DP1 Publication year 1:1 RQ1
DP2 Publication source 1:1 RQ1
DP3 Research type 1:1 RQ1
DP4 Contribution type 1:* RQ1
DP5 Primary study quality assessment 1:1 RQ1
DP6 Architecture representation elements 1:* RQ2
DP7 Quality attribute 1% RQ2
DP8 Architectures evaluation method 1:1 RQ2
DP9 Application area 1:1 RQ2
DP10 Existing CoT models 1% RQ3

3.4.1. Data properties
In this study, 10 data properties were established in order to answer the research ques-
tions. Five generic data properties (DP1-DP5) were used to answer RQ1. The authors ex-
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tracted study information, such as publication year, publication source, research type, contri-
bution type, and research quality. A deductive coding approach was then followed to answer
RQ2 and RQ3 (DP6-DP10). For this purpose, a qualitative data and research analysis tool
(NVivo) was used to support the coding and data extraction process. We created different
codes and used NVivo to quote sentences directly from the primary study. Appendix B
presents a detailed description of the data properties.

3.4.2. Study quality assessment

Kitchenham et al. [33] proposed that in the quality assessment process in an SLR, it is
necessary to investigate whether differences in study quality could provide an explanation
for differences in the study results, and if this notion can be used as a means of realising the
importance of studies during results synthesis. According to Wohlin et al. [46], there is no
universally agreed-on and applicable definition of study quality, although the most practical
means for quality assessments are checklists. For this purpose, the authors used Kitchenham
et al.’s [33] guidelines to define the quality criteria. In order to increase assessment validity,
each primary study was reviewed by two authors. The primary studies included qualita-
tive studies, and quality assessment (QA) criteria were established based on the following
questions proposed by Kitchenham et al. [33]:

e QAL1. Are the study findings credible?

e QA2. How adequately has the research process been documented?
e QA3. How defensible, scientific, and detailed is the design?

e QA4. How well has the design evaluation been conducted?

We scored each study as Y = 1 (concrete and reliable information), P = 0.5 (partially
available information) and N = 0 or Unknown (no information is specified). The studies
were scored as follows: QA1 investigates the credibility of the findings and to what extent
the findings are important to the domain. QA2 is related to the scientific reporting of the
research process and the results. QA3 evaluates how defensible and scientific the approach
is, and the level of detail of the primary study’s discussion. The last question (QA4) refers
to the evaluation process of the findings.

3.4.3. Data synthesis

We adopted descriptive statistics in this SLR to address RQ1. Quantitative descriptions
of frequencies were used to evaluate the publication year, publication source, research type,
contribution type, and quality of the primary studies. In addition, thematic synthesis, sug-
gested by Cruzes and Dyba [47], was used to answer RQ2 and RQ3. With thematic synthesis,
primary studies are coded to label related concepts and findings and then map them to dif-
ferent code categories by drawing recurrent patterns. For this purpose, NVivo was used for
the inductive coding to investigate specific software architectural elements (such as design
patterns, styles, and views), identify the quality attributes, classify evaluation methods,
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present the application areas, and summarise the existing CoT models. These code cate-
gories were further evaluated and refined to improve reliability and to obtain higher-level
categories through an inductive synthesis approach.

NVivo? is a well-established software package with a large number of embedded features
to support qualitative data analysis. Numerous systematic literature review studies and
guidelines in the software engineering literature (e.g., [48, 49, 50, 51, 52]) reported a posi-
tive experience of using NVivo for the analysis of qualitative data in systematic literature
reviews. All data within NVivo is arranged in the form of nodes and documents. In our case,
documents were the primary studies and nodes were places where we stored code categories
of interest to our study extracted from the primary studies. The selection of NVivo enabled
us to import and code textual data, retrieve, search, and review the coded data. NVivo
is a “method-free” software and the principles employed in structuring code categories are
common among numerous methods involving coding [53]. Qualitative analysis of a large
amount of data, regardless of the tools available, takes a considerable amount of time and
effort. The application of NVivo was useful in shortening the analysis process and making
the qualitative data analysis systematic and computer-based. A previous research [52] noted
that NVivo saves researchers from time-consuming manual coding and boosts the accuracy
and speed of the analysis process. In addition, performing an electronic search may yield
more reliable results, as human error is reduced.

3.5. Threats to validity

Several potential threats to the validity of this research were carefully considered as we
interpreted the findings. This section elaborates on the strategies we used to minimise the
effects of those threats.

One important potential threat to the validity of the research results is related to biases
for the identification and selection of the primary studies, as well as the data extraction.
Zhang et al. [37] explained that the identification of as many relevant primary studies as
possible within the scope of the research is a critical task in an SLR. In practice, however,
this could be very challenging, particularly in reviews of broad and trending topics, such as
[oT or cloud computing. In addition, the convergence of cloud computing and IoT is a recent
approach that requires more maturity in its domain-specific terminologies. To mitigate this
threat and to reduce the risk of missing relevant studies, the authors followed an iterative
approach using Google Scholar as well as five bibliographic databases (see section 3.2);
we employed a systematic search strategy to identify as many relevant primary studies
as possible. We carefully adopted guidelines and search strategies that have been widely
evaluated and accepted within academic publications. On the basis of the experimental
search and pilot study, an appropriate search strategy was designed that was then used to
retrieve a reliable number of relevant studies.

Previous studies [38, 54] have acknowledged that it is not always possible to identify and
synthesise all relevant studies. But because the aim of SLRs is to find all relevant research
on the area of interest, a good sample of the relevant research articles will likely be obtained

4https://www.qsrinternational.com/
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during the course of an SLR [54]. The objective of the research strategy was to identify
as many relevant primary studies as possible while minimising the amount of noise in the
selection process. We thus constructed the search string based on the research questions
and the relevant literature reviews and mapping studies that have been conducted in this
domain. The authors included all peer-reviewed publications that were published from 2010
to 23.03.2018 in order to capture more relevant studies in the research area. Backward snow-
balling was implemented to reduce the risk of missing any relevant publications. Although
the aforementioned activities improved the reliability of the results, the authors are not able
to rule out the possibility that relevant studies were missed.

The selection of primary studies that are within the scope of the study is a critical task
for the validity of the literature review [33]. We tried to mitigate this threat by creating
a research protocol between the authors and by carrying out a pilot study to construct
a common understanding of the topic and the search criteria. The authors held several
meetings to discuss the selection process before we started in order to reduce the authors’
bias, subjective evaluation, or misjudgment of the study under evaluation. In addition, in
order to minimise the subjectivity of the selection, each step in the selection process was
conducted by two authors. All conflicts and disagreements in two decisions were discussed
and resolved afterwards in joint meetings.

Publication bias arises from the problem that positive research outcomes are more likely
to be published than negative ones [55]. This usually happen when SLRs compare specific
methods or techniques [33]. The effect of this threat in this study should be trivial, as no
comparisons were made between methodologies, models, or tools.

Another potential threat to the validity of the research results is related to the re-
searchers’ bias in the extraction and interpretation of the data in the primary studies. To
minimise the effect of this threat, a data extraction form was created in Microsoft Excel
with a detailed description of each data property used in this research. In addition, manual
qualitative data analysis is often a demanding and time-consuming process. In a large pool
of 82 primary studies, there is a little chance to precisely find, code, re-code, and query a
part of texts. NVivo boosted the accuracy and speed of the data extraction and analysis
process using a computer-based tool.

Finally, the reliability of the research results requires careful consideration regarding the
repeatability of the research process and results [56]. We precisely defined and documented
the review protocol, including the steps we implemented, the search string we adopted, the
bibliographic databases we used, and the data properties we examined.

4. Findings

From the initial set of 1,618 studies, this SLR selected 82 papers due to their contri-
butions to the topic. This section summarises the findings and results of analysis of the
primary studies. Section 4.1 presents a descriptive overview of the studies and analysis of
the publications years, research types, contribution types, and study quality assessments in
the domain of software architectures of CoT (RQ1). Section 4.2 elaborates on the findings
regarding CoT software architectural elements, evaluation methodologies, quality attributes,
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and application areas (RQ2). Section 4.3 presents a list of the existing CoT models in the
software architecture literature (RQ3).

4.1. RQ1. What are the intensity and characteristics of research pertaining to software ar-
chitectures in the context of CoT?

This literature review study contains primary studies published until 23.03.2018. The
concepts of cloud computing and IoT became popular more than a decade ago. The first
combination of these two concepts in research titles appeared in 2010 [22].

Since that time, a growing trend has become visible in the number of publications in this
area, as illustrated in Figure 5. This rise is perhaps caused by the increasing technological
impact of IoT and cloud computing, as well as the complementary aspects of these two
technologies. Emerging new technologies, such as edge and fog computing, have also helped
this topic to become discussed in different application areas, such as cyber-physical systems.
This study includes only one paper from 2018, as only a few weeks of 2018 were included in
the study.
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Figure 5: Number of publications per year

For publication sources, most of the primary studies presented in Figure 6 are conference
publications (60, or 73%), followed by journal articles (18, or 22%) and workshop proceedings
(4, or 5%). For publication venues, the results included a wide variety of conferences and
journals, although the “Future Internet of Things and Cloud” conference showed the highest
number of contributions on the topic.
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Workshop Proceeding . 4
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Figure 6: Publication source
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We used Wieringa et al.’s [57] classification methodology to analyse the type of primary
studies; we then classified them into solution proposals, validation papers, evaluation pa-
pers, and experience reports (Figure 7). The findings indicate that the highest number of
publications proposed a solution (42, or 51%), followed by validation papers (36, or 44%),
evaluation papers (2, or 2.5%), and experience reports (2, or 2.5%). These results indicate a
need for more empirical evaluations to increase the validity and applicability of the various
software architectures.

Evaluation, 2.5 % ~ Experience reports; 2.5 %

\‘

Figure 7: Research type

Based on the contribution classifications of Shaw [58] and Paternoster et al. [59], this
study classified the contribution type of the primary studies into model, framework/method/
technique, and advice/implications. As Figure 8 indicates, most of the studies (71, or 79%)
proposed a model for the CoT architectures. The framework/method/technique category is
second (18, or 20%), followed by advice/implications in third place (1, or 1%). This large
number of models was expected, as architectures are usually demonstrated in the form of
models. These findings suggest a need for tools and guidelines that can be applied when
designing software architectures in this domain.

Advicefimplications, 1%

Figure 8: Contribution type
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The authors evaluated the quality of the primary studies according to the quality assess-
ment criteria defined in section 3.4.2. Table 6 presents the scores for each primary study.
The total score for each study was summed up from individual scores in four questions. The
quality assessment showed that all primary studies scored 2 or higher, which was above the
average score. Three studies scored 4, eleven studies scored 3.5, and the rest scored between
2 and 3.

Table 6: Quality assessment of the primary studies

Study QA1 QA2 QA3 QA4 Total Study QA1 QA2 QA3 QA4 Total
score score

12l Y Y P P 3 P42 Y Y P N 2.5
122 Y P P P 2.5 P43 Y Y P P 3
P3 Y P P P 2.5 P44 Y Y Y P 3.5
P4 Y P P P 2.5 P45 Y P P P 2.5
P5 Y P P N 2 P46 Y Y P P 3
P6 Y Y P P 3 P47 Y Y Y N 3
P7 Y Y P N 2.5 P48 Y Y P N 2.5
P8 Y Y Y Y 4 P49 Y P P N 2
P9 Y P P P 2.5 P50 Y Y Y P 3.5
P10 Y P Y N 2.5 P51 Y Y Y P 3.5
P11 Y Y Y Y 4 P52 Y P P N 2
P12 Y Y Y Y 4 P53 Y Y Y P 3.5
P13 Y Y Y N 3 P54 Y Y P N 2.5
P14 Y Y P N 2.5 P55 Y P P N 2
P15 Y P P N 2 P56 Y Y P N 2.5
P16 Y Y Y P 3.5 P57 Y Y P P 3
P17 Y P P P 2.5 P58 Y Y P P 3
P18 Y Y Y P 3.5 P59 Y P P N 2
P19 Y P P N 2 P60 Y P P N 2
P20 Y P Y N 2.5 P61 Y Y P N 2.5
P21 Y P P N 2 P62 Y P P N 2
P22 Y Y Y P 3.5 P63 Y P P N 2
P23 Y P P P 2.5 P64 Y Y P P 3
P24 Y P P P 2.5 P65 Y P P N 2
P25 Y P P P 2.5 P66 Y Y Y P 3.5
P26 Y Y Y P 3.5 P67 Y Y P N 2.5
P27 Y P P N 2 P68 Y Y Y P 3.5
P28 Y P P N 2 P69 Y Y P P 3
P29 Y P P P 2.5 P70 Y P P N 2
P30 Y Y P P 3 P71 Y P Y N 2.5
P31 Y P Y P 3 P72 Y P P N 2
P32 Y Y Y P 3.5 P73 Y P P N 2
P33 Y P Y N 2.5 P74 Y Y P N 2.5
P34 Y P P N 2 P75 Y P P N 2
P35 Y P P N 2 P76 Y P P N 2
P36 Y P P N 2 P77 Y P P N 2
P37 Y P P N 2 P78 Y Y P N 2.5
P38 Y P P N 2 P79 Y Y P P 3
P39 Y P P N 2 P80 Y Y P P 3
P40 Y Y P N 2.5 P81 Y Y P P 3
P41 Y Y P P 3 P82 Y P P N 2

Table 7 presents the relationship between quality scores and publication years. The table
includes the number of the paper, the mean quality score, and the standard deviation (SD)
of the quality score for each year. No meaningful change in quality scores was noted in this
study, based on the year of publication.

Table 7: Average quality scores for studies by publication date

Year
2010 2011 2012 2013 2014 2015 2016 2017 2018
Number of studies 1 4 D 7 16 20 14 14 1
Mean quality score 3 24 2.3 2.9 2.7 27 24 2.7 3.5
Standard deviation of - 0.61 0.56 0.55 0.60 0.58 0.58 0.61 -

quality score
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4.2. RQ2. What software architectures have been investigated most in the context of CoT?

The quality of a literature review depends on the classification scheme that is adopted
to classify the primary studies [60]. An iterative coding process was used to analyse and
classify various CoT architectures to identify the different categories and then map the
primary studies to them. The authors structured their work through the information that
the primary studies used to describe the software architectures. This information then led
to the creation of different categories according to the following questions:

e What architecture representation elements were used to address CoT?
e What quality attributes were investigated in the CoT architectures?

e What application areas do the CoT architectures address?

e How was the validity of the CoT architectures assessed?

The authors discussed each of these questions in detail and then mapped the primary studies
to the implied categories. Each category has a number of possible values that were used to
design CoT architectures.

4.2.1. CoT architectures analysis

Any architecture design approach may create one or more representations of a system.
This representation could be for example architectural models used as “containers” [61] for
applying architectural design patterns [62], view points [63, 64], or architectural styles to
express a collection of architectural design decisions that are applicable in a given devel-
opment context [62]. This section of the paper presents the architectural designs used in
the primary studies in order to analyse the architectures in terms of their representation
elements, quality attributes, evaluation methodologies, and application areas. Table 8 shows
a structured quantitative view of all values of the subcategories. In order to assign primary
studies to each category in the table, we applied in this SLR whatever the primary studies
had clearly mentioned or whatever the authors could deduce.

An architectural design pattern includes a package of design decisions that is a
reusable solution to a commonly occurring problem describing a class of architectures [14].
Edge connectivity patterns use IoT gateway as an intermediate device to communicate with
sensors and actuators using low-level protocols. These patterns use IP-based protocols to
connect in CoT. Stream processing creates the ability to run business rules on real-time
data streams to enable CoT to make spontaneous decisions, route information, or control
objects in real time. Virtual device representation creates device abstraction that is visible to
cloud applications and propagates silent state synchronisation. Telemetry ingestion involves
offline data processing on the persisted telemetry data: for example, by aggregating the
temperature over a period of the last three months to determine the average temperature
of a furnace. Brokered communication requires a bidirectional asynchronous communication
model using brokers. Device identity and enrollment provides the ability to keep track of all
connected devices and information, such as device identifiers, device certificates, and device
configuration, among others.
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Table 8: Software architectures of CoT: quantitative summary of the results

CoT architectural design pattern Quality attribute
Edge connectivity (EC) 28 | 34% || Portability 21 | 25.3%
Stream processing (SP) 16 | 19.5%|| Performance efficiency 18 | 21.7%
Virtual device representation (VDR) | 9 | 11% | Security 12 | 14.5%
Telemetry ingestion (TT) 8 | 10% || Reliability 9 |10.8%
Brokered communication (BC) 6 | 7% Maintainability 7 | 84%
Device identity & enrollment (DI) 3 | 3.5% || Context coverage 6 | 7.2%
General 12 | 15% || Usability 4 | 4.8%
Architectural views Compatibility 3 | 3.6%
Development (D) 46 | 33% || Functional suitability 3 ]3.6%
Logical (L) 30 | 22% Application area
Scenarios (S) 29 | 21% || Mobility (MO) 12 | 15%
Physical (Ph) 15 | 10.5%]| Smart city (SC) 10 [ 12%
Process (P) 15 | 10.5%|| Health care (HC) 5 | 6%
General 4 3% Smart home (SH) 3 |1 4%
Application patterns for CoT Manufacturing (MFG) 2 | 2%
Distributed IoT apps (DIoT) 31 | 38% || General 50 | 61%
Social IoT (SIoT) 19 | 23% Architectural styles
Cloud-based apps (CBA) 11 | 13% || Service-oriented (SOA) 27 | 33%
Digital twin (DT) 8 | 10% || Multi-layered(ML) 13 | 16%
Asset-based apps (ABA) 4 | 5% Client-server (CS) 10 | 12%
General 9 | 11% || Publish-subscribe (PS) 8 | 10%
Evaluation methodology Agent-based (AB) 6 | 7%
Experiment 16 | 20% || Object request broker (ORB) 2 1 2.5%
Prototype 14 | 17% || Event-driven (ED) 2 | 25%
Mlustrative example 10 | 12% || Pipeline (P&F) 1 | 1%
Simulation 4 15% Plug-in (PI) 1 1%
Case study 2 | 2.5% || Lambda (LBD) 1 | 1%
Hybrid 2 | 2.5% | General 11 | 14%
Not presented 34 | 41%

Architectural views are defined to portray the architectural elements that are relevant
to addressing stakeholder concerns [65]. “44-1 architectural view model” is a common view
model to describe software-intensive systems that use multiple and concurrent views [64], as
follows:

1. the development view presents a system from a programmer’s perspective to describe
system components;

2. the logical view describes the functionality the system provides to end-users;

3. the physical view presents the system-level view and is concerned with the topology of
software components on the physical layer, as well as the physical connections between
these components;
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4. the process view is concerned with the dynamic aspects of the system in order to
present how the different parts communicate in runtime environments;

5. scenarios describe architectures using a set of use cases or scenarios [64].

In order to create customised architectures, a few papers presented a hybrid architec-
tural style (combining more than one styles into one) to represent the architectures of CoT.
In this regard, this study classified the architectures according to the most relevant style
based on what was directly mentioned in the paper or could be deducted by the authors.
Applying service-oriented architectures (SOA), service providers advertise their functional-
ity to a service registry, which service consumers can use to find appropriate services for
their needs [66]. As a common architectural style, client-server is a distributed application
structure that partitions tasks or workloads between the providers of a resource or service,
called servers, and service requesters, called clients. Multi-layered architecture is a type of
client-server in which presentation, application processing, and data management functions
are physically separated. The most common type of this style is three-tier architecture,
containing data, logic, and presentation tiers. Publish-subscribe is a kind of messaging style
where publishers (the senders) do not programme the messages to be sent directly to specific
subscribers (receivers) but instead categorise published messages into classes without having
any knowledge of the subscribers. The agent-based style comprises modular applications to
facilitate injection and distribution through the network using agents. In distributed sys-
tems, an object request broker (ORB) is a type of middleware that enables programme calls
from one computer to another via a network. The event-driven style is a messaging style
that enables production, detection, and reaction to events. Pipeline (or pipes and filters)
consists of a chain of processing elements, arranged such that the output of an element is the
input of the next element. The plug-in style allows new features to be added to an existing
software application through a software component called a plug-in. Lambda architecture
is a data-processing architectural style for handling massive quantities of data by taking
advantage of both batch- and stream-processing methods.

Prior studies and industrial practices, such as [67, 68, 69, 70, 71, 72] have suggested
different application patterns that CoT must support, which makes CoT different from
other types of cloud. Cloud-based apps are the first pattern that is often found in normal
clouds. It is expected that a cloud provides basic support for devices, such as developing
responsive web applications. The connection between this application pattern and IoT is
when devices connect to clouds and perform basic functions, such as access rights and
master data management for users and devices. Asset-based apps are the second category of
patterns that enables the autonomous behaviour of devices by supporting application logic
and data [70]. An example in this category can be autonomous driving vehicles that must
continue to perform all essential functions when they are out of network coverage.

The large amount of data generated from distributed IoT devices cannot be aggregated
and analysed in the core cloud; in particular, real-time data analysis implies that data must
most often be analysed before it is stored [71]. Distributed IoT apps are the third pattern
that enables the integration of an application’s logic and data on both devices and clouds.
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It supports applications that take the capabilities of local devices that work together with
the cloud-based support.

A digital twin serves as a bridge between the physical world and the digital world to
map physical devices to their corresponding virtual twins in the cloud [68]. It consists of
three parts: physical device, virtual model, and the linkage between them [73]. The data
coming from a physical device feeds a virtual model in the cloud. A key advantage in this
pattern is that applications in the cloud can work without connecting and extracting the
data from devices. They are deployed in a secure sandbox in the cloud, which controls data
access for each application to reduce the security risks and development costs [70]. Example
applications include predictive maintenance and remote monitoring and service [67].

The last application pattern in CoT is social IoT. The basic concept of this pattern is a
social network of intelligent connected devices that can cooperate and exchange data among
themselves [72]. Devices not only connect and interact but also socialise and collaborate with
each other to perform specific tasks [74]. The data aggregated from such devices is used by
multiple applications in the cloud and other devices.

In order to extract the quality attributes, the authors adopted the quality characteris-
tics proposed in ISO /TEC 25010:2011 for software product quality [75]. Portability represents
the degree of effectiveness and efficiency with which a system, product, or component can
be transferred from one hardware, software, or other operational or usage environment to
another. Performance efficiency includes characteristics that show the performance relative
to the quantity of resources used under the stated conditions. Security indicates the data
protection degree of a system or product. Reliability shows how products or systems perform
specified functions under specified conditions for a specified period of time. Maintainability
is the degree of effectiveness and efficiency with which a product or system can be modi-
fied to improve that product or system. Context coverage represents the degree to which a
product or system can be used in primary contexts as well as in the contexts beyond those
that were initially explicitly identified. Compatibility represents how a product or system
can exchange information with other products and systems while sharing the same hardware
or software environment. Functional suitability indicates the degree to which a product or
system provides functions that meet implied needs when used under specified conditions.

As an application area, the smart city uses different technologies to increase the quality
of life in urban spaces and to deliver better services to citizens. Smart mobility is a part of
the smart city that refers to the technologies used to improve accessibility both within and
outside the city as well as the availability of modern transportation systems. Smart health
provides health services by using the context-aware network and sensing infrastructure of
smart cities. Smart home creates an environment in which many features in our homes are
automated, and home appliances can communicate with each other. Smart manufacturing
is the pervasive application of networked information-based technologies throughout the
manufacturing and supply chains.

As the main scope of this study, all primary studies addressed the IoT and cloud com-
puting. Thirteen studies [9, 10, 11, 13, 76, 77, 78, 79, 80, 81, 82, 83, 84] addressed “edge
computing”, which shifts processing from data centres to the edge of the network, thus
allowing a large class of applications, such as IoT to be deployed in an effective way with
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lower latency. Of these studies, ten [9, 10, 11, 76, 77, 80, 82, 83, 84, 85] mentioned “fog
computing” to extend cloud computing towards the edge of the network. In addition, ten
primary studies [5, 7, 8, 86, 87, 88, 89, 90, 91, 92| discussed the concept of the “hybrid cloud”
for those services that utilise both private and public clouds.

4.2.2. Architecture representation elements with respect to quality attributes

Table 9 provides a summary of the architecture representations of CoT that were ex-
tracted from the set of primary studies in the literature. In the following, the main results
for each subcategory are summarised.

CoT architectural design pattern vs. quality attributes. This section elaborates
on design patterns with respect to major quality attributes in CoT. Primary studies have
applied edge connectivity and stream processing to present most of the CoT architectures.

The edge connectivity pattern addressed quality attributes, such as portability, security,
and performance efficiency in CoT. In this pattern, the IoT gateways work as interface
adapters to access a device’s data in the cloud [94]. These gateways easily connect low-
performance devices to cloud, thereby enabling dynamic adaptation according to the type
of device [95]. The portable design of gateways makes them adaptable at different CoT's [94].

Further, the edge connectivity patterns improve security issues in CoT. Smart devices
often have limited processing, communication, and memory storage that cannot meet the
demand of traditional security technology [114]. Edge connectivity can improve security
through secured communications (e.g., transport layer security), safeguards (e.g., firewalls),
device authorisation mechanisms, multi-factor authentication (e.g., user, device, and system
level), and access policy enforcement (e.g., permission to topics and queues) [86, 96, 115].

Performance is the third important quality attribute addressed in the edge connectivity
pattern. A study [96] noted that it is often challenging to optimise the performance of an
edge gateway to be used for a large number of [oT devices. Resource allocation models are
a relevant solution for dynamically scheduling and allocating resources to different tasks,
thereby achieving high throughput and low latency [96, 109].

Stream processing, which was second among the CoT architectural design patterns, pri-
marily addressed performance efficiency and portability. Real-time stream processing in a
distributed environment is a new research topic [99]. It exploits parallel processing that runs
on multiple computational units [110]. A study [110] proposed an architecture for real-time
services in vehicle clouds to enable in-vehicle resource scheduling and improve efficiency in
this context. Nevertheless, the real-time data received from IoT devices makes the adaptabil-
ity and replaceability issues more critical [101], particularly if mashup services have timing
constraints for the processing of real-time data [100].

Summary. [oT gateways is a solution for maintaining lower latency and higher security
in CoT.

Architectural style vs. quality attributes. As the first software architectural style in
CoT, service-oriented architectures have been applied with respect to all categories of quality
attributes; from among these attributes, performance efficiency, portability, and security has
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Table 9: Architectural elements and quality attributes
CoT architectural Architectural styles Application patterns Architectural views
design patterns for CoT
EC(7) [80, 93, 94, | SOA(6) [7, 10, 93, 94, | DIoT(11) [7, 9, 10, 94, | D(9) [5, 9, 10, 12, 97,
95, 96, 97, 98], SP(4) | 97, 100], CS(3) [12, 96, | 95, 97, 99, 100, 101, 102, | 98, 100, 102, 105], L(10)
[12, 99, 100, 101], | 102], ML(2) [9, 105], | 103], SIoT(5) [5, 12, 13, | [7, 9, 12, 13, 84, 94, 98,
TI(1) [102], VDR(3) | PS(2) [84, 99], AB(1) | 96, 105], CBA(1) [104], | 100, 103, 105], S(5) [12,
(7, 9, 13], BC(2) | [95], ORB(2) {103, 104], | DT(1) [98], ABA(0), | 93, 97, 101, 105], Ph(4)
(103, 104], DI(1) | ED(0), P&F(0), PI(1) | General(3) [80, 84, 93] [5, 80, 93, 101], P(5) [10,
[10], General(3) | [98], LBD (1) [101], 93, 97, 99, 104], Gen-
[5, 84, 105] General(3) [5, 13, 80] eral(2) [95, 96]
EC(6) [85, 96, 106, | SOA(7) [10, 107, 108, | DIoT(7) [10, 90, 91,101, | D(8) [10, 85, 90, 91,
107, 108, 109], SP(6) | 110, 111, 112, 113], | 108, 109, 110], SIoT(6) | 108, 109, 110, 113], L(2)
(83, 99, 101, 110, 111, | CS(3) [83, 96, 106], | [13, 83, 96, 106, 111, | [13, 85], S(7) [85, 91,
112], TI(0), VDR(2) | ML(1) [91], PS(1) [99], | 112], CBA(2) [104, 113], | 101, 106, 107, 111, 112],
(13, 90], BC(1) [104], | AB(1) [109], ORB(1) | DT(1) [99], ABA(2) | Ph(3) [85, 101, 106],
DI(1) [10], Gen- | [104], ED(0), P&F(0), | [85, 107], General(0) P(7) [10, 99, 104, 107,
eral(2) [91, 113] PI(0), LBD (1) [101], 108, 109, 113], Gen-

General(3) [13, 85, 90]

eral(2) [83, 96]

eral(1) [120]
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EC(7) [2, 86, 91, | SOA(6) [2, 7, 10, | DIoT(6) [2, 7, 10, 91, | D(5) [10, 86, 89, 91,
E 96, 114, 115, 116], | 89, 111, 115], CS(2) | 115, 116], SIoT(4) [86, | 117], L(3) [7, 89, 116],
g SP(1) [111], TI(0), | [96, 116], ML(1) [91], | 96, 111, 114], CBA(1) | S(4) [91, 111, 115, 116],
=S VDR(1) [7], BC(1) | PS(0), AB(1) [117], | [117], DT(0), ABA(1) | Ph(3) [2, 114, 115], P(2)
= [117], DI(2) [10, 89], ORB(0), ED(0), [89], General(0) [2, 10], General(1) [96]
© General(0) P&F(0), PI(0), LBD
= (0), General (2)

[86, 114]

EC(2) [96, 108], | SOA(4) [7, 108, 111, | DIoT(3) [7, 91, 108], | D(3) [91, 108, 118], L(4)
e SP(3) [83, 91, 111], | 118], CS(2) [83, 96], | SIoT(5) [13, 83, 96, 111, | [7, 13, 84, 118], S(2) [91,
5 TI(0), VDR(2) | ML(1) [91], PS(1) | 118], CBA(0), DT(0), | 111], Ph(0), P(1) [108],
g [7, 13], BC(0), DI(0), [84], AB(0), ORB(0), ABA(0), General(1) General(2) [83, 96]
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received the most attention.

The service requests and data in clouds often require real-time processing to control
IoT devices [10]. Parallel data processing is an approach to increase the internal through-
put of requests in a service in order to improve the overall performance [107, 113]. Cloud
platforms support high performance by sharing and coordinating different resources [113].
Multiple processing units minimise the service response time, improve stability of services,
and increase cloud reliability and performance [111]. In addition, dynamic service discovery
enables routing the request to the fastest service at runtime in order to decrease the response
time [112]. Dynamic service migration is another strategy to achieve a fast response time
for processing a request with respect to the platform on which a service is located [113].

Modularity and component-based software engineering in SOA increases the portability
of a system [100]. Modularity was targeted in the microservices architecture (as a variation
of the SOA) that breaks systems down into multiple services [93]. Services are independently
replaceable, upgradeable, and deployable [93]. Containerisation is another practice in SOA
architecture to simplify the packaging, distribution, installation, and execution of complex
applications in cloud and IoT devices [7].

Cloud platforms provide access and redirect requests to the respective applications as
soon as the users are authenticated and authorised [115]. The devices may also need to access
shared databases on the cloud, which requires identity and authentication management [10].
Although our observation did not reflect a direct relationship between SOA and improving
security in CoT, the primary studies [7, 89] mentioned security, privacy, and trust as the
capabilities that must be satisfied by the architectures.

Next, client-server architectures primarily discussed portability and performance effi-
ciency in this domain. Modular architectures in this section were to meet constant changes
in application requirements and to adapt the architectures in other cloud platforms [102].
In addition, one of the main challenges in CoT is the processing, storing, and querying
of big data in an efficient manner; thus, centralised processing is not an efficient solution
[96]. Other approaches, such as creating resource-aware allocation models, were proposed to
dynamically schedule and allocate resources [96].

Summary. Service-oriented architectures are well adapted to improve performance and
portability of CoT architectures.

Application patterns for CoT vs. quality attributes. In the set of primary studies,
it was important that CoT support different categories of applications that were represented
through different design patterns. Among these patterns, a distributed IoT application,
which was the most utilised application pattern, is mainly used to address portability, per-
formance efficiency, and security.

The CoT architectures must rapidly adapt to changes in devices, sensors, and actuators
[99]. A study [102] noted that current CoT designs are domain-specific and cannot be easily
transferred to other domains. In a distributed data setting, scalable applications that can
manage the massive amounts of data generated by the devices are a major challenge [101].
A few primary studies [99, 101] nevertheless have attempted to find solutions for managing
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a large amount of data to assist decision-making in this domain.

Due to the need for increased flexibility and portability in CoT architectures, fog comput-
ing was proposed as a solution to support dynamic data management [9, 10]. Fog computing
technologies have enabled efficient, location aware, and close to the edge cloud applications
that helped to increase real-time performance [108]. The data originating from distributed
devices varies based on different contexts in which the data must be efficiently managed and
utilised by the applications in the cloud [90].

Distributed IoT applications have severe challenges in terms of security, as the data are
distributed between the device and the cloud [91]. Hackers can inject malware if they obtain
access to physical devices or tamper with cloud data [2]. The communication channels among
user, device, and cloud are vulnerable to side-channel information leaks [2]. Prior research
[115] proposed different levels of authentication to address security issues in this area.

Social IoT has received attention in terms of performance efficiency, portability, and
reliability. As an example, a primary study [111] in the mobility domain emphasised a
vehicle’s communication with other vehicles or external environments, which results in a
large amount of data. Innovative solutions are required to effectively process this data [111]
and create efficient services [13]. As a portability feature, users must be able to manage and
reuse their own profiles across various social networks [5]. The reliability in this pattern can
also be improved by sending queries to the closest healthy node or service [111], thereby
obtaining higher reliability in the entire system.

Summary. Distributing data among clouds and applications requires efficient applica-
tions to manage security requirements in different contexts.

Architectural views vs. quality attributes. For the “441 architectural view model”
[64], we observed that the development view was the most applied view in CoT architectures,
followed by the logical and scenarios views.

Using the development view, primary studies addressed all quality attributes in CoT. The
logical view is concerned with the functionality that the system provides to end-users [64]; in
this view, studies mainly discussed portability of the designed architectures more than other
quality attributes. Primary studies used scenarios to identify architectural elements and to
illustrate and validate the architecture design with respect to almost all quality attributes;
among these, performance and portability of the architectures was discussed more in the
scenario view.

Summary. Various architectural views were used with respect to all categories of qual-
ity requirement.

4.2.8. Quality attribute subcategories

Table 10 presents the subcategories in each quality attribute [75]. One primary study
may address more than one subcategory in a quality attribute. As the first quality attribute,
portability comprised scalability and adaptability issues. Scalability could be horizontal
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by using more resources for the logical units for processing purposes [99, 100] (e.g., load-
balancing requests) or vertical by adding resources to a physical unit for storage purposes
[102] (e.g., database size). With the IoT, it is challenging to extend small-scale systems
to the massive scale 10T, which typically involves millions of devices. Scalability is hence
an important challenge [7] in designing CoT. Adaptability implies that CoT architectures
should be able to evolve to fit changes in their environment or circumstances.

Table 10: Quality attribute subcategories

QA Subcategory
Portability (21) Scalability(19) [5, 7, 9, 10, 12, 13, 80, 84, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 104], Adaptability(2) [103, 105]
Performance efficiency(18) | Timeliness(13) [83, 85, 90, 96, 99, 101, 106, 107, 108, 110,
111, 112, 109], Performance(6) [13, 83, 91, 96, 104, 113],
Transparency(1) [10]

Security(12) Security(12) [2, 7, 10, 86, 89, 91, 96, 111, 114, 115, 116,
117], Privacy(2) [89, 91|, Confidentiality(1) [10]
Reliability (9) Reliability (7) [7, 13, 84, 83, 91, 96, 118], Availability(3)
[96, 108, 111]
Maintainability(7) Evolvability(3) [77, 91, 93], Variability management(2)

[7, 119], Reconfigurability(1) [120], Re-usability(1) [93],
Modularity(1) [12]
Context coverage(6) Context-awareness(5) [7, 10, 79, 91, 113], Flexibility(1)

[105]
Usability(4) Usability(3) [91, 98, 121], User-participatory(1) [84], Ac-
cessibility(1) [91]
Compatibility(3) Interoperability(3) [7, 86, 93]

Functional suitability(3) | Mobility(2) [9, 10], Energy efficiency(1) [120]

According to this literature analysis, security and timeliness are two other important
challenges in this context. Security is a measure of the CoT’s ability to protect data and
information from unauthorised access while still providing access to authorised users, devices,
and platforms [86, 89, 114, 115]. A secure [oT communication environment must provide
users with certain access rights within a particular domain [86]. On the other hand, many
CoT designs have proposed architectures that provide on-time delivery of information or
services, run real-time applications, and interact with different devices in a timely fashion
to ensure consistent and updated data exchange [99, 110].

Reliability implies that CoT should remain operational during its use [96], during which
CoT must maintain reliability within individual components or at the system level to respect
service-level agreements (SLAs) [7]. Context-awareness, which allows for the collection and
storage of context information from devices [113], is the main attribute in building adaptive
[oT systems and in establishing value from sensed data. Maintainability was briefly presented
in the primary studies in the forms of evolvability, variability management, reconfigurability,
re-usability, and modularity. Finally, usability, interoperability, and functional suitability
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were the three least investigated quality attributes. In the next section, the quality attributes
and other architectural elements are used to conduct a cross-analysis of the architectures in
this domain.

4.2.4. Cross-analysis

This section extends the analysis of the literature review data across the different cat-
egories. Based on the observation from the reviewing process and the categories of topics,
the following cross-analysis questions have been defined:

e CAQ1. What CoT architectural design patterns and architectural views have been
used with different quality attributes?

e CAQ2. What apps patterns for CoT and architectural styles have been used with
different quality attributes?

e CAQ3. What is the relationship between quality attributes and application areas?

e CAQ4. Is there any relationship between the quality attributes and the architecture
evaluation methods?

e CAQ5. Are different evaluation approaches used in the different application areas?

e CAQG. Is there any relationship between the evaluation methodology and CoT archi-
tectural design patterns?

e CAQT. Is there any relationship between CoT architectural design patterns and apps
patterns for CoT?

o CAQS. Is there any relationship between CoT architectural design patterns and archi-
tectural styles?

o CAQ9. Is there any relationship between CoT architectural design patterns and archi-
tectural views?

CAQ1: CoT architectural design pattern, view, and quality attributes. The
results indicated that irrespective of the design pattern selected for CoT architectures, scal-
ability is an issue in this context. Among all design patterns, edge connectivity (37%) was
mostly applied to address this quality attribute. Edge connectivity is a gateway-mediated
pattern in which the services are not published externally but access is always mediated by
a gateway. This design pattern facilitates a scalable deployment of applications by reserv-
ing edge deployment for those applications that must be installed closer to sensing devices
(94, 95]. A study noted that keeping IoT gateways simple and without the application logic
enables them to be highly scalable, thereby supporting the increasing number of IoT devices,
without the need to be replaced [97].

Similarly, timeliness and security were two major attributes in studies that applied the
edge connectivity design pattern. The data from the devices is often processed in real time on
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the devices or the edge [96]. For critical real-time data, there is no time to transfer it to data
centers in the core cloud [96]. In numerous cases, edge devices collect and process the data,
handle errors locally, and then send the compiled data to central nodes [109]. With security
on the edge, data is encrypted before it leaves the devices and the message encryption
and multi-factor authentications ensure unique authentication, integrity, confidentiality, and
privacy of the users [115].

Further, stream processing was mostly discussed in relation to timeliness and scalability
issues. Real-time data processing becomes critical when there are low-latency requirements
in stream computation of massive data streams and when the number of devices and amount
of data that requires processing increases [12]. Apache Storm and Spark are the most notable
solutions to address these issues [99]. The solutions, such as the scalable data storage tuned
for high performance computing, lightweight stateless communications, and load balancing
mechanisms, can help with improving the scalability in this context [101].

Scalability, timeliness, and security were quality attributes addressed through all design
views. The primary studies that we examined, mostly used logical, development, and process
views to represent architectures to address scalability. Scenarios were discussed to improve
the understandability of architectures with respect to timeliness, security, and scalability.
Other quality attributes received less attention in terms of architectural design patterns for
CoT and architectural views. Figure 9 illustrates architectural design patterns and views,
along with different quality attributes in CoT.
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Figure 9: Quality attributes versus CoT architectural design patterns and views

Summary. Data filtering, processing, and encryption on the IoT edge can positively
impact scalability, timeliness, and security in CoT.
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CAQ2: Apps pattern for CoT, style, and quality attributes. Figure 10 presents
the state of the primary studies in terms of the distribution of the architectural design
patterns for CoT and architectural styles, along with different quality attributes.

The primary studies that addressed quality attributes mostly used a distributed [oT apps
pattern in which an application’s logic and data is integrated on devices and the cloud. In
this pattern, scalability and security issues were investigated more frequently as compared
to other attributes (Figure 10). Data logic and processing applications were deployed and
orchestrated from the central cloud into the [oT edge and devices [94]. Based on the latency
requirements and the amount of data to be processed, applications are deployed either to
the central cloud or to the edge and then migrated from one to the other [102]. Providing
end-to-end security in this pattern is difficult; that is confidentiality and integrity cannot
be entirely built into architectures by default, as distributed data required by the devices
may need to be accessed from shared databases in the cloud [10]. Thus, we must have secure
access control to data as well as identity and authentication management [10].

As the second application pattern, social IoT addressed timeliness, reliability, scalability,
and security in CoT. A primary study [106] noted that sensor networks can communicate
with each other as peers in a peer-to-peer approach. Devices participate in the data col-
lection and social processes in which they are enabled to interact and communicate among
themselves and with the environment in real-time [5]. The exchanged data enables them to
react autonomously to different events and create services with or without direct human
intervention [5]. Our observations in this study did not reveal a direct relationship between
this application pattern and security. Other application patterns and quality attributes have
received less attention in the literature.
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Figure 10: Quality attributes versus application patterns for CoT and architectural style
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Service-oriented architecture (SOA) was the most frequently used style for designing
CoT architectures for addressing quality attributes. The primary studies addressed a ma-
jority of the quality attribute clusters in CoT through this architectural style; among these
clusters, scalability, security, and timeliness are important quality attributes. A primary
study [12] proposed a cloud model, based on the concept of modularisation and service inte-
gration, to improve scalability and reliability of processing units in the smart city context.
Another study [89] argued that security requirements are often in contrast to performance
requirements, such as timeliness and throughput in SOA, and to optimise these quality
requirements, trade-off frameworks may be needed.

The client-server architecture, which was second in terms of number of papers, mostly
addressed scalability and timeliness. With regard to higher scalability, client-server archi-
tectures allow for increasing computation power on devices and improving hardware and
network capacity [96].

Other quality attributes and architectural styles received less attention; for example,
according to our observations during the reviewing process, the pipeline style has not been
studied alongside the quality attributes in this domain.

Summary. Considering the different quality attributes in CoT, SOA and DIoT are the
two most applied architectural alternatives for designing architectures and applica-
tions.

CAQ3: Application area and quality attributes. Because the smart city domain has
a wide scope, primary studies addressed the majority of the quality attribute clusters in this
area. Scalability, timeliness, and evolvability were evaluated more frequently as compared to
other attributes in this domain, although a broad range of different quality attributes were
found to be relevant to smart cities (Table 11). The primary studies noted several issues,
such as necessity for large-scale cloud platforms [12], real-time dynamicity of a city [112],
real-time network traffic [106], and extensibility to utilise new emerging technologies [77]
that must be addressed by CoT architectures in smart cities.

For the next application area, software architectures addressed quality attributes, such as
timeliness, scalability, and security in the mobility (MO) domain. Cloud computing functions
as the platform for the integration of large volumes of heterogeneous data originating from
vehicles and devices [101]. This data must be collected and analysed on the edge to ensure
real-time response [10]. Another issue in large mobility settings is scalability, which impacts
other requirements, such as security and mobility [101]. A study [85] noted that named data
networking (NDN), as a form of information centric networking, does not need host name
resolution and provides scalability and data security in mobility domain. Architectures in
the other application areas did not highlight a majority of the quality attributes in CoT,
which provides a starting point for future studies in these areas.

The review showed that timeliness (eight papers) was the most addressed quality at-
tribute within different application areas in the literature. Real-time data processing is
critical in different CoT application areas, such as mobility and smart cities. Security was
highlighted in connected vehicles and smart transportation, health management, and smart
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cities management while scalability was more evaluated in the mobility and smart city do-
mains.

Table 11: Quality attributes versus application area

Application area

QA Subcategory Total | yio sc HC | SH | MFG | General

e Scalability 19 2 (10.5%) | 2 (10.5% - - - 15 (79%

Portability Adaptability P e - - - 2 (1(00%§

Timeliness 13 5(38%) | 2 (15%) - 1 (8%) - 5 (38%)

Performance efficiency | Performance 6 - 1 (17%) - - - 5 (83%)
Transparency 1 1 (100%) - - - - -

Security 12 2 (17%) 1 (8%) 2 (17%) - - 7 (58%)

Security Privacy 2 - 1 (50%) - - - 1 (50%)
Confidentiality 1 1 (100%) - - - - -

o Reliability 7 - 1 (14% - - - 6 (86%

Reliability Availability 3 [ 1(33%) o - - - 2 Em%i

Evolvability 3 - 2 (67%) - - - 1 (33%)

Variability management 2 - - - - - 2 (100%)

Maintainability Reconfigurability 1 - - - - - 1 (100%)
Re-usability 1 - 1 (100%) - - - -
Modularity 1 - 1 (100%) - - - -

Context coverage Context-awareness 5 1(20%) | 1(20%) - - - 3 (60%)
Flexibility 1 - - - 1 (100%) -

Usability 3 - 1 (33%) - - - 2 (67%)

Usability User-participatory 1 - - - - - 1 (100%)
Accessibility 1 - 1 (100%) - - - -

Compatibility Interoperability 3 - 1(33.3%) | 1 (33.3%) - - 1 (33.3%)

. s Mobility 2 1 (50% - - - - 1 (50%
Functional suitability Fnergy cfficioncy 1 ( - ) - - - - I ((1 00%) )

Summary. In the mobility and smart city domains, certain quality requirements —such
as timeliness, scalability, and security— are often considered together when designing
the CoT architecture.

J

CAQ4: Quality attributes and architectures evaluation method. As depicted
in Table 12, the primary studies did not evaluate a majority of quality attributes using a
specific methodology. In this regard, certain attributes —such as interoperability, adaptability,
mobility, transparency, and accessibility— were not evaluated during even one evaluation
methodology. This gap creates an opportunity for future empirical research in the CoT
domain. In contrast, scalability and timeliness are two quality attributes that were covered
throughout the four evaluation methodologies.

Experimentation was the most commonly used evaluation methodology among the pri-
mary studies related to different quality attributes; of these attributes, scalability was stud-
ied the most. Prototypes, which were second mostly appeared in evaluations of scalability
and timeliness. Simulation was an interesting alternative related to reliability, scalability,
timeliness, and performance. Case studies, and the combination of more than one method-
ology (i.e., hybrids), were the last two methodologies in terms of different quality attributes.
These findings indicated that major quality attributes, such as scalability or timeliness, have
typically been studies in laboratory settings (i.e., experiment or simulation) rather than ac-
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tual industrial cases. This provides an opportunity for future studies to assess the designed
architectures within industrial settings.

Table 12: Quality attributes versus evaluation methodology

QA Subcategory Total Evaluation methodology
Experiment Prototype Illustrative example Simulation | Case study Hybrid | Not presented

. Scalability 19 | 5(26%) | 4(21%) 2 (10.5%) 2 (10.5%) - - 6 (32%)
Portability Adaptability 2 - - - - : : 2 (100%)
Timeliness 13 3 (23%) 4 (31%) 1 (8%) 2 (15%) - 1 (8%) 2 (15%)
Performance efficiency | Performance 6 2 (33%) - 1 (17%) 2 (33%) - - 1 (17%)
Transparency 1 - - - - - - 1 (100%)
Security 12 | 207%) 1(8%) B N 1(8%) , 3 (67%)
Security Privacy 2 - - - - 1 (50%) - 1 (50%)
Confidentiality 1 - - - - - - 1 (100%)
o Reliability 7 1T(14%) | 1(14%) B 3 (43%) - - 2 (29%)
Reliability Availability 3| 1(333%) | 1(33.3%) B B - - 1 (33.3%)
Evolvability 3 1 (33%) - - - - - 2 (67%)
Variability management 2 - - 1 (50%) - - - 1 (50%)
Maintainability Reconfigurability 1 - - - - - - 1 (100%)
Re-usability 1 - - - - - - 1 (100%)

Modularity 1 - 1 (100%) - - - - -
: ) Context-awareness 5 1 (20%) 1 (20%) - - - - 3 (60%)
Context coverage | F9 iy 1 - - B - - - T (100%)
Usability 3 1 (33%) - B N - - 2 (67%)

Usability User-participatory 1 - - - 1 (100%) - - -
Accessibility 1 - - - - - - 1 (100%)
Compatibility Interoperability 3 - - - - - - 3 (100%)

1 B 0

Functional suitability gl?li‘l;fyeﬂiciency ? - - = - - - ? 888;2;

Summary. There is a scientific shortage of empirical evaluation for architecture designs
in CoT.

J

CAQ5: Evaluation approach and application area. Table 13 presents the distri-
bution of the evaluation methodologies used in each application area. Considering the large
number and scope of CoT application areas, a majority of the primary studies only pre-
sented proof of concepts for designed architectures by presenting illustrative examples or
prototypes. CoT software architectures in the mobility and smart city domains were eval-
uated the most, among which CoT architectures in the smart city domain were mainly
assessed through laboratory approaches, such as illustrative examples (three papers) and
prototypes (two papers).

This finding is similar in the mobility area, as three papers developed prototypes, and two
studies used a hybrid methodology (a combination of experimentation and prototype) in this
application area. The health care and manufacturing areas used barely any methodologies
to evaluate software architectures.

The prototype was used as an evaluation methodology in seven papers within four ap-
plication areas, although the majority of the papers that evaluated the architectures barely
considered a specific application area. For example, none of the simulation studies addressed
an application area.

Summary. There is a research need for industrial contributions to evaluate CoT archi-
tectures in real-world environments.
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Table 13: Evaluation methodology versus application area and CoT architectural design pattern

. Application area CoT architectural design pattern

Evaluation methodology | Total |,y sc e | SH | MFG | Geneml | EC sP T VDR | BC | DI Generl
Experiment 16 | 1(62%) | 1(6.2%) - [1(62%) | 1(62%) | 12 (70%) || 6 (38%) | 4 (25%) | 2 (12.5%) | 1 (6%) | 1 (6%) - [2(125%)
Prototype 14 |3 (21.5%) | 2 (14.5%) | 1 (%) | 1 (%) - 7 (50%) || 8 (57%) |5 (36%) | 1 (%) - - - -
Tustrative example 10 - 3 (30%) - - 7 (70%) || 3 (30%) | 2 (20%) - 2 (20%) | 1 (10%) | 1 (10%) | 1 (10%)
Simulation 4 - - 4 (100%) - 1 (25%) 2 (50%) - - 1 (25%)
Case study 2 1 (50%) 1 (50%) - 1 (50%) - 1 (50%) -
Hybrid 2| 2 (100%) , 2 (100%) , B

CAQ6: Evaluation approach and CoT architectural design pattern. Because
the majority of the papers adopted the edge connectivity pattern, we expected that most
of the evaluations would be part of this design pattern. Prototypes (eight papers) and ex-
perimentation (six papers) were the most frequently adopted approaches to evaluate those
architectures that use edge connectivity patterns. Stream processing was second in terms
of the number of evaluations that were conducted with respect to CoT architectural design
patterns (13 papers), while design patterns, such as device identity or brokered communi-
cation, came in last in that regard (two papers each). Our findings could not reveal specific
reasons for selecting an evaluation methodology with respect to a CoT design pattern.

Experiments and prototypes were the most commonly adopted methodologies within
different CoT architectural design patterns (14 papers each), although experiments and
illustrative examples had better coverage within different CoT architectural design patterns.
Case studies and hybrid approaches were last in this respect. Table 13 presents areas that
still lack empirical research, along with different CoT architectural design patterns.

Summary. Experiment and prototype were the most frequently applied methodologies
with respect to different design patterns.

CAQ7: CoT architectural design pattern versus apps pattern for CoT. As
Table 14 indicates, the majority of the studies applied the distributed IoT as the CoT appli-
cation pattern (31 papers). This pattern was applied mostly within edge connectivity (32%),
stream processing (19%), and virtual device representation (19%). Further, distributed IoT
was the most widely used pattern, along with all CoT architectural design patterns. Exam-
ples of these applications are content delivery to vehicles [109], analytics of data collected
by mobile devices [11], and environmental monitoring through geographically distributed
wireless sensor networks [116].

The second application pattern is social IoT in which edge connectivity (32%) and stream
processing (32%) were major CoT patterns. Self-configurable gateways that automatically
detect and register new devices facilitate communication among smart devices [114]. The
use of the digital twin pattern also seems to be widespread with respect to the CoT design
patterns, while cloud-based apps are mostly addressed in edge connectivity patterns (45%).
Other CoT architectural design patterns were barely adopted in this regard.

Edge connectivity was used with all application patterns for CoT; among these patterns,
the highest share of papers were devoted to distributed IoT (10 papers). Stream processing
was the second alternative (16 papers) in terms of different application patterns for CoT,
while device identity received the least attention in this regard.
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Table 14: CoT architectural design pattern versus application pattern for CoT, architectural style, and view

Distributed IoT 31 | 10 (32%) | 6 (19%) | 4 (13%) | 6 (19%) | L(3%) | L(3%) |3 (10%)
Social ToT 19 | 6(32%) | 6 (32%) - 2 (11%) | 1(5%) - 1 (20%)
Cloud-based apps 11 5 (45%) - 2 (18%) - 2 (18%) 1 (9%) 1 (9%)
Digital twin 8 [ 1(125%) |3 (37.5%) | 1 (12.5%) | 1 (12.5%) | 2 (25%) - -
Asset-based apps 4 2 (50%) - - - - 1(25%) |1 (25%)
General 9 4 (44%) | 1 (11%) | 1 (11%) - - - 3 (33%)
Architectural style Total EC SP TI VDR BC DI General
SOA 27 7 (26%) | 8 (30%) 2 (7%) 4 (15%) - 2 (7%) | 4 (15%)
Multi-layered 13 | 3(23%) | 3(23%) | 3 (23%) | 1(8%) - - 3 (23%)
Client-server 10 6 (60%) 2 (2%) 1 (10%) - - - 1 (10%)
Publish-subscribe 8 1(12.5%) | 1 (12.5%) - 1(12.5%) | 2 (25%) | 1 (12.5%) | 2 (25%)
Agent-based 6 3 (50%) - 1 (17%) - 2 (33%) - -
Object request broker 2 - - - - 2 (100%) - -
Event-driven 2 1 (50%) - - - - - 1 (50%)
Pipeline 1 - 1 (100%) - - - - -
Plug-in 1 1 (100%) - - - - - -
Lambda 1 - 1 (100%) - - - - -
General 11 6 (55%) - 1 (9%) 3 (27%) - - 1 (9%)
View Total EC SP TI VDR BC DI General
Development 46 | 15 (33%) | 8 (17%) 4 (9%) 5 (11%) | 3 (6.5%) | 3 (6.5%) | 8 (17%)
Logical 30 | 9(30%) | 5 (17%) | 4(13%) | 5(17%) | 3 (10%) | 2 (%) | 2(7%)
Scenario 29 | 12 (41%) | 6 (21%) | 3 (10%) 2 (7%) 1 (3%) 1(3%) |4 (14%)
Physical 15 | 10 (67%) | 1 (7%) - - - 1(7%) |3 (20%)
Process 15 | 7(47%) | 2(13%) | 2(13%) | 1(7%) | 1% | 1(7%) | L(7%)
General 4 2 (50%) | 1(25%) | 1(25%) - - - -
Summary. Edge connectivity supports distributed applications with respect to the
attributes, such as mobility.

CAQS8: CoT architectural design pattern versus architectural style. SOA was
the most applied architectural style (in terms of number of papers), along with different CoT
architectural design patterns, as presented in Table 14. SOA was also widely used in a wide
variety of CoT architectural design patterns, with the exception of brokered communication;
among these patterns, stream processing (30%) and edge connectivity (26%) were the first
two alternatives. Modular cloud services advertised in SOA can be preserved through IoT
gateways as the interface between the devices and the cloud for data exchange [122].

The multi-layered and client-server styles were next in terms of the number of papers
on different CoT architectural design patterns. The client-server style was only addressed in
the first three CoT architectural design patterns. A primary study [123] provided a gateway
application for transmitting the data received from the sensors and devices to the server in
a client-server architecture.

Edge connectivity was used in a wide variety of architectural styles (except for three); in
this sense, it is a popular alternative. As the second choice among CoT architectural design
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patterns, stream processing was mostly addressed in papers with the SOA, multi-layered,
and client-server software architectural styles.

Summary. loT gateways can increase flexibility and mobility in SOA and client-server
architectures.

CAQ9: CoT architectural design pattern versus architectural view. Out of the
five architectural views, the development view was the most frequently used (46 papers). As
indicated in Table 14, this view was the most frequently used, along with edge connectivity
(33%) and stream processing (17%). In addition, logical (30 papers) and scenario (29 papers)
views were the most frequently used, along with edge connectivity patterns. The physical
view was frequently used with edge connectivity patterns (67%). Edge connectivity patterns
were the most applied CoT patterns among the different views, followed by stream processing
and telemetry ingestion.

Summary. Development view and scenarios were used by a majority of the CoT ar-
chitectures along with edge connectivity patterns.

4.8. RQ3. What CoT models have been provided in software architecture literature?

In answering this question, we provided a list of 31 existing CoT models in software
architecture literature. It is worth mentioning that this list contains the CoT models that
were introduced in the literature and the list is not a reflection of the entire CoT model
population. We believe that the extraction of this list will enable developers to access relevant
academic research material on these CoT models and aid researchers in identifying the
research gap in other existing CoT models that are currently available in the market. The
complete list is provided in Appendix C.

Summary. Thirty-one CoT models were collected from academic literature on software
architecture.

5. Discussion

The objective of this research is to identify and synthesise software architecture studies
in the domain of CoT. An SLR was conducted to analyse the primary studies according to
different aspects, including research intensity, research type, contribution type, and study
quality. In addition, we have striven to identify, evaluate, and synthesise the academic knowl-
edge related to various software architectural elements of CoT, including design patterns,
styles, views, evaluation methods, and quality attributes.

5.1. Overview of findings and their implications

RQ1. What are the intensity and characteristics of research pertaining to software archi-
tectures in the context of CoT? To address this question, we have analysed the information
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from primary studies as well as determining the research type, contribution type, and quality
(see section 4.1).

The findings indicated that the convergence of cloud computing and IoT has received
increasing attention since 2010, so the design of relevant architectures that can be used with
different application areas will be necessary. The majority of primary studies were published
in conference proceedings (73%), followed by journal articles (22%). The results show that
a diversified range of journals and conferences have published academic studies within this
domain.

More than half the studies did not empirically evaluate the architectures; they primarily
provided architectural representations (including building blocks, interfaces, etc.) without
providing relevant scientific evaluations.

In addition, we expect that practices regarding the standardisation of CoT architectures
will continue to increase over time because of this technology’s increasing importance. Still,
the rapid pace of emerging new technologies, such as edge and fog computing, as well as
the growth in the size and complexity of IoT applications and the number of connected
objects, will all bring further challenges. We assume in this study that future architectures
will be driven by increasing demand for scalable and secure CoTs, high-quality systems,
communication latency, and better context awareness. As a result, software architecture
designers will face added challenges in terms of quality concerns and stakeholder needs, all
of which will create interesting opportunities for future studies.

RQ2. What software architectures have been investigated most in the context of CoT? To
address this question, a deductive coding approach was used to extract architectural design
patterns, styles, views, evaluation methodologies, quality attributes, and CoT application
areas. We found that barely any methodological approaches addressed the design of software
architectures of CoT. This study has shown that previous researchers in this domain have
addressed six design patterns for CoT architectures as well as five application patterns for
CoT. Accordingly, the architectures were classified into nine architectural styles and 441
architectural views. Our literature analysis has indicated that previous researchers have
primarily investigated CoT architectures without considering their application areas; though,
smart city and mobility were the most interesting areas in this respect. Section 4.2.4 defined
nine cross-analysis questions to create a better understanding of the architecture elements
as well as the existing research gaps in this domain.

The term “software architecture” can be used in different levels and contexts [14]. For
example, it is possible to talk about the technical roles of software architectures, relevant
business impacts [124], or representations of different system hierarchy levels [125]. Because
the software architectures of CoT are highly interdependent with other systems, such as
communication networks and physical things, the primary studies we examined often had
to describe the architectures in relation to other domains, such as software applications,
communication networks, and IoT resources, among others.

While the approach and perspective of this research are completely different from those
of prior secondary studies, certain relationships were observed between the research ques-
tions of a few existing secondary studies and the current SLR. For example, a systematic
mapping study’s [32] third research question was concerned with the existing architectures
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that support the construction and execution of cloud-based IoT systems. Those authors
characterised and presented an overview of novel concepts in the architectures of CoT. Due
to the focus of that mapping study, which was broadly on the realisation of the integration
of IoT and cloud computing, the authors were not able to provide a deep analysis of CoT
architecture elements.

In another study [126], the authors discussed the key technologies and architectures in
the literature in order to find appropriate alternatives to be used in the development of
smart cities. They strove to provide an overview of the previous literature on IoT, SOA,
event-driven architectures, and relevant technologies. That paper had a broad scope and
was not limited to CoT architectural elements.

RQ@3. What CoT models have been provided in software architecture literature? To ad-
dress this question, we collected existing CoT models provided in the primary studies we
examined. We found that very few studies have provided thorough analysis on existing CoT
models. We believe that more CoT models should exist, compared to the models we have
reported in our study, as many of the existing platforms have not been reported in the
scientific literature.

5.2. Implications

With this SLR, we provide a systematic synthesis and classification of the software ar-
chitecture literature on CoT. We have excluded separate architectural knowledge about IoT
or cloud computing systems from this study in order to structure the software architecture
knowledge on the convergence of cloud computing and IoT. For academia, this work will pro-
vide support to continue with software architecture research and help to fill research gaps in
terms of research type, contribution type, and empirical evaluation. Practitioners will have
access to state-of-the-art architectures, which can be used in design decisions related to ar-
chitectural elements, such as design patterns, styles, views, and evaluation methodologies
that consider quality concerns and application areas.

5.83. Recommendations for future study

The convergence of cloud computing and IoT is in its early phases of research, and
researchers still have many opportunities to investigate and improve on CoT models, build-
ing blocks, tools, requirements, technologies, inter-dependencies, etc. The findings indicate
that the CoT has received increasing attention from several disciplines, including network
providers, hardware suppliers, and software developers as well as from academia and stan-
dardisation institutes. This section of the paper summarises our observations about various
architectural challenges and gaps that might benefit future studies in this domain.

The IoT and cloud computing have evolved due to a convergence of multiple technolo-
gies, including wireless communication, real-time analytics, machine learning, commodity
sensors, and embedded systems. This study’s findings have shown that software architecture
engineering has received less attention than other disciplines in this domain. Consequently,
there is a gap for investigating the software architectures of CoT, including the models, qual-
ity concerns, tool chains, inter-dependencies, and industrial evaluations. This study shows
that advances in software engineering aspects will improve the reliability of architectures
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in other domains as well as in the whole CoT system. We were able to find several quality
attributes that have been discussed in the literature, yet we found many other quality at-
tributes, such as usability, maintainability, and context awareness, which have received less
attention from prior researchers and thus could be discussed more in future research.

Our findings indicate that most of previous studies on the software architectures of CoT
have not reported any specific research methodologies. For example, our SLR was unable to
find any studies in which scientific methodologies suitable for designing architectures were
used. The authors believe that the field still has a need for standardised scientific frameworks
and methodologies to lead architectural designs in this domain. Existing knowledge about
architectural management in other fields could be adopted and customised in future studies.

Designing large-scale distributed systems, such as CoT, evolves according to changes
in the underlying technologies and stakeholder requirements. For example, because new
emerging technologies, such as edge or fog computing, work based on collaborations between
several infrastructure operators and service providers, it is not always clear who operates and
manages the infrastructure. Having billions of connected IoT devices also creates research
challenges for multi-cloud architectures that support the IoT.

Architectures, which are important contributors to the success of systems, are usually
evaluated based on design decisions, stakeholder requirements, and business success, among
other factors. Our findings show that the majority of the primary studies we examined did
not provide rigorous frameworks or implications for the evaluation of various architectures.
We think that there are still gaps in the validity of the existing CoT models and relevant
architectures. Very few studies have provided empirical results that show how the proposed
architectures work in the real-world. It will also be necessary to establish frameworks and
standards that will guide developers and researchers in selecting and evaluating existing
architectures, technologies, design process, and tools. Prior software engineering researchers
have developed several methodologies and guidelines to evaluate the architectures of software
systems in other domains, although the selection and customisation of existing solutions is
always a challenge.

Our findings show that the literature on CoT software architectures has yet to reach
maturity. We have identified several shortages in standardisation practices for creating ref-
erence architectures that can be adopted and customised within different application areas.
Several practices exist for the development of reference architectures (i.e., [127, 128]) that
can be adopted and applied in CoT domain. Future academic studies can emphasise col-
laborations with industrial partners and be driven by the specific needs of stakeholders in
different contexts to establish reliable, scalable, and secure architectures in the context of
CoT, as previous researchers [129, 130] have already realised this need in the automotive
domain.

6. Conclusions

The IoT includes challenges, including low-memory devices, network limitations, poor
computational capacity, heterogeneity, ubiquity, and mass scalability, among others. The
convergence of cloud computing and IoT has recently received attention from the research
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and industrial communities, as this convergence can alleviate these challenges using cloud
infrastructure. Many companies demand reliable software architectures in order to handle
the quality requirements of new emerging technologies and the complex quality challenges
that come with these technologies. This study has presented a systematic review of 82
primary studies (of a total of 1,618 studies) on CoT software architectures. We collected,
evaluated, and synthesised the existing architecture knowledge in this domain, including
design patterns, styles, views, and evaluation methodologies in terms of various quality
attributes and CoT application areas.

We classified the architectural design patterns for CoT into six categories; among these
categories, edge connectivity and stream processing were found to be the most adopted op-
tions. Our SLR also extracted five application patterns for CoT. Distributed IoT apps and
social [oT were the patterns that were applied most in the literature. The architectures were
classified according to ten software architectural styles, of which service-oriented architec-
tures were the most popular. Nine cross-analyses were conducted to review the relationship
between different architectural elements, quality attributes, and application areas. Our find-
ings concluded with a list of 31 existing CoT models in the academic literature, which are
summarised in Appendix C.

Current trends show increasing interest towards the design of scalable CoT technologies
to be used in different application areas. We have realised that CoT has received less atten-
tion from the software architecture engineering field compared to other disciplines, such as
network communications, which highlights several opportunities for further academic study.
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Appendix A. SLR overview

P # Study Research type Contribution type
(Ref. no.)

P1 [99] Validation Model

P2 [131] Validation Model

P3 [132] Validation Model

P4 [13] Validation Model

P5 [133] Solution Framework /Method /Technique

P6 [118] Validation Framework /Method / Technique

p7 [80] Solution Model

P8 [88] Evaluation Framework/Method /Technique

P9 [114] Validation Model

P10 [10] Solution Model

P11 [89] Evaluation Model

P12 [12] Validation Model, Framework/Method/Technique
P13 [11] Solution Model

P14 [134] Solution Framework/Method /Technique

P15 [87] Solution Model

P16 [135] Validation Model

P17 [104] Validation Model

P18 [136] Validation Model, Framework/Method/Technique
P19  [116] Solution Model

P20 [119] Solution Framework/Method /Technique, Model
P21 [7] Solution Model

P22 [113] Validation Model

P23 [94] Solution Model

P24 [83] Validation Model, Framework/Method/Technique
P25 [77] Validation Model

P26 [90] Validation Framework /Method / Technique

P27 [137] Solution Model

p28  [121] Solution Model

P29 [95] Validation Model

P30 [123] Validation Model

P31 [96] Validation Model

P32 [97] Solution Model, Framework/Method/Technique
P33 [138] Experience Framework /Method / Technique

P34 [82] Solution Model

P35 [117] Solution Model

P36 [85] Validation Framework /Method / Technique

P37 [139] Solution Model

P38 [140] Validation Model

P39 [141] Solution Model
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P40  [92] Solution Model

P41 [100] Validation Model

P42 [142] Solution Model

P43 [143] Validation Model

P44 [9§] Validation Model

P45  [81] Validation Model

P46 [101] Validation Model

P47 [91] Solution Model

P48 [144] Solution Model

P49 [105] Solution Model

P50  [79] Validation Model

P51  [7§] Validation Model

P52 [145] Solution Model

P53 [84] Validation Model

P54 [5] Solution Model

P55 [146] Solution Model

P56 [120] Solution Model

P57 [106] Validation Model

P58 [107] Validation Model

P59 [3] Solution Model

P60  [2] Solution Model

P61  [147] Solution Model

P62  [110] Solution Model

P63 [76] Solution Model

P64  [108] Validation Framework/Method/Technique, Model
P65  [148] Solution Model

P66 [115] Validation Model

P67  [111] Solution Model

P68 [149] Validation Framework/Method /Technique
P69  [102] Validation Framework/Method /Technique
P70 [8] Solution Model

P71 [9] Solution Model

P72 [122] Solution Model

P73 [86] Solution Model

P74 [103] Solution Framework/Method /Technique
P75 [150] Solution Model

P76 [93] Experience Model

P77 [151] Solution Model, Advice/Implications
P78 [112] Solution Model

P79 [152] Validation Framework/Method/Technique, Model
P80 [109] Validation Framework/Method /Technique
P81  [153] Validation Model

P82  [154] Solution Model
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Appendix B. Data properties

ID

Data property

Description

DP1
DP2

DP3

DP4

DP5

Publication year
Publication source

Research type; adopted
from [57]

Contribution type; adopted
from [58, 59]

Quality assessment;
adopted from [33]

Refers to the publication year of the primary study
Refers to publication source, including journal ar-
ticles, conference proceedings, or workshop pro-
ceedings

Solution proposal: proposes a solution or
technique to a particular problem, either
novel or a significant improvement of an ex-
isting solution, without full validation.

Validation research: a novel solution or tech-
nique is proposed but not yet implemented in
practice. It uses a research approach, such as
an experiment, prototyping, formal analysis,
simulation, or similar approaches.

FEvaluation research: investigates a solution
or technique in practice, and its evaluation
is conducted accordingly.

Ezxperience report: reflects the personal in-
dustrial experiences of the authors.

Framework/method/technique: proposes a
particular framework, method, or technique
for CoT software architectures.

Model: a representation of an observed re-
ality in concepts or related concepts after a
conceptualisation process.

Advice/implication: a discursive and generic
recommendation based on the personal opin-
ion of the authors

Each individual study is evaluated according to the
quality criteria described in section 3.4.2 (ranging
from Yes = 1, Partially = 0.5, and No = 0)
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DP6  Software architecture repre-
sentation elements

DP7  Quality attributes

DP8  Architecture evaluation
methods

DP9  Application area

DP10 Existing CoT models

Identifies the patterns, styles, and views of soft-
ware architectures in the context of CoT
Identifies the major quality attributes in designing
CoT software architectures

Identifies the methods applied to evaluate CoT
software architectures

Identifies the application areas of CoTs
Summarises the existing CoT models reported in
the literature

Appendix C. Existing CoT models

Name

Description

Primary
studies

Aneka

Atlas

AWS IoT

Axeda

CenceMe

CloudThings

DARWIN

DIMMER

Etherios
(formerly
iDigi)

A NET-based application development Platform-as-a-
Service (PaaS), which can utilise storage and compute
resources of both public and private clouds
An IoT platform that consists of sensor node, hardware
or software platform, and service gateway framework
Amazon Web Services 0T is a managed cloud platform
for the IoT that lets connected devices easily and se-
curely interact with cloud applications and other devices
An ToT cloud platform providing connectivity between
devices and objects to enable application services, inte-
gration framework, and data management
A mobile phone sensing system that combines the infer-
ence of the presence of individuals using sensor-enabled
mobile phones with sharing of this information through
social networking applications
A service platform, developer suite, and operating portal
that works over the Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a service
(Saas)
A cloud service system for automobiles that contains
key service components interacting with various services
both inside and outside of vehicles to form a comprehen-
sive vehicular cloud
A service IoT cloud platform aiming at involving dif-
ferent stakeholders to increase the energy efficiency of a
city
A hosted device cloud solution that enables the creation
of apps that can control devices in real time, schedule
operations, and configure alarms
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FIWARE

FutureGrid

GSN

Hive

Hourglass

iCOMOT
ICWIOT
IoTCloud

Kiuas

LSM2

MOSDEN

Nimbits

OneM2M

A platform for the future Internet that would provide a
novel service infrastructure built of reusable components
(generic enablers)

A geographically distributed and heterogeneous cloud
test bed

Uses virtual sensors to control processing priorities and
the management of resources and stored data. By us-
ing declarative specifications, virtual sensors can be de-
ployed and reconfigured in GSN containers at runtime
An edge-based middleware architecture and protocol
to enable heterogeneous edge devices to dynamically
share data and resources for enhanced application per-
formance and privacy

An Internet-based infrastructure for connecting a wide
range of sensors, services, and applications in a robust
fashion

A set of tools and services that simplify the management
of such sensors, gateways, and services

Intelligent city with an IoT service platform

A platform that controls and manages sensors and mes-
sages online over the cloud with different modules, e.g.,
controller, message broker, and sensors

A cloud environment to make software development for
large and highly dynamic topologies of [oT devices as
effortless as possible by abstracting away complexities
related to connectivity, asynchronous device communi-
cation, and physical device location

A platform that bridges the live real-world sensed data
and Semantic Web functionalities, such as wrappers for
real-time data collection and publishing

Supports sensing as a service and is built on top of GSN.
MOSDEN improves the scalability and user friendliness
of middleware, since plugins for heterogeneous devices
are easier to build

An open source data logging cloud server that provides
connectivity between the [oT using data points

A telecom initiative for interoperability of M2M and IoT
devices and applications to develop a common specifica-
tion of a service layer platform that builds on the ex-
isting IoT and Web standards, defining specifications of
protocols and service APIs
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OpenloT

SensorCloud

SOCRADES

Stack4Things

ThingSpeak

ThingStore

UbiFit Gar-
den

VTrack

Xively

An open-source middleware for IoT applications in a
Sensing as a Service model (SaaS), which is available in
a cloud environment that can be transparently accessed
and configured by users

Sensor features include data storage and visualisation
and a remote management platform that leverages
powerful cloud computing technologies to provide ex-
cellent data scalability, rapid visualisation, and user-
programmable analysis

A middleware that abstracts physical things as services
using Devices Profile for WS (DPWS). Its architecture
consists of a layer for application services and a layer for
device services

An infrastructure-oriented two-layer approach that
manages policies at the control plane while coping with
communication requirements and scalability concerns
at the data plane by leveraging cloud-focused design
choices and architectural patterns

An open-source IoT application and API for storing and
retrieving data from things; ThingSpeak uses HTTP
over the Internet or via a local area network

A platform to bring together the different actors of loT’s
cyber-physical environment, such as thing providers,
software developers, and end users

A mobile phone sensing system that uses small, inexpen-
sive on-body sensors and machine learning techniques
for activity modelling

A mobile sensing system that tracks traffic delays and
congestion

a Platform as a Service (PaaS) that provides middleware
services to create products and solutions for IoT
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