Search-based Fault Localisation:
A Systematic Mapping Study

Plinio S. Leitao-Junior®?* Diogo M. Freitas?®, Silvia R. Vergilio®,
Celso G. Camilo-Junior®, Rachel Harrison”

@ Instituto de Informdtica, Universidade Federal de Goids,

Alameda Palmeiras, Quadra D, Campus Samambaia, Goidnia, Goids, Brazil
bSchool of Computing, Engineering and Maths, Ozford Brookes University,
Wheatley Campus, OX383 1HX, Wheatley, Oxford, United Kingdom
¢Departamento de Informdatica, Universidade Federal do Parand,

Rua Cel. Francisco Herdclito Santos 100, Jardim das Américas, Curitiba, Parand, Brazil

Abstract

Contest: Software Fault Localisation (FL) refers to finding faulty software el-
ements related to failures produced as a result of test case execution. This is
a laborious and time consuming task. To allow FL automation search-based
algorithms have been successfully applied in the field of Search-Based Fault Lo-
calisation (SBFL). However, there is no study mapping the SBFL field to the
best of our knowledge and we believe that such a map is important to promote
new advances in this field.

Objective: To present the results of a mapping study on SBFL, by characterising
the proposed methods, identifying sources of used information, adopted evalua-
tion functions, applied algorithms and elements regarding reported experiments.
Method: Our mapping followed a defined process and a search protocol. The
conducted analysis considers different dimensions and categories related to the
main characteristics of SBFL methods.

Results: All methods are grounded on the coverage spectra category. Overall
the methods search for solutions related to suspiciousness formulae to identify
possible faulty code elements. Most studies use evolutionary algorithms, mainly
Genetic Programming, by using a single-objective function. There is little inves-
tigation of real-and-multiple-fault scenarios, and the subjects are mostly written
in C and Java. No consensus was observed on how to apply the evaluation met-
rics.

Conclusions: Search-based fault localisation has seen a rise in interest in the
past few years and the number of studies has been growing. We identified some
research opportunities such as exploring new sources of fault data, exploring
multi-objective algorithms, analysing benchmarks according to some classes of

*Corresponding author
Email addresses: plinio@inf.ufg.br (Plinio S. Leitao-Junior), diogom42@gmail.com
(Diogo M. Freitas), silvia@inf .ufpr.br (Silvia R. Vergilio), celso@inf .ufg.br
(Celso G. Camilo-Junior), rachel.harrison@brookes.ac.uk (Rachel Harrison)

January 17, 2020

20

25

30

35

faults, as well as, the use of a unique definition for evaluation measures.

Keywords: Meta-heuristic algorithms; Search-based fault localisation;
Systematic mapping.

1. Introduction

In recent decades, our reliance on software in all areas of human activity
has increased significantly as a result of the increasing use of computer-based
systems. This causes growing demands for quality and productivity, from the
point of view of both the production processes and the generated product.

It is generally accepted that it is not possible to create perfect software, and
mistakes or introduced defects (faults) occur and may be largely unavoidable
[1].Faults are constantly introduced and fixed during the software production
and maintenance cycles. The presence of faults in software may stem from a
variety of factors including, but not limited to, changes in user’s needs, misun-
derstanding of software requirements, inadequate software design, low-quality
code, poor documentation, and mistakes in the coding phase. Software can
still contain faults, even after completion of extensive testing, and failures ex-
perienced after software delivery are addressed by corrective maintenance [2].
Therefore, one of the main goals during software development and evolution is
to remove as many faults in the software as possible without introducing new
ones while doing so.

According to the Software Engineering Guide Body of Knowledge (SWE-
BOK) [2], software maintenance provides unique technical and management
challenges for software engineers, such as trying to find one fault in a software
system that contains a large number of lines of code and was developed by an-
other software engineer. In this sense software debugging is a process aimed
at finding and resolving faults that prevent the correct operation of computer
software or of systems thereof.

Due to the increasing size and complexity of software projects, finding faults
has become a more onerous and time-consuming task [3]. Software Fault Locali-
sation (FL) is a vital process which refers to finding the faulty software elements
(e.g. statement, line or block of code) related to failures that were revealed on
the execution of software testing activities. Such a process can be laborious and
time consuming when it is done manually as the complexity of software projects
increases. Therefore, one of the main challenges of FL activities is to decrease
the human effort by reducing the amount of code analysed until the software
faults can be precisely located. Research into FL deals mainly with the problem
of developing techniques to automate (or semi-automate) the process of locating
software faults. To this end, we can find in the literature [4] different methods to
help software engineering practitioners who often spend a significant amount of
time and effort on debugging [5]. Among such methods, search-based methods
have received increasing attention and a field of research has emerged, named
Search-based Fault Localisation (SBFL).

40

45

50

55

60

65

70

75

80

In the SBFL field the FL problem is treated as an optimisation problem and
search-based algorithms are used to automate (or partially automate) FL solu-
tions. SBFL researchers usually apply evolutionary algorithms such as Genetic
Programming, to derive metrics in order to measure the odds of each program
element being faulty. Each individual in the population represents a candidate
suspiciousness formula to solve the problem and the population is a set of solu-
tions which evolves to achieve better equations to calculate how suspicious each
software element is. A classical example is to rank the software statements with
respect to their fault-proneness by applying an approach based on a Genetic
Algorithm, but to the best of our knowledge there is no effort to provide an
overall analysis of the SBFL methods in the literature.

In order to propose new SBFL methods that reduce the fault localisation
effort, and to investigate how they are employed and evaluated, we need to
examine and characterise existing methods. Considering this fact and to con-
tribute to the development of the SBFL field, this paper provides results of a
mapping study on the SBFL methods. The overall objective is to provide a
study of the research on SBFL methods to systematically identify, analyse, and
describe the state-of-art advances in the field.

In our mapping we followed a research plan, according to guidelines of
Kitchenham et al. [6], including research questions, inclusion and exclusion cri-
teria, construction of the search string and selection of known search databases.
We found 14 primary studies, which are analysed considering the following di-
mensions: i) main fora and frequency of publications over the years; ii) research
interests addressed in the field; iii) main characteristics of the proposed methods
such as used algorithms, search process aspects and evaluation functions used;
and iv) evaluation aspects regarding baselines used in the evaluations, identified
benchmarks and evaluation measures.

As a contribution of our mapping we also discuss the main gaps we identified
by analysing the found studies. They constitute research opportunities to guide
future research in the field.

The paper is organised as follows. Section 2 reviews FL background and
related work. Section 3 describes the protocol and procedure adopted in our
mapping. The search process and the data extraction are in Sections 4 and
5 respectively. The main results and findings are analysed in Subsections 5.1
to 5.5, which provides answers to our research questions. Section 6 summarises
our finding, by presenting gaps and trends identified and derived research op-
portunities. Section 7 details the main threats to validity of our results and how
they were mitigated. Section 8 concludes the paper.

2. Background

The terms error, fault (defect), and failure are defined, respectively, as “er-
roneous state of the system”, “defect in a system or a representation of a system
that if executed/activated could potentially result in an error”, and “an exter-
nally visible deviation from the system’s specification” [7]. The Standard IEEE
1044 (2009) [8] states that “a failure may be caused by (and thus indicate the

85

90

95

100

105

110

115

120

125

presence of) a fault” and “a fault may cause one or more failures”. We adhere
to this terminology in this paper.

Spectra-based analysis refers to a group of FL. methods that use a program
spectrum to find the location of the fault in the given program that causes
certain tests to fail. Repps et al. initially hypothesise a strong correlation
between spectra differences and faults [9], such as a correlation between distinct
spectra for a faulty program and the correct version on the same input and a
high fault count [10].

A program spectrum is an execution profile that indicates which parts of
a program are active during a run [11], that can be applied as a heuristic for
understanding the magnitude of the behavioural changes between program ver-
sions [9]. The most widely used type of program spectrum is the combination
of code coverage and the test results: which code elements were executed (or
not executed) by test cases that have passed (or failed).

In general, automation initiatives for FL propose formulae to calculate the
odds of faulty program elements, and a number of spectrum-based formulae
have been proposed in different studies as well as comparisons among them
(e.g. [12, 13, 14, 11)).

2.1. Search-based Fault Localisation

Search-based Software Engineering (SBSE) is the name given to a body of
work in which search-based optimisation is applied to Software Engineering [15].
Harman and Jones argue that like other engineering disciplines, Software En-
gineering is typically concerned with near optimal solutions or solutions which
fall within a specified acceptable tolerance and these are the very factors which
make robust metaheuristic search-based optimisation techniques readily appli-
cable [16]. As defined by the authors, it is possible to apply metaheuristic
search to a large body of software engineering problems, where natural repre-
sentations, objective (fitness) functions and operators suggest themselves. For
instance, software testing is an essential part of software engineering, and there-
fore testing problems can be modelled as search-based problems (e.g. sample
data are selected from the program input domains which are in general infinite).

Search-based Fault Localisation (SBFL) is a research field that applies the
SBSE paradigm to the fault localisation problem. The optimisation algorithm
exploits the search space such that each element of this space denotes a candidate
solution related to a potential fault location. It means SBFL research field
essentially can cope with a search process to more precisely locate software
faults.

In this sense there are intrinsic questions related that are typical of optimisa-
tion; two examples of SBFL problems are: What is the best ranking of software
elements with respect to faulty ones when failures are revealed? What are the
best formulae to calculate the suspiciousness of faults with respect to elements
of a particular program? Note that such questions look for their answers in
distinct search spaces, which are, respectively: (1) the whole set of program
elements, which may become larger as the software complexity increases; and

130

135

140

145

150

155

160

165

(2) all valid formulae composed of variables and mathematical operators se-
lected to build suspiciousness measures. The scientific community has become
increasingly interested in the SBFL research field in recent years, specifically on
applying metaheuristic algorithms to guide the search process.

2.2. Systematic Mapping Study

Kitchenham et al. [6] define a systematic mapping study (SMS), or scoping
study, as a study whose objective is to provide a wide overview of the research
area, to establish if research evidence exists on a topic and to provide an in-
dication of the quantity of the evidence. Brereton et al. [17] highlight that
systematic mapping is useful to establish the context of a review as well as to
assist in the definition of research questions and selection criteria.

In this context there has been renewed interest in proposals for fault local-
isation methods, and as a result literature-reviewing papers of such research
area have been published [4, 18] and the number of papers has increased since
2001 [4]. The present systematic mapping study deals with the proposition
and evaluation of fault localisation techniques that are based on metaheuristic
search. The focus of the metaheuristic search impacts the decision to include
or not primary studies as relevant papers to the mapping; if so it means that
the optimisation algorithm exploits the search space such that each element of
this space is a candidate solution that indicates a potential defect’s location. In
summary the relevant papers directly cope with the question: how effective are
techniques to precisely locate software faults.

3. Planning of the systematic mapping study

Following the guidelines of Kitchenham et al. [6] we created a protocol and
structured our mapping study process into seven stages as illustrated in Figure
1. Such stages are based on [19, 20] and are briefly introduced below:

1. the need and relevance motivates the mapping study and states the re-
search questions (Subsection 3.1);

2. planning of the study refers to the main steps needed to carry out the
mapping study and outlines its structure (this section);

3. search for primary studies seeks relevant studies by following a search
strategy (Section 4);

4. inclusion and exclusion of primary studies defines inclusion and exclusion
criteria and strategies aimed at analysing the found studies by flagging
them as relevant (or non relevant) to the mapping process (Subsection
4.1);

5. data extraction refers to collecting data from the relevant studies by ap-
plying systematic strategies; e.g. a classification schema is defined for
guiding the data extraction (Section 5).

170

175

180

185

190

6. data classification and visualisation categorises the relevant studies and
organises the classified data in order to present them as a map using charts
and diagrams (Subsections 5.1 to 5.5).

To reduce any bias, dealing with validity issues (in Figure 1) refers to the
systematic way of reducing the threats to validity on each process stage, i.e.
the actions that have been taken to increase the reliability of the process. For
instance on the need and relevance we carried out a systematic search by looking
for similar-focused literature review papers aiming at increasing confidence on
the novelty of this study. Discussion about the threats are presented in Section 7.

[. N —.| 4. Selection of primary Deflne inclusion and
Identify the gap J/\‘ / studies exclusion criteria
1. The need and}/'*
- A relevance \
[
|

Define goals and \>—/
objectives ~
//— — fs Data extracnon\} t}efme a framework to
\

J
answer the RQs)

-
State the research SYSTEMATIC MAPPING (. 7
| questions (RQs) | 2 Planning of the study STUDY PROGESS 5 /" classify the studies

\

— [
u { 6.Data i i ‘
_ neemnboni B —
c—h.,.,;e = /‘ ‘ and visualisation D.escribe Biifcores "YW
strategies (e using charts and tables/
\ 3.Search for primary }\ / —
r \&/ h \\ Dealing with validity
Define search stnngj\/ - e ‘

Figure 1: Systematic mapping study process.

The following sections report the stages of the present mapping study as well
as the research opportunities revealed by the study.

3.1. The need and relevance of the study

This section addresses the need and relevance of the present systematic map-
ping study which is focused on the SBFL research field. Firstly, we investigate
whether other studies exist which pursue the same goal.

We performed a search looking for literature review studies from last ten
years until June 2019. The choice of databases and the structure of the search
string were based on Petersen et al.’s mapping study which investigates how
systematic mapping processes have been executed in software engineering [20].

The search was carried out on the databases of IEEE Xplore, ACM, Scopus,
as well as Inspec/Compendex (Engineering village) by applying the search string
to the Metadata title, abstract and keywords. The search terms were grouped
into three sets:

e The scope: (“software” OR “program” OR “programs”) AND

e The concept that is going to be observed: (“fault localisation” OR “fault
localization” OR “defect localisation” OR “defect localization”) AND

195

200

205

210

215

220

e The process of classification and categorisation: (“systematic mapping”
OR “systematic map” OR “systematic mapping study” OR “systematic
mapping studies” OR “systematic review” OR “literature review” OR
“survey”)

To identify the relevant studies, the search results were analysed by the two
first authors of this paper. The analysis was based on titles and abstracts,
as well as full-text reading. As a consequence, the reasons to flag studies as
excluded were: conference proceedings, which also appear in Scopus and In-
spec/Compendex results as publications (10 papers); secondary studies not re-
lated to fault localisation (7 papers); papers that are not secondary studies (10
papers); and studies that are not written in English (6 papers). The literature
review studies that were flagged as relevant are listed in Table 1.

Table 1: Literature review studies of fault localisation.

#ID Authors Title Source title Year

Software fault localisation: a systematic mapping

S1 Zakari, Lee, Alam and Abmad [18] 7™

IET Software 2019

S2 Wong, Gao, Li, Abreu and Wotawa [4] A survey on software fault localization IEBE Transactions on 2016
v Software Engineering

Fault-localization Techniques for Software Systems: ~ SIGSOFT Softw. Eng.

A Literature Review Notes 2014

3 Agarwal and Agrawal [21]

We use the terms technique and method with the same meaning, which
denote a search-based solution to the fault localisation problem.

Regarding the analysis process of related secondary studies, we applied a set
of comparison attributes over the studies aiming at comparing studies listed in
Table 1 against the present mapping as follows.

AO01: Are research questions presented?

A02: What is the period covered by the secondary study?

AO03: Is the search string shown?

A04: Are the search databases listed?

AO05: Are the inclusion and exclusion criteria defined?

AO06: Are the inclusion and exclusion criteria justified?

AOQT: Are the selected papers explicitly identified?

AO08: Are the papers that apply metaheuristic search identified?

A09: Are the recent papers that apply metaheuristic search included?
A10: Are research questions explicitly answered?

A11: Is there a crossover of answers from different research questions?

A12: Are research gaps and opportunities identified and presented?

225

230

235

240

245

250

255

Table 2: Comparison attributes over secondary studies.

#ID A01 A02 A03 A04 A05 A06 AO07T A08 A09 Al0 All A12

S1 v 2006-2017 v v v X X X X v v v

S2 X 1977-2014 X X X X v X X X X 4

S3 X 2007-2013 X X X X v X X X X X
This mapping v 2001-2019 v/ v v v v v 4 4 4 4
v Yes, X: No

We analyse each secondary study regarding comparison attributes as shown
in Table 2. The present mapping fulfills all the attributes listed in the table.

Research questions (RQs) make the goals and contributions of secondary
studies more objective and systematic. There are three attributes of the research
questions, namely A01, A10, and Al1l: Studies S2 and S3 are not oriented by
RQs and they do not meet any such attributes. Regarding the systematisation
of the search process, Studies S2 and S3 also fail to present the search strings
and search databases (Attributes A03 and A04, respectively).

On the selection of primary studies (Attributes A05 and A06), Studies S2
and S3 do not apply inclusion and exclusion criteria to select studies. Study
S1 states inclusion and exclusion criteria but does not justify them, so that
includes a validity threat to the selection process. Another important threat is
the identification of selected studies (Attribute A07), as that makes the response
process to the research questions reproducible and able to be evaluated: Study
S1 does not meet that attribute.

Attribute A0S treats the identification of primary studies that apply meta-
heuristic search, i.e. the focus of the present mapping: search-based fault lo-
calisation (SBFL). Study S3 does not categorise the selected primary studies
but only lists them by year. Studies S1 and S2 have similar ways to classify
fault localisation (FL) methods such as spectrum-based, statistics-based, pro-
gram state-based, machine learning-based techniques and hybrid. However, such
studies do not address SBFL as a category of FL techniques. Study S2 does
not select a primary study entitled ”Evolving fault location techniques based
on human competitive spectra” and authored by Yoo et al. in 2012, which is
an important contribution to SBFL’s research field. In addition, Study S1 does
not explicitly state what primary studies are the selected ones (only deals with
the number of papers).

Regarding recent papers that apply metaheuristic search (Attribute A09),
Studies S2 and S3 do not meet this attribute as their search period ends in 2014
and 2013 respectively. Study S1 covers up to 2017 but fails to meet Attribute
A09 such year, as S1 selects only one paper on both categories machine learning-
based techniques and hybrid (these categories could match some of the studies
on SBFL). Finally only Studies S1 and S2 identify and present research gaps
and opportunities (Attribute A12), which are expected findings from secondary
studies.

Therefore, we did not identify any literature review papers that specifically
focus on the SBFL research field nor categorisation scheme for SBFL-based

methods. Such a finding reveals a gap for further efforts aiming to map the
x0 research area and to apply a classification schema to the published methods.

3.2. Research questions

Since the definition of research questions delimits the research scope and the
purpose of systematic mappings is to establish an overview of the research field
and to identify the number and types of research conducted so far, this study

265 is guided by research questions (RQs) that pursue the aim:

RQ-1:

270RQ-2:

RQ-3:

275

How has the number and the frequency of publications evolved over the
years? Rationale: this question aims to assess the relevance and activity
of this topic in the SBSE community as well as its evolution in terms of
the number and constancy of publications.

What venues has the research on SBFL methods been published in? Ra-
tionale: this question helps to identify the most preferred fora aiming to
figure out what venues value the research field and to provide researchers
with information concerning the best places to publish their research.

What investigations and data are addressed by the studies? Rationale:
this question is aimed at identifying the research interests of the studies,
the sources of fault data and the main targets of their research questions.
To cope with this question, three sub-questions were formed:

RQ-3.1: What data are considered as sources of faults to be located?
RQ-3.2: What do primary studies focus on?
280 RQ-3.3: What are the main aspects that the research questions deal with?

RQ-4:

285

How do the approaches handle the fault locating process? Rationale:
this question treats issues related to how methods reach consensus on
suspicious software elements, such as the evaluation functions, and search
spaces. To this end, we subdivided this question into three sub-questions
as follows.

RQ-4.1: What are the meta-heuristics used?
RQ-4.2: How do the approaches handle the quidance of the search process?
RQ-4.3: What classes of search spaces are probed in SBFL studies?

RQ-5:

290

How are the approaches evaluated? Rationale: this question analyses
the applicability of SBFL methods that include real cases. It helps the
researcher to plan the evaluation of his/her methods and provides a basis
for comparison in the research area. To address these issues, three sub-
questions were considered:

RQ-5.1: What baselines are used when evaluating SBFL methods?
205 RQ-5.2: What evaluation metrics are used when evaluating SBFL methods?
RQ-5.3: What benchmarks are used when evaluating SBFL methods?

300

305

310

315

320

325

330

335

4. Search for primary studies

When searching for relevant studies, we follow the argumentation of Wohlin
et al. [22] for achieving a good sample instead of exhaustively finding all primary
studies. The systematic choice of the sources (e.g. quality indexed databases)
and the scanning methods (e.g. application of search strings) promotes a better
representation of the population for the targeted topic.

The following databases were elected, as recommended by Kitchenham et al.
[6] and Petersen et al. [20]:

e IEEExplore (hitp://iecexplore.ieee.oryq);
e ACM Digital Library (http://dl.acm.org);

SCOPUS (http://www.scopus.com);

Science Direct (http://www.sciencedirect.com);
e Engineering Village (http://www.engineeringvillage.com).

The search stage identifies papers using search strings in all databases that
are relevant to the research field and keywords from the research questions
should be the basis for formulating the start set, and are essential when searching
for the initial set of papers to start the snowballing [20]. Our search string was
built with sets of keywords so that papers have to match at least one keyword
in each set to be selected.

The first set is composed of the word “localization” and its language vari-
ations and synonyms e.g. localisation, locating, localising and localising. The
second set is composed of the word “fault” and the words that have been used
as the same meaning in the research field such as “bug”, “defect” and “error”.

The third set of keywords have the term “search-based”, which indicates the
solution strategy to the problem. This set look for papers that apply meta-
heuristic optimisation techniques to solve the fault localisation problem. The
keyword “metaheuristic” along with its variations was also added to the set.
Moreover, not every paper uses such words, instead some may prefer explic-
itly to use the name of the metaheuristic techniques applied. Hence, keywords
associated with the most popular techniques applied to search-based software
engineering should be selected. Such meta-heuristics include: Hill Climbing,
Simulated Annealing and Genetic Algorithms [23]. Moreover, we also added
keywords used in fault localisation surveys [4], and used in related areas such as
search-based test case generation [24], they include: Tabu Search, Ant Colony
Optimisation, Genetic Programming and Particle Swarm Optimisation.

Through pilot searches a significant volume of publications not related to
software engineering was found; for instance, papers that treat fault localisa-
tion in other contexts, like automotive engineering [25] or electromagnetic wave
propagation [26]. Hence, a set of keywords was added to the search string to
restrict the results to publications on software engineering; i.e. to reduce the
noise due to a number of non-relevant articles in this mapping study. As the

10

terms “software engineering” or “software” might not be present in every paper,
the following keyword set was established: “software” and “program”.

340 Since the search string screens papers that have at least one keyword from
each set, the final search string was built with the logic operators AND and OR
as follows:

(“software” OR “program”) AND (“bug” OR “defect” OR “fault” OR
“error”) AND (“localization” OR “localisation” OR “locating” OR “localizing”
345 OR “localising”) AND (“search based” OR “search-based” OR “search
algorithm” OR “search-algorithm” OR “metaheuristic” OR “metaheuristics”
OR “meta-heuristic” OR “meta-heuristics” OR “genetic” OR “evolutionary”
OR “hill climbing” OR “hill climb” OR “annealing” OR “tabu” OR “colony”
OR “swarm”

350 Once the search string was built, the meta-data to be used on the search
engines of the selected databases were defined. In this study the search is applied
to title, abstract and keywords.

To deal with validity issues the quality improvement was conducted in two
ways:

355 ¢ Independent assessment of the authors. The first author tailored the
search string according to the search engine’s features and carried out the
search over the selected databases. To evaluate the study identification
process the other authors created their own set of search terms and applied
them to the search engines. The minor differences between the sets of

360 studies obtained from the authors’ searches were settled by considering all
studies present in both sets.

e Inclusion of control papers. We developed the search string after per-
forming a number of pilot searches to get relevant studies. The search
string was evolved until the search results included a small set of papers

365 that we expected to find as to they were flagged as relevant according to
the authors’ perceptions:

— S. Wang, D. Lo, L. Jiang, Lucia, H. Lau, Search-based fault local-
ization, in: 2011 26th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2011, Proceedings, 2011.
370 — L. Naish, Neelofar, K. Ramamohanarao, Multiple bug spectral fault
localization using genetic programming, in: 2015 24th Australasian
Software Engineering Conference, 2015.
— S. Yoo, X. Xie, F. C. Kuo, T. Y. Chen, M. Harman, Human competi-
tiveness of genetic programming in spectrum-based fault localisation:
375 Theoretical and empirical analysis, ACM Transactions on Software
Engineering and Methodology, 2017.

The reference period for the database search process was defined based on
the SBSE manifest of Harman et al. as it was a milestone for the research area

11

380

385

390

395

400

405

410

[16, 27]. In this way, we set 2001 as the initial year for the search, and 2019
as the final year for the search (the last search was carried out on September
16th). Table 3a shows the number of papers found in the selected databases.
The last row refers to the total number of primary studies obtained excluding
any overlaps between the sources’ results !.

4.1. Inclusion and exclusion of studies: scoping the mapping

In addition to the search string, the inclusion and exclusion criteria define the
mapping scope. This subsection explains the scope of the systematic mapping
and justifies the exclusion criteria.

The present mapping focuses on the development and evaluation of fault
localisation methods and techniques that apply metaheuristic search. To achieve
this goal, we identify a set of target scopes that together define the mapping and
describe the research field.

The following topics are presented below along with the rationale for each
of them.

e Software Engineering Topic

— Scope: The objective Software Engineering topic refers to the debug-
ging of software faults.

— Rationale: Studies should not emphasise topics other than software
debugging or on other engineering areas. An out of scope example
is: a method performs distributed localisation algorithms for wireless
networks (e.g. [28]).

e Debugging Focus

— Scope: The debugging focus refers to fault localisation techniques
with respect to proposals of new methods as well as improvement of
existing methods.

— Rationale: Studies should focus on the development of fault localisa-
tion methods, instead of just using existing ones without aggregating
improvements on them. Two out of scope examples are: the fit-
ness function of a new approach uses an existing fault localisation
method to guide the search for test data, in other words that refers
to a test data generation approach (e.g. [29]), and fault localisation
of Simulink models by generating test cases (e.g. [30]).

e Algorithm

— Scope: The algorithm carries out metaheuristic search to solve the
fault localisation problem.

1Search string variations were required for each database. They will be available after
acceptance, as well as, all the raw data regarding this map

12

415

420

425

430

435

440

445

450

— Rationale: Studies should deal with the fault localisation problem as

a search problem and apply metaheuristic algorithms to solve that.
An out of scope example is: the approach applies integer linear pro-
gramming to break down the localisation problem into several smaller
ones that can be dealt with independently (e.g. [31]).

e Optimisation Target

— Scope: The search process scans somehow program elements in order

to identify potential fault locations.

— Rationale: Studies should carry out the metaheuristic search over

the fault localisation search space itself instead of optimising another
technique. An out of scope example is: a VSM (Vector Space Model)
approach locates faults by using a Genetic Algorithm to configure
the number of abstraction level topics for VSM (e.g. [32]).

e Domain

— Scope: The faults to be located refers to functional faults in software

written in general-purpose programming languages and on a broad
application domain.

Rationale: Studies should cover fault localisation methods on a broad
domain basis without being specific on programming language, ap-
plication field, non-functional fault type, etc. Two out of scope ex-
amples are: faults appearing as the result of dynamic reconfigura-
tions of a system due to context changes in a DSL (Domain Specific
Language, e.g. [33]), and fault localisation of Simulink models by
generating test cases (e.g. [30]).

e Threat

— Scope: The research is written in an easy-to-read language and has

been evaluated by the scientific community.

— Rationale: Studies should be validated by peer-review process and be

written in language of general scientific acceptance. An out of scope
example is: a doctoral dissertation written in French (e.g. [34]).

In order to perform the scope of the mapping, nine exclusion criteria (EC)
and two inclusion criteria (IC) were defined as follows.

EC1: Papers that do not use meta-heuristics in the problem solution, such as

EC2:

EC3:

papers that apply only exact methods or do not treat the problem as an
optimisation one.

Papers related to software fault localisation in specific domains (e.g. ed-
ucation), or focused on a particular programming language.

Papers focused on non-functional software failure (e.g. security vulnera-
bility, electrical grids, physical systems);

13

455

460

465

470

475

EC4:
EC5:
EC6:

ECT:
ECS:
EC9:

IC1:

1C2:

Papers focused on the optimisation of test suites.
Papers focused on automatic fault repair.

Papers in which the optimisation algorithm is applied to a machine learn-
ing process instead of the fault localisation problem itself (e.g. optimising
of k-means clustering or neural network).

Papers not related to software debugging.
Papers that are not written in English.

Papers not submitted to a scientific peer-review process, such as technical
reports, technical notes, books, book chapters and websites.

Papers that treat the software fault localisation problem itself as a search-
based optimisation problem.

Papers that support or enhance the SBFL methods, such as generation of
fault localisation measures, or evaluation.

On the validity efforts, the two first authors independently evaluated the
papers using three grades matching the selection criteria: met, possibly, or not

met.

Then the research expertise in the area of all the authors was used to

decide the selection criteria for each paper.

The decision of how papers are evaluated in the selection was taken based on
title, keywords, abstracts and optionally partial reading (e.g. introduction and
conclusions) or full reading to dismiss any doubt. Table 3b shows the number of
included and excluded papers per criterion. The table also shows the matching
of papers over the databases.

Table 3: Summary of the search process.

(b) Analysis of studies per criterion®

Databases
Criterion Papers SD EV SCP ACM IEX
(a) Number of studies obtained per database. IC1 1 ! L L 0 0
1C2 12 0 10 10 4 4
Source Papers EC1 24 2 14 16 5 8
IEEExplore (IEX) 54 ggi 172 2 Z ? 3 ;
ACM Digital Library (ACM) 51r BC4 15 0o 10 13 9 5
SCOPUS (SCP) 145 EC5 33 2 16 21 13 6
Science Direct (SD) 40 EC6 10 0 7] 2 4
Engineering Village (EV) 107 EC7 118 31 39 63 23 22
Total (duplicates excluded) 233 EC8 6 0 6 5 0 0
EC9 6 2 3 3 0 0

a . e .
Some studies were classified in more than one

exclusion criterion (EC).

To clarify the scope limits of this systematic mapping, Figure 2 presents
the relation of each exclusion criterion with the target scopes aforementioned.

14

480

485

490

495

500

Edges between target scopes represent a coverage relation seen that Software
Engineering Topic encompasses Debugging Focus (Fault Localisation, Software
Testing, and Program Repair), which in its turn hold Algorithm and Domain,
the same interpretation goes for the remains target scopes.

,--~ SE Topic
EC7 -~
Debugging .-- EC4
Focus
‘- EC5
,-- Algorithm
EC1 - . EC2
Domain ~{
____Optimisation . EC3
- Focus
EC6
Threat
Target Scope !"/ \“

Exclusion Criterion EC8 EC9

Figure 2: Relation between target scopes and exclusion criteria.

Target scopes compose the boundary of the mapping, so the exclusion criteria
are used to apply such limits in the set of the found studies. For instance,
EC4 and EC5 are used to exclude studies that although presenting research in
Software Engineering Topic (Figure 2), are focused on improving test suites and
automated repair programs, respectively. We utilise the target scope Threat to
prevent the analysis of studies that represent potential threats to the results,
even if they are perfectly satisfied by the other target scopes.

Figure 3 presents the number of excluded papers at the end of the selection
of relevant primary studies, according to the target scope. The majority of
excluded papers address an engineering topic distinct from software debugging
(and software engineering). Debugging focus is the second reason for exclusion,
followed by Algorithm, Domain, Threat and Optimisation Target.

The present mapping aims to cover papers that develop fault localisation
techniques and methods based on metaheuristic search. Primary studies ex-
cluded due to Debugging Focus do not develop or improve fault localisation
techniques and methods, but use existing ones to promote software testing and
repair approaches (e.g. [29, 30]). A secondary study that falls in the intersec-
tion of Fault Localisation (FL) and Search based Software Engineering (SBSE)
will potentially include such studies, but that focus is distinct from the present
systematic mapping.

15

505

510

515

520

525

Optimisation Target
Threat

Domain

Algorithm
Debugging Focus
SE Topic

0 25 50 75 100 125

Figure 3: Excluded papers per target scope.

4.2. Snowballing

Harrold et al. [10] have advocated the use of snowballing as the main method
to find relevant literature. In their recommendation, they highlight two pro-
cesses: backward snowballing (BS) to search for new primary studies from the
included papers’ reference lists, and forward snowballing (FS) to search for new
primary studies from the citations to the included papers. Both processes were
carried out by the two first authors so that they could perform cross validation.
Each resulting paper was analysed according to its title and abstract.

The BS considered all references cited by the papers included previously.
The FS used the Google Scholar search engine due to its great capability of
searching citations across many publishers available [35]. As a consequence the
BS and FS processes found 228 and 96 papers, respectively, that means such
papers had not been revealed in the database search phase. Then inclusion and
exclusion criteria were applied to these papers, so BS and FS added the same
paper to the included set of papers. After new analysis such paper did not
present new references or new citations since all of them were already analysed
previously, so new backward and forward snowballing cycles were not required.

4.8. Search Summary

Figures 4a and 4b summarise the search process. Table 4 lists in chronologi-
cal order all papers selected after the application of the inclusion and exclusion
criteria. Column ID identifies the relevant papers for the systematic mapping
study from this point forward and follows the pattern Rx: R refers to the the
adjective relevant, and x states a numerical sequence that results in R1, R2,
and so on.

16

530

535

540

Search in Databases 233
v
Excluded
Papers
]
Forward Snowballing

Included
Papers

Papers included by the 13
13 | database search
Papers included by 1
backward snowballing

Backward Snowballing

Papers included by 1
forward snowballing
Duplicated papers from
snowballing

Papers not yet revealed
in the search phase
Excluded
Papers

Papers not yet revealed
in the search phase 228
v v
1 Excluded Included 1
Papers Papers Selected Papers 14

Included
Papers

(a) The database search followed by the forward and backward (b) Summary of the
snowballing, where both latter were carried out in parallel. search process.

Figure 4: Numbers of the search process: grey, red, green and yellow boxes reveal obtained
papers, excluded papers, included papers and final papers, respectively.

Table 4: Set of selected primary studies.

D Title Year
[R1] Search-based fault localization 2011
[R2] Evolving human competitive spectra-based fault localisation techniques 2012
R3] Multiple Bug Spectral Fault Localization Using Genetic Programming 2015
[R4] Empirical Evaluation of Conditional Operators in GP Based Fault Localization 2017
R5 FLUCCS: Using Code and Change Metrics to Improve Fault Localization 2017
g g
[R6] Genetic Programming-based Composition of Fault Localization Heuristics 2017
[R7] Human Competitiveness of Genetic Programming in Spectrum-Based Fault Localisation: Theoretical and Empirical Analysis 2017
[R8] Evolutionary Composition of Customised Fault Localisation Heuristics 2018
R9 Learning fault localisation for both humans and machines using multi-objective GP 2018
g)

[R10] Learning without peeking: Secure multi-party computation genetic programming 2018
[R11] Localizing multiple software faults based on evolution algorithm 2018
[R12] Mutation-Based Evolutionary Fault Localisation 2018
[R13] Spectral-based fault localization using hyperbolic function 2018
[R14] Empirical Evaluation of Fault Localisation Using Code and Change Metrics 2019

5. Data Extraction, Classification and Visualisation

The relevant studies were read in detail to extract the data needed to answer
the research questions. The two first authors read fully all the primary studies,
and both independently analysed and extracted data. The full-text analysis
included annotating a digital version of each paper by using colours and adding
comments so that each colour was related to a research question (e.g. brown for
the benchmarks, orange for evaluation measures, and so on). The analyses were
compared and disagreements were resolved by consensus or by consultation with
the other authors who are experts in the study domain.

Threats in interpreting the data include researcher bias. To reduce these va-
lidity threats and gain confidence in the results, the other authors have checked
the outcome. The colours used and the annotations promoted higher productiv-
ity and clarified the validation. Further analysis and consensus meetings were
added to resolve disagreements and uncertainty.

The following subsections categorise the relevant studies and map the ex-
tracted data in order to respond the research questions by including charts and
diagrams.

17

545

550

555

560

565

5.1. How has the number and the frequency of publications evolved
over the years? [RQ-1]

Figure 5 depicts the number of SBFL papers over the years, and the areas in
the graph show the publications in journals and conferences. The seminal study
was published in 2011 by Wang et al., and the authors called this approach
“search-based fault localisation”, as the FL heuristic composition problem was
treated as a search problem for the first time. Most articles (78.6%) were pro-
duced from 2017, which shows the current interest in this area. Considering
that more papers can be indexed by the search databases in 2019, we can see an
increasing number of published papers in the last years and that search-based
fault localisation keeps raising researchers’ interest. We conjecture the research
community have recognised the potential of the SBFL area to contribute to the
automation of the FL efforts.

AN :

2011 2012 2013 2014 2015 2016 2017 2018 2019

B Conferences @ Journals

Figure 5: Number of papers over the years.

5.2. What venues has the research on SBFL methods been published
in? [RQ-2]

The number of the studies per venue (journals, as well as peer-reviewed con-
ferences) is shown in Table 5. We found 12 different publication venues. The
publication fora is mainly from the areas of Software Engineering and Computa-
tional Intelligence. The first papers were published in conferences (2011-2015)
but this changed to journals recently (2017-2019). The most preferred event
is Symposium on Search Based Software Engineering (SSBSE) with 3 papers.
There is a preference for conferences (10 out of 14) that include several valued
by the research community such as the International Conference on Automated
Software Engineering (ASE), Genetic and Evolutionary Computation Confer-
ence (GECCO), International Symposium on Software Testing and Analysis
(ISSTA), and IEEE Congress on Evolutionary Computation (CEC). Regarding
journals, the venues include ACM Transactions on Software Engineering and

18

Methodology, Journal of Systems and Software, Software - Practice and Expe-
rience and IEEE Transactions on Software Engineering. Overall, this indicates
that SBFL studies are regarded as valuable scientific contributions, given that
they have been published in quality forums.

Table 5: Publication venues.

Forum Papers Years
Conferences
TEEE/ACM International Conference on Automated Software Engineering
Symposium on Search-Based Software Engineering
Australasian Software Engineering Confere
rnational Symposium on Software Testing and Analysis
Genetic and Evolutionary Computation Conference
Brazilian Workshop on Search based Software Engineering
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
TEEE Congress on Evolutionary Computation
Journals
ACM Transactions on Software Engineering and Methodology
Journal of Systems and Software
Software - Practice and Experience
IEEE Transactions on Software Engineering

2011
2012, 2018(2)
2015
2017
2017
2017
2018
2018

e W e

2017
2018
2018
2019

5.3. What investigations and data are addressed by the studies? [RQ-
3
This section refers to the investigations and sources of fault data processed
in the research field. The following sub-questions go through such aspects.

5.3.1. What data are considered as sources of faults to be located?
[RQ-3.1]
On designing fault location methods, we consider data which are used as
sources of information about existing software faults. Basically the research
field deals with the following source categories:

e (Code coverage spectra refers to the code covered by test cases. The exe-
cution of a test case produces a link between the executed code and the
test result, i.e. whether or not the exercised control flow generates the
expected result by the test case. In this sense, each software element e
(e.g. a program statement) is associated the following variables: e,(e)
(ef(e)) is the number of pass (fail) program runs that execute element e,
and np(e) (ng(e)) is the number of pass (fail) runs that do not execute
element e;

e Change and code metrics refers to static information such as change fre-
quency of program elements, how long a given program element has existed
in the code base; lines of code (LOC), number of local variables, among
others;

e Mutation spectra refers to the use of mutation analysis data: a set of pro-
gram mutants are generated, each one differs from the program under the
fault localisation process by a syntactical change in a statement. The idea
is to assign suspiciousness to injected mutants, based on the assumption
that test cases that kill mutants (i.e. make the mutants behaviour dis-
tinet from the original program) carry diagnostic power: the more often

19

a statement affects failing tests, and the less often it affects passing tests,
the more suspicious the statement is considered [36].

Table 6 details the data which are used as sources of faults in each study. The

main source of fault information is code coverage spectra, since all the studies

es are grounded on it: seven of them are directly formulated from code coverage
spectra variables (ep, ef, np, ny) and the others are code coverage-based metrics
that means they are also formulated from such variables; e.g. Jaccard and
Information Gain in [R1, R6], Ochiai and Tarantula in [R4, R5, R6, R9, R10].

Table 6: Sources of faults information over the studies.

Fault data source Studies

Code coverage spectra [R2] [R3] [R7] [R8] [R11] [R12] [R13]
Code coverage-based metrics [R1] [R4] [R5] [R6] [R8] [R9] [R10] [R14]
Code and change metrics [R4] [R5] [R9] [R10] [R14]
Mutation spectra [R12]

In Figure 6, which presents the preferences (number of papers) related to

s data sources, code coverage spectra is used in 100% of the studies and 43% of

them (6 out of 14) are hybrid approaches as they also employ other fault sources:
five studies use code and change metrics and one applied mutation spectra.

14

Code coverage spectra
Code and change metrics

Mutation spectra 1

Figure 6: Preferences of data source.

5.3.2. What do primary studies focus on? [RQ-5.2/
In general, the primary studies deal with methods that assign suspiciousness
15 scores to program elements, in order to set higher scores for faulty program
elements related to the non-faulty ones. Thus such methods aim to place the
faulty elements at the top when ranked by them.
Basically the research is divided into three categories that the studies fall
into:

620 1. the proposition of a particular formula to calculate the suspiciousness of
program elements as defective;

2. the generation of suspiciousness formulae by an optimisation algorithm;

20

625

630

635

640

645

650

3. the introduction of a method that ranks program elements as defective
directly from an optimisation algorithm (without applying formulae to
compute suspiciousness scores).

Figure 7 presents the distribution of papers over the categories of methods.
Formulae generation is the preferred in the research field as it cover 71% of
the studies. The two first categories refer to formula-based methods because
the suspiciousness ranking is created from formulae evolved by optimisation
algorithms (from the scores obtained from the calculation of formulae). The
third category refers to direct-ranking methods since the optimisation process
itself creates the suspiciousness ranking. Note that most of the studies (13 out of
14) cope with formula-based methods and this exposes a research gap to exploit
direct-ranking methods.

Formulae
proposition

Formulae
generation

Direct ranking ' [R11]

[R1], [R3], [R13]

[R2], [R4], [R5], [R6], [R7], [R8], [R9], [R10], [R12], [R14]

0 2 A 6 8 10
Figure 7: Method categories in the research field.

In the first category, a formula is proposed in [R1] that represents a com-
position of 22 previous formulae. Another formula is proposed in [R3] whose
variables are code coverage spectra data. In both studies the formulae have a
set of weights (e.g. wy, wa, K1, K2) whose values must be determined by opti-
misation algorithms. The latter was extended in [R13] by aggregating a pruning
technique aiming to decrease the size of training data (and the learning time),
larger data sets in experiments, and an efficiency analysis.

Most of the studies refer to the generation of suspiciousness formulae: basi-
cally optimisation algorithms compose formulae from a set of variables (sources
of fault data) and mathematical operators, and evolve such formulae according
to a fitness function. These studies share the belief that the machine-evolved
formulae are at least as good as the ones designed by humans. The seminal
study was published in 2012 [R2], and the idea has received improvements and
extensions since then: additional fault data source [R5, R12, R14]; more ro-
bust evaluation of generated formulae [R7]; a ternary conditional operator to
compose formulae [R4]; a multi-objective approach to achieve higher scores for

21

655

660

665

670

675

680

defective elements against lower scores for non-defective ones [R9]; the use of
previous heuristics for calculating suspiciousness scores (i.e., human-proposed
equations to rank program elements) which are used as variables for the gen-
eration of new formulas [R5, R6, R8, R14]; a secure multiparty mechanism so
that one party learns a model of training data provided by another party but
keeping the inputs hidden from each other [R10].

Despite the preference for formula-based methods in this research area, Zheng
et al. [R11] proposed a method to derive a suspiciousness ranking directly from
the optimisation process, by evaluating the combinations of program entities as
candidates with faults, including dealing with multi-fault programs, instead of
considering statements in isolation.

5.3.3. What are the main aspects that the research questions deal
with? [RQ-3.3]

According to Creswell [37], a Research Question (RQ) articulates “the un-
certainty that the investigator wants to resolve by performing his/her study”.
We find as a consequence of the authors’ methodological style, some studies
do not explicitly present the RQs in the text itself, so we extract them from
‘the uncertainty being resolved’ whose content is mainly located in the papers’
results section. Overall the studies measure the method’s execution behaviour
and compare the results with those from other methods in order to gather data
(results) that support the answer to the research questions.

Figure 8 presents the focus of the research questions in the studies. Basically
the research questions deal with efficacy and efficiency as well as other issues.
On using the terms efficacy and efficiency the papers do not have consensus on
their meaning so we take efficacy to mean how effective for fault localisation
the method is (e.g. the suspiciousness rank of a faulty program element), and
efficiency to mean how much effort the method demands (e.g. the execution
time of the method).

Efficacy [All Studies]

Efficiency

R10,R11
{ ! Other

[R2,R5,R7,R12,R14]

Figure 8: Focus of research questions in SBFL studies.

The main concern over the research field is the effectiveness when locating
faults, so all the studies touch on functional aspects towards investigating the

22

685

690

695

700

705

710

efficacy as shown by the Venn Diagram in Figure 8. Furthermore five (out of
14) studies approach other issues that are closely related to efficacy such as:
'what design insights can be learned from the Genetic Programming-evolved
formulae?’[R2]; ’how much do the code and change metrics contribute to the
fault localization?’[R5]; ’is there a greatest formula that performs best in all
existing programs and faults?’[R7]; ’how does mutation spectra quality impact
fault localisation ability?’[R12]; and ’does the choice of learning algorithm affect
the effectiveness?’[R14].

Two studies cope with non-functional aspects and they have included the
time spent on configuration and evolution of the optimisation algorithm in their
analysis. Kim et al. [R10] concluded their method can be up to three orders of
magnitude slower than the baselines, despite it being competitive on functional
issues. Zheng et al. [R11] did not perform comparisons against the time spent
on baseline methods, but what is ”acceptable spent time in the real development
environment” (e.g. 23 seconds for the worst scenario of benchmark programs).

5.4. How do the approaches handle the fault locating process? [RQ-4]

This section deals with how methods achieve the decision on suspicious soft-
ware elements. The following sub-questions go through such aspects.

5.4.1. What are the meta-heuristics used? [RQ-4.1]
Table 7 shows the meta-heuristics addressed per primary study, while pre-
senting the algorithm distributions in the SBFL area.

Table 7: Algorithms per SBFL study.

Algorithm Study
Genetic programming [R2, R3, R4, R5, R6, R7, R8, R10, R12, R13, R14]
Simulated annealing [R11]
Genetic algorithm [R1, R11]
NSGA-II [R9]

Genetic Programming (GP) dominates the others (11 out of 14 studies),
mainly due to its way of generating rules: suspiciousness formulae in the fault
localisation context. Simulated Annealing and Genetic Algorithm (GA) are used
in one and two studies respectively. Non-dominated Sorting Genetic Algorithm
II (NSGA-II) is employed in [R9], that is a multi-objective version of a prior
study ([R5]). Moreover one study uses more then one algorithm: simulated
annealing optimises a genetic algorithm based solution in [R11].

5.4.2. How do the approaches handle the guidance of the search pro-
cess? [RQ-4.2]

Overall the guidance of a search process is grounded on an objective function

aiming to drive the process to achieve better solutions. According to Figure 9,

23

the preferred metric used as fitness function is mean expense (13 out of 14 stud-
ies) followed by weighted coverage on failed test cases, the latter is applied only

75 in [R11]. Despite its predilection as a fitness function, Mean expense produces
measures that are related to the percentage of examined code to find faults
with respect to the code size (e.g. number of lines of executable code). For this
reason its use is questioned by test engineers [38] as these metrics are related
to code size rather than being an absolute value such as number of statements

720 inspected until faults are found. On the other hand the research in [R11] differs
from the others as it proposes a new fitness function (formula) based on the
importance of a program element related to its coverage on failed test cases in
a multi-fault scenario.

7.1%

92.9%

Weighted coverage on failed test cases
Mean Expense

Figure 9: Fitness functions in the research area.

5.4.8. What classes of search spaces are probed in SBFL studies? [RQ-
725 43/
Search Space supports the way to model the set of all potential solutions
for a problem, so that each element in the set represents one feasible solution.
Table 8 shows the studies fall into three categories as follows:

o All compositions of weights of a suspiciousness formula reports on the
730 weights used in an equation whose values are obtained from an optimisa-
tion algorithm;

o All valid suspiciousness formulae refers to the valid suspiciousness equa-
tions obtained from evolutionary approaches;

o All suspiciousness sequences of program elements denotes all possible rank-
735 ings of the most likely elements to be defective.

24

740

745

750

755

760

765

770

Table 8: Search space over SBFL studies.

Search space Studies
All valid suspiciousness formulae [R2, R4, R5, R6, R7, R8, R9, R10, R12, R14]
All compositions of weights ki, ks, k3 [R3, R13]
All compositions of weights w1, wa, ..., waa [R1]
All suspiciousness sequences of program elements [R11]

On all compositions of weights of a suspiciousness formula, weights ki1, ko,
ks in [R3, R13] have the domain k; € R | 0 < {ky,k2} < 100A0 < k3 < 2, and
weights wy, wa, ..., wee in [R1] have the domain w; € R | 0 < w; < 1. In both
cases such domains are exploited by the optimisation algorithms selected by the
authors.

Regarding all valid suspiciousness formulae, the studies aim to generate
better formulae to identify the faulty program elements by evolving equations
composed by operators (e.g. basic math operations) and operands (sources of
fault data); for instance, code coverage spectra variables in [R2, R3]; code and
change metrics in [R5, R4]; mutation spectra variables in [R12]. Notwithstand-
ing the results obtained from evolved equations the literature states there is no
single optimal formula that performs best for efficacy over all contexts [R7].

With respect to all suspiciousness sequences of program elements the search
space addresses possible sequences of suspicious elements from the entire set
of program elements. Due to the huge solutions domain Zheng et al. restrict
the candidates to ones covered by all the failed test cases aiming to reduce the
search space [R11].

The distribution in Table 8 reveals most of the studies (71.4%) cope with
the search space of all valid suspiciousness formulae, 21.5% evolve solutions
from all compositions of weights of a suspiciousness formula, and 7.1% exploit
all suspiciousness sequences of program elements. These classes clarify how the
studies model the search-based problem that defines its search space.

5.5. How are the approaches evaluated? [RQ-5]

This section focuses on the way the research area carries out analyses that
help the researcher to plan the evaluation of his/her approaches and constitutes
a basis for comparison in the research area. The following sub-questions analyse
this question.

5.5.1. What baselines are used when evaluating SBFL methods? [RQ-
5.1]
Baselines refer to comparison references on evaluating new SBFL methods.
We abstract from the studies the following baseline categories:

e Analytical metric refers to a prior metric that was not generated by an
optimisation algorithm (i.e. proposed by humans).

e GP-formula is a specific FL formula previously generated by a genetic
programming approach.

25

775

780

785

790

795

e G P-method denotes a genetic programming method that dynamically gen-
erates a solution at the evaluation time.

e GA-method denotes a genetic algorithm method that dynamically gener-
ates a solution at the evaluation time.

e SA-method denotes a simulated annealing method that dynamically gen-
erates a solution at the evaluation time.

e Other refers to solutions from methods that are not based on metaheuristic
search, such as learning-to-rank and linear programming.

Table 9 presents the baseline distribution over the SBFL field, one can ob-
serve baseline categories per primary study. Observe that 11 out 14 of the
studies use more than one category, i.e. hybrid baseline. Figure 10 depicts
preferences related to the number of studies. Most of the studies (78.6%) use
analytical metrics as baselines. Metaheuristic method encompasses 57.1% of
studies, it merges the categories GP method, GA method and SA method, which
means that the research field values metaheuristic-based methods as consistent
baselines.

Analytical GP-formula Metaheuristic Other
Metric method

Figure 10: Baseline categories over SBFL field.

The use of analytical metrics per study is detailed as follows: Tarantula,
Ochiai and Information Gain in [R1]; Tarantula, Ochiai, Jaccard, OP1, OP2,
AMPLE, Wongl, Wong2 and Wong3 in [R2]; Tarantula, Ochiai, OP, O%, Zoltar
and Kulczynski2 in [R3]; Ochiai, Jaccard, ER1la, ER1b, ER5a, ER5b and ER5c
in [R5]; Tarantula, Ochiai, Jaccard, ¢-Coeflicient, Yule’s Q, Yule’s Y, Kappa, J-
Measure, Gini Index, Support, Confidence, Laplace, Cosine, Piatetsky-Shapiro’s,
Certainty Factor, Added Value, Klosgen and Information Gain in [R6]; Naish1,
Naish2, Wongl, Russel & Rao and Binary in [R7]; Tarantula, Ochiai, Ochiai2,
Jaccard, Braun-Banquet, Dennis, Mountford, Fossum, Pearson, Gower, Michael,
Pirce, Baroni-Urbani & Buser, Tarwid, Ample, Phi (Geometric Mean), Arith-
metic Mean, Cohen, Fleiss, Zoltar, Harmonic Mean, Rogot2, Simple Matching,
Rogers & Tanimoto, Hamming, Hamann, Sokal, Scott, Rogot1, Kulczynski, An-
derberg, Dice, Goodman and Sorensen-Dice in [R8]; Tarantula, Ochiai, Jaccard,

26

800

805

810

815

820

825

Table 9: Baselines in SBFL studies.

Study Analytical metric GP-formula GP-method GA-method SA-method Other
_ _ _ v _

LR
[I

I
<<l

I

I

=
RS O
< <o<i<l
< <<

OP2, Dstar and Ample in [R11]; Tarantula, Ochiai, OP2, Barinel and DStar
in [R12]; Tarantula, Ochiai, OP, O¢, Zoltar, Kulczynskil, Kulczynski2, Ample,
Wongl and Wong2 in [R13]; Ochiai, Jaccard, ERla, ER1b, ER5a, ER5b and
ER5c in [R14].

The baselines that fall into GP-formula category are: GP02, GP03 and GP19
in [R5, R7, R14]; and GP13 in [R5, R11, R13, R14]. Regarding the Other cate-
gory, [R5] and [R14] compared the proposed GP-based solution against variants
implemented with other learning algorithms such as Ranking Support Vector
Machine, Random Forest and Gaussian Process Modelling. Moreover [R11]
adopts a linear programming model to solve a multi-fault localisation problem.

5.5.2. What evaluation metrics are used when evaluating SBFL meth-
ods? [RQ-5.2]

When evaluating a SBFL method, evaluation metrics are generally applied
to obtain the measures on the object of study such as ability to locate faults
and execution cost. These measures are then compared with those obtained
from baselines in order to analyse the method under evaluation. We identify
six distinct evaluation metrics used by the SBFL studies. To normalise the
mapping data, we adopt a unique definition for such metrics as follows:

e FEzxpense: Proportion of inspected program elements, related to the total
number of program elements, it takes to find the first fault. This is similar
to the EXAM metric but these definitions have not been agreed in the
literature (e.g. the definitions of EXAM in [36] and [39] are distinct).

o Average rank percentage: Proportion of examined code to locate all pro-
gram faults [R13].

e Accuracy: The number of faults within the top-n elements in the suspi-
ciousness rank [R4].

27

830

835

840

845

850

855

o Wasted effort: The number of program elements that need to be investi-
gated in order to reach the fault [R4].

e Mean average precision: The mean of how precise the method is to locate
faults on average, there is an example on how to apply this metric in [40].

e FExecution time: Elapsed time in seconds.

Table 10 shows the studies that use each evaluation metric. Since an evalua-
tion metric measures a particular perspective of SBFL methods, the table shows
most of the studies (10 out of 14) use more than one metric and all metrics are
applied by more than one study. In some cases the studies do not apply a partic-
ular metric in the same way. For instance, the accuracy metric is defined as the
number of programs for which an algorithm ranks all faulty statements among
the top-n positions in [R11], but this metric is defined as the number of faults
within the top-n elements in [R4]. We conjecture that this variety impacts the
comparison of results between studies as the manner in which a metric is defined
can change the results. Apart from that the studies consider the measures over
all faulty versions and over a number of executions (most use 30 runs) in order
to deal with stochastic effects.

Table 10: Evaluation metrics over SBFL research area.

Evaluation Metric [R1] [R2] [R3] [R4] [R5] [R6] [R7] [R8] [R9] [R10] [R11] [R12] [R13] [R14]
Accuracy R 2 VAR VARV A - v v

Average rank percentage / - - - - - — - - _ -~

- - -

Execution time - - - _ -

Expense - v - = =

VoV
v v

[U U N
o<l o<

Mean Average Precision - - -
Wasted Effort - - =

<1<l

v
v

<<
|

<

<<

<
|

Figure 11 depicts the evaluation metrics used over method categories. Ac-
curacy and wasted effort are the most used metrics (each 57.1% of the studies)
and the unique metric applied to evaluate methods in all categories is the ex-
pense metric. The most used metrics per category are wasted effort followed by
accuracy and expense, all related to formulae generation category, respectively
in 8, 7 and 4 studies. Moreover formulae generation encompasses almost all
metrics used over the research field except average rank percentage. The less
used metric is the one related to efficiency evaluation, i.e. execution time.

5.5.3. What benchmarks are used when evaluating SBFL methods?
[RQ-5.5]

The following groups were abstracted from the benchmark programs used in
the studies: (i) siemens, a set of seven C programs originally created to support
controlled experimentation with testing techniques [41, 42]; (ii) defects4j, real
programs written in Java for controlled testing studies [43]; (iii) linux utilities,
linux programs written in the C language; (iv) space, an array definition lan-
guage interpreter written in the C language [44]; (v) codeflaws, a collection of

28

860

865

870

875

880

Mean
Average 3
Precision

Wasted 8
Effort

Average

rank
percentage
Accuracy 7 1
Expense 1 4 1

Execution 1
time

Formulae Formulae Direct
proposition generation ranking

Figure 11: Number of papers in each methods categories that employ each evaluation metrics.

programs from a platform for programming contests [45]; (vi) model programs,
small C programs with four statements designed for very controlled experiments;
and (vii) symbolic regression problems described in [46].

The distribution of programs in the studies with respect to the first four
groups is described as follows:

e siemens: print_tokens, replace and tot_info in [R1, R3, R6, R8, R11, R13];
print_tokens2 in [R1, R6, R8, R11, R12, R13|; schedule in [R1, R6, RS,
R12, R13]; schedule2 in [R1, R6, R8J; tcas in [R1, R3, R6, R8, R12, R13];

o defectsfj: lang, joda-time and closure in [R4, R5, R9, R11, R14]; math in
[R4, R5, R9, R11, R12, R14]; mockito in [R10, R14]; chart in [R11, R14];

o linuz utilities: grep, gzip and sed in [R2, R7, R11, R13]; flex in [R2, R7,
R13]; cal, checkeq, col, spline, tr and uniq in [R3]; and

e space: [R7, R11, R13].

Table 11 shows how benchmarks are allocated over SBFL studies that include
language, fault nature, and fault cardinality. Regarding programming language,
C and Java are used in all studies but only two studies use both languages, and
there is a slight preference for C programs (nine against seven studies). On fault
cardinality, all studies exploit single fault benchmarks and most of them (9 out
of 14) also exploit multiple fault benchmarks. Regarding fault nature, nine
studies (64.3%) use artificial fault benchmarks and seven studies (50.0%) use
real fault benchmarks. Only two studies ([R12] and [R11]) employ benchmarks
that exploit both languages (C and Java), both fault cardinalities (single and
multiple) as well as a combination of real and synthetic bugs. Furthermore

29

Figure 12: Benchmark preferences over SBFL research field.

Defects4j is the only benchmark written in Java and combines real and multiple
fault contexts.
Figure 12 shows benchmark preferences over the SBFL research field. De-

g5 fects4j and siemens are the most popular in the research field (seven studies

890

each), followed by linuz programs (five studies). These benchmarks as a whole
dominate the research field, since they are present in all studies, either alone or
in combination. Figure 13 shows the four most preferred benchmark groups over
method categories. Siemens, Linuz utilities and space are present in all method
categories whist defectsj concentrates almost all of its use in the formulae gen-
eration category. The figure also shows that the formulae generation category
uses all benchmark groups, that means this method category pays attention to
more benchmark alternatives.

Table 11: Benchmarks over SBFL studies.

Language Fault nature Fault cardinality

Studies Benchmarks . X)
C Java Artificial Real Single Multiple

[R1] siemens Vv - Vv — Vv -
[R2] linux utilities V4 - V4 - Vv -
R3] model programs, linux utilities, siemens V4 - 4 - Vv v
[R4] defectsdj - Vv - N Vv v
[R5] defectsdj v N Vv v
[R6] siemens Vv Vv Vv
[R7] linux utilities, space Vv - Vv — Vv -
[R8] siemens Vv - Vv — Vv -
[R9] defects4j - Vv - Vv N Vv
[R10] symbolic regression problems, defects4j - Vv - Vv Vv Vv
[R11] siemens, defects4j, linux utilities, space Vv Vv v Vv Vv v
[R12] siemens, codeflaws, defectsdj Vv v Vv N Vv v
[R13] model programs, linux utilities, siemens, space +/ V4 Vv Vv
[R14] defectsd] - V4 - 4 V4 V4

30

895

900

905

910

915

Space

Defects4J 6 1

Linux
utiities 2 o !

Siemens

Formulae Formulae Direct
proposition generation ranking

Figure 13: Benchmark preferences over SBFL method categories.

6. Summary of results and research opportunities

In this section, we present a synthesis of our findings regarding the SBLF
field and identify research opportunities.

6.1. Data sources of software faults

The studies have covered the basis of the fault data sources on code coverage
spectra, code and change metrics as well as mutation spectra. We found the
predilection is coverage spectra as they were the basis for all studies; furthermore
43% of studies are hybrid approaches as they also employ other fault sources:
five studies use code and coverage metrics and one applies mutation spectra.
Based on the fact of the studies explore just three categories of fault sources, we
conclude that to aggregate new sources of fault information such as data flow
coverage, and to extend the investigation to code and change data as well as
to mutation spectra is a research opportunity. Moreover as stated in [R12] it
is relevant to analyse the quality of sources of fault data and how such quality
can impact on the effectiveness of SBFL methods.

6.2. Main focuses of research area

Overall SBFL research deals with methods that assign suspiciousness scores
to program elements, in order to set higher scores for faulty programs. Most
of the studies (92.9%) refer to formula-based methods since the suspiciousness
ranking is created from the execution of formulae that are evolved by optimisa-
tion algorithms. These studies share the belief that machine-evolved formulae
are at least as good as the ones designed by humans [R7]. On the other hand the

31

920

925

930

935

940

945

950

optimisation process itself of direct-ranking methods generates the suspicious-
ness ranking (7.1% of the studies) instead of using a ranking calculated from
formulae. The present tendency of using formula-based methods reveals an open
field to invest research efforts to develop direct-ranking methods; such research
can also use new sources of fault data as described in Subsection 6.1.

6.3. Non-functional properties

All relevant studies describe their investigation focused on efficacy in the
sense that empirical analysis measures the fault localisation ability of SBFL
methods. It means researchers perceive that the methods must not fail at some
level to locate software faults. Our mapping reveals that a minority of the
studies also look at other aspects beyond efficacy such as the execution time of
the method. This may impact our confidence when using and adapting of SBFL
methods to the software engineers’ expectations. Thus there is an important
gap surrounding non-functional aspects of SBFL approaches as well as how such
investigations can be evaluated, in order to reduce the burden of selecting the
most appropriate solution based only on functional requirements. Moreover the
choice of appropriate benchmarks is vital to the validity and contribution of
the analysis of non-functional properties, for instance the computational time
increases with executable LOC (Lines Of Code) and the number of test cases.

6.4. Metaheuristic algorithms

The algorithms used in SBFL studies are Genetic algorithm, Genetic Pro-
gramming, Simulated annealing, and Non-dominated Sorting Genetic Algorithm
(NSGA II). Genetic Programming dominates the others (11 out of 14 studies),
mainly due to its ability to generate rules: suspiciousness formulae in the fault
localisation context. There are many ways to explore the use of meta-heuristics,
so researchers’ choice of algorithms is also a research opportunity. Furthermore
in addition to the used algorithms other metaheuristic algorithms fit with SBFL
problem such as Hill Climbing, Bee Colony, PSO among others which also could
be investigated.

6.5. Multi-objective approaches

The majority of the approaches use mono-objective algorithms. The unique
method that focuses on multi-objective reasoning tries to achieve higher scores
for defective elements against lower scores for non-defective ones [R9]. We con-
jecture that the use of many-objective optimisation algorithms should be further
investigated in the SBFL context. For instance the effectiveness of SBFL meth-
ods depends on the training data so the selection of more robust benchmarks
must be considered (larger programs, larger test case sets). In this sense multi-
objective algorithms are fitter to cope with conflicting objectives; e.g. better
method efficacy and shorter time execution.

32

955

960

965

970

975

980

985

990

995

6.6. Objective functions

Two objective functions were identified from this mapping study. The pre-
ferred one (mean expense in 92.9% of the studies) refers to the percentage of
examined code to find faults with respect to the code size. On the other hand
one study [R11] exploits the importance of a program element related to its
coverage on failed test cases. Thus we point out a research opportunity to fo-
cus the objective function on de facto the number of the inspected program
elements as it is preferred by software engineers rather than the percentage of
examined code, since the latter depends on the program size. Furthermore the
effectiveness of the function proposed in [R11] could be evaluated against the
others.

6.7. Search spaces

Basically three categories of search space were identified: all valid composi-
tions of weights that are actually a set of constants present in a suspiciousness
formula; all valid suspiciousness formulae; and all suspiciousness sequences of
program elements. The two first categories dominate as they take place in 13
out of 14 of the studies; they refer to indirect search spaces as the search itself
occurs outside the code i.e. in spaces related to constructing formulas. The
third refers to searching for solutions directly in the code. We presuppose it is a
research opportunity to exploit on a larger scale the search spaces in the code,
since the software faults themselves are located in the code. Moreover it can be
profitable to deal with hybrid search spaces, for instance solutions of an indirect
search space can be enriched by those of the direct search space and vice-verse.

6.8. Baselines

One finding is that the baselines fall into four categories: analytical metrics
such as formulae designed by humans mainly based on their intuition; GP-
formulas that were previously generated by a genetic programming approach;
metaheuristic methods that dynamically generate a solution at the evaluation
time; and others such as a linear programming model to solve a multi-fault
localisation problem. Regarding solutions based on formulae, both evolved by
machine and designed by humans, a prior finding is there is no formula that has
been proved to be the best for all contexts [R7]. Most of the studies (78.6%)
use analytical metrics, and metaheuristic methods encompass 57.1% of studies.
We found that 11 out 14 of the studies use more than one category, i.e. hybrid
baseline, and also all baselines categories are applied at least in three studies.
This indicates the research area is aware of the four baseline categories. Further
research is needed into using benchmarks to determine the ones most fit for
classes of faults, programming language, and fault nature (synthetic and real).

6.9. Evaluation metrics

A variety of evaluation metrics (six metrics) are used in the research field.
Ezpense, accuracy and wasted effort are the most used and show the main
concern is the efficacy of SBFL methods. In some cases, the studies do not

33

1000

1005

1010

1015

1020

1025

1030

1035

apply a particular metric in the same way. For instance, the accuracy metric
is defined as the number of programs in which an algorithm ranks all faulty
statements among the top-n positions as well as the number of faults within the
top-n elements. We conjecture that this difference can impact the comparison of
results between studies as the manner in which a metric is defined changes the
results; i.e. the strength of evidence when considering a particular definition.
We suggest a further investigation to map the ways an evaluation metric has
been applied in the research field in order to determine how the results of a
method compare.

6.10. Benchmarks

We abstracted seven groups of benchmarks over the papers: defects4j, siemens,
linux utilities, space, model programs, symbolic regression problems, and code-
flaws. Defects4j and siemens are the most popular in the research field (seven
studies each), followed by linux programs (five studies); they dominate the re-
search field, since they are present in all studies, either alone or in combination.
C and Java are the most used languages but there is small preference for C
programs (64.3% against 50.0%). Defects4j is the unique benchmark written
in Java and combines real and multiple fault contexts. Finally, only 14.3% of
the studies employ benchmarks that exploit both languages (C and Java), both
fault cardinalities (single and multiple) as well as a combination of real and
synthetic bugs. We suggest additional research to compare SBFL benchmarks
and how fit they are to: SBFL methods, classes of fault, and evaluation metrics.

6.11. Secondary study

The present mapping aims to cover papers that develop fault localisation
techniques based on metaheuristic search, that focus is distinct from the devel-
opment of software testing and repair methods. A secondary study that falls in
the intersection of Fault Localisation (FL) and Search based Software Engineer-
ing (SBSE) will potentially include studies that use existing FL techniques and
methods to promote software testing and repair approaches. It is a finding and
further investigation to conduct a secondary study that covers the intersection
of FL. and SBSE. With that important research questions will arise: How does
test data generation impact FL ability? Which domains fit with each specific
FL method? What benchmarks / baselines / evaluation metrics are used for FL
in specific language / domain / algorithm / debugging combination?

7. Threats to Validity

We present some threats to the validity of our results by following the guide-
lines of Wohlin et al. [47].

Construct validity refers to the relation between the theory behind the ex-
periment and the observation(s), i.e. what the researcher has in mind and what
is investigated according to the research questions. Regarding the research ques-
tions, we defined them in discussion meetings to reach alignment with the goals

34

1040

1045

1050

1055

1060

1065

1070

1075

1080

of the mapping, so it became a mitigated threat. On the search string, it impacts
the number of papers found and as a consequence the results. To mitigate such
a threat, we created three groups of terms and refined them by performing pilot
searches. Many search simulations were performed in order to cover the goals
and research questions. Furthermore independent assessment of the authors
and the inclusion of control papers took place to deal with threats. Related
to the data sources, we carried out the search over databases which are well
known sources in the literature. They returned studies that were published in
conferences and journals of the research field, thus including the most relevant
studies.

Internal validity copes with the relationship between the treatment and the
output. Firstly we performed the study selection by defining and applying
inclusion and exclusion criteria that demanded discussions and decisions in line
with the mapping scope. As a study’s omission is a threat in any mapping
study, we carried out a rigorous searching and selection process and followed
the argumentation of Wohlin et al. [22] for achieving a good sample instead of
finding all primary studies. Subjectivity in the data extraction was an effort-
demanding activity; the full-text analysis included annotating a digital version
of each paper by using colours and adding comments. The two first authors
applied the classification schema to perform all data collection from the relevant
primary studies, then the other authors checked the outcome. We had many
meetings and discussions during the selection and extraction of studies.

Threats to conclusion validity deal with the ability to reach and describe
the correct conclusions from the study, and they are impacted by the classi-
fication scheme. We created the categories used in our analysis interactively.
Basically we analysed which types of information were common or similar over
the primary studies and used this to update the classification by abstracting
relevant dimensions to answer the research questions. To deal with the validity,
the classification schema have evolved throughout the authors’ discussions until
we reached the current version after common agreement. These threats occur
in many classification schemes analysis.

8. Concluding remarks

Search-based fault localisation (SBFL) is the research field that deals with
the use of optimisation techniques to automate, or partially automate the lo-
cation of faulty code. As faults are constantly introduced and fixed during the
software lifecycle and locating faults is a very time-consuming task, SBFL is
an important research subject whose first research initiatives occurred in 2011
(according to our findings). We observed an increasing interest in the field since
2017, given by the increasing number of papers found in the last two years.

The mapping described in this paper adds value to the understanding of
the SBFL field and is fundamental with respect to the status and the poten-
tial research opportunities. Formula-based methods dominate SBFL research
and this means the fault suspiciousness ranking is mainly created from execu-
tion of formulae evolved by optimisation algorithms. Genetic Programming is

35

1085

1090

1095

1100

1105

1110

1115

1120

the most used metaheuristic algorithm, mainly due to its ability to generate
rules: suspiciousness formulae in the fault localisation context. The majority of
the approaches use mono-objective reasoning, but one research paper applies a
multi-objective algorithm.

The search process is mainly based on the percentage of examined code to
find faults, with respect to the code size. On the sources of fault data the
predilection is code coverage spectra as all studies are somehow grounded on
that spectra, and over half of the studies also employ other fault sources. Over-
all the evaluations are focused on efficacy since the main concern is the fault
localisation ability of SBFL methods. The major search space is all valid suspi-
ciousness formulae composed by mathematical operators and operands related
to the source of fault data. A variety of evaluation metrics are used in the re-
search field but most of the methods are evaluated by measures such as expense,
accuracy and wasted effort. However there is little consensus on how to apply
the evaluation metrics as they are employed differently in some of the studies.
A variety of programs are used as benchmarks, and C and Java dominate the
benchmarks that include synthetic and real faults, as well as, single and multiple
faults.

Some research opportunities were identified, such as to use many-objective
optimisation algorithms, to analyse the quality of the sources of fault data and
how such quality can impact on the effectiveness of SBFL methods, to use new
sources of fault data, to address non-functional aspects of SBFL approaches as
well as how such investigations can be evaluated, to analyse benchmarks with
respect how fit they are to classes of faults, programming language, and fault
nature (synthetic and real). We hope this study may improve motivation for
new investigations and will support the decisions of the research field, serving
as a reference and guidance for future SPFL methods.

References

[1] ISO/IEC/IEEE, Software and Systems Engineering, Software Testing, Part
1: Concepts and Definitions, International Standard 29119-1 (2013) 1-64.

[2] I. C. Society, P. Bourque, R. E. Fairley, Guide to the Software Engineering
Body of Knowledge SWEBOK Version 3.0, IEEE Computer Society Press,
Los Alamitos, CA, USA, 2014.

[3] I. Vessey, Expertise in debugging computer programs: An analysis of the
content of verbal protocols, IEEE Trans. Syst. Man Cybern. 16 (5) (1986)
621-637.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software
fault localization, IEEE Transactions on Software Engineering 42 (8) (2016)
707-740.

[5] P.S. Kochhar, X. Xia, D. Lo, S. Li, Practitioners’ expectations on automated
fault localization, in: Proceedings of the 25th International Symposium on

36

1125

1130

1135

1140

1145

1150

1155

Software Testing and Analysis, ISSTA 2016, ACM, New York, NY, USA,
2016, pp. 165-176.

[6] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering (2007).

[7] ISO/IEC, Systems and Software Engineering, Systems and Software Assur-
ance, Part 1: Concepts and Vocabulary, International Standard 15026-1.

[8] IEEE, Ieee standard classification for software anomalies - redline, IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993) - Redline (2010) 1-25.

[9] T. Reps, T. Ball, M. Das, J. Larus, The use of program profiling for software
maintenance with applications to the year 2000 problem, SIGSOFT Softw.
Eng. Notes 22 (6) (1997) 432-449.

[10] M. J. Harrold, G. Rothermel, R. Wu, L. Yi, An empirical investigation of
program spectra, SIGPLAN Not. 33 (7) (1998) 83-90.

[11] R. Abreu, P. Zoeteweij, A. J. C. van Gemund, On the accuracy of spectrum-
based fault localization, in: Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION,
TAICPART-MUTATION °’07, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 89-98.

[12] J. A. Jones, M. J. Harrold, J. Stasko, Visualization of test information to
assist fault localization, in: Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002, 2002, pp. 467-477.

[13] R. Abreu, P. Zoeteweij, A. J. C. v. Gemund, An evaluation of similarity
coefficients for software fault localization, in: Proceedings of the 12th Pacific
Rim International Symposium on Dependable Computing, PRDC ’06, IEEE
Computer Society, Washington, DC, USA, 2006, pp. 39—46.

[14] L. Naish, H. J. Lee, K. Ramamohanarao, A model for spectra-based soft-
ware diagnosis, ACM Trans. Softw. Eng. Methodol. 20 (3) (2011) 11:1-11:32.

[15] M. Harman, P. McMinn, J. T. de Souza, S. Yoo, Empirical software engi-
neering and verification, in: B. Meyer, M. Nordio (Eds.), Empirical Software
Engineering and Verification, Springer-Verlag, Berlin, Heidelberg, 2012, Ch.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial, pp.
1-59.

[16] M. Harman, B. F. Jones, Search-based software engineering, Information
and Software Technology 43 (14) (2001) 833 — 839.

[17] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons
from applying the systematic literature review process within the software
engineering domain, J. Syst. Softw. 80 (4) (2007) 571-583.

37

1160

1165

1170

1175

1180

1185

1190

1195

[18] A. Zakari, S. P. Lee, K. A. Alam, R. Ahmad, Software fault localisation: a
systematic mapping study, IET Software 13 (1) (2019) 60-74.

[19] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping stud-
ies in software engineering, in: Proceedings of the 12th International Con-
ference on Evaluation and Assessment in Software Engineering, EASE’08,
British Computer Society, Swinton, UK, UK, 2008, pp. 68-77.

[20] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Information
and Software Technology 64 (2015) 1 — 18.

[21] P. Agarwal, A. P. Agrawal, Fault-localization techniques for software sys-
tems: A literature review, SIGSOFT Softw. Eng. Notes 39 (5) (2014) 1-8.

[22] C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto, E. Engstrom,
I. do Carmo Machado, E. S. de Almeida, On the reliability of mapping
studies in software engineering, Journal of Systems and Software 86 (10)
(2013) 2594 — 2610.

[23] M. Harman, The current state and future of search based software engineer-
ing, in: 2007 Future of Software Engineering, FOSE 07, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 342-357.

[24] S. Ali, L. C. Briand, H. Hemmati, R. K. Panesar-Walawege, A systematic
review of the application and empirical investigation of search-based test
case generation, IEEE Trans. Softw. Eng. 36 (6) (2010) 742-762.

[25] A. Azarian, A. Siadat, P. Martin, A new strategy for automotive off-board
diagnosis based on a meta-heuristic engine, Engineering Applications of Ar-
tificial Intelligence 24 (5) (2011) 733-747.

[26] W. Wang, P. You, W. Zhong, T. Xie, J. Xu, L. Zhong, X. Xiao, Optimiza-
tion of guided wave sensors distribution along thin-walled small-diameter
pipe, Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South
University (Science and Technology) 47 (7) (2016) 2254-2259.

[27] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engineering:
Trends, techniques and applications, ACM Comput. Surv. 45 (1) (2012)
11:1-11:61.

[28] S. Biaz, Yiming Ji, Precise distributed localization algorithms for wireless
networks, in: Sixth IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks, 2005, pp. 388-394.

[29] B. Baudry, F. Fleurey, Y. Le Traon, Improving test suites for efficient
fault localization, in: Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, Association for Computing Machinery, New
York, NY, USA, 2006, p. 82-91.

38

1200

1205

1210

1215

1220

1225

1230

1235

[30] B. Liu, Lucia, S. Nejati, L. C. Briand, Improving fault localization for
simulink models using search-based testing and prediction models, in: 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017, pp. 359-370.

[31] F. Steimann, M. Frenkel, Improving coverage-based localization of multiple
faults using algorithms from integer linear programming, in: 2012 IEEE
23rd International Symposium on Software Reliability Engineering, 2012,
pp. 121-130.

[32] Y. Zhang, D. Lo, X. Xia, T. B. Le, G. Scanniello, J. Sun, Inferring links
between concerns and methods with multi-abstraction vector space model,
in: 2016 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), 2016, pp. 110-121.

[33] L. Arcega, J. Font, C. Cetina, Evolutionary algorithm for bug localization
in the reconfigurations of models at runtime, in: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 18, 2018, p. 90-100.

[34] B. Giroux, M. Chouteau, L. Laverdure, Evaluation du facteur de qualité
sismique au barrage de carillon (québec), Revue Canadienne de Génie Civil
28 (2011) 496-508.

[35] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
EASE’14, ACM, New York, NY, USA, 2014, pp. 38:1-38:10.

[36] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,
B. Keller, Evaluating and improving fault localization, in: Proceedings of
the 39th International Conference on Software Engineering, ICSE ’17, IEEE
Press, Piscataway, NJ, USA, 2017, pp. 609-620.

[37] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches, 8th Edition, SAGE Publications, 2018.

[38] C. Parnin, A. Orso, Are automated debugging techniques actually helping
programmers?, in: Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, ACM, New York, NY, USA,
2011, pp. 199-2009.

[39] X.Li, W. E. Wong, R. Gao, L. Hu, S. Hosono, Genetic algorithm-based test
generation for software product line with the integration of fault localization
techniques, Empirical Software Engineering 23 (1) (2018) 1-51.

[40] S. Lal, A. Sureka, A static technique for fault localization using character
n-gram based information retrieval model, in: Proceedings of the 5th India
Software Engineering Conference, ISEC ’12, ACM, New York, NY, USA,
2012, pp. 109-118.

39

1240

1245

1250

1255

1260

1265

1270

[41] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the effec-
tiveness of dataflow- and controlflow-based test adequacy criteria, in: Pro-
ceedings of the 16th International Conference on Software Engineering, ICSE
94, IEEE Computer Society Press, Los Alamitos, CA, USA, 1994, pp. 191—
200.

[42] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact, Empir-
ical Softw. Engg. 10 (4) (2005) 405-435.

[43] R. Just, D. Jalali, M. D. Ernst, Defects4j: A database of existing faults to
enable controlled testing studies for java programs, in: Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA
2014, ACM, New York, NY, USA, 2014, pp. 437-440.

[44] F. 1. Vokolos, P. G. Frankl, Empirical evaluation of the textual differencing
regression testing technique, in: Proceedings of the International Conference
on Software Maintenance, ICSM ’98, IEEE Computer Society, Washington,
DC, USA, 1998, pp. 44—

[45] S. H. Tan, J. Yi, Yulis, S. Mechtaev, A. Roychoudhury, Codeflaws: A pro-
gramming competition benchmark for evaluating automated program repair
tools, in: Proceedings of the 39th International Conference on Software En-
gineering Companion, ICSE-C ’17, IEEE Press, Piscataway, NJ, USA, 2017,
pp. 180-182.

[46] D. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kro-
nberger, W. Jaskowski, U.-M. O’Reilly, S. Luke, Better gp benchmarks:
Community survey results and proposals, Genetic Programming and Evolv-
able Machines 14 (2013) 3-29.

[47] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering: An Introduction, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2000.

Relevant Primary Studies

[R1] S. Wang, D. Lo, L. Jiang, Lucia, H. C. Lau, Search-based fault localiza-
tion, in: Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’11, IEEE Computer
Society, Washington, DC, USA, 2011, pp. 556-559.

[R2] S. Yoo, Evolving human competitive spectra-based fault localisation tech-
niques, in: Proceedings of the 4th Symposium on Search Based Software
Engineering, SSBSE’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp.
244-258.

40

1275

1280

1285

1290

1295

1300

1305

1310

[R3]

[R4]

[R10]

[R11]

[R12]

[R13]

L. Naish, Neelofar, K. Ramamohanarao, Multiple bug spectral fault local-
ization using genetic programming, in: 2015 24th Australasian Software
Engineering Conference, 2015, pp. 11-17.

D. Kang, J. Sohn, S. Yoo, Empirical evaluation of conditional operators
in gp based fault localization, in: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO ’17, ACM, New York, NY,
USA, 2017, pp. 1295-1302.

J. Sohn, S. Yoo, Fluccs: Using code and change metrics to improve fault
localization, in: Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, ACM, New
York, NY, USA, 2017, pp. 273-283.

D. de Freitas, P. Leitao-Junior, C. Camilo-Junior, A. Dantas, R. Harrison,
Genetic programming-based composition of fault localization heuristics,
in: Proceedings of the Eighth Brazilian Workshop on Search based Soft-
ware Engineering, WESB’17, 2017.

S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, M. Harman, Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis, ACM Transactions on Software Engi-
neering and Methodology 26 (1) (2017) 4:1-4:30.

D. de Freitas, P. Leitao-Junior, C. Camilo-Junior, R. Harrison, Evolution-
ary composition of customised fault localisation heuristics, in: Proceed-
ings of the European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning, ESANN’18, 2018.

K. Choi, J. Sohn, S. Yoo, Learning fault localisation for both humans and
machines using multi-objective gp, in: Proceedings of the 10th Sympo-
sium on Search-Based Software Engineering, SSBSE 2018, Montpellier,
France, 2018, pp. 349-355.

J. Kim, M. G. Epitropakis, S. Yoo, Learning without peeking: Secure
multi-party computation genetic programming, in: Proceedings of the
10th Symposium on Search-Based Software Engineering, SSBSE 2018,
Montpellier, France, 2018, pp. 246-261.

Y. Zheng, Z. Wang, X. Fan, X. Chen, Z. Yang, Localizing multiple soft-
ware faults based on evolution algorithm, Journal of System and Software
139 (C) (2018) 107-123.

D. M. De-Freitas, P. S. Leitao-Junior, C. G. Camilo-Junior, R. Harrison,
Mutation-based evolutionary fault localisation, in: 2018 IEEE Congress
on Evolutionary Computation (CEC), 2018, pp. 1-8.

N. Neelofar, L. Naish, K. Ramamohanarao, Spectral-based fault local-
ization using hyperbolic function, Software: Practice and Experience 48
(2018) 641-664.

41

ws [R14] J. Sohn, S. Yoo, Empirical evaluation of fault localisation using code and
change metrics, IEEE Transactions on Software Engineering (2019) 1-1.

42

	Introduction
	Background
	Search-based Fault Localisation
	Systematic Mapping Study

	Planning of the systematic mapping study
	The need and relevance of the study
	Research questions

	Search for primary studies
	Inclusion and exclusion of studies: scoping the mapping
	Snowballing
	Search Summary

	Data Extraction, Classification and Visualisation
	How has the number and the frequency of publications evolved over the years? [RQ-1]
	What venues has the research on SBFL methods been published in? [RQ-2]
	What investigations and data are addressed by the studies? [RQ-3]
	What data are considered as sources of faults to be located? [RQ-3.1]
	What do primary studies focus on? [RQ-3.2]
	What are the main aspects that the research questions deal with? [RQ-3.3]

	How do the approaches handle the fault locating process? [RQ-4]
	What are the meta-heuristics used? [RQ-4.1]
	How do the approaches handle the guidance of the search process? [RQ-4.2]
	What classes of search spaces are probed in SBFL studies? [RQ-4.3]

	How are the approaches evaluated? [RQ-5]
	What baselines are used when evaluating SBFL methods? [RQ-5.1]
	What evaluation metrics are used when evaluating SBFL methods? [RQ-5.2]
	What benchmarks are used when evaluating SBFL methods? [RQ-5.3]

	Summary of results and research opportunities
	Data sources of software faults
	Main focuses of research area
	Non-functional properties
	Metaheuristic algorithms
	Multi-objective approaches
	Objective functions
	Search spaces
	Baselines
	Evaluation metrics
	Benchmarks
	Secondary study

	Threats to Validity
	Concluding remarks

