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Abstract

Context: Recently deep learning based Natural Language Processing (NLP)
models have shown great potential in the modeling of source code. However,
a major limitation of these approaches is that they take source code as simple
tokens of text and ignore its contextual, syntactical and structural dependencies.

Objective: In this work, we present CodeGRU, a gated recurrent unit based
source code language model that is capable of capturing source codes contextual,
syntactical and structural dependencies.

Method: We introduce a novel approach which can capture the source code
context by leveraging the source code token types. Further, we adopt a novel
approach which can learn variable size context by taking into account source
codes syntax, and structural information.

Results: We evaluate CodeGRU with real-world data set and it shows that
CodeGRU outperforms the state-of-the-art language models and help reduce the
vocabulary size up to 24.93%. Unlike previous works, we tested CodeGRU with
an independent test set which suggests that our methodology does not requisite
the source code comes from the same domain as training data while provid-
ing suggestions. We further evaluate CodeGRU with two software engineering
applications: source code suggestion, and source code completion.

Conclusion: Our experiment confirms that the source codes contextual in-
formation can be vital and can help improve the software language models. The
extensive evaluation of CodeGRU shows that it outperforms the state-of-the-art
models. The results further suggest that the proposed approach can help reduce
the vocabulary size and is of practical use for software developers.
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1. Introduction

Source code suggestions, code completion, bug fixing, etc. are vital features
of a modern integrated development environment (IDE). These features help
software developers to build and debug software rapidly. In the last few years,
there have been a massive amount of increase in code related databases over the
internet. Many open source websites (i.e. w3school, GitHub, Stack Overflow,
etc.) provides API libraries, code usage examples, bug fixing, and much more.
Software developers exceedingly rely on such resources for above-mentioned pur-
poses.

Natural language processing (NLP) [9, 27, 36] explores, understands and
manipulates natural language text or speech to do serviceable things. NLP
techniques have shown its effectiveness in many fields such as speech recognition
[6], information retrieval [7], text mining [35], machine translation [48] and
source code modeling [20, 37, 22, 44]. One of the most common NLP technique
for source code modeling is statistical language models (SLM), which calculates
the probability distribution over sequences in a corpus. Given a sequence S
of length N it assigns the probability to the whole sequence Pb(t1, ....tn) and
then calculates the likelihood of all sub-sequences to find the most likely next
sequence.

The advancement in the neural network based NLP models [47, 37, 52] have
recently shown that they can effectively overcome the context issue that cannot
be effectively addressed by SLM [20, 44] based models. Many deep learning
based approaches have been applied for different tasks for source code modeling
such as code summarization [21, 3], code readability classification [28], code
generation [41], error fixing [18, 49], and code recommendation [47, 37, 16, 11].
A major limitation of these approaches [20, 47, 37] is that they take source code
as simple tokens of text sequence and ignore its contextual, syntactical and
structural dependencies. Another limitation is that they learn source code as a
sequence to sequence problem with fixed size context where the right context
may not be captured in the fixed size window, which leads to the inaccurate
prediction of the next code token.

Compared with natural language text, source code tends to have richer con-
textual, syntactical and structural dependencies. Treating source code as a
simple text cannot effectively capture these dependencies. Software develop-
ers usually choose to have different names for methods, classes, and variables,
which makes it difficult to capture the right context. For example, one software
developer may choose an identifier name num for an INT data type, while an-

other one may choose size for the same purpose. Consider another example

where a common method i.tostring() converts a variable to String data

type. A similar method person.tostring() refers to an object of a person

class that returns a persons information. In addition, the source code must
follow the rules defined by its grammar. For example, a try block must be
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followed by a catch block. Another example is that when a developer uses do

block, the next block should be while() and the possible next token sugges-
tion should be ; according to the syntax of java language grammar. Previous
works [20, 47, 37] lack to consider such information which can be valuable for
source code modeling tasks.

In this work, we present CodeGRU which considers the source code’s context,
syntax, and structure while suggesting the next source code token. This work
does not simply consider source code as simple tokens of text. The CodeGRU
introduces a novel approach which can correctly capture the source code context
by leveraging the token type information. The CodeGRU can effectively capture
the right context even it is separated far apart in the code. CodeGRU further
proposes a novel approach which can learn variable size context while modeling
source code. Unlike previous works [20, 47, 37, 32], we do not treat the source
code as a single sequence of text tokens instead we use a novel approach which
builds the sequences based on source codes structural and syntactical informa-
tion. We evaluated CodeGRU with real-world data set with an independent
test set with two software engineering applications: source code suggestion, and
source code completion.

This work makes the following unique contributions:

• A novel approach for source code modeling is proposed, which can capture
the source code context by leveraging the token type information.

• A novel method which learns the variable size context of the source code
is proposed. Unlike previous works, we do not treat the source code as
a single sequence of text tokens instead we use a novel approach which
builds the sequences based on source codes structural and syntactical in-
formation.

• An extensive evaluation of CodeGRU on the real-world data set shows
that CodeGRU outperforms the state-of-the-art language models. We
further evaluated CodeGRU with two software engineering applications:
(1) source code suggestion, which can suggest multiple predictions for the
next code token, and (2) code completion, which can complete the whole
next code sequence.

2. Preliminaries

In this section, we will discuss the preliminaries and technical overview of
this work.

Fig. 1 shows the architecture of the RNN for source code modeling, where τ
is input layer, c is context layer also known as hidden layer and y is the output
layer. The hidden state activation at a time step i is computed as a function on
the previous hi−1 along with current code token τi.

hi = f(τi, hi−1) (1)
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Figure 1: An architecture of a RNN neuron where input is a code token vector at index i, and
the outputs are different next code tokens yi based on the context and probabilities

Usually f is composed of an element-wise nonlinear and affine transformation
of τi and hi−1.

hi = φ(Wτi, Uhi−1) (2)

Here W is the weight matrix for the input to hidden layer and U is the
weight matrix for the state to state matrix, and φ is an activation function.
The RNN models [29, 14] tends to look back further than n − 1. But vanilla
RNN suffers from vanishing gradient problem which can be overcome by using
Gated Recurrent unit (GRU) model.

The GRU exposes [52] the full hidden content without any control which is
ideal for source code modeling. It is composed of two gates, the rest gate ri and
the update gate zi. Further, it entirely exposes its memory context at each time
step i. Exposing the entire context on each time step helps to learn contextual
dependencies better than vanilla RNN. It can be expressed as

hi = (1− zi)hi−1 + zih̄i (3)

Where h and h̄ is prior context and fresh context respectively.

zi = φ(Wzτi + Uzhi−1) (4)

h̄i = tanh(Wτi + ri ⊗ Uhi−1) (5)

ri = φ(Wrτi + Urhi−1) (6)

A major difference from Eq. 2 is that the h̄ is modulated by the reset gates ri.
Here ⊗ is element-wise multiplication and φ is the activation function.
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3. The CodeGRU Model

In this section, we introduce CodeGRU in detail. The overall workflow of
CodeGRU is illustrated in Fig. 2. The first step is data collection, which we
will discuss in section 4.1. Next step is Code Analyzer, which pre-processes the
source code files and captures the token type information. The Code Analyzer
parses the source code and encode the type information to capture the source
code context. Next, the Variable Size Context Learning approach is used to
build the sequences based on the source code syntax and structure. Next, we
tokenize the sequences and build vocabulary. Finally, we train deep learning
classifier for source code suggestion and completion task. Each step is discussed
in detail in the following subsections.

Source Code Files

Code Analyzer

Variable Size
Context Learning

Tokenization and
Vocabulary Building

Pre-Processing

Model Traning

Dataset

GRU

Increase
Context

Test File

Pre-Processing

Prediction

Trained Model

Prediction
(Source Code Suggestion/Completion)

Offline Process

Figure 2: The framework of CodeGRU, which is a context aware deep learning model for
source code modeling.

3.1. Code Analyzer

Code Analyzer first takes a source code file and pre-process it to capture
the source code context. First, we normalize the files by removing all blank
lines, inline and block level comments as they have no impact on source code
suggestion or completion task. Source code consists of different kinds of tokens
such as classes, functions, variables, literals, language-specific keywords, data
types, stop words, etc. Among all these, language dependent keywords, stop
words, library functions, and data types form a shared vocabulary which can
be considered as context. A key insight is that to capture the context of source
code tokens we capture their token types. Here we care about the token type
rather than the token identifier. As discussed earlier code token identifiers can
differ from developer to developer, so we use the token types to help capture the
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context information. The exact values of literals (Int, float, long, double, byte,
String, etc) are unnecessary in source code modeling task. So, we transform all
literal values to their abstract data types according to the Java language gram-
mar1. For example given System.out.println("Hello World") , the string

value ”Hello World” is of type String Literal according to java language

grammar. We transform it with its token type StringLiteral . Similarly, the

value of identifier a in a = 1.1 is not important, so we transform 1.1 with its

token type FloatLiteral .

Admin admins = new Admin();
...
...
for (int i=0; i<=10; I++){

admins.add(i);
}

Original Source Code

Token Type Abstraction

Number

Expression

SimpleName Literal

Type

Int 0

Identifier

i

Class

Type

Admin

Identifier

admins

Literal

Type

Int

value

10

Admin AdminVar= new Admin();
...
...
for (int IntVar=IntVal; IntVar<=IntVal; IntVar++){

AdminVar.add(IntVar);
}

Abstract Source Code

Figure 3: An example of Java code with our Code Analyzer approach.

A challenging issue in source code modeling is to capture the variable and
class object identifies declaration types. Static type languages (Java, C++,
C#, etc.) are strongly type defined languages, which means types of such
declarations need to be defined before use. In Fig. 3 one can see a transformation
example of variable and class object identifiers. We capture all identifiers types
into their declared data types. In Fig. 3 one can see, we transform all instances
of identifier i with its declared data type Int combined with a special token

Var . Similarly, the class object identifier admins is replaced with AdminVar .
We leave special code tokens (true, false, null) unchanged. Unlike literals,
variables, and class objects, such tokens reflect constant behavior, which does
not need transformation. Table 1 shows some common code tokens and their

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
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resolved types captured by our novel approach.

Table 1: Common source code examples by our Code Analyzer approach

Code Token Token Type Special Token

i Int IntVar
”HelloWorld” String Literal StringLiteral

null Literal NullLiteral
outFile File FileVar

ex Exception ExceptionVar
arr ArrayList<String> ArrayListStringVar

lstID List<Int> ListIntVar
′c′ char CharLiteral

true Boolean true
Int ∗ x Int Pointer Int * IntPointerVar

Int ∗ ∗x Int Pointer Int ** IntPointerToPointerVar
true Boolean true

inputfile.open() File FileVar.open()

3.2. Variable Size Context Learning

Programming languages strictly follow the rules defined by their grammar.
Each line in a programming language starts with a language reserved identifier,
variable or class object deceleration, assignment statements, etc. Whereas an
assignment statement can only have a variable name, object instance or array
index on the left-hand side. Further, source code follow block rules such as
try-catch-final , do-while where one must follow the other. We use such

information while building the sequences. Unlike previous works [47, 37, 32], we
do not consider the source code as a single sequence of text tokens and divide
them into fixed-size context window. Instead, we leverage from the syntactical
and structural information to learn variable size context of the source code. The
CodeGRU takes a source code program and split it based on a code statement or
a block statement. In source code a single statement ends with ; token where

a block statement starts with the { token and ends with } token according
to the Java language grammar2. With this approach, we split each file into
multiple sequences of code tokens X. Here the goal is to produce the next token
y by satisfying the context of X. We can express a source code file S at line L.
Then a source code program can be represented as (li, τ i) where li is the line
number and τ i is tokenization of S at li. It breaks each li into several τ i by
iteratively increasing the context on each iteration. The CodeGRU learns the
source code context at (li, τ i) and keeps increase the τ i+1 until it reaches the
upper bound limit of li. When CodeGRU reaches the upper bound limit of li,
it increases li+1 and keeps learning the source code context. Fig. 4 shows an
example of proposed variable size context learning approach.

2https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
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Abstract Source Code

Admin AdminVar= new Admin();
...
...
for (int IntVar=IntVal; IntVar<=IntVal; IntVar++){

AdminVar.add(IntVar);
}

[’Admin’]
[’Admin’, ‘AdminVar’]
...
[’Admin’ ,‘AdminVar’ ,‘=’ ,‘new’ ,‘Admin’,’()’,’;’]
...
...

( )1 1

( )
1 2

( )
1 7

...

...

...

Sequence Builder

Figure 4: An example of variable size context learning approach.

Further, here we expect the model to assign the high probability to the
correct next source code suggestion by having a low Cross-entropy. The Cross-
entropy is a cost function to observe how best the model works. A low value of
Cross-entropy indicates a good model. It can be expressed as

H(C) ≈ − 1

N

N∑
i=1

log2 PbC(τ i|τ i−1i−n+1) (7)

3.3. Tokenization and Vocabulary Building

To convert the source code files into a form that is suitable for training we
perform a series of transformations. First, we tokenize the source code files
as shown in Fig. 5. Each unique source code token corresponds to an entry
in the vocabulary. Each source code token is then assigned a unique positive
integer value. In Table 2 one can see the vocabulary statistics, where VNorm

shows the vocabulary statistics without Code Analyzer and VCodeGRU shows the
vocabulary statistics with Code Analyzer approach. The vocabulary statistics
without Code Analyzer is reported by calculating the unique code tokens found
in source code files after removing blank lines, inline and block level comments.
Further, we replace all literal values to their abstract data types and leaving the
rest of the file to its original state.

Figure 5: Process of building vocabulary for source code language models.

3.4. Training and Prediction

We parse each source code file in the training set and use Code Analyzer to
capture the token type information as discussed earlier in Section 3.1. After
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Table 2: Vocabulary statistics between projects.

Min Max Mean Median S.D. Total

VNorm 6813 47756 20742.7 19699.5 11579.53 177,342
VCodeGRU 5566 33867 15358.7 13733.5 8503.74 133,135

normalizing and type encoding the source code files we use the variable size
context approach to generate the sequences based on source code’s syntax and
structure as discussed in Section 3.2. To convert the sequences into a form that
is suitable for training and to build vocabulary, the sequences are converted
into vector form as discussed in Section 3.3. We use these sequences as input
to CodeGRU for model training. The trained model is then used for the test
purpose. For the prediction of next source code token y in a file S, we capture the
token type information using Code Analyzer prior to the prediction position y.
Then, we use the captured type information as context and input it to the model
for the next source code suggestion. Then, each code token in the Vocabulary
is computed and ranked for the possible next source code suggestion.

4. Empirical Evaluation

In this section, we provide an empirical evaluation of CodeGRU. We train
and evaluate our models on Intel(R) Xeon(R) CPU E5-2620 v4 with 16 cores
running at 2.10GHz with 64GB of ram equipped with four NVIDIA Tesla K20m
GPUs running CentOS v7 operating system. It took 8 days to fully train and
test all models. One important thing to mention here is that the training and
testing are offline and thus have no impact on prediction time. It takes less than
30 milliseconds for source code suggestion and source code completion tasks.

To evaluate the performance of the proposed approach, we aim at answering
the following research questions:

• RQ1: Does the proposed approach outperform the state-of-the-art ap-
proaches? if yes, to what extent?

• RQ2: How well does the proposed approach perform in source code sug-
gestion and source code completion tasks?

• RQ3: To what extent the proposed approach helps reduce the vocabulary
size?

To answer the research question (RQ1), we compare the performance of
the proposed approach with the state-of-the-art approaches [47, 20, 32]. To
answer the research question (RQ2), we evaluate and compare CodeGRU for
source code suggestion and completion tasks with state-of-art approaches [47, 20,
32]. To answer the research question (RQ3), We provide the statistical results
of vocabulary with and without our proposed approach. We further evaluate
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CodeGRU with two software engineering applications: source code suggestion,
and source code completion tasks which show CodeGRU is of practical use.

4.1. Dataset

To build our code database3, we collect open-source java projects from
GitHub. We download an archive containing the latest snapshot of the projects
default branch. For comparison, we choose the projects used in previous stud-
ies [20, 32, 47] summarized in Table 3. The Table 3 shows the version of the
projects, total number of code lines, total code tokens and unique code tokens
found in each project. We randomly choose one project(Cassandra) as an inde-
pendent test set and use the rest of the projects for the model training purpose.
Further, to evaluate the effectiveness of the proposed approach we adopt a ran-
dom testing approach. In random testing we train the model on one project
and test it with a different project (beside Cassandra and itself). To empiri-
cally evaluate our work, we repeat our experiment on each project separately.
Each project is subdivided into ten equal lines of code folds from which one fold
is used for validation and rest are used for training purpose. One important
thing to mention here is that the test sets was never used while training or
validating the models and was only used for evaluation purpose.

Table 3: List of java projects used for evaluation. The table shows name of the project, version
of the project, line of code (LOC), total code tokens and unique code tokens found in each
project.

Code Tokens
Projects Version LOC Total Unique

ant 1.10.5 149,960 920,978 17,132
cassandra 3.11.3 318,704 2734218 33,424

db40 7.2 241,766 1,435,382 20,286
jgit 5.1.3 199,505 1,538,905 20,970
poi 4.0.0 387,203 2,876,253 47,756

maven 3.6.0 69,840 494,379 8,066
batik 1.10.0 195,652 1,246,157 21,964

jts 1.16.0 91,387 611,392 11,903
itext 5.5.13 161,185 1,164,362 19,113
antlr 4.7.1 56,085 407,248 6,813

4.2. Training

We train several baseline models for the evaluation of this work. In this
section, we briefly describe the baselines for comparison in detail. We train the
N-gram model used in Hindle et al. [20]. We train the RNN [37] model used
in White et al. [47]. We train the DNN model used in Nguyen et al. [32]. We
implement our own version of DNN since it is not publicly available. In our

3https://github.com/yaxirhuxxain/Source-Code-Suggestion
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reproduction, we follow the process described in Nguyen et al. [32]. Further,
we train four different models N-gram+, RNN+, GRU, and CodeGRU by using
our proposed approach. The N-gram+ and RNN+ are trained similar to the
previous studies by adopting our proposed Code Analyzer approach. The GRU
based model is trained by using our proposed approach, but without using the
variable size context learning approach. The CodeGRU model is trained by
using our proposed approach with variable size context as described in Section
3. For the training purpose, each source code file is tokenized as discussed earlier
in Section 3.3. Then, we map the vocabulary to a continuous feature vector of
dense size 300 similar to Word2Vec [39]. This approach helps us build a dense
vector representation for each vocabulary index without compromising over the
semantic meaning of the source code tokens.

The Table. 4 shows the architecture of deep learning based models. We
choose 300 hidden units with context size 20. We use Adam [24] optimizer with
the learn rate set to its default 0.001. To control over fitting we use Dropout
[15] at the rate of 0.25. We employ early stopping [5, 40] to help stop model
training when it achieves the best performance.

Table 4: Deep learning models architecture summary.

Type Size Activations

Input Code embedding 300
Estimator RNN,GRU 300 tanh

Over Fitting Dropout 0.25
Output Dense V softmax

Loss Categorical cross entropy
Optimizer Adam 0.001

4.3. Prediction

For the prediction of next source code token y in a source code file S, the
model takes the context information (li, τ i) prior to the prediction position
y. We use the CodeAnalyzer to capture the token’s context information as
discussed in section 3. We then use the trained model to predict the most likely
top-k suggestions for the given context. CodeGRU predicts the token type for
an identifier and the actual token for rest of the code tokens. We use the top-k
accuracy and Mean Reciprocal Rank (MRR) metrics for the evaluation of this
work.

5. Results

5.1. Accuracy Comparison

For comparison, we evaluate the models with top-k accuracy score as done
in the previous works [20, 47, 37, 32]. We calculate top-k accuracy, where
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k=1,3,5,10. The accuracy scores for independent test (Cassandra) of all models
are shown in Table 5. One can see that CodeGRU model outperforms other
baseline [20, 47, 37, 32] models. We can see in Table 5 that our proposed
CodeGRU achieves the max accuracy score of 46.74 @ k=1 and 74.32 @ k=10,
whereas previous models gains much lower score 39.26 @ k=1 and 69.12 @
k=10. Further, we can observe that our proposed approach help improve the
performance of previous studies. The simple N-gram model achieves the max
score of 21.62 @ k=1 and 31.62 @ k=10 where as with our proposed approach
the N-gram+ achieves the max score of 25.57 @ k=1 and 37.84 @ k=10. Sim-
ilarly, by using our proposed approach the RNN+ achieves the max score of
38.90 @ k=1 and 70.09 @ k=10 where as the RNN model gains the max score
of 37.78 @ k=1 and 67.63 @ k=10.

Further, to see the effectiveness of the proposed approach, we evaluate its
performance with the random test set. In random testing the model is trained
on one project and then tested with different a project. The random test results
are presented in Table 6 where Ptrain shows the project name used for training
and ptest shows the project name used for testing. On average it improves
the accuracy (K@1 ) by 5.66% in random test and by 6.62% in independent
(Cassandra) testing from the best baseline (DNN). From the results, we conclude
that the proposed approach outperforms other baseline approaches in both cases,
independent (Cassandra) and random testing.

5.2. Source Code Suggestion and Completion
To quantify the accuracy of our proposed approach for the source code sug-

gestion and completion task we calculate the Mean Reciprocal Rank (MRR).
The MRR is a rank based evaluation metric in which suggestions that occur
earlier in the list are weighted higher than those that occur later in the list.
The MRR produces a value between 0-1, where the value 1 indicates perfect
source code suggestion model. The MRR can be expressed as

MRR(C) =
1

|C|

|C|∑
i=1

1

yi
(8)

where C is code sequence and yi refers to the index of the first relevant
prediction. MRR(C) is the average of all sequences C in the test data set.

Table 7 shows the MRR score of independent test set (Cassandra). The
MRR score lies between 0-1, and a higher value indicates a better source code
suggestion and completion model. CodeGRU achieves the lowest MRR score
of 0.447 and the highest MRR score is 0.559, while previous models lowest
MRR score is 0.433 and the highest MRR score is 0.492. On average proposed
approach gains the MRR score of 0.500, while previous studies only gain 0.465.

The random test results are presented in Table 8. From Table 8 and Fig. 6,
we make the following observations:

• The average MRR result of proposed approach is 0.524 and 0.543, while
the best baseline (DNN) average MRR score is 0.469 and 0.497 for inde-
pendent (Cassandra) and random test respectively.

12



Table 5: Accuracy comparison of proposed approach with previous works with independent
test set (Cassandra).

Previous Works Our Work
K N-gram RNN DNN N-gram+ RNN+ GRU CodeGRU

antlr

1 17.49 36.58 37.09 21.51 38.06 41.75 43.38
3 23.53 56.50 57.31 29.11 58.28 61.17 61.82
5 25.51 61.93 64.01 31.63 64.98 66.49 67.50
10 26.60 66.31 68.28 32.93 69.25 70.83 72.22

ant

1 20.42 37.73 38.38 23.78 39.35 41.32 45.01
3 26.17 57.85 57.90 31.45 58.87 61.29 63.50
5 27.47 63.40 63.87 33.35 64.84 66.80 68.33
10 28.83 67.58 68.58 34.91 69.55 71.13 73.13

batik

1 16.90 34.22 34.00 20.04 34.97 35.91 38.82
3 21.91 51.58 52.32 26.53 53.29 55.71 56.27
5 23.43 57.61 59.41 28.27 60.38 61.76 62.66
10 24.57 62.65 64.69 29.79 65.66 66.33 68.62

db4o

1 18.06 34.44 34.29 21.42 35.26 35.91 41.41
3 23.25 54.41 54.89 28.30 55.86 57.03 59.44
5 24.85 60.96 61.33 30.25 62.30 63.07 66.44
10 26.16 65.20 66.71 31.84 67.68 68.02 71.72

itext

1 19.24 35.34 34.77 23.00 35.74 38.90 41.66
3 24.80 56.25 56.10 30.06 57.07 59.59 62.12
5 27.05 61.82 62.35 32.71 63.32 65.45 67.78
10 28.38 66.16 67.53 34.35 68.50 69.79 72.22

jgit

1 21.62 35.92 36.35 25.57 37.32 41.31 45.98
3 28.01 56.96 58.23 33.67 59.20 61.71 65.33
5 30.27 63.73 64.12 36.32 65.09 67.46 70.12
10 31.62 67.60 69.12 37.84 70.09 71.52 74.32

jts

1 16.20 35.60 35.01 19.78 35.98 38.18 39.31
3 21.11 54.50 54.41 26.08 55.38 57.42 56.53
5 23.01 59.40 60.29 28.34 61.26 62.50 63.29
10 23.94 63.47 64.62 29.55 65.59 66.88 68.11

maven

1 18.82 37.78 39.26 22.00 40.23 43.11 44.35
3 23.58 57.20 58.23 28.32 59.20 61.41 61.71
5 25.42 61.79 63.59 30.17 64.56 65.89 67.15
10 26.39 65.38 67.44 31.63 68.41 69.95 71.68

poi

1 21.37 37.78 37.93 25.09 38.90 43.38 46.74
3 28.08 57.66 57.66 33.48 58.63 62.89 65.11
5 29.67 63.62 64.55 35.49 65.52 68.15 69.29
10 30.93 67.63 68.98 37.04 69.95 72.08 73.74
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Table 6: Accuracy comparison of proposed approach with previous works with random test
set where Ptrain shows the project name used for training and ptest shows the project name
used for testing.

Previous Works Our Work
Ptrain Ptest K N-gram RNN DNN N-gram+ RNN+ GRU CodeGRU

antlr batik

1 25.20 35.72 39.29 32.41 40.25 43.27 44.06
3 33.48 55.04 58.05 45.43 59.01 63.14 62.27
5 36.21 60.16 64.29 48.75 65.25 68.00 68.06
10 37.80 65.03 69.15 51.18 70.12 72.23 72.16

ant db4o

1 24.50 36.63 36.85 30.48 37.82 39.45 42.01
3 31.97 56.22 56.14 39.58 57.11 59.24 59.89
5 34.50 61.75 62.29 42.59 63.26 65.52 64.40
10 36.40 66.62 67.78 45.35 68.74 70.30 71.18

batik ant

1 33.75 40.29 43.81 42.05 44.78 44.61 48.12
3 42.83 57.10 61.47 54.92 62.43 63.39 64.76
5 45.56 62.37 66.78 58.09 67.74 68.85 70.50
10 47.64 67.09 71.92 61.50 72.89 73.56 75.89

db4o jgit

1 24.21 35.52 35.93 30.56 36.90 37.94 41.97
3 34.59 55.61 56.61 42.56 57.57 58.86 60.19
5 36.70 61.89 62.30 59.36 63.27 64.47 67.01
10 38.74 65.88 67.39 49.36 68.35 69.28 72.07

itext jts

1 24.88 36.84 39.14 33.29 40.11 41.66 44.14
3 34.03 55.81 58.61 47.58 59.57 62.29 63.77
5 37.14 61.72 64.24 51.00 65.21 67.57 68.74
10 38.80 66.28 68.88 53.19 69.84 71.99 73.14

jgit itext

1 27.49 35.39 38.13 33.81 39.10 41.99 47.79
3 35.12 56.00 58.26 46.75 59.22 62.52 65.33
5 37.65 61.84 64.15 49.95 65.12 67.67 70.77
10 39.56 66.92 69.24 52.71 70.65 72.31 76.32

jts poi

1 30.09 40.21 40.56 33.29 41.53 43.61 44.65
3 40.01 57.88 58.35 48.40 59.31 62.07 60.89
5 43.50 62.72 63.47 53.08 64.44 66.67 66.94
10 44.84 66.63 67.75 54.86 68.72 70.64 71.69

maven antlr

1 25.99 39.77 41.67 35.53 42.63 46.43 47.68
3 32.58 58.26 60.90 45.12 61.87 65.40 61.25
5 34.95 63.66 66.13 48.22 67.87 69.75 67.47
10 37.04 67.18 70.37 50.99 71.33 73.35 73.41

poi maven

1 33.12 41.42 41.26 36.11 42.22 48.17 49.14
3 41.85 60.76 60.90 52.21 61.87 65.22 66.16
5 44.34 65.48 66.38 55.89 67.34 69.65 69.66
10 46.37 69.15 70.30 58.25 71.27 72.90 73.58
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Table 7: Mean Reciprocal Rank comparison of our proposed approach with previous works
with independent test set (Cassandra).

Previous Works Our Work
N-Gram RNN DNN N-gram+ RNN+ GRU CodeGRU

antlr 0.209 0.467 0.479 0.258 0.486 0.517 0.528

ant 0.235 0.478 0.487 0.280 0.494 0.515 0.544

batik 0.197 0.433 0.440 0.236 0.447 0.461 0.481

db4o 0.209 0.447 0.451 0.252 0.458 0.467 0.511

itext 0.225 0.457 0.458 0.270 0.465 0.494 0.520

jgit 0.252 0.467 0.477 0.301 0.484 0.516 0.557

jts 0.190 0.450 0.452 0.233 0.459 0.480 0.485

maven 0.215 0.478 0.492 0.255 0.499 0.523 0.534

poi 0.250 0.475 0.485 0.296 0.492 0.533 0.559

Average 0.220 0.461 0.469 0.265 0.476 0.501 0.524

• From the results, we conclude that the proposed approach outperforms
other baseline approaches.

Figure 6: MRR Score Comparison.

We conduct ANOVA to measure the statistical significant difference between
the proposed approach and the best baseline (DNN). ANOVA is conducted
on MRR, where the unit of analysis is a project. We conduct ANOVA on
Microsoft Excel version 2016 with its default setting, and no adjustments are
involved. Table 9 shows F > F-crit and p-value < (alpha = 0.05) are true for
MRR in both cases (Cassandra and Random test); therefore, we reject the null
hypothesis, suggesting that a statistically significant difference exist.
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Table 8: Mean Reciprocal Rank comparison of our proposed approach with previous works
with random test set where Ptrain shows the project name used for training and Ptest shows
the project name used for testing.

Previous Works Our Work
Ptrain Ptest N-Gram RNN DNN N-gram+ RNN+ GRU CodeGRU

antlr batik 0.298 0.455 0.495 0.395 0.501 0.533 0.537

ant db4o 0.286 0.465 0.471 0.356 0.478 0.496 0.508

batik ant 0.388 0.490 0.532 0.491 0.539 0.542 0.570

db4o jgit 0.297 0.458 0.467 0.371 0.474 0.485 0.515

itext jts 0.299 0.493 0.493 0.410 0.499 0.521 0.540

jgit itext 0.319 0.458 0.487 0.410 0.494 0.526 0.568

jts poi 0.357 0.490 0.499 0.416 0.505 0.530 0.532

maven antlr 0.298 0.492 0.518 0.410 0.525 0.560 0.540

poi maven 0.380 0.510 0.515 0.444 0.521 0.568 0.576

Average 0.326 0.476 0.497 0.411 0.504 0.529 0.543

Table 9: ANOVA Analysis on MRR Scores

Source SS df MS F P-value F crit

MRR (Cassandra)
Between Groups 0.013661 1 0.013661 23.71224562 0.00017043 4.493998
Within Groups 0.009218 16 0.000576
Total 0.022879 17

MRR (Random)
Between Groups 0.009253 1 0.009253 17.99466376 0.00062147 4.493998
Within Groups 0.008227 16 0.000514
Total 0.01748 17

Where, SS = sum of squares, df = degree of freedom, MS = mean square.
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5.3. Impact of CodeGRU on Vocabulary

NLP based deep learning models suffer from the vocabulary size. Usually,
they are trained on a fixed size vocabulary and replace the out of vocabulary
tokens with some special token while testing. The same approach has been
employed by previous studies [20, 47, 20]. In this work, we employ a novel
approach of capturing the token types which helps reduce the vocabulary size
up to 24.93% which suggest that our approach can help minimize the out of
vocabulary issue. Table 10 shows the vocabulary statistic with and without our
proposed approach. By capturing the token type information the vocabulary
size reduces significantly, in some cases over 30%. Vocabulary size reduction
helps overcome two limitations; It helps minimize the out of vocabulary issue and
reduce the time, and computation cost for model training. It took approximately
4-6 hours to train the jts model by using the proposed approach whereas without
our proposed approach it took 8-20 hours for the same project.

Table 10: Vocabulary comparison with and without our proposed approach.

Projects Code Tokens VNorm VCodeGRU % Decrease

ant 920,978 17,132 12,417 27.52%

cassandra 2,734,218 33,424 26,960 19.34%

db40 1,435,382 20,286 16,397 19.17%

jgit 1,538,905 20,970 16,433 21.64%

poi 2,876,253 47,756 33,867 29.08%

maven 494,379 8,066 6,770 16.07%

batik 1,246,157 21,964 14,643 33.33%

jts 611,392 11,903 7,710 35.23%

itext 1,164,362 19,113 12,824 32.90%

antlr 407,248 6,813 5,566 18.30%

Total 13,429,274 177,342 133,135 24.93%

5.4. Improving the Performance of CodeGRU

We conduct an experiment to study the impact of different hyper parameters
on CodeGRU performance. We tested various model settings varying the hidden
units (100,200,300 ) with the context size of (10,15,20 ) and optimizer (Adam,
RMSprop). In our experiments, we found that CodeGRU performs well when
the hidden units are 300 and context size is 20. The high values of both parame-
ters (context size and hidden units) are not surprising and most commonly used
in various source code modeling tasks [47, 40]. The value of context size (20)
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reflects that the model is capable of effectively learning the long-term context
dependencies of the source code by utilizing 300 hidden units(neurons) whereas
smaller context size or hidden units cause the model to under-fit. Further, to
alleviate the issue of overfitting, we have adopted dropout regularization which
helps prevent the model from overfitting. We choose the code embedding size
of 300 to match the hidden units size. Further, in our experiments we found
that Adam optimizer performed well as compared to RMSprop optimizer with
the learn rate set to its default 0.001 in both cases. We conclude from the ex-
periments that the architecture matching Table 4 performed well as compared
to other settings. Furthermore, we empirically selected GRU over RNN and
LSTM because of its good performance. GRU is an advanced version of LSTM
which works similar to it but performs better [42] by exposing whole hidden
context. We train RNN, LSTM and GRU based models by adopting the pro-
posed approach. Fig. 7 shows the average accuracy (K@1) score of each model
with independent test set. The performance of RNN and GRU is fairly similar.
However, RNN suffers from the vanishing gradient issue which can be overcome
by using GRU. Further, GRU exposes the whole hidden context on each time
step which is ideal for source code modeling tasks where context dependencies
are separated far apart. From the results, we can perceive that the GRU based
approach performs well as compared to others.

Figure 7: Performance of CodeGRU with different recurrent neural architectures.

5.5. Time and memory Cost

While conducting our experiments we retain time and space cost of using
Code Analyzer. Table 11 shows the time and space cost of each project. For
other processes, including tokenization, building sequences, models training, and
testing are all common procedures, so we do not analyze their costs. Among
all the projects, the time and space cost varies from 4.59 seconds with memory
cost of 2.29MB for antlr to 32.0 seconds with memory cost of 16.3MB for poi.
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Table 11: Time and space cost of Code Analyzer.

Project Time(sec) Space(MB)

antlr 4.59 2.29
ant 10.55 4.93

batik 14.66 7.08
cassandra 30.4 15.7

db4o 17.37 7.58
itext 13.81 6.25
jgit 16.7 8.37
jts 6.94 3.44

maven 5.98 3.04
poi 32.3 16.3

6. Applications of CodeGRU

In this section, we discuss CodeGRU with two software engineering appli-
cations: code suggestion, which aims to suggest multiple predictions for the
next code token, and code completion, which aims to complete the whole next
source code sequence. We use Visual Studio Code (VSC) IDE version 1.31.1
for the demonstration purpose. The demonstration is conducted on Intel(R)
Core(TM) i5-6500 3.20GHz with 4 cores and 8GB of ram running windows 10
operating system. The CodeGRU takes less than 260MB memory space for the
prediction purpose with the largest subject project (POI). We use CodeGRU to
help predict the top-k suggestions given a source code context and then use the
type information from the IDE to help suggest the identifier names as discussed
earlier in section 3.

6.1. Code Suggestion

CodeGRU is capable of ranking the next code token suggestions by calcu-
lating the likelihood based on a given source code context. In Fig. 8a one can
see an example for source code suggestion task where a software developer is
defining a variable at line five and the most probable next source code token
can be = but in visual studio code it does not provide any relevant suggestion
whereas CodeGRU suggests the correct next code token at first position of its
suggestion list. Consider a more complex example Fig. 8b where a software
developer is about to print a ListIterator item at line 31. We can see from
the given context the CodeGRU suggest the possible next source code token at
its first index whereas visual studio code rank it on its 4th index. In Fig. 8 one
can see CodeGRU suggest the next code token in its top three suggestion list.

6.2. Code Completion

The CodeGRU is capable of completing the whole sequence of code with
correct syntax and context. Lets take the example discussed in Fig. 9 where a
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(a)

(b)

Figure 8: Source Code suggestion example in visual studio code IDE.

developer is writing source code if ( i <= at line 6 in visual studio code. As
Fig. 9 shows CodeGRU provides the top-3 possible code completions. We can
observe that CodeGRU capture the data types of the identifiers i and arg and

assign the highest probabilities to the sequence if ( i <= IntLiteral ) {

and if ( i <= arg . Length ) { . We can also observe that it give low

probability to if ( i <= i ){ which is the most unlikely sequence given the
context.

6.3. Utility Applications

The application of the proposed approach is not limited to the preceding
ones. Usually in the modeling of source code identifiers are removed or replaced
by some generic code token (e.g. idf, unk, etc.) which may present vital in-
formation to help improve the model’s performance. The proposed approach
can help improve the performance of such approaches [28, 40, 46, 30, 49] by
considering the token type information. One possible application of our work
can be syntax error correction similar to Santos et al [40]. They present NLP
based recurrent neural model to detect and correct syntax errors. Their work
considers the single token syntax error (113 syntax token) and replacing the
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Figure 9: Source code completion example.

identifies with a generic token. Another possible application of our approach
can be bug prediction similar to Wang et al. [46]. Our proposed approach
may help improve these works [28, 40, 46, 30, 49] by capturing the token type
information.

7. Limitations and Threats to Validity

7.1. Limitations:

One of the limitations of NLP based models is vocabulary size. Vocabulary
size reduction helps in many ways, first, it helps reduce the train time of the
model. Second, it helps reduce the computational complexity. Larger the vo-
cabulary size of a model, more time and computational power it will require to
train the model. Although our approach reduces the vocabulary size by 24.93%
by capturing the token type information, still there may be some identifier types
which may not be captured while training the model. This limitation can be
overcome by training the model with even larger data set, but it will increase the
vocabulary size which will increase the computational complexity. A solution
to this problem is to use char level encoding. Another limitation of this work is
the gap concerning the recommendation on the identifier type and the possible
identifier names that developers may pick for the source code suggestion task.
In this work, we capture the source code context by capturing the token type in-
formation and fill the identifier names based on the captured token types. This
approach may possibly overload the developer when there are a large number
of possible initializations for a token type. In our future work, we consider to
overcome these limitations and to provide a more robust approach.

7.2. Construct Validity:

All models are developed using keras version 2.2.4 with tensorflow version
1.13.1 backend. Although our experiments are detailed and results have shown
the effectiveness of our approach but still neural networks are in its infancy.
Change in neural network settings, training or evaluating with a different test
set may produce different results. Another threat to construct validity is the
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suitability of the evaluation metrics. The Top-k [47, 20, 32] metric is commonly
used for the evaluation of deep learning based source code models. However, the
proposed approach is further evaluated with MRR [32, 40] and ANOVA metrics
to show its effectiveness and to alleviate this threat.

7.3. Internal Validity:

Our tool suggests the most relevant suggestions provided by the language
model given a source code context but the choice of identifier names is still up to
the developer. Our tool will suggest the token type for an identifier and actual
code token for the rest of the code tokens. Further, We have adopted a beam
search approach for the source code completion task. The completion provided
by CodeGRU model may not be accurate in some cases as it selects the first
prediction for each next token where the correct source code token may not be on
the first index. Another threat to internal validity is the implementation of the
baselines. We follow the same process as described in the original manuscript
of baselines. To alleviate this threat we double checked the implementation and
the results; However, there could be unnoticed imperfections.

7.4. External Validity:

A threat to external validity is that the generalization of our results. The
data set used in this study was collected from GitHub, a well-known source
code repositories provider. It is not necessary that the projects used in this
study represent Java language or other languages code entirely. Another threat
to external validity is the choice of hyper-parameters. There is no universal
approach to learn the best model parameters, thus the parameter tuning is
mainly empirical.

8. Related Work

Most of the modern IDEs provide code completion and code suggestion fea-
tures. In recent years, deep neural techniques have been successfully applied
to various tasks in natural language processing, and also have shown its effec-
tiveness to problems such as code completion, code suggestion, code generation,
API mining, code migration, and code categorization. In this section, we discuss
prior works which are relevant to this research.

Hindle et al. [20] have shown how natural language processing techniques
can help in source code modeling. They provide a n-gram based model which
helps predict the next code token in Eclipse IDE. Raychev et al. [37] used
statistical language model for synthesizing code completions. They applied n-
gram and RNN language model for the task of synthesizing code. Tu et al.
[44], proposed a cache based language model that consists of an n-gram and
a cache. Hellendoorn et al. [19] further improved the cache based model by
introducing nested locality. White et al. [47] applied deep learning for source
code modeling purpose. Another approach for source code modeling is to use
probabilistic context-free grammars(PCFGs) [8]. Allamanis et al. [1] used a
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PCFG based model to mine idioms from source code. Maddison et al. [26] used
a structured generative model for source code. They evaluated their approach
with n-gram and PCFG based language models and showed how they can help
in source code generation tasks. Raychev et al.[38] applied decision trees for
predicting API elements. Chan et al. [10] used a graph-based search approach
to search and recommend API usages.

Recently there has been an increase in API usage [45, 23, 12] mining and
suggestion. Thung et al. [43] introduced a recommendation system for API
methods recommendation by using feature requests. Nguyen et al. [33] pro-
posed a methodology to learn API usages from byte code. Allamanis et al.
[1] introduced a model which automatically mines source code idioms. A neu-
ral probabilistic language model introduced in [2] that can suggest names for
the methods and classes. Franks et al. [13] created a tool for Eclipse named
CACHECA for source code suggestion using a n-gram model. Nguyen et al. [31]
introduced an Eclipse plugin which provide context-sensitive code completion
based on API usage patterns mining techniques. Chen et al. [10] created a web-
based tool to find analogical libraries for different languages. Wang et al. [46]
proposed a Deep Belief Network (DBN) based model for inter and cross-project
bug prediction. They use source code’s AST to learn the semantic features of
source code. Mou et al. [30] proposed a Convolutional Neural Networks over
tree structures to capture source code structural information. They show the
effectiveness of their approach for the task of categorizing source code programs
based on their functionality. Both works [46, 30] considers certain parts of AST
and remove the rest which present vital information for other tasks such as
Source code suggestion, code completion etc.

Yin et al. [51] have proposed a source code generation approach that serially
apply actions from a grammar model to generate an abstract syntax tree. A
similar work conducted by Rabinovich et al. [34], which introduced an abstract
syntax networks modeling framework for tasks like code generation and semantic
parsing. Sethi et al. [41] introduced a model which automatically generate
source code from deep Learning based research papers. Allamanis et al. [4]
proposed a bimodal to help suggest source code snippets with a natural language
query. It is also capable of retrieving natural language descriptions with a source
code query. Recently deep learning based approaches have widely been applied
for source code modeling. Such as code summarization [21, 3, 17], code mining
[50], clone detection [25], API learning [16] etc. Different from the Santos et
al. [40] and Gupta et al. [18], our work focuses on source code suggestion
tasks, whereas their works focus on fixing syntax errors. Their work requires
the compilation of code after making a fix whereas our work does not require
compilation of source code and can provide suggestions instantly.

Our work is relevant to the [20, 47, 37, 32] works, however, it varies from
them in several important ways. Hindle et al. [20] have shown that source
codes are natural and a simple SLM (n-gram) based model can capture the
regularities in them. White et al. [47] and Raychev et al. [37] have shown
that the neural network based models can capture the regularities much more
effectively than n-gram [47] based models. They applied RNN based model to
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show how deep learning can help improve source code modeling. However, these
works [20, 47, 37] consider source code as simple tokens of text whereas our work
considers the source code contextual, syntactical and structural information.
Further, they treat source code as a single sequence of text tokens with fixed
size context window, while we employed a novel variable size context learning
approach which shows improvement in the modeling of source code. The most
similar work to ours is DNN [32] however, it varies in several important ways.
First, They apply deep neural networks for source code modeling with a fixed
size of context. Their work considers the context size of n=4, where larger
size may cause scalability problem as mentioned in their work [32], while our
work employed a novel approach of variable size context learning with the upper
bound limit of 20 tokens. Further, their approach is limited to Java language,
while our work adopts a general approach which can work with different static
type languages. Finally, they train and test the model on the same project by
splitting each project into ten folds from which one fold is used for test purpose
and rest are used for training purpose. Our model is trained on one project and
tested on a separate independent project which shows the proposed approach is
capable of predicting cross-project source code tokens.

9. Conclusion

This paper presented CodeGRU, a novel approach for source code modeling
which captures source code’s contextual, structural and syntactical information.
The work proposed a novel approach which can capture the source code context
by leveraging the token type information. The CodeGRU can effectively capture
the right context even it is separated far apart in the code. CodeGRU further
proposed a novel approach which learns variable size context while modeling the
source code. The evaluation has shown that CodeGRU outperforms the state-
of-the-art language models and help reduce the vocabulary size up to 24.93%
which suggest it can help minimize the out of vocabulary issue. We further
evaluated CodeGRU with two software engineering applications: (1) source code
suggestion, which can suggest multiple predictions for the next code token, and
(2) code completion, which can complete whole next code sequence which shows
that it is of practical use.

In the future, we would like to evaluate our approach for the dynamic typed
languages. In dynamic type languages, a source code token can have different
types which makes it difficult to capture the right context. We also aim at
providing an end to end solution with a large data set which can help software
developers directly utilize these models for both static and dynamic typed lan-
guages. Another limitation of deep learning based approaches is computation
power, where training a new model require additional resources. A common
software developer cannot afford to have a server or GPU based system to train
these models. There is a need for centralizing these language models which can
directly benefit software developers with minimum effort.
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