
The Symposium on Search-Based Software Engineering: Past, Present and Future

Thelma Elita Colanzia,∗, Wesley K. G. Assunçãob, Silvia R. Vergilioc, Paulo Roberto Farahc,d, Giovani Guizzoe

aDIN - State University of Maringa (UEM), Maringa, Brazil
bCOTSI, Federal University of Technology - Paraná (UTFPR), Toledo, Brazil

cDINF, Federal University of Paraná (UFPR), Curitiba, Brazil
dDESO, Santa Catarina State University (UDESC), Ibirama, Brazil

eCREST Centre - Department of Computer Science - University College London (UCL), London, UK

Abstract

Context: Search-Based Software Engineering (SBSE) is the research field where Software Engineering (SE) problems are mod-
elled as search problems to be solved by search-based techniques. The Symposium on Search Based Software Engineering (SSBSE)
is the premier event on SBSE, which had its 11th edition in 2019.
Objective: In order to better understand the characteristics and evolution of papers published at SSBSE, this work reports results
from a mapping study targeting the proceedings of all SSBSE editions. Despite the existing mapping studies on SBSE, our con-
tribution in this work is to provide information to researchers and practitioners willing to enter the SBSE field, being a source of
information to strengthen the symposium, guide new studies, and motivate new collaboration among research groups.
Method: A systematic mapping study was conducted with a set of four research questions, in which 134 studies published in all
editions of SSBSE, dated from 2009 to 2019, were evaluated. In a fifth question, 32 papers published in the challenge track were
summarised.
Results: Throughout the years, 290 authors from 25 countries have contributed to the main track of the symposium, with the col-
laboration of at least two institutions in 46.3% of the papers. SSBSE papers have got substantial external visibility, as most citations
are from different venues. The SE tasks addressed by SSBSE are mostly related to software testing, software debugging, software
design, and maintenance. Evolutionary algorithms are present in 75% of the papers, being the most common search technique. The
evaluation of the SBSE approaches usually includes industrial systems.
Conclusions: SSBSE has helped increase the popularity of SBSE in the SE research community and has played an important role
on making SBSE mature. There are still problems and challenges to be addressed in the SBSE field, which can be tackled by
SSBSE authors in further studies.

Keywords: Systematic mapping; Search-Based Software Engineering; Bibliometric analysis.

1. Introduction

Search Based Software Engineering (SBSE) is the research
field that formulates Software Engineering (SE) problems as
search problems. In this way, heuristic techniques are used
to find near-optimal solutions to efficiently solve a large vari-
ety of problems associated to different SE tasks. The Interna-
tional Symposium on Search Based Software Engineering (SS-
BSE)1 is the premier event on SBSE, with eleven editions so
far. Over the past ten years, the symposium has drawn attention
of researchers, academics, and practitioners alike, contributing
to strengthen the field and to integrate the SBSE community,
whilst gathering a large body of studies that are now relevant
SBSE references.

∗Corresponding author
Email addresses: thelma@din.uem.br (Thelma Elita Colanzi),

wesleyk@utfpr.edu.br (Wesley K. G. Assunção), silvia@inf.ufpr.br
(Silvia R. Vergilio), paulo.farah@udesc.br (Paulo Roberto Farah),
g.guizzo@ucl.ac.uk (Giovani Guizzo)

1https://ssbse.info/

Thanks to SSBSE we can say that the SBSE field is a mature
and active field of research. In the literature we can find sur-
veys reporting a wide view of SBSE on software bug fixing,
project management, planning and cost estimation, software
comprehension, refactoring, software slicing, service-oriented
software engineering, compiler optimisation, quality assess-
ment, and others [1–3]. Such surveys analyse the most used
search-based algorithms and also point out research directions
on SBSE. de Freitas et al. [4] presented a bibliometric analy-
sis of the SBSE field, which, alongside the other surveys, show
a growing number of SBSE papers, and an increasing number
of addressed SE areas. Some of these areas have their own
surveys, e.g., software testing [5], software design [6], require-
ments [7, 8], maintenance [9], and refactoring [10].

Despite the existing studies on SBSE, none offers a big pic-
ture of the SSBSE. Our previous work [11] synthesised the
symposium’s ten-year history in a systematic mapping [12]
conducted over all the SSBSE proceedings. This previous work
also analysed the addressed SE tasks and used Computational
Intelligence (CI) techniques, similarly to aforementioned SBSE
studies. But, differently from related work, it also provided

Preprint submitted to Information and Software Technology July 6, 2020

https://ssbse.info/

additional analysis regarding the composition of steering and
program committees, submission tracks, paper acceptance rate,
and impact of the papers published. Such analysis allowed an
overview of SSBSE and contributed to comprehend how the
symposium has been evolving along the years.

In this paper, we conduct a deeper and updated analysis of
our findings, add an analysis of the papers published in the
Challenge Track, include a discussion about trends, and shed
light upon the future of the SBSE field. Thereby, this paper
presents findings regarding the past, present and future of the
SSBSE. The main contributions are: i) to ascertain the impact
and relevance of SSBSE, by reporting its main numbers and
performing a citation analysis of the published works; ii) to de-
vise a co-authorship network and depict the most prolific re-
search groups, as well as the participation of the industry; iii) to
point out the software engineering areas that have been most
subjected to investigation as well as the ones that need more
attention; iv) to identify the main CI techniques; v) to analyse
how SBSE approaches have been evaluated; vi) to provide some
recommendations to future SSBSE authors; and vii) to present
trends and challenges that constitute research opportunities.

In our mapping, we followed the guidelines of Petersen et
al. [12]. We established research questions to reflect our goals,
adopted inclusion and exclusion criteria, and used a classifica-
tion schema to categorise the studies and perform our analysis.
Furthermore, we made available the raw data for future research
and analysis.2

Studies like ours are important to corroborate the importance
of the symposium and if it has been following up the main
changes pointed out by the existing surveys and mappings of
the SBSE field, as well as to evaluate its representativeness. As
a result, we can observe that the symposium has followed the
main changes in the field, playing an important role of con-
tributing to SBSE’s maturity.

The remainder of this paper is organised as follows. Section 2
reviews related work. In Section 3 we describe the adopted
method: Research Questions (RQs), inclusion and exclusion
criteria, how we collected the data, classification schema and
some threats to validity. In Section 4 we present the results to
answer each posed RQ and describe recommendations to new
authors. Section 5 discusses trends, challenges and research
opportunities for the SBSE field and symposium. Section 6
concludes the paper and points future directions based on our
findings.

2. Related Work

The works that are most related to ours are surveys, sys-
tematic mappings, and systematic reviews in the SBSE litera-
ture. We have searched for papers on the ACM Digital Library,
IEEE Xplore, Springer, Elsevier, and Scopus repositories us-
ing the following query: ("Search Based Software Engineering"
OR "Search-based Software Engineering") AND ("Survey" OR

2https://doi.org/10.5522/04/12554366

"Systematic Mapping" OR "Systematic Review"). After col-
lecting the results and removing duplicates, we manually fil-
tered papers that did not fit in our scope.

Most papers found are focused on a particular task, area,
or technique in SBSE. The latest major survey that covered
the whole area was published in 2012 by Harman et al. [2].
We also found multiple papers on specific areas of SBSE,
such as Search Based Software Testing (SBST) [3, 13, 14],
Search Based Software Design (SBSD) [6, 15], Search Based
Software Refactoring (SBSR) [10, 16], Search Based Software
Project Management [17], and SBSE for Software Product
Lines (SPL) [18–20].

Some other literature reviews focus on specific tasks, such
as mining repositories using SBSE [21], test data genera-
tion [5,22], genetic improvement of software [23], software re-
quirements management [8, 24, 25], re-engineering of legacy
applications into SPL [26], software module clustering [27],
software project scheduling [28], cloud migration [29], and
test resource allocation [30]. Specific techniques are also tar-
get of SBSE surveys, such as multi- and many-objective op-
timisation [31–33], hyper-heuristics [34], and interactive algo-
rithms [35, 36].

Differently from the papers mentioned in this section, this
paper is focused on mapping only the SBSE papers published
on SSBSE. In our previous work [11], we addressed the de-
velopment of SSBSE, but focusing mainly on the quantitative
aspects of the symposium. In this extended and updated ver-
sion, we present a deeper analysis of the results and also pro-
vide insights on trends and future challenges identified while
reading the papers, whilst also drawing connections to SBSE as
a whole.

3. Systematic Mapping Method

We adopt the systematic mapping process defined by Pe-
tersen et al. [12]. The process includes the following activities:
i) definition of research questions; ii) conducting the search;
iii) study selection; and iv) data extraction and classification. In
this section we describe how these activities were conducted.

3.1. Research Questions

The main research goal of this work is to capture the SBSE
field considering the papers published in the SSBSE editions. In
order to reach such goal, we formulated the Research Questions
(RQs) described as follows.

RQ1: What are the basic SSBSE numbers? To answer this
RQ, we provide a quantitative analysis of the event: number
of submitted and published papers along the years, acceptance
rate, authors and committees characteristics, research groups,
and collaborations.

RQ2: What is the external impact of SSBSE? To answer
this RQ, we provide a citation analysis of the SSBSE papers,
in order to evaluate the visibility and importance of publishing
in the symposium. After 10 years of SSBSE, it would be in-
teresting to discover whether SSBSE papers are cited by other

2

https://doi.org/10.5522/04/12554366

authors in different venues. By analysing the number of cita-
tions, number of self-citations, and number of citations in other
venues, we can evaluate if SSBSE papers are only cited by other
SSBSE authors or if they are drawing attention from other re-
searchers.

RQ3: What are the most common addressed SE areas
and CI techniques? To answer this question, we provide a
quantitative analysis of the addressed SE areas, employed CI
techniques, and number of papers in each category. Besides, we
analyse possible changes and trends over time. We also asked
sub-questions such as: How have these areas been evolving?
and What are the preferred CI techniques and how has this pref-
erence changed over time? Historically, software verification
and validation is the most investigated area in SBSE, but which
other SE areas have been also investigated? Moreover, we
are interested in identifying what CI techniques have been em-
ployed nowadays in addition to evolutionary techniques (most
common ones in SBSE [2]).

RQ4: How have the SBSE approaches been evaluated?
To answer this question we provide an analysis of the experi-
mental evaluation carried out in the papers, identifying applied
statistical tests, subjects, type of case studies, and comparison
measures. The main idea is to analyse experimental rigour em-
ployed in the studies published in the symposium and if it has
changed over time.

RQ5: What are the main characteristics of the papers
published in the SSBSE Challenge Track? To answer this
RQ, we analyse which real-world software were used in the
papers published in the referred track, which SE tasks were ad-
dressed, and which CI techniques were applied. It is also in-
teresting to analyse whether the most addressed SE areas and
the most applied CI techniques in this track are the same of the
research track one, analysed in RQ3.

3.2. Conducting the search and study selection

As the scope of our mapping is the SSBSE, the proceedings
of the eleven editions (2009-2019) are the source of studies. We
consider the following inclusion/exclusion criteria.

• Inclusion criteria: studies published in the main track
(full research paper) and in the challenge track of any edi-
tion of SSBSE.

• Exclusion criteria: studies not published in the main and
challenge tracks, keynotes, posters or tutorials were not
included.

3.3. Data extraction and classification

In order to answer the research questions we quantitatively
analysed the extracted data. Regarding data collection, the ab-
stract, introduction and conclusion paper sections were read in
full, whereas the rest of the papers’ content were read diag-
onally when necessary. The following pieces of information
were extracted: publication year, authors, affiliations (universi-
ties and/or companies), city/country, software engineering task,

used algorithms/techniques, statistical tests, quality indicators,
subject systems used for evaluation, artefacts and tools involved
in the experimentation, and other information needed to cate-
gorise the papers.

The papers of the research and challenge tracks were classi-
fied into categories in two dimensions: Software Engineering
area and Computational Intelligence technique. For the first di-
mension, SE areas, we use the four first levels of the 2012 ACM
Computing Classification System (CCS).3 Table 1 contains the
categories of the ACM CCS that have papers published in the
SSBSE editions. With respect to the second dimension, CI tech-
niques, five main categories were identified: Evolutionary Al-
gorithm, Local Search, Swarm Intelligence, Machine Learning,
and Others (techniques with lower number of papers).

The extracted data were used to answer the research ques-
tions. Furthermore, information about submissions and com-
mittees were extracted from the SSBSE proceedings in order
to answer RQ1. To answer RQ2, the citations of the research
track papers were extracted from Google Scholar as explained
in Section 4.2.

3.4. Threats to validity

The construct validity is concerned to the research questions,
mapping process, and metrics used to assess the results. To
minimise this kind of threat, we had several discussions about
the questions and goals of our search, and finally decided to
standardise the mapping process. For this, we applied the
guidelines proposed by Petersen et al. [12], while also using
common mapping goals and metrics applied by different re-
search studies in the literature [2, 3, 10] (e.g., citation count,
authors analysis, sub-areas, and tasks classification). Another
construct threat is related to the use of only full papers of the
main track to answer RQ2 to RQ4, excluding short and student
papers, for example. We took such decision because the other
tracks of the symposium varied widely along the editions (Sec-
tion 4.1.2), which could make the analysis biased towards edi-
tions with fewer tracks. Furthermore, papers other than full pa-
pers usually have a very narrow contribution and do not include
sufficient information for a thorough analysis. Nevertheless, the
challenge track has been occurring in all the last editions (since
2013) and is subject of a RQ apart (RQ5).

An external threat is the classification process for the Soft-
ware Engineering areas. In order to mitigate this threat, we
adopted the 2012 ACM Computing Classification System to
classify the papers and avoided the creation of arbitrary subar-
eas, hence the classification can be easily generalised and repli-
cated by other authors. We could not identify the gender of two
authors, thus we used Genderize.io API and both were defined
as females.

The papers classification is tricky and very often subjective
to the person reading the paper, thus this constitutes the ma-
jor internal threat of our work. In order to minimise such a
threat, the corpus of papers was divided equally to four authors,
which read and classified the papers. After this initial process,

3https://www.acm.org/publications/class-2012

3

https://www.acm.org/publications/class-2012

Table 1: SE Areas Classification according to ACM Computing Classification System
(https://www.acm.org/publications/class-2012)

CCS - level 0 CCS - level 1 CCS - level 2 CCS - level 3

General and Reference
Cross-computing tools

Experimentation Experimentation
and techniques
Document Types Surveys and Overview Survey

Social and professional topics Professional topics
Management of computing and Project and people
information systems management

Software and its engineering

Designing software
Requirements analysis
Software design

Search-based software engineering SBSE
Software creation Software development techniques Automatic programming
and management

Software post-development issues

Maintaining software
Software evolution
Software reverse engineering
Other

Software verification and validation Software defect analysis
Software organization Extra-functional Software performance
and properties properties Software reliability

the other author validated the classification by rechecking all
papers.

4. Results and Analysis

In this section, each research question is answered as an out-
come of the data extraction and analysis. The classification
schema is used and different discussions are presented to anal-
yse the obtained results.

4.1. RQ1 – SSBSE in numbers

The first edition of SSBSE occurred in 2009, in Windsor,
United Kingdom (UK). Since then, the symposium took place
in seven different countries. Nine editions occurred in Eu-
rope, one in South America (2014), and one in North Amer-
ica (2016). We observe that no edition has occurred in Asia or
Oceania. Five editions were co-located with the ACM Joint
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), and
a few were co-located with other events, such as the Interna-
tional Conference on Software Maintenance and Evolution (IC-
SME) and the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE).

The symposium attracts researchers, students, lecturers, and
members from industry. Each SSBSE edition had at least two
keynotes, one from SE and other from the optimisation field, in
a total of 27 keynotes, as well as 14 tutorials and 4 panels.

4.1.1. Committee characteristics
We observe the existence of distinct committees along the

editions. The program committee is the only one present in all
editions. The steering committee was created in 2012 (third edi-
tion). In the last editions (2017–2019) independent committees
were created for the challenge, short and student papers tracks.

Regarding the program committee composition, the number
of committee members varies from a minimum of 23 in 2017

to a maximum of 43 in 2014 with a high churn. But we do not
observe a great variation in the number of represented countries
along the editions, with a minimum of 9 (2011), a maximum of
13 (2014), and an average of 11.2. Some countries are repre-
sented in almost all editions such as UK, USA, Italy, Brazil,
Spain, Ireland, Norway, Sweden, and Luxembourg. Countries
that have appeared more recently are Romania and Korea.

A great variation and significant gender imbalance are ob-
served when we consider the percentage of women in the com-
mittee.4 This percentage varies from a minimum of 5% (2009)
to a maximum of 29% (2019). The gender imbalance has been
decreasing in the last years. This can be better visualised in
Figure 1.(a). Regarding the steering committee (Figure 1.(b))
such imbalance has also been decreasing. In the first four edi-
tions it had only 1 woman in a total of 9 members (percentage
of 11%). The maximum percentage of women is 33% in 2016
(3 out of 10 members). The number of countries represented
in such a committee has been kept almost constant (around 5,
with a maximum number of 8 distinct countries in 2012).

In spite of this gender imbalance, the percentage of women
researchers in leadership positions in SSBSE is greater regard-
ing other conferences and the Computer Science area [37]. We
had a total of 50 chairs, 16 of which are women (32%). If we
consider only the main track, this percentage is around 47%
(7 out of 15). This imbalance has been decreasing in the last
five years. Considering the main track, we observe a perfect
balance since 2014; a woman and a man have been chosen for
chairs since then.

4.1.2. Number of submissions and acceptance rate
SSBSE has provided different tracks in its eleven editions.

Some statistics about such tracks are presented in Table 2. The

4We manually checked the gender of committee members and authors by
doing a web search in their profiles (e.g., Google Scholar, Microsoft Academic,
Research Gate, and Linkedin).

4

Table 2: SSBSE in Numbers. (COU: number of different countries submitting papers. TSUB: number of submissions including all tracks. SUB: number of
submissions. ACC: number of accepted papers. Rate: percentage of acceptance. “-” means unknown or 0.)

Year COU TSUB Full Short/F.Abstract Student Challenge
SUB ACC Rate SUB ACC Rate SUB ACC Rate SUB ACC Rate

2009 14 26 - 9 - 5 - - 3 - - - -
2010 - 36 - 14 - - - - 3 - - - -
2011 21 43 37 15 40.5 - 8 - 6 3 50 - - -
2012 20 38 34 15 44.1 - 3 - 4 2 50 - - -
2013 24 50 39 14 35.9 - 6 - 9 6 66.6 4 2 50
2014 19 51 32 14 43.7 3 1 33.3 8 3 37.1 8 4 50
2015 15 51 26 12 46.1 8 4 50 4 2 50 13 13 100
2016 20 48 25 13 52 9 4 44.4 7 4 57.1 7 7 100
2017 14 32 26 7 26.9 2 5 - 2 2 100 4 4 100
2018 10 21 12 12 100 8* 6 75 - - - 1 1 100
2019 17 28 16 9 56.25 9� 3 33.3 9� 3 33.3 1 1 100
* with Hot of the Press Track
� just one track for short and student papers

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 20190

20

40

60

80

100

%

38 23 29 24 31 35 26 22 18 21 17

2 2 5 6 7 8 8 7 5 7 7

Female
Male

(a) Program Committee

2011 2012 2013 2014 2015 2016 2017 2018 20190

20

40

60

80

100

%

8 8 8 8 7 7 8 9 8

1 1 1 1 2 3 2 1 1

Female
Male

(b) Steering Committee

Figure 1: Committee Characteristics - Gender Imbalance

main track of full research papers and the student track occurred
in all editions with independent chairs. We can see that the total
number of submitted papers considering all tracks is greater in
the period of 2013–2016. A similar fact can be observed con-
sidering the number of submitted papers for the full research
papers and the student track.

The number of submitted and accepted papers of the full re-
search papers, as well as, the acceptance rate can be better visu-
alised in Figure 2. The years 2009 and 2010 were not included
because we could not find the number of full papers submitted.

Regarding the main track of full research papers, the number
of accepted papers varies from 7 (in 2017) to 15 (in 2011 and
2012). The acceptance rate of the main track falls in the range
of 27% (2017) to 100% in (2018). These years of 2018 and
2017 are outliers. In 2018, a shepherding phase was added in
the reviewing process, which may justify 100% of acceptance.
In fact, we do not observe great variations in the acceptance

(a) Number of submitted and accepted papers

(b) Acceptance rate

Figure 2: Submissions in the track of full research papers

rate before 2016, considering 2011–2016 the mean rate is 43%.
After a period of growing and boom, we observed a decrease in
the number of submitted papers, what might be justified by the
recent inclusion of SBSE in the list of topics of several confer-
ences.

The characteristics of the short papers track varied along the
editions. The challenge track started only in 2013. Thus it is not
possible to analyse the acceptance rate over the eleven years of
both tracks.

In most editions, separated calls for short papers or fast ab-
stracts were provided, with or without independent chairs. In
some editions accepted short papers were originally submitted

5

Table 3: Author’s churn

Year New Continued Discontinued Total Churn

2009 24 0 0 24 0.0%
2010 32 6 18 38 133.3%
2011 34 8 30 42 89.4%
2012 34 16 26 50 80.9%
2013 34 8 42 42 68.0%
2014 39 5 37 44 92.8%
2015 35 4 40 39 79.5%
2016 39 6 33 45 100.0%
2017 13 3 42 16 28.9%
2018 31 4 12 35 193.7%
2019 25 1 25 26 71.4%

as full papers (2011–2013). In 2017, we had an independent
call for short papers, but some papers submitted to the main
track were also accepted as short papers. This is because the
number of accepted short papers is greater than the submit-
ted ones. The edition of 2017 included a journal-first papers
track with 2 papers. The edition of 2018 included a Hot of the
Press track that also included short/student papers with 6 pa-
pers. Other point that should be highlighted is that in 2019, just
one track occurred including short and student papers.

Including all tracks, we had a corpus of 233 papers, 134 asso-
ciated to the research track, published by IEEE in the first two
editions, and by Springer since the third one. Because of this
variety in the tracks (as mentioned in Section 3.4), the anal-
ysis conducted to answer RQ2 to RQ4 includes only the 134
full papers of the research track collected from all the SSBSE
proceedings. The papers of the challenge track have special
characteristics and are subject of RQ5.

4.1.3. Authorship
In the 134 full papers, we found 290 distinct authors. For

those authors, we analysed their affiliations, and identified the
most prolific authors and collaborations. The great majority of
authors, equivalent to 94.8% (275 out 290), published fewer
than 4 papers.

Table 3 quantifies unique authors who are new or returned
to publish at SSBSE with at least one year without publication
(column New), authors that published in the year before and
remained publishing at least one paper in the event (column
Continued), and authors who discontinued, i.e., that had an ac-
cepted paper in the previous year and did not publish any paper
in the following year (Discontinued). Additionally, we calcu-
lated the yearly churn percentage, presented in the last column.
This metric represents the authors’ turnover. It is the percent-
age of new authors of a given year in relation to the number
of authors of the previous year. The results indicate that few
authors keep publishing along the years, 2012 was the edition
with highest number of unique authors and 2017 was the year
with the lowest. Churn rate is very high, the highest value was
obtained for 2018 and the lowest for 2017.

We also investigated the number of countries represented by
the authors. To this end we identified the country of all affilia-
tions presented in the papers. Thus, if an author was affiliated to

0

20

40

60

80

pa
pe

rs

UK USA Brazil

0

20

40

60

80

pa
pe

rs

Italy Canada China

0

20

40

60

80

pa
pe

rs

Spain Luxembourg Germany

2010
2012

2014
2016

2018
0

20

40

60

80

pa
pe

rs

Norway

2010
2012

2014
2016

2018

Sweden

2010
2012

2014
2016

2018

Netherlands

Figure 3: Contribution by countries

institutions of two countries, both were counted in our analysis.
The analysis revealed that 25 different countries contributed to
SSBSE. Figure 3 shows cumulative number of contributions of
12 distinct countries (48%).

The top 3 countries (12%) had a contribution of 43.7% and
the top 5 countries (20%) had a contribution of 64%. We can
observe that authors from the UK have contributed consider-
ably more than other countries over all editions. Next, there
are four countries that have been disputing the second position
in the period: USA, Brazil, Italy and Canada. The USA have
been maintaining the second place since 2013, tied with other
countries in some years.

There is a third block, composed by: China, Spain, Luxem-
bourg, Germany, Norway, Sweden and the Netherlands. There
are some interesting aspects about these countries. We observe
a big jump in the number authors from in years 2015 and 2016,
which made them lead the number of contributions of this third
group. We can also highlight the fact that Spanish authors par-
ticipated actively only in the first four years of the event and,
since 2014, nobody from Spain has published any other pa-
per. Another important aspect of this group is that we observed
an increase in the number of papers from Norway and Luxem-
bourg, perhaps due to collaborations with other countries. Nor-
way collaborated with other countries in 41.6% of published
papers and Luxembourg in 30%.

6

Another analysis shown in Figure 4 presents the percentage
of women that published papers. It varies from 8.3% in 2009 to
29% in 2013. The results show a big gender imbalance that has
not been decreasing along the years.

Some authors belong to more than one kind of institution.
Figure 5 displays the percentage of authors from universities,
research foundations and industry. We can observe clearly that
the great majority are from universities. One interesting point
is that the research foundation Fondazione Bruno Kessler con-
tributed in almost all editions, except 2013 and 2015. The per-
centage of papers exclusively from universities is 88.5%, exclu-
sively from industry and also exclusively from research founda-
tions is 4%, from universities in collaboration with industry is
3%, and from universities and research foundations is 0.5%. We
noticed a modest participation of the industry.

4.1.4. Collaborations
To better identify the main SSBSE groups and collaborations

we constructed a co-authorship network, which is shown in Fig-
ure 6. We observed that 46.3% of papers have external collab-
oration, that is, were published by authors from different insti-
tutions, and in 27.6% the institutions are from different coun-
tries. The University of Luxembourg formed the main group,
collaborating with 11 different institutions. University College
London collaborated with 8, Fondazione Bruno Kessler collab-
orated with 7, University of York and State University of Mar-
ingá with 5 and University of Sannio, Simula Research Labo-
ratory, Università Della Svizzera Italiana, Federal University of
Paraná, Technological Federal University of Paraná and Santa
Catarina State University with 4 institutions. Moreover, there
are many other collaborations with fewer connections.

We can conclude that there is a significant collaboration rate
close to 50% and that the symposium plays an important role
for this high percentage.

RQ1: SBSE has attracted participants from several coun-
tries. The mean number of countries represented in the
committee is 13 and in the papers published is 25. Gen-
der imbalance significantly varied from 5% to 30% for
committee members and from 8% to 29% for authors.
The total number of submitted papers was greater in the
period of 2013 to 2016, and has declined in the last years.
The great majority of the authors (94.8%) have published
up to three papers. On average, churn rate of the event
is high. The percentage of authors’ collaboration is close
to 50% in the papers.

4.2. RQ2 – Citations Analysis and External Impact

This section presents results regarding the total number of
citations of SSBSE editions and citations by individual papers
in order to evaluate the impact of the symposium.

The number of citations was collected from Google Scholar
(GS) on the 25th October, 2019. All papers were individu-
ally evaluated, for which we collected their total number of

citations (tagged as “Citations”), total number of citations ex-
cluding self-citations (tagged as “No Self-Citations”), and to-
tal number of citations excluding self-citations and citations by
other SSBSE papers (tagged “External Citations”).5 Our ci-
tation analysis does not encompass the last edition of SSBSE
(2019), because by the time we collected this data, the citations
of 2019 papers had not been computed by Google Scholar yet.

In the past 10 years, SSBSE papers have received a total of
2 339 citations, of which 1 905 (81.4%) account for no self-
citations and 1 809 (77.3%) represent external citations. The
difference between the number of no self-citations and external
citations is only 96 (4.1%), i.e., there are only 96 citations of
SSBSE papers by different SSBSE authors and the remaining
citations are from different venues.

Figure 7 depicts the average number of citations the papers
received per year since they have been published. Figure 7.(a)
shows the average citations by edition, whereas Figure 7.(b)
shows the average by paper. Each SSBSE edition received on
average 38.6 citations per year (39.8 median), of which 29.8 are
no self-citations (32.4 median), and 28.3 are external citations
(30.9 median). The SSBSE 2011 edition was the most cited
one, with a total of 499 citations (62.4 per year).

Next we present some statistics by paper. On average, each
SSBSE paper received 18.7 citations (13 median), of which
15.2 are no self-citations (8 median), and 14.5 are external ci-
tations (8 median). Moreover, each paper received on average
3.1 citations per year of its publication (2.4 median), of which
2.4 are no self-citations (1.7 median) and 2.3 are external cita-
tions (1.5 median). Even though the SSBSE 2011 edition was
the most cited one per year in general, the SSBSE 2017 edition
has a better average of citations by paper: each of the 7 papers
received on average 10.3 citations, or 5.1 per year of their publi-
cation. Interestingly enough, this edition has the lowest number
of published papers and acceptance rate (see Table 2).

Table 4 shows the 10 most cited papers from all editions.
It is worth mentioning that these 10 papers have 736 citations
(31.5% of all SSBSE papers combined). The paper authored
by Arcuri and Fraser [38] is the most cited paper of the sympo-
sium.

Another interesting information is regarding SSBSE h-index
and h5-index values [39]. The h-index counts the maximum
number of h papers that have been cited at least h times. Such
index can give a balanced assessment between quantity and
quality (as measured by number of citations) of research papers.
For example, an h-index of 100 means the 100 most cited papers
have at least 100 citations. To increase the h-index to 101, the
101st most cited paper must have at least 101 citations. Simi-
larly, the h5-index compute the h-index for the papers published
in the last 5 complete years (we consider the 5 years between
2014 and 2018). The SSBSE h-index is 28 and the h5-index is
13. As a matter of comparison, according to GS,6 the h5-index

5To ease this task, we used Publish or Perish (https://harzing.com/
resources/publish-or-perish), a tool that helps researchers look up in-
formation about papers, conferences, journals and others researchers in several
repositories, including GS.

6https://scholar.google.com/citations?view_op=top_
venues&hl=en&vq=eng_softwaresystems

7

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

20

40

60

80

100

%

22 33 42 46 33 40 32 37 15 30 22

2 7 8 5 14 6 8 9 3 7 5

Female
Male

Figure 4: Authors Gender Imbalance

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

20

40

60

80

100

%

University
Industry
Foundation
University-Industry
University-Foundation

Figure 5: Source of Contributions

KING’S COLLEGE LONDON

UNIVERSITY OF MÁLAGA

FONDAZIONE BRUNO KESSLER

UNIVERSITY OF TRENTO

BLEKINGE INSTITUTE OF TECHNOLOGY
KNOWIT YAHM SWEDEN AB

BERNER & MATTNER SYSTEMTECHNIK GMBH

CHINESE ACADEMY OF SCIENCES

SAARLAND UNIVERSITY
SIMULA RESEARCH LABORATORY

INSTITUTO POLITÉCNICO DE LEIRIA

UNIVERSITY COLLEGE LONDON

UNIVERSITY OF SANNIO

UNIVERSITY OF BRISTOL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

UNIVERSITY OF MOLISE

UNIVERSITY OF SALERNO

IBM DUBLIN SOFTWARE LAB.

UNIVERSITY COLLEGE DUBLIN

CERTUS CENTER FOR V & V

UNIVERSITY OF LUXEMBOURG

UNIVERSITY OF OSLO

BRNO UNIVERSITY OF TECHNOLOGY

SHMUEL UR INNOVATIONS, LTD.

JOHANNES KEPLER UNIVERSITY
UNIVERSITY OF SEVILLE

UNIVERSITY OF GLASGOW

UNIVERSITY OF YORK

FEDERAL UNIVERSITY OF PARANÁ

TECHNOLOGICAL FEDERAL UNIVERSITY OF PARANÁ

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF TUNIS CARLETON UNIVERSITY

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY

DELPHI AUTOMOTIVE SYSTEMS

FEDERAL UNIVERSITY OF BAHIA

FEDERAL INSTITUTE OF BAHIA
UNIRIO

SWINBURN UNIVERSITY

UNIVERSITY OF MICHIGAN

STATE UNIVERSITY OF MARINGÁ

UNIVERSITY OF WEST ENGLAND

KARLSRUHE INSTITUTE OF TECHNOLOGY

UNIVERSITY OF ADELAIDE

TAIBAH UNIVERSITY

SCIENTA

UNIVERSITÀ DELLA SVIZZERA ITALIANA

DATA DUCTUS AB

UNIVERSITY OF STIRLING

DELFT UNIVERSITY OF TECHNOLOGY

MONASH UNIVERSITY

VRIJE UNIVERSITEIT BRUSSEL

THE UNIVERSITY OF SHEFFIELD
WESTERDALS OSLO ACT

UNIVERSITY OF BERGAMO

CARNEGIE MELLON UNIVERSITY

UNIVERSIDADE FEDERAL DE GOIAS

TU DARMSTADT

UNIVERSITY OF EAST LONDON

UNIVERSITY OF GENOVA

UNIVERSITY OF SÃO PAULOGULF UNIVERSITY FOR SCIENCE AND TECHNOLOGY
ILLINOIS INSTITUTE OF TECHNOLOGY

TU WIEN
UNIVERSITY OF MONTREAL

CHALMERS UNIVERSITY OF TECHNOLOGY

MALMÖ UNIVERSITY

SONY MOBILE COMMUNICATIONS

MICHIGAN STATE UNIVERSITY
OAKLAND UNIVERSITY

IBM RESEARCH
UNIVERSITY OF DELAWARE KAIST

LANCASTER UNIVERSITY

SANTA CATARINA STATE UNIVERSITY

NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCES
NATIONAL CENTER OF ROBOTICS AND AUTOMATION

Figure 6: Collaboration network.

(a) Average by edition (b) Average by paper

Figure 7: Average number of citations per year.

8

Table 4: Ranking of the 10 most cited SSBSE papers. C: citations, NS: no self-citations, E: external citations.

Year Title Authors C NS E

2011 On Parameter Tuning in Search Based Software Engineering Arcuri and Fraser 154 139 130
2009 An Improved Meta-Heuristic Search for Constrained Interaction Testing Garvin et al. 85 79 77
2012 Evolving Human Competitive Spectra-Based Fault Localisation Techniques Yoo 76 61 56
2011 Highly Scalable Multi Objective Test Suite Minimisation Using Graphics Cards Yoo et al. 70 61 58
2009 A Study of the Multi-Objective Next Release Problem Durillo et al. 66 61 57
2011 Ten Years of Search Based Software Engineering: A Bibliometric Analysis de Freitas and Souza 62 61 57
2012 Putting the Developer in-the-Loop: An Interactive GA for Software Re-modularization Bavota et al. 61 58 56
2012 Reverse Engineering Feature Models with Evolutionary Algorithms: An Exploratory Study Lopez-Herrejon et al. 55 38 36
2010 The Human Competitiveness of Search Based Software Engineering Souza et al. 54 46 40
2010 Genetic Programming for Effort Estimation: an Analysis of the Impact of Different Fitness Functions Ferruci et al. 53 42 40

of ACM/IEEE International Conference on Software Engineer-
ing (ICSE) is 75, IEEE Transactions on Software Engineering
(TSE) is 48, IEEE Software is 41, IEEE/ACM International
Conference on Automated Software Engineering (ASE) is 40,
and ACM Transactions on Software Engineering and Method-
ology (TOSEM) is 28. Considering only external citations, the
SSBSE h-index and h5-index values are respectively 25 and 11.

This close gap between no self-citations and external cita-
tions (both count and h-index) may indicate that the SSBSE
papers have external visibility, as most of the citations are from
different venues. Furthermore, this can also imply that such pa-
pers might have been used as source of inspiration for further
research by the SE community.

We reported the number of citations as a measure of impact,
however this might not be very accurate. As Ghezzi [40] stated
in his keynote during the 31st edition of ICSE, the most cited pa-
pers will not always represent the most influential ones. Some-
times, a paper is reported to be directly influenced by another
paper, while having more citations. This can also be observed
when comparing the rank of papers by citations count to the
rank of most influential papers judged by the experts of the
field. As shown by Ghezzi [40], the 8 most cited papers in
the ICSE editions were elected as the most influential papers of
that same year, but further down the rank, the most cited papers
were not always selected as the most influential ones by experts.

A similar phenomenon happened with SSBSE. During the
10th edition of the symposium in 2018, the community was
asked to vote on the most influential paper of the past 10
years. The award was given to “The Human Competitiveness
of Search Based Software Engineering” by de Souza et al. [41].
However, the award-winning paper is only the 9th most cited
paper (54 citations) with nearly a third of the citations of the 1st

one (154 citations).
All in all, the number of citations seemed to be the best met-

ric of impact in the context of our work. This metric can be
of some value, as a greater number of citations can tell more
than smaller numbers, even though only about the visibility of
papers. The best approach to evaluate the external impact of
SSBSE papers would be to actually check the experts opinion,
however, that is not a trivial task. Indeed, this could be done in
future work with a more carefully designed impact evaluation
with experts of top-tier software engineering venues.

Designing software
20%

Experimentation
1%

Extra-functional
properties

2%

Management of
computing and

information systems
5%

Software post-

Software verification
and validation

55%

Search-based software
engineering

3%

Surveys and Overview
3%

Software post-
development issues

10%

Software development
techniques

1%

Figure 8: SE Areas Classification (level 2 of ACM CCS)

RQ2: SSBSE papers have attracted substantial exter-
nal visibility, as most of the citations are from different
venues.

4.3. RQ3 – Software Engineering Areas and Tasks

To answer RQ3, the papers were grouped by SE areas as de-
scribed in Section 3. Figure 8 presents the percentages of stud-
ies by each identified SE area in the level 2 of ACM Computing
Classification System. 55% of the papers are from Software
Defect Analysis, which includes software testing and debug-
ging, and 47% of them tackled some task related to software
testing. This percentage is aligned with the software engineer-
ing wisdom that software testing takes about half of the whole
development budget [3].

The SE area with the second greatest number of studies is De-
signing Software (20%). Such an area includes Requirements
Analysis and Software Design. 10% of SSBSE papers deal
with Software Post-development Issues (mainly Maintenance,
Software Evolution and Reverse Engineering) and 5% of them
are about Management of Computing and Information Systems,
which involves People and Project Management. Other SE ar-
eas represent 7% of the overall publications: Search-based Soft-
ware Engineering (3%), Surveys and Overview (3%), Extra-
functional properties (2%), Software development techniques
(1%) and Experimentation (1%).

Figure 9 shows the amount of papers published in SSBSE by
year considering a more detailed level of SE area (level 3 of
ACM Classification). Software Defect Analysis was addressed

9

Software performance

Survey

Software Reverse Engineering

SBSE
Other

Project and people management
Requirements Analysis

Software design
Maintaining software

Software defect analysis

0

1

2

3

4

5

6

7

8

9

2009 2010 2011
2012

2013
2014

2015
2016

2017
2018

2019

Amount of Papers published by Software Engineering Area

Figure 9: Amount of Papers published by Software Engineering Area (level 3
of ACM CCS)

in every SSBSE edition. Maintenance, Software Design, Re-
quirements Analysis and People and Project Management were
the other most common SE areas for the level 3 of classifica-
tion, representing, respectively, 7.5%, 12%, 8.2% and 4.5% of
the SSBSE papers. Software Design and Requirements Anal-
ysis were investigated with regularity throughout the editions.
The other SE areas were focused in less than 5% of the papers.
SE areas such as Software Performance, Software Reliability,
Automatic Programming and Experimentation have been ad-
dressed more recently.

The category "Other" includes papers about Software Relia-
bility, Automatic Programming, Experimentation and Source-
Code Authorship Definition. They have only one paper each.

4.3.1. Main tasks and problems

Figure 10 presents the tasks related to software testing. Test
data generation was addressed in every SSBSE edition, com-
prising 50% of all software testing papers. The editions of the
years 2017 and 2019 have five and four papers on this task,
respectively. Defect prediction, test case evaluation and test
management were tackled only in the first two editions. Test
suite minimisation and testing of concurrent/multi-threaded
programs were addressed over time. The last four editions con-
tained papers on regression testing, stress testing, interaction
testing, test suite minimisation, and bug identification.

Considering all editions, there are six papers about testing of
concurrent/multi-threaded programs and five papers about test
suite minimisation. Interaction testing and test case prioritisa-
tion were tackled by four papers. Regression testing was the
subject of three papers, whereas integration testing and stress
testing were addressed by two papers. The category "Other" in-
cludes papers about defect prediction, test case evaluation, test
management, bug identification, and testability transformation

Interaction Testing
Integration Testing

Regression Testing
Stress Testing

Test Suite Minimization
Other

Testing of Concurrent/Multi-Threaded Programs
Test Case Prioritization

Test Data Generation

0

1

2

3

4

5

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Amount of papers by Testing Tasks

Figure 10: Amount of Papers published by Testing Tasks

Program analysis/comprehension
Program repair

Fault Localization

0

1

2

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Amount of papers by Debuging Tasks

Figure 11: Amount of Papers published by Debugging Tasks

for Java bytecode, each of which was addressed by only one
paper.

The tasks related to software debugging are presented in Fig-
ure 11. Papers on debugging addressed tasks, such as fault lo-
calisation and program analysis, over time, and, more recently
(2016 and 2017), program repair.

The Next Release Problem is the most addressed Require-
ments task, although the last publication about this problem
was in 2015. This can indicate that the problem might have
been satisfactorily solved. More recently, papers have focused
on detection of incomplete requirements and non-functional re-
quirements optimisation.

Regarding Software Design, most papers deal with archi-
tecture definition and model transformation in Model-Driven
Engineering (MDE), followed by automatic software configu-
ration, architecture improvement and software modularisation.
After two years without publications in this area, three papers

10

addressing MDE were published in 2018.
Maintenance papers appeared between 2012–2016 and 55%

of them addressed refactoring. The other SE tasks related to
maintenance are bug prioritisation, code smells detection, non-
functional properties optimisation, and automatic generation of
maximally diversified versions, with one paper published for
each task.

Most papers on Project and People Management deal with
business process reduction and software project planning.
Three surveys were published from 2011 to 2015. They ad-
dressed SBSE research analysis, metrics to search-based refac-
toring, and software requirement selection and prioritisation
problems. Also, the survey about the papers of the 10 previ-
ous editions of SSBSE, which is extended in the present work,
was published in SSBSE’2019.

Four papers treat SBSE over time, in the following order:
SBSE evaluation, SBSE scalability, project decision making
and online experimentation. Reverse engineering was applied
to the Software Product Line approach in 3 published papers.

Tasks that have emerged in the last 4 years are the ones
related to non-functional aspects (software performance, soft-
ware reliability, non-functional properties optimisation and
non-functional requirements optimisation), as well as program
repair, stress testing, MDE, program synthesis and experimen-
tation.

RQ3: The most common addressed SE area is Software
Defect Analysis (55% of 134 papers). Test data genera-
tion is the most addressed task representing about 24%
of overall full papers published in SSBSE editions.

4.3.2. CI Techniques
Figure 12 shows the CI techniques used in the SSBSE pa-

pers over time. 75% of the papers applied (mono- or multi-
objective) evolutionary algorithms. 24% applied local search,
such as Hill-Climbing, Greedy, Simulated Annealing and Tabu
Search. 4.8% used swarm intelligence algorithms (ACO and
PSO). The category named "Other" (9% of the papers) includes
algorithms such as Mathematical Optimisation, Mixed Integer
Linear programming, Error-Correcting Graph Matching algo-
rithm, Constraint Programming, Artificial Immune Recognition
Systems, Random Search, etc. 4.5% of papers have also ap-
plied machine learning algorithms (Artificial Neural Network,
Greedy Agglomerative Clustering or Multiple Regression).

22 out 134 papers used more than one CI technique. In some
cases, different algorithms were used to compare which one has
the best performance to solve the addressed problem. In other
cases, algorithms from different CI techniques were combined
to better solve a problem, which happened with the 4 papers that
combined evolutionary algorithms and machine learning. Each
one addressed the following tasks: refactoring, test data genera-
tion, test management, and automatic generation of maximally
diversified versions.

As seen in Figure 12, since 2012 swarm intelligence has not
been applied in SSBSE papers. The application of evolutionary

Machine Learning
Swarm Intelligence

Other
Local Search

Evolutionary Algorithm

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0

2

4

6

8

10

12

14

Figure 12: Amount of Papers published by CI Technique

Evolutionary

Algorithms

Local Search

Machine
Learning

Swarm
Intelligence

Other

6 7 10 11 58

7 1

17 5 1 3 5

4 1

Software Defect

 Analysis

Maintaining

Software

Software

Design

Requirements

Analysis

Project and People

Management

2 3

Figure 13: CI Techniques used by SE Areas

algorithms has also decreased over time. On the other hand,
other CI techniques and machine learning algorithms have been
increasingly used.

Figure 13 presents a bubble plot depicting the use of CI tech-
niques to address SE problems of the five most common SE
areas. Evolutionary algorithms are the most used technique fol-
lowed by local search. Both are used by works of all areas.
26% of the overall publications employed some multi-objective
evolutionary algorithm, mostly NSGA-II.

All kinds of CI techniques were used to solve problems re-
lated to Software Defect Analysis. For Requirements Analy-
sis only machine learning algorithms were not used. Machine
Learning was not used also for Software Design and People
and Project Management. Swarm intelligence was used only in
works on Software Defect Analysis and Requirements Analy-
sis.

Table 5 lists the tasks most addressed by SSBSE papers, or-
dered from most to least used. Tasks addressed by only one pa-
per are not shown. Test Data Generation is the most researched
SE task, followed by Next Release Problem.

Table 6 lists the most used algorithms in SSBSE papers. Al-
gorithms applied in only one paper were omitted. Genetic Al-
gorithm is the most used, followed by NSGA-II.

Figure 14 shows a bubble chart correlating algorithms and
SE tasks. The acronyms of tasks and algorithms are the same
listed in Tables 5 and 6, respectively. Papers with only one oc-
currence of either SE task or algorithm are not shown. We can
observe that the most frequent task and algorithm is Test Data

11

AI BPR FL IT MDE NRP PAPC PR REF SPP TCMP TDG TSM
SE Tasks

NSGA-II
GP
SA

SPEA2
ACO

GA
HC
IGA
CP

LIPBS
MIO

MOS

Al
go

ri
th

m
s 2

2

2

2 2

2

3
2

222

14
5

3

2
4

2

2
2

4
2

2
3

3

2

2

2

2

2

Designing Software
Project and People Management
Software Defect Analysis

Requirements Analysis
Maintaining Software

Figure 14: Algorithms used by SE Tasks

Table 5: Most addressed SE tasks.

Acronym Task Quantity

TDG Test Data Generation 34
NRP Next Release Problem 9
TCMP Testing of Concurrent/Multi-Threaded Programs 8
REF Refactoring 6
IT Integration Testing 4
FL Fault Localization 3
TSM Test Suite Minimization 3
AI Architecture Improvement 2
BPR Business Process Reduction 2
IT Interaction Testing 2
MDE Model Transformation 2
PAPC Program Analysis/Program Comprehension 2
PR Program Repair 2
SPP Software Project Planning 2

Table 6: Most used algorithms.

Acronym Algorithm Quantity

GA Genetic Algorithm 26
NSGA-II Non-dominated Sorting Genetic Algorithm-II 15
SA Simulated Annealing 10
HC Hill-Climbing 7
GP Genetic Programming 5
MOSA Many-Objective Sorting Algorithm 4
ACO Ant Colony Optimization 4
CP Constraint Programming 2
IGA Interactive Genetic Algorithm 2
LIPBS Linearly Independent Path based Search 2
MIO Many Independent Objective algorithm 2
SPEA2 Strength Pareto Evolutionary Algorithm 2

Generation (TDG) and Genetic Algorithm (GA) with 14 occur-
rences. Analysing SE areas, most used algorithms in Software
Defect Analysis are GA with 23 papers, Simulated Anneal-

ing (SA) with 6 and, in third, NSGA-II, Genetic Programming
and Hill-Climbing with 5 occurrences. Designing Software and
Project and People Management areas used only NSGA-II. Re-
quirements Analysis used mostly GA (3 occurrences) followed
by the algorithms NSGA-II, SA and Ant Colony Optimization,
that tied with 2 papers. At last, papers of the Maintaining Soft-
ware area used SA, Interactive Genetic Algorithm (IGA) and
Hill-Climbing algorithms equally. It is worth mentioning that
GA was the most used algorithm for Software Defect Analy-
sis, Requirements Analysis and was not used by other SE ar-
eas. NSGA-II was the algorithm used for the highest number
of different tasks. It was applied for all SE areas, except for
Maintaining Software. On the other hand, Test Data Genera-
tion is the SE task that used the highest number of different
algorithms.

4.3.3. Artefacts and Tools
The most common artefact used in Software Defect Analysis

is source code. A few papers use class diagrams in order to pre-
dict defects and to perform regression testing using model trans-
formation. A single paper used bug reports to identify bugs in
the code. From the 32 papers that perform test data generation,
11 use the EvoSuite tool, arguably the most used and efficient
test data generation tool in SBST. GenProg was evaluated in the
two papers tackling program repair.

Studies classified into the Software Design area used models
(such as class diagrams and metamodels) and source code as
main artefacts. Models are mainly used in works about Archi-
tecture Improvement and MDE. jMetal and Evolutionary Com-
putation for Java (ECJ) were the most cited tools to implement
the evolutionary algorithms.

Requirements Analysis research commonly use requirements
instances, models, and algorithms as main artefacts for optimi-
sation. The tools used were jMetal, RELAX, MATLAB, and
the robust optimisation framework.

Project and People Management works perform optimisation
over project planning data sets with function points, architec-

12

tural models, and source code directly. The most common tools
used in the case studies are JWebTracer, JBPRecovery, JBPFre-
qReducer, JBPEvo2, jMetal, and BPOntoManager.

The majority of papers with focus on Maintenance use source
code, corresponding to 60%. The tools presented to deal with
source code are Code-Imp and Ref-Finder. One study deals
with Unified Modeling Language (UML) class diagram with a
tool called MOREX+I (MOdel REfactoring by eXample plus
Interaction, Ref-Finder). Refactoring operations, bug informa-
tion, and Android apps bytecode are artefacts distinctly consid-
ered in other three papers. For these latter papers the authors
did not mention specific tools.

RQ3: The most common CI technique applied is evolu-
tionary algorithms (75% of the papers). Genetic Algo-
rithm and NSGA-II are the most used algorithms. Evolu-
tionary algorithms and machine learning were combined
in some papers to better solve some SE problem. The
most common artefact used is source code.

4.4. RQ4 – Experimental Rigour

In this section we present aspects related to how proposed
SBSE solutions are evaluated int the SSBSE papers, by detail-
ing subjects, statistical tests, and quality indicators used.

4.4.1. Subjects
The subjects used for evaluating proposed approaches vary

in their characteristics. For example, there are small com-
puter programs, a.k.a. toy systems, typically used for
proof of concept or educational purposes. For the pur-
pose of quantitative evaluation we also commonly found syn-
thetic systems/problems used as subjects in some studies.
Toy/educational/synthetic subjects were used in 33.6% of the
SSBSE papers. Some instances of this category are: Arcade
Game Maker, Microwave Oven Software, and Service and Sup-
port System. Sometimes only small pieces of software are used
in the experimentation such as Java classes.

Another category is industrial systems, present in 30.5% pa-
pers, which allows an evaluation of how SBSE solutions work
in practice. We have examples of these subjects for different
platforms such as desktop (Microsoft Word and ReleasePlan-
ner), Web (Tudu, Oryx and Softslate Commerce), mobile (Sony
Mobile and Android programs), embedded software (Adaptive
headlight control, door lock control, and electric windows con-
trol), and MATLAB Simulink models.

The evaluations also used open source projects, represent-
ing 28.2%, commonly taken from repositories such as Source-
Forge,7 GitHub,8 SPLOT,9 and Google Play.10 Examples of
this category are Eclipse, Mozilla, Apache Commons project,

7https://sourceforge.net/
8https://github.com/
9http://www.splot-research.org/

10https://play.google.com/store

Apache Ant, ArgoUML, Azureus, Xerces-J, JHotDraw, AJH-
SQLDB, Health Watcher, Toll System, JFreeChart, Rhino, and
GanttProject.

Another type of subjects are those obtained from publicly
available datasets and benchmarks, observed in 7.6% of the
papers. For example, Bench4BL dataset, F-Droid benchmark,
SF100 Java benchmark, Siemens faulty program benchmark,
and SEAMS repository.11 We also observed the use of syn-
thetic data, non-real artefacts, sometimes randomly generated,
used to represent difficult problems or large artefacts, exposing
the power of SBSE solutions.

4.4.2. Quality indicators and Comparison measures.
Quality indicators and comparison measures are mainly used

to obtain information about solutions generated with SBSE ap-
proaches. These indicators and metrics are the base to design
fitness functions, compare search-based algorithms, or reason
about the search process.

For evaluating single solutions we observe measures such as
absolute error, relative error, area under the curve, accuracy,
completeness, robustness, accuracy, and customers satisfaction.
When the goal is to compare two or more solutions, for instance
solutions obtained with different algorithms, we can see mea-
sures such as size of the solutions (size of test suite, number
of clusters, number of refactorings), precision and recall, and
similarity to the desired solutions. Comparison among sets of
solutions are mainly performed in multi/many-objective optimi-
sation, where two Pareto fronts are compared using indicators
such as coverage, generational distance, inverted generational
distance, hyper-volume, euclidean distance to the ideal solu-
tion, and spread.

We also identified some metrics/measures related specifically
to the SE area. For example, for Testing: average percentage of
fault detected, fault detection effectiveness, branch coverage,
code coverage, axiom coverage, method coverage, line cover-
age, percentage of parameter interactions covered, and muta-
tion score. When optimising software for hardware, we found
analysis related to exposures to data loss, temporal flexibility
when diffusing data, simultaneous network partitions and toler-
ate dropped messages, data stall cycles, energy savings, non-
functional improvement, network communication, and maxi-
mum call tree. In the area of Software Design, clustering algo-
rithms are applied and measures such as the number of clusters,
intra-edges, inter-edges, and number of isolated clusters are ob-
served, as well as object-oriented metrics such as Chidamber
and Kemerer, and QMOOD.

In addition to evaluating the solutions of SBSE algorithms,
authors also evaluate the search-process. This is done by con-
sidering success rate (for instance, the percentage of times the
branch was covered over 50 runs), performance of the algo-
rithm, predictability, average number of executions taken to find
the test data, degeneration of the search process, effect of pe-
nalisation, efficiency, stability, number of solutions generated,
value of the elitist chromosome for each generation, scalability,

11http://www.self-adaptive.org/

13

https://sourceforge.net/
https://github.com/
http://www.splot-research.org/
https://play.google.com/store
http://www.self-adaptive.org/

Table 7: Statistical tests and Effect size measures used

Test/Measure #Papers

Mann-Whitney-Wilcoxon U-test 53
Vargha-Delaney A12 effect size 25
Student’s T-test 5
Kruskal-Wallis 4
Cliff’s Delta 3
Kolmogorov-Smirnov test 3
Spearman’s RC coefficient 3
Friedman test 3
Two-Tailed Test 2
Fisher Exact test 2
ANOVA 1
Bootstrap test 1
Cohen’s d 1
Linear correlation 1
Scott-Knott test 1
Welch’s t-test 1

execution time, time saving, time spent, and human competi-
tiveness.

4.4.3. Statistical tests and Effect size measures.
SBSE approaches rely on CI techniques, which apply ran-

domness in their search process. In order to identify a standard
behaviour, commonly proposed approaches are run many times.
For each run, metrics and measures, described in the last sec-
tion, are collected and evaluated with statistical tests. The goal
is to assess whether there are significant difference among re-
sults or not.

Table 7 presents the statistical tests and effect size measures
that were applied in SSBSE papers. The last column of the
table shows the number of papers using the tests. Among the
16 found tests/measures, Mann-Whitney-Wilcoxon U-test and
Vargha-Delaney A12 effect size were by far the most commonly
used, representing 71.6%. Regarding the use of statistical test-
ing along the years, Figure 15 shows that tests and measures
have been used since 2009, however, we can observe that after
2014 they have been used more frequently. In 2017 all papers
used these tests/measures. In 2019 we observe a decrease in
the number of papers applying statistical tests because there are
more secondary and theoretical papers. Here is important to
note that such statistical tests should be used carefully and to-
gether with qualitative analysis for properly evaluating SBSE
solution [42].

RQ4: The subjects used in the SSBSE papers for eval-
uating their approaches are toy/educational/synthetic ex-
amples (33.6%), industrial systems (30.5%), open source
projects (28.2%), and few papers used datasets and
benchmarks (7.6%). We observed a large number of
quality indicators and comparison measures used in the
papers. Regarding the analysis of results, in 93.3% of
the papers we can observe evaluation results and among
them 60% apply at least one type of statistical analysis.

0

20

40

60

80

100

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 15: Percentage of papers that apply statistical tests or Effect size per
year

Guava
31%

Kate
16%OpenCV

10%

Mockito
10%Pidgin

6%

Apache Ant
6%

Gson
6%

Hadoop
6%

Django
6%

Odoo
3%

Figure 16: Challenge programs

4.5. RQ5 – Challenge Papers
The SSBSE Challenge Track is an opportunity for SBSE re-

searchers to apply tools, techniques, and algorithms on open
source software in order to carry out interesting analysis and
uncover interesting insights related to them.

A total of 32 papers were published in the SSBSE Challenge
Track (see detailed numbers in Section 4.1). They have authors
affiliated to 21 different institutions. Thirteen papers (40%)
were written in collaboration involving authors belonging to
different institutions. However, the majority of papers were
written by authors from six universities: University College
London, University of York, Queen Mary University of Lon-
don, University of Sheffield, University of South Carolina, and
University of Stirling. Only one is from outside of the United
Kingdom. 56% of the papers have at least one author affiliated
to University College London. 12% of the papers have at least
one author from the University of York. Each one of the other
four universities appears in 9% of the papers.

Figure 16 presents the programs addressed by the 32 papers
published in Challenge Track. They are programs written in
Java, C, C++, and Python. The most used programs are Guava
(10 papers) and Kate (5 papers).

Four papers generated test data for Guava. Three papers tack-
led its refactoring and the remaining papers focused on pro-
gram comprehension, improving energy consumption, and re-
gression testing together with test case prioritisation. Regarding
Kate, two papers tackled its design focusing on the architecture
improvement and component-based software design, whereas
three papers explored other SE tasks, such as adding new func-
tionality, program repair, and test data generation. We observed

14

Designing
software

10%

Software post-
development

issues
31%

Software
verification and

validation
50%

Extra-functional
properties

9%

Figure 17: Challenge Papers - SE Areas Classification (level 2 of ACM CCS)

that all the programs were the goal of some testing task in at
least one paper.

We classified and grouped the papers of Challenge Track fol-
lowing the same method used in RQ3 (see Section 3.3). Figure
17 presents the percentage of challenge papers by each identi-
fied SE areas in the level 2 of ACM Computing Classification
System. 50% of the papers focus on Software Verification and
Validation, 43.7% of which focusing on software testing. These
percentage values are similar to those ones observed in the main
track of SSBSE.

The other two most common SE areas are the same ob-
served in the main track: Software post-development issues
and Designing software. However, in the Challenge track, Soft-
ware post-development issues is the second most common area,
which is expected because this track deals with existing soft-
ware that naturally have maintenance issues. Software post-
development issues includes studies about maintenance (5 pa-
pers), software evolution (4 papers), and software comprehen-
sion (1 paper). Designing software includes problems related
to architecture improvement (2 papers) and component-based
software engineering (1 paper).

Figure 18 presents the amount of papers published by year
considering the level 3 of ACM Classification. In this picture,
Software defect analysis is subdivided in testing tasks and de-
bugging tasks. Testing tasks were addressed in almost all years
(2013–2018) including test data generation (31% of papers),
stress testing (3%), test suite minimisation (3%), defect predic-
tion (3%), and regression testing together test case prioritisation
(3%). Program repair is the single task of debugging. It was ad-
dressed in 2015 and 2019 (6%).

Software design was tackled only in the earliest editions in-
volving architecture improvement and component-based soft-
ware engineering. Refactoring is the single maintenance task.
It was regularly addressed from 2014 to 2017.

Software performance and Software evolution were mainly
addressed in 2015 and 2016 — the two years with more chal-
lenge papers. Software performance includes tasks related
to improving energy consumption and parameter optimisation.
Two tasks are related to Software evolution: adding new func-
tionality and automate software improvement. Other refers to
program comprehension, which was the focus of a study pub-
lished in 2015.

Software defect analysis (Debugging Tasks)
Other

Software performance
Software design

Maintaining software
Software evolution

Software defect analysis (Testing Tasks)

0

1

2

3

4

5

2013 2014 2015 2016 2017 2018 2019

Figure 18: Challenge Papers - Amount of Papers published by Software Engi-
neering Area (level 3 of ACM CCS)

Machine Learning
Local Search

Other
Evolutionary algorithms

0

2

4

6

8

10

12

2013 2014 2015 2016 2017 2018 2019

Figure 19: Challenge Papers - Amount of Papers published by CI Technique

In accordance with the main track, in the Challenge Track the
most applied CI techniques are Evolutionary Algorithms (69%
of the papers) and Local Search (11%). Some papers also ap-
plied Machine Learning (6%) and Other algorithms (14%).

Figure 19 shows the amount of CI techniques used by chal-
lenge papers by year. Evolutionary algorithms were used in all
editions of the track (2013–2019). The most used algorithms of
this kind are genetic algorithm (34% of 32 papers), NSGA-II
(21%), and genetic programming (18%).

In this track, source code is also the main artefact used, rep-
resenting 62% of the challenge papers (20 papers). 15 papers
(47%) applied some statistical test in the experimental evalua-
tion.

We consider that is natural that the same SE areas and tasks
as well as the same algorithms are the most common in both
tracks (main and challenge), since the SBSE researchers’ ex-
pertise (who are usually authors of the main track) is employed
to carry out the studies published in the Challenge Track.

15

RQ5: Guava and Kate are the real-world software most
used by the challenge papers. The most common ad-
dressed SE area in the Challenge Track is Software De-
fect Analysis (50% of 32 papers). Test data generation is
the most addressed task representing about 31% of chal-
lenge papers. Evolutionary algorithms (GA and NSGA-
II) are the most used CI technique.

4.6. Recommendations to future SSBSE authors

During the screening of the 134 papers, we realised that some
pieces of information are not presented in several papers, what
makes the SBSE approaches not completely clear to the read-
ers. Next we present some recommendations to future SSBSE
authors in order to: i) provide writing practices to improve the
definitions of SBSE approaches; ii) help authors to develop high
quality studies; and iii) allow study replication.

• Make it clear which are the CI techniques and algorithms
used, not just mention the tool or framework name, as
it will improve readability and provide the reader with a
more in-depth understanding of the paper. This is also im-
portant for sake of reproducibility;

• Clarify the ingredients of SBSE approaches that allow the
application of CI techniques to solve the corresponding SE
problem, namely the problem representation and the fit-
ness function(s). Some (meta-)heuristics also need oper-
ators to modify candidate solutions, which should also be
described in the text;

• Illustrative examples can be added in SBSE papers so that
readers can easily understand the problem and the pro-
posed solution. Authors can use toy programs to this
mean;

• For the evaluation, authors should prefer using industrial
systems or open source projects from different domains
and sizes. This would make the findings more general and
hopefully more practical in a real-world setting;

• To avoid threats regarding randomness of CI techniques,
run your approaches many times and assess the results
with statistical tests and effect size measures. Arcuri and
Briand [43] present guidelines on how to evaluate ran-
domised algorithms in software engineering, how to im-
prove the statistical power of the experiments, and how to
avoid errors. According to the authors, 1 000 independent
runs would be ideal for a powerful statistical comparison,
however, it might not always be feasible to perform this
many independent runs due to computational power con-
straints. We observed that the most common number of
runs is 30, but we cannot ensure this number would be
enough for all cases. Ultimately, the authors should care-
fully consider the number of independent runs that can
be performed in feasible time, and whether this number
is enough for a powerful statistical comparison;

• The comparison to existing approaches is always recom-
mended. This provides the reader with a baseline to rea-
son about the benefits of the proposed solution. For ap-
proaches that deal with new problems, we recommend the
authors to at least compare to random search as a matter of
sanity check;

• Make the experimental package available. Additionally,
provide as many resources as possible for other authors
to replicate your study and/or to ease comparison. We
suggest future researches to use Open Science Framework
(OSF)12 to increase the openness, integrity, accessibility,
and reproducibility of scientific research.

5. Trends and Challenges

The analysis of the collected data allowed us to identify some
trends as well as research opportunities in SBSE. The majority
of identified trends and challenges are corroborated by literature
as we pointed in what follows.

5.1. Trends and Problems Addressed so Far

The analysis conducted to answer RQ3 (Section 4.3) shows
the area of Software Defect Analysis, including testing and de-
bugging tasks, is the most addressed in the symposium. The
application of search-based optimisation for testing problems is
one of the origins of the SBSE field and SSBSE. But our find-
ings show that, after ten years, such problems are still natural
candidates for SBSE. Problems related to the test data genera-
tion task, addressed since the early SSBSE editions, keep rais-
ing interest [3]. On the other hand, some testing tasks have
no longer received attention, such as test management, inte-
gration testing, and fault prediction, while others have recently
being focused, such as fault localisation, program repair, and
non-functional program improvement [23]. We observed some
trends in the Software Testing area. Works have started ad-
dressing some more recent testing problems, but there are still
many open issues [44]: flaky tests, time-consuming testing,
untestable code, and complex and multi-platform testing.

The areas Requirement Analysis, Software Design, and
Maintenance are less explored than Software Defect Analy-
sis, but they have been investigated since the first editions and
stayed active throughout the years (see Section 4.3). Works on
these areas appear in almost all editions. On the other hand, the
area People and Project Management, present in the beginning,
has not been explored in the last five years. There are many
research opportunities in these areas to address limitations of
existing work. For instance, in the area of Software Design and
Refactoring, most approaches only focus on improving cohe-
sion and coupling and other simplistic quality attributes. Other
aspects should be considered such as the development history,
design problems, and constraint violations. Some challenges
that need to be addressed are related to the lack of flexibility,
and the need of an expert to validate the generated solutions.

12osf.io

16

Besides these limitations, we observe a trend that is to inves-
tigate problems related to non-functional aspects such as energy
consuming and accessibility [45,46]. New problems to perform
the tasks in all found areas have arisen, requiring investigations
in emergent and new contexts such as Service-oriented architec-
tures, Internet of Things (IoT), Highly-Configuration Systems
(HCS), User Interface (UI) systems, and mobile applications.

5.2. SBSE Challenges

We can state that the SSBSE future depends on the SBSE
field, in which we can identify several challenges to be ad-
dressed, mainly to tackle the growing complexity of the nowa-
days software systems and applications. The application con-
texts of SBSE currently encompasses a great number of objec-
tives, constraints, and complex inputs as well as outputs, mak-
ing most SBSE problems multi- and many-objective. However,
dealing with such plethora of variables is a hard problem by
itself [31, 32, 34].

Harman et al. [47] point some advantages of SBSE solutions.
They are robust, scalable, realistic, and generic. Unfortunately,
most SBSE works do not rigorously evaluate scalability and ro-
bustness of the generated solutions. It is still a challenge to
propose solutions that are generic and useful for software engi-
neers in a real-world setting.

The great majority of studies mention as future research or
limitation the evaluation in real industrial scenarios. The lit-
erature reports challenges and issues related to the coopera-
tion between academia and industry in software engineering
areas [48]. They are also valid for SBSE, but in this field we
can also mention other difficulties that hinder this cooperation,
such as non-determinism of the algorithms, hard modelling of
the search space, and high computational cost for high scale
industrial software. These are barriers that still need to be con-
sidered and overcome.

Regarding robustness, we observe some challenges due to the
dynamic aspects of the software systems. For example, require-
ments can change over time, thus adaptive SBSE approaches
are required. Maybe the use of adaptive fitness functions and
introducing the developer in the loop can help solve this chal-
lenge.

We found in our analysis different solutions or algorithms
proposed for the same problem. A lot of effort is spent imple-
menting the approaches and evaluating algorithms. A research
opportunity is to automate these tasks, allowing automatic de-
sign of search-based approaches, as well as their evaluation.
This can help in the practical issue regarding the choice of the
best algorithm, search operator, fitness functions.

Despite each problem’s peculiarity, many software engineer-
ing tasks have similarities that should be better explored by
generic algorithms. However, algorithmic generality is a hard
problem by itself, regardless of whether it is applied to software
engineering problems or not.

Software engineers make decisions by simultaneously
analysing different software artefacts such as requirements, test
cases, architectural models, and source code. These artefacts
and the areas that treat them are strongly connected, but most

works are oblivious to their interactions. Although very chal-
lenging, meaningfully transferring information from one area to
another and orchestrating artefact interactions can greatly ben-
efit SBSE techniques.

Other practical issue is regarding the usefulness of generated
solutions. Often the users do not recognise the solutions as fea-
sible because they were not generated considering their needs
and preferences. Involving the user in the loop has been in-
vestigated in the past [35, 36], but it is still an open challenge
for the SBSE community. To name a few, these constitute some
research opportunities: i) resolution of conflicting opinions pro-
vided by different users or different priorities given to the many
objectives impacting the problem; ii) selection of the best mo-
ment and way to incorporate the preferences; and iii) to avoid
human-fatigue in interactive approaches.

It is important for SBSE approaches to consider different lev-
els of automation. They should be adaptive to make small de-
cisions and invoke human participation to more fundamental
ones. In this sense, the use of machine learning techniques
seems to be a trend to learn the user behaviour and help in
the decision making process. Furthermore, modern develop-
ment environments allow the collection of large amount of data
and diverse software repositories are available with the emer-
gence of Software Engineering platforms (e.g. SourceForge
and GitHub). The work of Nair et al. [21] calls this intersection
as Data-Driven Search-Based Software Engineering, name for
the field combining SBSE and Mining Software Repositories
(MSR) techniques, and provides insights about how this com-
bination can happen in many areas. The paper also discusses
some open issues, regarding the human participation as well as
optimisation of optimisers.

The software engineering community has seen a sudden rise
in interest for Fuzzing [49], mainly due to the success of the
American Fuzzing Loop (AFL)13 tool developed by Google
employees. Fuzzing tackles the generation of test data in a
different way than SBSE. However, there might be multiple
points of intersection between both fields, such as how to bal-
ance the exploration and exploitation when generating test in-
puts, or how to create readable test cases from the generated
inputs. Using the best of two worlds can result in the creation
of powerful tools such as EvoSuite, but with the efficiency and
scalability of AFL. Making it happen shall be as challenging as
it sounds promising.

5.3. Suggestions for Future SSBSE Editions

Considering our findings and what happens in other confer-
ences of the software engineering area, next we present some
mitigation actions that can steer future SSBSE editions and
ideas to strength the symposium.

Answering RQ1, we observe a decreasing number of sub-
missions in the last years (Section 4.1.2, Figure 2), as well as a
modest industry participation in the authorship (Section 4.1.3,
Figure 5). It is important to increase industry participation in

13http://lcamtuf.coredump.cx/afl/

17

http://lcamtuf.coredump.cx/afl/

SSBSE aiming at accelerating industrial adoption of the sci-
entific endeavours and enabling the evaluation of SBSE ap-
proaches in real industrial scenarios. We believe that the inclu-
sion of an industry track in SSBSE could help in this sense, as
happens in other conferences such as the IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE)
and the ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

Adding a mentoring program would be an alternative to in-
crease the acceptance rate regarding submissions from new au-
thors. Authors that never published in SSBSE research track
and that intend to submit a paper to this track, could request to
participate in the mentoring program. The Program Committee
(PC) chairs could assign a member of the PC to make a pre-
liminary assessment of the work and give feedback before the
submission deadline, increasing the chances of less experienced
authors, as well as the number of submissions.

Future editions of the symposium could be held in countries
where there is a significant rate of contributions (see Figure 3).
Canada and China, for example, have the 4th and the 5th greater
number of contributions and never hosted an edition of SSBSE.

We observe that the challenge track is of great relevance for
the symposium and some institutions are committed in submit-
ting papers to this track, since they regularly published papers
(see Section 4.5). In this way, we see that the inclusion of chal-
lenge cases related to industrial problems would attract the at-
tention of the industry. Furthermore, in addition to the call for
challenge solutions, the call for challenge cases, where the com-
munity propose the challenges to be taken into account, would
be an alternative.

The women SSBSE leadership participation is rather good as
pointed out by Figure 1. But Figure 4 shows a small partici-
pation regarding authorship. Gender bias is a major concern in
software engineering discipline [37]. Gender diversity is impor-
tant because it can help to share different skills, points of view
and experiences, bringing and incorporating gender aspects of
the customers and users in software engineering, expanding po-
tential talents, among other aspects. Hence, increasing the par-
ticipation of women in the symposium is of great value.

A repository of benchmarks for the different SBSE sub-areas
could be organised and maintained by SSBSE. Such a repos-
itory would be useful for: (i) the evaluation of the SBSE ap-
proaches, (ii) contribute to solve the challenge of transferring
information from one area to another and orchestrating artefact
interactions, and (iii) divulge the symposium for whom is inter-
ested in using the benchmarks. The SSBSE chairs could call for
the initial contributions to create the repositories and stimulate
the collaborative creation of new benchmarks in some actions
performed during the symposium.

Last but not the least, the reason why the number of sub-
missions to SSBSE has decreased over time should be better
investigate in future work.

6. Conclusion

In this paper we presented an overview of the history of SS-
BSE as well as results from a systematic mapping involving all
full papers of the eleven proceedings. Our findings allow us
to state that SSBSE papers have made some external impact on
the SE research community. We found that most of the citations
are from different venues and identified a close gap between no
self-citations and external citations. This indicates SSBSE pa-
pers have external visibility.

Regarding the area of SE problems solved with CI tech-
niques, software testing is still the main addressed task, but
other problems have emerged, mostly related to non-functional
requirements, program repair, MDE, and experimentation.
Evolutionary algorithms remained the most used CI technique
with machine learning to raise more interest in the past years.

We could observe along the years a wide range of subjects
used by authors to evaluate their approaches. These subjects
can also be used in new research. Moreover, in recent years au-
thors are paying more attention to the use of statistical tests to
better evaluate their results. But it is important to increase in-
dustry participation and the creation of repositories containing
benchmarks regarding the different SBSE sub-areas.

To call attention and guide new authors willing to publish
their papers and to participate in SSBSE, we presented a set of
recommendations to improve their publications on understand-
ability, replicability, and experimentation soundness. However,
the recommendations are limited to what we observed during
the papers screening.

There are still several problems to be addressed in the SBSE
field as well as many challenges that we have previously stated,
which can be tackled by SSBSE authors in further studies.

SSBSE has been a representative venue to divulge studies
and put together academics, researchers and practitioners to dis-
cuss SBSE. Currently, the SBSE field is explicitly listed as a
topic of interest of important conferences and journals. Given
what we reported and discussed in this paper, we can state that
SSBSE has helped increase the popularity of SBSE in the SE
research community and has played an important role on mak-
ing SBSE more mature.

Acknowledgment

This work was funded by CNPq (Grants 305968/2018-1,
428994/2018-0, and 408356/2018-9), and by the ERC ad-
vanced fellowship grant 741278: Evolutionary Program Im-
provement Collaborators (EPIC).

References

[1] M. Harman, S. A. Mansouri, Y. Zhang, Search Based Soft-
ware Engineering: A Comprehensive Analysis and Re-
view of Trends Techniques and Applications, Tech. rep.,
Department of Computer Science, King’s College London
(2009).

18

[2] M. Harman, S. A. Mansouri, Y. Zhang, Search-based Soft-
ware Engineering: Trends, Techniques and Applications,
ACM Comput. Surv. 45 (1) (2012) 1–61.

[3] M. Harman, Y. Jia, Y. Zhang, Achievements, open prob-
lems and challenges for search based software testing, in:
International Conference on Software Testing, Verifica-
tion and Validation, 2015.

[4] F. G. Freitas, J. T. Souza, Ten years of search based soft-
ware engineering: A bibliometric analysis, in: M. B. Co-
hen, M. Ó Cinnéide (Eds.), Search-Based Software Engi-
neering, 2011, pp. 18–32.

[5] P. McMinn, Search-based software test data generation:
A survey, Software Testing Verification and Reliability
14 (2) (2004) 105–156.

[6] O. Räihä, A survey on search-based software design,
Computer Science Review 4 (4) (2010) 203–249.

[7] Y. Zhang, A. Finkelstein, M. Harman, Search based re-
quirements optimisation: Existing work and challenges,
in: REFSQ ’08, REFSQ ’08, 2008, pp. 88–94.

[8] A. M. Pitangueira, R. S. P. Maciel, M. Barros, Software
requirements selection and prioritization using SBSE ap-
proaches: A systematic review and mapping of the liter-
ature, Journal of Systems and Software 103 (2015) 267 –
280.

[9] M. Di Penta, SBSE Meets Software Maintenance:
Achievements and Open Problems, in: Search-Based
Software Engineering, Vol. 7515, 2012, pp. 27–28.

[10] T. Mariani, S. R. Vergilio, A systematic review on search-
based refactoring, Information and Software Technology
83 (2017) 14–34.

[11] T. E. Colanzi, W. K. G. Assunção, P. R. Farah, S. R.
Vergilio, G. Guizzo, A review of ten years of the sym-
posium on search-based software engineering, in: S. Ne-
jati, G. Gay (Eds.), Search-Based Software Engineering,
Springer International Publishing, 2019, pp. 42–57.

[12] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for
conducting systematic mapping studies in software engi-
neering: An update, Information and Software Technol-
ogy 64 (2015) 1 – 18.

[13] M. Khari, P. Kumar, An extensive evaluation of search-
based software testing: a review, Soft Computing 23 (6)
(2019) 1933–1946.

[14] D. Sharma, P. Chandra, Applicability of soft comput-
ing and optimization algorithms in software testing and
metrics–a brief review, in: International Conference on
Soft Computing and Pattern Recognition, Springer, 2016,
pp. 535–546.

[15] I. Boussaïd, P. Siarry, M. Ahmed-Nacer, A survey on
search-based model-driven engineering, Automated Soft-
ware Engineering 24 (2) (2017) 233–294. doi:10.1007/
s10515-017-0215-4.

[16] M. Mohan, D. Greer, A survey of search-based refactoring
for software maintenance, Journal of Software Engineer-
ing Research and Development 6 (1) (2018) 3.

[17] F. Ferrucci, M. Harman, F. Sarro, Search-based software
project management, in: Software Project Management in
a Changing World, Springer, 2014, pp. 373–399.

[18] R. E. Lopez-Herrejon, L. Linsbauer, A. Egyed, A system-
atic mapping study of search-based software engineering
for software product lines, Information and software tech-
nology 61 (2015) 33–51.

[19] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed,
E. Alba, Evolutionary computation for software product
line testing: an overview and open challenges, in: Compu-
tational Intelligence and Quantitative Software Engineer-
ing, Springer, 2016, pp. 59–87.

[20] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke,
Y. Zhang, Search based software engineering for software
product line engineering: a survey and directions for fu-
ture work, in: 18th International Software Product Line
Conference-Volume 1, ACM, 2014, pp. 5–18.

[21] V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Men-
zies, L. Minku, M. Wagner, Z. Yu, Data-driven search-
based software engineering, in: 15th International Confer-
ence on Mining Software Repositories, MSR ’18, ACM,
New York, NY, USA, 2018, pp. 341–352.

[22] M. Harman, Automated test data generation using search
based software engineering, in: 2nd International Work-
shop on Automation of Software Test, IEEE Computer
Society, 2007, p. 2.

[23] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon,
D. R. White, J. R. Woodward, Genetic improvement of
software: a comprehensive survey, IEEE Transactions on
Evolutionary Computation 22 (3) (2017) 415–432.

[24] E. Sodagari, M. Keyvanpour, Software requirements in-
teraction management using search-based software engi-
neering methods: A survey, in: 2017 IEEE 4th Interna-
tional Conference on Knowledge-Based Engineering and
Innovation (KBEI), IEEE, 2017, pp. 0481–0486.

[25] A. M. Pitangueira, R. S. P. Maciel, M. de Oliveira Bar-
ros, A. S. Andrade, A systematic review of software re-
quirements selection and prioritization using SBSE ap-
proaches, in: Symposium on Search Based Software En-
gineering, Springer, 2013, pp. 188–208.

[26] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer,
S. R. Vergilio, A. Egyed, Reengineering legacy applica-
tions into software product lines: a systematic mapping,
Empirical Software Engineering 22 (6) (2017) 2972–
3016.

19

http://dx.doi.org/10.1007/s10515-017-0215-4
http://dx.doi.org/10.1007/s10515-017-0215-4

[27] V. Singh, Software module clustering using metaheuristic
search techniques: A survey, in: 2016 3rd International
Conference on Computing for Sustainable Global Devel-
opment (INDIACom), IEEE, 2016, pp. 2764–2767.

[28] A. V. Rezende, L. Silva, A. Britto, R. Amaral, Soft-
ware project scheduling problem in the context of search-
based software engineering: A systematic review, Jour-
nal of Systems and Software 155 (2019) 43 – 56. doi:
10.1016/j.jss.2019.05.024.

[29] A. Abdelmabou, D. Jawawi, I. Ghani, A. Elsafi, A com-
parative evaluation of cloud migration optimization ap-
proaches: A systematic literature review, Journal of The-
oretical and Applied Information Technology 79 (2015)
395–414.

[30] R. Pietrantuono, S. Russo, Search-based optimization for
the testing resource allocation problem: research trends
and opportunities, in: 2018 IEEE/ACM 11th International
Workshop on Search-Based Software Testing (SBST),
IEEE, 2018, pp. 6–12.

[31] A. Ramírez, J. R. Romero, S. Ventura, A survey of many-
objective optimisation in search-based software engineer-
ing, Journal of Systems and Software 149 (2019) 382 –
395. doi:10.1016/j.jss.2018.12.015.

[32] A. S. Sayyad, H. Ammar, Pareto-optimal search-based
software engineering (POSBSE): A literature survey, in:
2013 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE),
IEEE, 2013, pp. 21–27.

[33] S. Z. Qasim, M. A. Ismail, Research problems in search-
based software engineering for many-objective optimiza-
tion, in: 2017 International Conference on Innovations in
Electrical Engineering and Computational Technologies
(ICIEECT), IEEE, 2017, pp. 1–6.

[34] J. M. Balera, V. A. de Santiago Júnior, A systematic map-
ping addressing hyper-heuristics within search-based soft-
ware testing, Information and Software Technology 114
(2019) 176 – 189. doi:10.1016/j.infsof.2019.06.
012.

[35] A. Ramírez, J. R. Romero, C. Simons, A Systematic
Review of Interaction in Search-Based Software Engi-
neering, IEEE Transactions on Software Engineering 45
(2019) 760–781. doi:10.1109/TSE.2018.2803055.

[36] T. N. Ferreira, S. R. Vergilio, J. T. de Souza, Incorporat-
ing user preferences in search-based software engineer-
ing: A systematic mapping study, Information and Soft-
ware Technology 90 (2017) 55–69.

[37] S. Agarwal, N. Mittal, R. Katyal, A. Sureka, D. Correa,
Women in computer science research: What is the bibli-
ography data telling us?, SIGCAS Comput. Soc. 46 (1)
(2016) 7–19.

[38] A. Arcuri, G. Fraser, On parameter tuning in search based
software engineering, in: Search-Based Software Engi-
neering, 2011, pp. 33–47.

[39] J. E. Hirsch, An index to quantify an individual’s scientific
research output, National Academy of Sciences 102 (46)
(2005) 16569–16572.

[40] C. Ghezzi, Reflections on 40+ years of software engineer-
ing research and beyond: an insider’s view, in: keynote
address in 31st International Conference on Software En-
gineering, 2009.

[41] J. T. Souza, C. L. Maia, F. G. de Freitas, D. P. Coutinho,
The human competitiveness of search based software en-
gineering, in: Search-Based Software Engineering, 2010,
pp. 143–152.

[42] R. L. Wasserstein, A. L. Schirm, N. A. Lazar, Moving
to a world beyond “p < 0.05”, The American Statistician
73 (sup1) (2019) 1–19. doi:10.1080/00031305.2019.
1583913.

[43] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software en-
gineering, Software Testing, Verification and Reliability
24 (3) (2014) 219–250. doi:10.1002/stvr.1486.

[44] E. Laukkanen, J. Itkonen, C. Lassenius, Problems, causes
and solutions when adopting continuous delivery—a sys-
tematic literature review, Information and Software Tech-
nology 82 (2017) 55 – 79. doi:10.1016/j.infsof.
2016.10.001.

[45] I. Manotas, J. Clause, L. Pollock, Exploring evolution-
ary search strategies to improve applications’ energy effi-
ciency, in: T. E. Colanzi, P. McMinn (Eds.), Search-Based
Software Engineering, Springer International Publishing,
Cham, 2018, pp. 278–292.

[46] K. M. Bowers, E. M. Fredericks, B. H. C. Cheng, Auto-
mated optimization of weighted non-functional objectives
in self-adaptive systems, in: T. E. Colanzi, P. McMinn
(Eds.), Search-Based Software Engineering, Springer In-
ternational Publishing, Cham, 2018, pp. 182–197.

[47] M. Harman, P. McMinn, J. T. de Souza, S. Yoo, Search
based software engineering: Techniques, taxonomy, tu-
torial, in: B. Meyer, M. Nordio (Eds.), Empirical Soft-
ware Engineering and Verification: International Summer
Schools, LASER 2008-2010, Elba Island, Italy, Revised
Tutorial Lectures, Springer Berlin Heidelberg, 2012, pp.
1–59. doi:10.1007/978-3-642-25231-0_1.

[48] V. Garousi, K. Petersen, B. Özkan, Challenges and best
practices in industry-academia collaborations in software
engineering: A systematic literature review:, Information
and Software Technology 79. doi:10.1016/j.infsof.
2016.07.006.

[49] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, C. Holler,
The fuzzing book, in: The Fuzzing Book, Saarland Uni-
versity, 2019.

20

http://dx.doi.org/10.1016/j.jss.2019.05.024
http://dx.doi.org/10.1016/j.jss.2019.05.024
http://dx.doi.org/10.1016/j.jss.2018.12.015
http://dx.doi.org/10.1016/j.infsof.2019.06.012
http://dx.doi.org/10.1016/j.infsof.2019.06.012
http://dx.doi.org/10.1109/TSE.2018.2803055
http://dx.doi.org/10.1080/00031305.2019.1583913
http://dx.doi.org/10.1080/00031305.2019.1583913
http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://dx.doi.org/10.1007/978-3-642-25231-0_1
http://dx.doi.org/10.1016/j.infsof.2016.07.006
http://dx.doi.org/10.1016/j.infsof.2016.07.006

	Introduction
	Related Work
	Systematic Mapping Method
	Research Questions
	Conducting the search and study selection
	Data extraction and classification
	Threats to validity

	Results and Analysis
	RQ1 – SSBSE in numbers
	Committee characteristics
	Number of submissions and acceptance rate
	Authorship
	Collaborations

	RQ2 – Citations Analysis and External Impact
	RQ3 – Software Engineering Areas and Tasks
	Main tasks and problems
	CI Techniques
	Artefacts and Tools

	RQ4 – Experimental Rigour
	Subjects
	Quality indicators and Comparison measures.
	Statistical tests and Effect size measures.

	RQ5 – Challenge Papers
	Recommendations to future SSBSE authors

	Trends and Challenges
	Trends and Problems Addressed so Far
	SBSE Challenges
	Suggestions for Future SSBSE Editions

	Conclusion

