
A Method to Estimate Software Strategic Indicators in
Software Development: An Industrial Application

Martí Manzanoa,*, Claudia Ayalaa, Cristina Gómeza, Antonin Abherveb, Xavier
Francha, Emilia Mendesc

5
a Universitat Politècnica de Catalunya, Barcelona, Spain

b Softeam Group, Paris, France
c Blekinge Institute of Technology, Karlskrona, Sweden

10

Abstract
Context: Exploiting software development related data from software-development
intensive organizations to support tactical and strategic decision making is a
challenge. Combining data-driven approaches with expert knowledge has been
highlighted as a sensible approach for leading software-development intensive 15
organizations to rightful decision-making improvements. However, most of the
existing proposals lack of important aspects that hinders their industrial uptake such
as: customization guidelines to fit the proposals to other contexts and/or automatic or
semi-automatic data collection support for putting them forward in a real
organization. As a result, existing proposals are rarely used in the industrial context. 20
Objective: Support software-development intensive organizations with guidance and
tools for exploiting software development related data and expert knowledge to
improve their decision making.
Method: We have developed a novel method called SESSI (Specification and
Estimation of Software Strategic Indicators) that was articulated from industrial 25
experiences with Nokia, Bittium, Softeam and iTTi in the context of Q-Rapids
European project following a design science approach. As part of the industrial
summative evaluation, we performed the first case study focused on the application of
the method.
Results: We detail the phases and steps of the SESSI method and illustrate its 30
application in the development of ModelioNG, a software product of Modeliosoft
development firm.
Conclusion: The application of the SESSI method in the context of ModelioNG case
study has provided us with useful feedback to improve the method and has evidenced
that applying the method was feasible in this context. 35

Keywords: Software Strategic Indicator, Decision-making support, Estimation model,

Design Science, Case Study

* Contact author: mmanzano@essi.upc.edu

©2020 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Software-development intensive organizations (which we define as public or 40
private organizations extensively developing software) produce large amounts of data
related to their processes and products from the use of their corporate tools (e.g.,
continuous inspection tools, continuous integration tools, project management tools,
and issue trackers). Although considerable efforts have been done to exploit software
development related data for decision-making support, further research is required for 45
automating and generalizing actionable analytics from such data to procure
meaningful information [1].

Decision-making processes in software-development intensive organizations range
from strategic and tactical to operational decisions [2,3]. Operational decisions are
taken by software development teams on a daily basis to deal with features 50
completion [3]. Strategic and tactical decisions are taken by management-related roles
such as product owners or project managers to reach the organizations’ business goals
and objectives or to manage project resources, respectively [2,3].

Project and product management tools (e.g., SonarQube1, Kiuwan2) are commonly
used by development teams to exploit software development data to support 55
operational decisions, and in some cases, tactical decisions [4,5]. For example,
SonarQube can provide continuous code quality assessment based on static code
analysis and software metrics (e.g. code smells, number of bugs and vulnerabilities).
General approaches and business intelligence solutions (e.g., Tableau3, Power BI4)
exist to extract insights from corporate data for supporting strategic and tactical 60
decisions. However, specific support for assisting tactical and strategic decisions in
connection with operational ones in software-development intensive organizations is
still scarce, as highlighted by previous works [5,6].

There have been several proposals contributing to the specification and assessment
of software-related indicators [7–10] as a mechanism to fill in this gap. However, 65
there are several aspects that still remain open. Although data-driven approaches to
support decision making have been put forward in Software Engineering [1], they are
endangered by the fact that the use of inappropriate solutions or tools might inundate
them with irrelevant information that can negatively influence decisions [2,6]. From
the practical point of view, combining data-driven approaches with expert knowledge 70
has been highlighted as a sensible approach for leading software-development
intensive organizations to rightful decision-making improvements [6,11]. Although
there exist data- and expert-driven proposals, most of them hardly consider their
customization to other contexts as well as the automatic or semi-automatic data
collection support for putting them forward in an organization. As a result, existing 75
proposals are rarely used in the industrial practice.

1 https://www.sonarqube.org
2 https://www.kiuwan.com
3 https://www.tableau.com
4 https://powerbi.microsoft.com

In this context, we present a novel method called SESSI (Specification and
Estimation of Software Strategic Indicators) that was articulated from industrial
experiences with Nokia, Bittium, Softeam and iTTi in the context of Q-Rapids
European project following a design science approach. The goal of the method is to 80
support software-development intensive organizations with guidance and tools for
exploiting software development related data and expert knowledge. Specifically, the
method supports the specification and assessment of software strategic indicators
(SSIs). SSIs refer to measurable aspects, such as development process performance,
software quality and on-time delivery, that a software-development intensive 85
organization considers important for its strategic and tactical decision-making
processes.

The method has two phases: a) SSI specification and development of data
collectors for feeding such SSI with data automatically collected from available
organizational repositories. b) Construction of the SSI estimation model based on 90
Bayesian networks [12]. The resulting estimation model allows monitoring the
progress of software development (what is especially valuable in agile software
development iterations) and gives support to make the right decisions for improving
the development processes or products.

The contribution of this paper is twofold: 1) To provide an overview of the SESSI 95
method. 2) To illustrate the application of the method in the context of ModelioNG, a
software product of Modeliosoft, a software development firm.

The remainder of this paper is organized as follows: Section 2 describes the
research context in which this work has been carried out. Section 3 provides an
overview of the related work. Section 4 gives a brief background on Bayesian 100
networks, as they are used to build the estimation models proposed by the SESSI
method. Section 5 provides an overview of the SESSI method detailing its phases and
steps. Section 6 illustrates the application of the method in Modeliosoft, tackled as a
case study and discusses relevant threats to validity that promote the correct
interpretation of the case study results. Finally, Section 7 summarizes the lessons 105
learnt on the application of the method and future work.

2. Research Context

The SESSI method was devised in the context of Q-Rapids [13], a joint European
project composed by a multidisciplinary academic team from three different
institutions and four industrial partners with different profiles and sizes: Nokia, 110
Bittium, Softeam and iTTi. The method was articulated from industrial experiences
with these industrial partners in a design science fashion, following the design cycle
described by Wieringa [14]. Figure 1 shows an overview of the design cycles
followed.

 115

Figure 1 Stages of the design science cycle, inspired on [14], applied to conceive
the SESSI method

The stages of the design science cycle applied to conceive the SESSI method were
the following:

− Stage 1. Problem Investigation aimed to understand decision-making 120
problems and needs related to software-development intensive organizations
from the literature and the industrial practice.

− Stage 2. Solution Design focused on devising the SESSI method following
an action-research like approach [15] in the context of the four Q-Rapids
industrial partners. We applied our solution attempts in these partners, and 125
we shaped the SESSI method based on the lessons learnt and insights gained
from them. Preliminary formative results of the application of our solution
attempts have been published elsewhere [16,17].

− Stage 3. Solution Validation refers to the summative evaluation of the
SESSI method in other industrial settings than those it was conceived. The 130
goal of the industrial summative evaluation plan of SESSI is: to gain insights
on the application of the method in different industrial contexts and to assess
its potential worthiness.

In this paper we present a summary of the results obtained from Stage 1 and focus 135
on detailing the SESSI method resulting from the Stage 2 and the initial results of the
Stage 3. Specifically, we report the phases and steps of the SESSI method and
illustrate its application in the context of ModelioNG case study, a software
development project of Modeliosoft.

3. Related Work 140

One of the conclusions we drew from the Problem Investigation stage (see Figure
1) is that software-related indicators are a mechanism to support decision making in
software-development intensive organizations. Although there exists a plethora of
works presenting different types of software-related indicators based on low-level
software metrics and measures (e.g. [18–22], see Table 1), indicators supporting 145

strategic and tactical decision-making in Software Engineering (SE) are still scarce
[6].

On the one hand, specifying software-related indicators is not an easy task
considering their contextual nature [23] and the non-deterministic nature of decision-
making in software development [2,3]. On the other hand, assessing software-related 150
indicators to enable monitoring and further data analytics (such as what-if analysis
and prediction) requires the elaboration of assessment models. Thus, we characterized
the literature according to some relevant aspects related to the specification and
assessment of software-related indicators: 1) Customization to different contexts
and/or organizations, 2) Data/Expert-Driven approaches to build assessment models 155
for software-related indicators, 3) Tool support for assessment model creation and
deployment.

Table I summarizes the most relevant aspects of the reviewed works and classifies
them according to the indicator name and the characterization explained above.

Table 1 Related work Summarization 160

Ref. Indicator name Characterization
aspects

C
us

to
m

iz
at

io
n1

D
at

a/
Ex

pe
rt

-
D

ri
ve

n2

T
oo

l s
up

po
rt

3

[24] Risky areas of software code in Agile/Lean software development SC E G*
[25] Cost, schedule deviation, cost, satisfaction, productivity S E N
[26] Product quality, team Productivity in Continuous Integration S D N
[18] Pre-release defect density S D N
[19] Maintenance inflow, lead-time, workload C ND N
[27] Release readiness SC E G*
[28] Software readiness factors SC E N
[20] Flow measures in lean software development C B N
[29] (Method) Example indicator: Probability of residual defects C B N
[30] Software early defects SC E N
[31] (Framework for measurement systems) Example indicator: Project status SC E B*
[32] Bottlenecks in Agile and Lean software development S E G*
[10] Teamwork quality of agile teams C E N
[9] Process problems in software development C E M
[33] (Framework) Scrum-based processes C E N
[34,35] Value of decisions in software development C B M
[7] Delivery capability SC D M
[36] Cloud services quality aspects SC E N
[37] Maintainability S E N
[38] Maintainability, other quality characteristics SC E N
[22] Software reliability C B N
[21] Software quality C E B
[39] Software quality C E N

[40] Software quality SC E B
[41] Software quality S D N
[42] Software quality SC D M*
[43] (Method). Enterprise architecture models C E M
[44] (Method). Example indicator: enterprise system modifiability C E M
[45] Enterprise system modifiability C E M
[46] (Method). Framework for enterprise architecture analysis C E M
[47] Service response time for service-oriented architectures C E M
[48] Application usage C E M

1 S: Specific for an organization, customization not considered; SC: Specific for an organization,
customization planned but not detailed; C: Customizable; ND: Not detailed
2 D: Data-driven; E: Expert-driven; B: Both; ND: Not detailed
3 M: Building assessment model tool support; G: Data collection tool support; B: Both, N: None; *: Not
shared 165

Customization to different contexts and/or organizations. There is plenty of
literature on indicators and metrics aimed to specify meaningful aspects of software
development products and processes.

One specific type of instrument that has been widely used in the literature to
specify and create assessment models for software-related indicators refers to Quality 170
Models (QMs) [39–42]. Although useful for specification, most of these works are
academic and provide too abstract procedures to be operational [49]. Yan et al.’s [50]
systematic mapping study provides an overview of works proposing assessment
models based on QMs.

We have found studies proposing ad-hoc methods for specifying and assessing 175
software-related indicators. However, they do not provide details on how to adapt
their approach for other contexts or other indicators. For instance, Choetkiertikul et al.
[7] propose a predefined indicator for delivery capability using data from open source
projects. Bakota et al. [38] introduce a maintainability indicator; Staron et al. [27]
propose a release readiness indicator; Fenton et al. [30] present a software early 180
defects indicator; or the relative risk indicator defined by Antinyan et al. [24].

Even though these proposed indicators may be suitable for the specific
organizations or contexts they were built on, their specification and assessment cannot
be realistically expected to be universal and reusable, since each organization may
have its own intricacies yielding to different definitions [23]. Hence, the lack of 185
smooth customization of the indicators proposed by the mentioned studies can restrain
their adoption in other organizations. Only few works provide guidance support for
this customization, for instance [9,10,34,39].

It is worth mentioning other works in other higher-level domains than software
development such as enterprise architectures that also deal with the assessment of 190
some indicators. For instance, Johnson et al. [43] propose a framework and a formal
language to create assessment models to analyze several properties/indicators of
enterprise architectures, as for instance information security and interoperability. This
framework has been adapted and instantiated to assess aspects of enterprise systems
such as security [51], performance [47], usage [48] and modifiability [45]. Although 195
these works offer an interesting background for specifying and assessing software-
related indicators, the amount and nature of their input data is different than in
software development.

Data/Expert-driven approaches to build assessment models for software-
related indicators. The creation of suitable assessment models for software-related 200
indicators requires input data from software development related repositories
(collected through software development related tools) and/or expert knowledge.
Some of the reviewed works only rely on software development collected data. For
example, Choetkiertikul et al. [7] collect software development data for building a
estimation model for the delivery capability indicator and Vasilescu et al. [26] exploit 205
continuous integration data to assess software quality and productivity.

Other works consider the participation of experts to build assessment models for
software-related indicators, that is, they are based on expert-driven approaches.
However, the majority of these works are either simplistic, limiting the experts’
participation to providing weights for weighted averaged indicators, e.g. [40]; or 210
overwhelming, requiring large amounts of parameters, e.g. [21,36]; or even too
complex, requiring non-trivial statistical knowledge, such as [10]. All these aspects
can hinder the adoption of these proposals by managerial decision makers.

Only few works consider the combination of data- and expert-driven approaches to
build assessment models for software-related indicators, for example Mendes et al. 215
framework [34] for value assessment, or the approach to define a software reliability
indicator by Fenton et al. [22].

From the practical point of view, combining data-driven approaches with expert
knowledge has been highlighted as a sensible approach for leading software-
development intensive organizations to rightful decision-making improvements 220
[6,11].

Tool support for assessment model creation and deployment. Building
assessment models for software-related indicators is a demanding process that
requires supporting tools. On the one hand, we found that most proposals do not
provide tools for supporting the assessment model construction process. On the other 225
hand, most proposals also fail on providing data collectors that allow feeding the
assessment model for enabling its monitoring capabilities. This makes the industrial
uptake of these proposals hard.

Some works, such as [7,9,21,34,46], provide software tools to assist some specific
tasks for the assessment model creation. 230

Some popular software tools such as source code management (e.g. Git,
Subversion), source code analysis (e.g. Sonar, StyleCop) or project management (e.g.
Redmine, Jira), among others, automatically collect data to provide specific metrics
for software development lifecycle. These metrics can be visually consulted by their
included dashboards (e.g. SonarCloud, Jira). However, these tools do not support the 235
connection between low-level metrics and assessment models. Very few works have
developed specific software artifacts to support such connection, for instance the
works proposed by Wagner et al. [21] and Staron et al. [27,31,32]. Most of these
proposals do not further detail nor share their developed software artifacts. A relevant
exception is [21], that provides reusable software artifacts to enable the software 240
quality indicator monitoring.

To get insights about the state of the practice in this area, we performed a survey

in the context of the industrial partners of the Q-Rapids project. See further
information about such survey in [52]. The main observations were: 245

• None of the organizations used any method or approach to assist them with the
specification of software-related indicators to support their decision-making
processes. Instead, they stated that such indicators were implicit in the head of the
decision makers.

• Decision makers confirmed that they did not explicitly specify such indicators but 250
took their decisions based on the information provided from their tools in use
(e.g., Mantis, SonarQube, Redmine or Jenkins) and from their own experience
and intuition. A relevant problem that some of them emphasized regarding this
approach was the dependency on the decision maker’s experience. That is, if the
person in charge of assessing the indicators is not available, the indicators can be 255
incorrectly assessed or not assessed at all.

• Regarding the aggregation capabilities provided by some of their tools in use,
they stated that such functionalities were not capable enough, as they lacked a
mechanism to aggregate the heterogeneous information coming from their tools
in use to SSIs, usable for decision-making endeavors. 260

All in all, we found that most of the existing proposals do not fully address the
relevant aspects related to the specification and assessment of software-related
indicators. Therefore, we propose a tooled and guided approach that allows software-
development intensive organizations to specify SSIs and build estimation models for
their own needs, considering expert knowledge and data-driven capabilities to support 265
strategic and tactical decision-making.

4. Background: Bayesian networks

Bayesian networks use probability theory and graph theory to construct
probabilistic inference and reasoning models. The obtained models are graphical and
represent cause-effect relationships. Bayesian networks have been used across diverse 270
domains such as weather forecasting, medical diagnosis [53] and software
engineering [29] as the basis for constructing assessment models capable of
estimating the value of variables or events through probabilistic inference and
different kinds of simulation, also known as “what-if analysis”.

The application of Bayesian networks in software engineering has been extensive, 275
ranging from performing data analysis in empirical research [54], estimating defects
[30], reliability issues [22], software quality [55], software development effort
[56,57], and the assessment of several properties for enterprise architectures [43]. In a
similar way to these works, the method proposed in this paper also uses Bayesian
networks as the basis of the SSI estimation model construction as it will be detailed in 280
Section 5.

Bayesian networks perform inferences using Bayesian probability [42] and are
represented by Directed Acyclic Graphs (DAG), whose nodes represent variables or
events that can be continuous or discrete, and for which their potential values are
known or hypothesized. Edges represent conditional dependencies. Nodes that are not 285
connected (i.e., no path connects one node to another in either way in the DAG)
represent variables that are conditionally independent of each other. Each node of the
DAG has associated a probability distribution, conditionally dependent on the

impacting nodes, when any. For discrete nodes, probability distributions are
represented by Conditional Probability Tables (CPTs). CPTs specify the probabilities 290
of each node being in each of its specified discrete states for all the combinations of
the states of the parent nodes (if any), hence allowing quantifying the causal relations
and the uncertainty among the nodes. Figure 2 shows a well-known example of a
simple Bayesian network with variables modelling the “wet grass” event and its
causes [58]. The figure contains the DAG of the Bayesian network (nodes and edges), 295
and its CPTs, representing the probabilities of each node being in each of its T (for
True) or F (for False) states (presence or absence), conditionally on the states of its
parent nodes, when any.

Figure 2 Example of a Wet Grass Bayesian network model. From [58] 300

For simple cases, Bayesian networks can be created and filled by a domain expert.
However, there are situations in which building Bayesian networks is too complex or
cumbersome for humans, since the manual creation of CPTs can be prohibitive in
terms of time, as domain experts would have to provide hundreds or thousands of
probabilities. In these situations, exploiting available historical data and/or using 305
several techniques such as Weighted Sum Algorithm (WSA), proposed by Das [59] or
the Ranked Nodes, originally proposed by Fenton et al. [60], can reduce the effort of
filling in the CPTs and thus the model building time.

5. SESSI: A Method to Specify and Estimate SSIs in Software
Development 310

In this section we detail the SESSI (Specification and Estimation of Software
Strategic Indicators) method. As mentioned before, SESSI was devised from an
action-research like cycle in the context of the industrial partners of the Q-Rapids
project.

SESSI is aimed to support software-development intensive organizations to specify 315
SSIs based on their available data and to construct SSIs estimation models for
supporting decision-making with SSIs monitoring and what-if analysis.

SESSI comprises two main phases involving one or more domain experts (i.e.,
people from the organization who are familiar with their data sources and their
decision-making processes). The first phase provides support to specify an SSI and its 320
associated data collectors (i.e., software artifacts allowing automatic data collection
from the data sources of the organization). The second phase aims to build the SSI
estimation model using a combination of data collected through data collectors and
expert knowledge. The resulting model provides SSI estimations, thus enabling SSI
monitoring and supporting decision-making. 325

As mentioned in section 2, the SESSI method was conceived from dealing with the
industrial needs of the Q-Rapids industrial partners and devising solution attempts in
their contexts. Preliminary formative results of the specification and estimation model
construction phases are provided in [16] and [17] respectively. The method presented
here extends these preliminary results by consolidating both phases and providing not 330
just results in the context of a single partner but consolidating the experiences from all
of them, broadening the applicability of the method. Furthermore, it extends the
method with supporting tools and additional techniques to support the estimation
model creation.

In the following subsections, we detail each phase of the method. 335

5.1 Phase 1: SSI Specification

The specification of an SSI reconciles the informational needs for decision making
of the interested organization and the software-related data available in its repositories
(e.g., continuous inspection tools, continuous integration tools, project management
tools and issue trackers). To enable the automatic collection of these data as input to 340
estimate the SSI, we suggest the development of data collectors.

To determine the information required for the specification of an SSI, several
elicitation activities can be performed by the domain experts of the organization.
Although SESSI does not propose specific techniques for this purpose, some of the
techniques we have used in previous industrial cases may serve as a useful reference 345
[16].

For illustrative purposes, in the remaining section, we will use as a reference
example the Product Quality SSI from one of the Q-Rapids industrial partners. Figure
3 shows the complete specification of the Product Quality SSI. The data collectors
developed for this use case are available at GitHub [61]. 350

To operationalize the specification of an SSI, the SESSI method suggests the
gathering of the following assets:
• Textual definition. Captures the SSI rationale according to the strategic needs

and the available data from the organization. For the Product Quality indicator,
its textual description is “Degree of fulfilment of the collection of features and 355
characteristics of a product according to the given requirements” (see Figure 3).

• Hierarchical decomposition for specifying the SSI meaning. SSIs should be
elaborated using a hierarchical approach based on the QM structure proposed in
[23,62,63]. We chose such structure as it has proved to contribute to ease the
specification and understandability of software development related concepts. 360
The three levels of the hierarchy are as follows5:

o Metrics refer to specific attributes of an entity or a process that may be
measured. For example, Code Complexity (see Figure 3) is a metric that
refers to the complexity attribute of the code entity. Metrics are directly
computed from data available in the repositories. 365

o Factors refer to an aggregation of metrics that constitute a property,
which is present in a software product or process, representing the
intermediate level of the hierarchy. For example, Code Quality (see
Figure 3) is a factor that aggregates Code Complexity and Percentage of
Duplicate Code metrics. 370

o SSIs refer to aspects or characteristics related to software products
and/or development processes that an organization considers important
for its tactical and strategic decision-making processes. They are
aggregated from factors. For example, an organization may define its
Product Quality SSI (see Figure 3) as a key aspect of a software product 375
to be considered for decision making.

• Data collectors refer to software artifacts that should be developed to
automatically collect data from organizational repositories to compute the
metrics. Each organization can develop its own data collectors, reuse or
customize them from other projects. Some open source data collectors for tools 380
like Jira, OpenProject or SonarQube were developed by the partners of the Q-
Rapids project as modular software artifacts integrated in a Java tool available in
[61].

5 The layout is aligned with the usual Bayesian network DAGs layouts in which the response

variable/s yield at the bottom part and probabilities propagate top-bottom.

 385

Figure 3 Example of a Product Quality SSI specification

5.2 Phase 2: SSI Estimation Model Building

The purpose of this phase is to build an estimation model for the SSI specified in
the previous phase. It is done by exploiting expert knowledge and historical data
gathered through data collectors. 390

The estimation model is built based on Bayesian networks. We chose Bayesian
networks as they are a flexible and well-known instrument highly used in software
engineering to build estimation models under uncertainty conditions [34,35,54]. The
flexible nature of Bayesian networks and the extensive theory and software tools
available for their construction and management were important factors that we 395
considered positive to contribute to the industrial uptake of the SESSI method. The
availability of several software tools (some of them as open source software) such as
Netica® [64] or unBBayes [65] have allowed us the creation and management of the
estimation models through graphical interfaces.

The steps to build the SSI estimation model are (see Figure 4): 400
1) Data Splitting: Generation of training and validation sets from the historical

data.
2) DAG Specification: Definition of the DAG representing the Bayesian

network structure of the SSI.
3) CPTs Specification: Specification of the CPT for each node of the previously 405

defined DAG.
4) Estimation Model Generation: Generation of the complete Bayesian network

model for the SSI based on the output of the two previous steps.
5) Estimation Model Validation: Validation/recalibration of the resulting SSI

estimation model. 410

6) Deployment and use of the SSI Estimation Model: Deployment of the
model to enable SSI monitoring.

Figure 4 Overview of SESSI steps to build the SSI estimation model

 Each of these steps is detailed as follows. 415

Step 1-Data Splitting

This step has the objective of generating training and validation sets from historical
data. Splitting the historical data allows using a subset of that data to build the model
(as training set) and the remaining data for validation (as validation set). Common
training/validation splits are 70%-30% or 80%-20% [66]. It is important to remark 420
that the accuracy of the resulting model depends on the amount and quality of the
available data.

Step 2-DAG Specification

The initial input of this step is the hierarchical structure of the SSI based on factors
and metrics obtained in the specification phase, which is used for defining the DAG. 425
Thus, the DAG is composed by the SSI node, stated as the leaf node and being the
factors its parent nodes, and the metrics, the root nodes. Figure 5 shows the DAG of
the Bayesian network built for the Product Quality SSI introduced in Figure 3.
Metrics have directed edges to factors and factors at their turn to the SSI node.

 430

Figure 5 DAG of a Bayesian network for the Product Quality SSI

To specify the potential states for each node of the Bayesian network, expert
knowledge is required. Therefore, domain experts should provide the potential states
for each node (e.g., Low, Medium and High). For metric nodes (i.e., nodes whose
values are continuously computed and directly extracted from data repositories 435
through data collectors), domain experts should additionally specify the binning
intervals for their values. For its use in the Bayesian network, these intervals will
serve as discretization functions to transform the continuous values of metrics into the
states defined for those metrics. For the reference example, the Code Complexity node
can have the states “Low”, “Medium”, and “High”, and the binning intervals are 440
defined as [0-0.5), [0.5-0.75) and [0.75-1].

Tool support: To help domain experts with the specification of the binning

intervals, we implemented two existing unsupervised binning methods, namely Equal-
Width and Equal-Frequency binning [67] into a software tool [68]. This tool aims to 445
support the specification of the numeric intervals for the states. The Equal-Width
binning returns n intervals of equal size, and the Equal-Frequency divides the data
into n intervals, each one having approximately the same number of values. The
intervals obtained with the tool can be used as a starting point to be refined by domain
experts according to their needs. 450

Step 3-CPTs Specification

This step aims to fill in the CPTs in order to specify the probability function over
each node of the DAG. The process is performed differently according to the type of
the node, but it is supported in every case using historical data.

To fill in the CPTs for root nodes, the probabilities of their states are directly 455
computed from the historical data through frequency quantification.

CPTs for child nodes are built based on the combinations of the states of their
parent nodes. As the CPTs for these nodes grow exponentially depending on the
number of parent nodes and their potential states, it might be not feasible for domain
experts to manually fill in the probabilities for each combination. Therefore, for these 460
cases, we consider the use of the WSA technique [59] to ease the quantification of
probabilities. This technique is based on expert knowledge and takes as input a set of
compatible configurations for the node being quantified, their resulting probabilities
and the relative weights of its parent nodes. Each compatible configuration is
composed of a combination of the states of the parent nodes that are more meaningful 465
and more likely to happen according to the domain expertise. From that input, the
WSA technique infers the complete CPT, thus reducing the number of probabilities to
be elicited from domain experts, a widely acknowledged problem in the literature
[69]. A detailed explanation of the WSA technique is provided in [34,59].

Figure 6 shows the application of the WSA technique for the Code Quality node of 470
the Product Quality SSI. At the top, some compatible configurations are shown, along
with the provided probabilities for each Code Quality state and the relative weights.
At the bottom, the CPT has been automatically filled by the WSA technique.

Tool support: We implemented a set of tools to support the semi-automatic 475

generation of CPTs. For root nodes, the tool getFrequencyQuantification [70]
computes the CPTs through frequency quantification over the historical data, using
the provided states and its corresponding binning intervals (from Step 2). For child
nodes, we implemented a version of the WSA technique (as we could not find any
public available implementation). Our developed version is open source and available 480
at GitHub [71], as well as a supporting tool getCompatibleConfigurations [72],
automating the computation of compatible configurations required by the WSA, using
historical data. The use of these tools significantly reduces the necessary effort to
specify the required input data.

 485

Figure 6 Code Quality input data required by the WSA (top) and inferred CPT
after the WSA application (bottom)

Step 4 – Estimation Model Generation

Once the CPT for every node has been specified, the Bayesian network estimation
model can be built using the DAG and CPTs from steps 2 and 3. To build the 490
Bayesian network, in the context of this work, we used Netica® [64] and unBBayes
[65].

An example of the resulting Bayesian network for the Product Quality SSI is
shown in Figure 7. The figure shows the DAG structure and the probabilities of the
nodes, computed from their individual CPTs and the CPTs of their parent nodes (if 495
any). We have attached the two complete CPTs for % Passed Integration Tests and %
of tasks of type “Bug” metric nodes (which coincide with their probabilities as they
are root nodes), and the partial CPT for the Software Stability factor node.

Figure 7 Example of a Bayesian network for the Product Quality SSI 500

Step 5 – Estimation Model Validation

This step aims to validate and/or recalibrate the model resulting from the previous
step. With this purpose, other works have suggested two validation methods: Model
Walkthrough and Outcome Adequacy [34,56]. The SESSI method also applies these
validation methods, but in contrast to the mentioned works, SESSI conducts the 505
validation for all the nodes of the model, except for the metric nodes (as their CPTs
are directly quantified from the training data and refined by the domain experts). This
is particularly relevant to ensure the trustworthiness of the entire model, especially
because of the use of the WSA semi-automatic approach for supporting the
construction of the CPTs for child nodes. 510

The application of the two validation methods is sequential and based on different
strengths of evidence:

 1) Model Walkthrough. It is the first validation and it aims at assessing the
subjective accuracy of the estimation model, recalibrating it when necessary. This
validation consists in the manual creation of hypothetical scenarios by the domain 515
experts, and their perceived most probable resulting state for the node under
validation. Each scenario is composed of a combination of states for the parent nodes
of the node under validation. These scenarios are manually introduced into the
Bayesian network as a “what-if” analysis. It is done to compare the resulting state
perceived by the domain experts to the most probable state resulting from the 520

estimation model output, after introducing the scenario. If there is a mismatch
between these states, the estimation model should be recalibrated by tuning the
corresponding CPT and proceeding with the validation until mismatches are amended.
The number of hypothetical scenarios to design in this validation can influence the
accuracy of the model. However, the recommended number greatly depends on the 525
number of parent nodes and their potential states.

2) Outcome Adequacy. The goal of this second validation is to determine
the validity of the Bayesian network with real scenarios from the validation dataset. It
is done by comparing the judgements provided by the domain experts with the
resulting outputs of the estimation model. Such real scenarios consist in combinations 530
of states for the parent nodes of the node under validation, directly present in the
validation dataset. For each scenario, the domain experts provide the expected state
for the node under validation, based on what really happened in such scenario. Hence,
the main difference with the previous validation stems from the premise that this
validation stands on real scenarios instead of hypothetical ones, thus allowing domain 535
experts to reason on the appropriateness of the resulting state provided by them and
by the estimation model. The size of the validation dataset will impact on the number
of real scenarios that will arise. If this number is too large, it might be needed to select
a subset of them to conduct this validation.

Step 6 – Deployment and use of the SSI estimation model 540

Once the Bayesian network model has been built and validated, it can be deployed
and connected to the data collectors to provide automatic and periodical SSI
estimations. Netica® [64] or unBBayes [65] APIs can be used to connect the
Bayesian network model with their data collectors. It is up to the organization to
determine the architectural way to connect the model to the data collectors. One 545
possibility is, for example, having a software orchestrator in the middle that feeds the
SSI estimation model with the periodically collected metrics, then providing the
output estimations through a dashboard.

Figure 8 shows an example of the Product Quality SSI estimation model connected
to the data collectors, which automatically compute the metrics. The data collectors 550
computed the Product Quality associated metrics, which are discretized through the
binning intervals into the states of their corresponding nodes. Then, the probabilities
were propagated from the metrics down to the Product Quality SSI node. In the same
example, given a specific scenario composed of some metrics computed from the data
sources and entered into the model, the state with highest probability for the SSI is 555
“High”, with 22.6% of probability.

Tool support: We developed a software library named si_assessment [73] that

supports the connection of Bayesian Network models to data collectors. This software
library is a wrapper of the unBBayes API, which performs the probabilistic inference 560
through the junction tree algorithm [65]. This artifact can be used either embedded, or
through a REST API [74], as it is a Java library which was also developed in the
context of the Q-Rapids project.

Figure 8 Product Quality SSI estimation model connected to the data 565

collectors

6. An Industrial Application of SESSI Method: ModelioNG Case
Study

To evaluate the SESSI method in diverse industrial settings we have devised an
industrial summative evaluation plan. The objective of such plan is: “to gain insights 570
on the application of the method in different industrial contexts and to assess its
potential worthiness”. According to this objective, we chose multiple pre-post case
studies as empirical approach. Case studies allow us to study in depth the contextual
nature of the application of the method in different organizations. Pre-post case
studies [75] refer to the study of one research entity at two time points separated by a 575
critical event. A critical event is one that would be expected to impact case
observations significantly [76]. The two points of study established in our cases are:
a) The application of the SESSI method in order to understand the feasibility of its
application in the context of the organization and project being studied, and b) The
post-method deployment aimed to assess the worthiness of the SESSI method after 580
using for some time the resulting model and tools from its former application.

To foster industrial participation, we have invited organizations from our industrial
collaboration network. The only requirement for them to participate was that they
were software-development intensive organizations with an interest on exploiting

their software development related data to improve their decision making. We offered 585
them direct involvement and collaboration of researchers for applying the SESSI
method in an action-research fashion [76] and long-term collaboration for performing
the post-method deployment study. The selection of the case studies is opportunistic
and based on the availability of the organizations and their willingness to participate.

In this section, we provide details of the application of the SESSI method in our 590
first case study. The application of the method in this case study has finished recently
and the post-method deployment study has not started yet as more time for the
estimation model usage is required before planning it. Nevertheless, we considered
crucial to present our current results as they are able to illustrate the feasible
application of the method in a concrete industrial setting and can help to foster the 595
industrial uptake of the method.

6.1 Case Study Setting

Softeam Group6 is a software-development intensive organization with more than
1300 employees, providing “high-quality services and solutions in strategy,
consulting, finance, digital, big data, analytics, performance and operations”. As 600
participant in the Q-Rapids project, Softeam promoted the participation of their
subsidiary firms in this study. Modeliosoft7, one of its subsidiary development firms,
accepted to participate in the study.

Modeliosoft representatives opportunistically selected ModelioNG, a software
product currently developed and maintained by them as the unit of analysis for 605
applying the SESSI method. Their principal interest was to enable long-term
monitoring for the product. The selection of ModelioNG was mainly based on the
chance of having a project in an initial stage so that the specification of an SSI and the
data collection during the development process would be less disruptive and feasible
for the organization. 610

To understand ModelioNG setting, we conducted semi-structured interviews to
gain insights on the roles, needs, processes, information flows and software
development related tools used by ModelioNG.

The software development process in ModelioNG was defined as “close to agile”,
focused on the development of working software, face-to-face communication and 615
close collaboration with customers. The overall way of working was characterized as
follows: upon analysing the market, Modeliosoft team updates an annual roadmap and
elaborates strategies to ensure the success of their long-lived product in a competitive
environment. The planned features and requests from customers are then developed,
and major issues (if any) are addressed. The code is periodically delivered to 620
integration for nightly builds. Before delivering new releases, the team should ensure
that the planned features work without blocking issues.

The software tools used by the development team are: 1) OpenProject8 for project
management (backlog management, issues and specification tracking), 2) Mantis9 for

6 www.softeamgroup.fr/en
7 https://www.modelisoft.com/en
8 https://www.openproject.org/

bug tracking and 3) Jenkins10 for builds and tests triggering. Figure 9 illustrates the 625
roles and tools used in ModelioNG.

Figure 9 Roles that participated in the case study and tools used for the

development of ModelioNG 630

6.2 Case Study Design

The design of the case study is strongly inspired by the well-known guidelines
provided in Yin [77] and Runeson et al. [75]. The key research question leading this
case study is: “How is the application of the SESSI method in the studied project?”.
The main drivers for the case study design were the phases and steps suggested in the 635
SESSI method and the specific characteristics and needs of ModelioNG. The case
study design was flexible to deal with daily unexpected issues. Details of issues
and/or decisions taken during the case study are detailed in the execution section.

We proposed the participation of 5 researchers (3 of them with previous experience
in applying the method in other industrial contexts) that were able to provide hands-640
on support on the execution of the phases and steps of the method. Modeliosoft
agreed and assigned the team leader of ModelioNG as the promotor of the application
of the method. He provided us access to the software development related data and
led the development of data collectors.

In addition to the team leader, other roles participated as domain experts: the 645
product manager, the project manager, the developer leader and a developer. The team
leader assigned the roles to each step of the method, according to their expertise and
availability. Our interaction with these domain experts was direct or indirect,
depending on their availability.

9 https://www.mantisbt.org/
10 https://jenkins.io/

6.3 Data Collection and Data Analysis 650

Data collection and data analysis were performed according to the phases and steps
of the SESSI method described in Section 5. For instance, after studying the
ModelioNG context and supporting the specification of the SSI, data collectors were
developed for gathering data. This data together with domain experts’ knowledge was
used as the basis for constructing the estimation model. These activities were based on 655
the guidelines of the SESSI method as it is further explained in the next subsection.
We also used individual diaries to record all interactions, issues and relevant
observations from the execution of the method. Further details of collected
information cannot be provided given non-disclosure agreements with Modeliosoft.

In addition to the SESSI method procedures, we designed a survey based on a 660
questionnaire as a data collection instrument for gathering practitioners’ feedback. We
used a previously defined questionnaire from the Q-Rapids project [78] as the basis
for designing this one. The questionnaire was also piloted and approved by the team
leader. As the questionnaire contained mostly closed questions, we processed the
gathered data using spreadsheets. For the case of open questions, we planned to use 665
content analysis for analyzing and categorizing all the responses [79]. The
questionnaire was designed with the aim of being simple and brief, so it could be
filled in 10-15 minutes.

6.4 Case Study Execution

The following subsections detail the execution of ModelioNG case study according 670
to the SESSI method phases.

Phase 1: SSI Specification

The product manager of ModelioNG chose Product Readiness as the most
appropriate SSI to be tackled by the SESSI method. We studied the literature with the
aim of providing some related examples that could serve as starting point for its 675
specification. We found some works specifying/assessing product readiness [27,28],
however, none of them was suitable for the particular meaning of product readiness in
ModelioNG. Therefore, the product manager and the team leader elicited the list of
aspects related to product readiness based on their own knowledge and experience.
After some iterations and discussions, the Product Readiness SSI specification was 680
stated as shown in Table 2. It was based on 3 factors that at their turn were based on
the stated metrics.

Table 2 Specification of Product Readiness SSI for the ModelioNG case study
General Definition: Product Readiness provides high level information on product readiness for the next
release. A product “ready to be released” implements the features planned for the release and without
critical bugs.
Factor
Name

Factor
Description

Metric
Name

Metric Description Data
Source

Metric Definition (In some cases, the
metric definition shown is simplified)

A
ct

iv
iti

es
 C

om
pl

et
io

n

Represents
the status of
the
completion
of activities
plan for this
release,
including
development
and
specification
tasks

Specification
Task
Completion

Represents the fulfilment of
the required specification
tasks for this release

Open
Project

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Where:
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
∑ 𝑊𝑊𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁 𝑊𝑊𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 "𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆."
𝑖𝑖=1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

And:
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
 ∑ 𝑊𝑊𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁 𝑊𝑊𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 "𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆."
𝑖𝑖=1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +

+𝑊𝑊𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
Development
Task
Completion

Represents the fulfilment status
of the required development
tasks for this release

Open
Project

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Where:
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
∑ 𝑊𝑊𝑊𝑊_𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑊𝑊𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 "𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇"
𝑖𝑖=1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
 ∑ 𝑊𝑊𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁 𝑊𝑊𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 "𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇"
𝑖𝑖=1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +

+ 𝑊𝑊𝑊𝑊_𝑖𝑖. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

K
no

w
n

R
em

ai
ni

ng

D
ef

ec
ts

Measures
defects/
bugs/crashes
that lie
outside the
major bug
category and
can be
deferred to
next releases

Postponed
Issues
(Closed)
Ratio

Ratio of the minor severity
closed issues (of type
Feature/Trivial/Text/Tweak/
Minor/Usability) with
respect to the total number of
low severity issues

Mantis

𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Pr
od

uc
t S

ta
bi

lit
y

Measures the
status of the
operational
software
quality of the
monitored
release,
considering
the presence
of major
issues and
the testing
status

Build
Stability

Percentage of successful
builds with respect to the
total of builds triggered in a
seven days period

Jenkins
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Critical
Issues
(Closed)
Ratio

Ratio of high severity closed
issues (of type
Crash/Block/Major) with
respect to the total number of
high severity issues

Mantis
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Passed Tests
Percentage

Percentage of tests passed
with respect to the total
number of tests ran for the
latest build

Jenkins
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟

 685
Data collectors were developed in order to automatically extract, compute and store

the metrics specified in Table 2. In particular, Modeliosoft developed data collectors
for Mantis and OpenProject, while for Jenkins, they reused some available data
collectors developed in the context of the Q-Rapids project [61]. Data collectors were
configured to run once per day for collecting data and computing metrics. The 690
computed values were saved into a database that we called HistoricalNG.

Phase 2: SSI Estimation Model Building

To execute this second phase of the method, we had to make sure of having enough
collected data into the HistoricalNG database. ModelioNG team together with our
research team decided to perform the second phase of the method to build the 695
estimation model for the Product Readiness SSI once we had a period of 3 months of
collected data into the HistoricalNG database.

The domain experts that participated in this phase were: the product manager, the
project manager, the developer leader, the team leader and a developer. The steps
were conducted as follows: 700

Step 1 – Data Splitting

The historical data from the HistoricalNG database was split into 80%-20% for
training set and validation set, respectively. The training set was used for the
estimation model building (steps 2 and 3) while the validation set was used for 705
validation purposes in step 5.

Step 2 – DAG specification

Using the hierarchical specification of the Product Readiness SSI (see Table 2), a
preliminary DAG was obtained. Figure 10 shows the obtained DAG, with metrics as 710
root nodes, factors as intermediate nodes, and the SSI as the leaf node.

Figure 10 DAG specified for the Product Readiness estimation model

We held two virtual meetings with the team leader in order to complete a
preliminary DAG with its corresponding states for each node. The team leader 715
decided the states of the nodes based on the product rules commonly used in
Modeliosoft. The elicited states for the metric nodes are shown in [80] (Table A1),
while the elicited states for the factor nodes and the SSI node are shown in [80] (Table
A2).

Additionally, for the metric nodes (i.e., root nodes) it was required to specify their 720
binning intervals, as they were computed and stored in the HistoricalNG database in
the continuous interval [0, 1]. To ease the specification of the binning intervals, we
used our implemented versions of the two main unsupervised binning algorithms
(Equal-Width and Equal-Frequency binning). We showed the results to the team
leader as a suggestion of the binning intervals, but he preferred to define his own 725
binning intervals for each metric node, according to their usual (implicit) rules and
thresholds. The specified binning intervals can be found in [80] (Table A1, second
column).

Step 3 – CPTs Specification

To specify the probability function for each node, each CPT was semi-730
automatically filled in using the training set and the domain experts’ knowledge.
Three members of the domain experts team participated in this step: the team leader,
the project manager and the developer leader.

CPTs for metric nodes were automatically computed from the training set, the
specified states and their corresponding binning intervals. To do so, we applied 735
frequency quantification with our developed software tool
getFrequencyQuantification [70]. The domain experts reviewed and refined the
resulting CPTs according to their knowledge and rules. For instance, the Build
Stability metric node (collected from Jenkins as the percentage of successful builds in
a specified time period) had 5 ordinal categories defined by the domain experts, 740
ranging from “VeryLow” to “VeryHigh”, and binning intervals in the [0, 1] interval.
The automatically computed CPT for this metric node ranged from 3% for the
“VeryLow” category, up to 60% for the “VeryHigh”, as the training data showed that
software builds succeeded most of the time. The whole set of CPTs for metric nodes
can be found in [80] (Table A1, third column). 745

CPTs for factor and SSI nodes were manually or automatically filled in depending
on their size. For instance, the CPT for the factor node Known Remaining Defects
Closed ratio was manually filled in by domain experts, as it only had a parent node
(Postponed Issues Closed Ratio) with the states (“Low”, “Medium”, “High”). So, its
CPT resulted in 9 entries (3 rows of 3 probabilities each). 750

The rest of the CPTs for factor and SSI nodes were large and required the
application of the WSA technique to reduce the number of entries to fill in. The
compatible configurations required by the WSA were automatically computed from
the training data, using our tool getCompatibleConfigurations [72] previously
explained. Domain experts were requested to provide the resulting probabilities for 755
each compatible configuration, and, additionally, the relative weights of the parent
nodes towards the quantified node.

For instance, the CPT for the Activity Completion factor node would require filling
in 125 probabilities (25 rows of 5 probabilities each). The CPT for the Product
Stability node would require 625 probabilities (125 rows of 5 probabilities each). And 760
the CPT for the Product Readiness node would require 300 probabilities (75 rows of 4
probabilities each). In contrast, by applying our implementation of the WSA
technique, the number of probabilities to be provided by domain experts decreased to
10 rows of 5 probabilities each for the Activities Completion node; 15 rows of 5
probabilities each for the Product Stability node; and 13 rows of 4 probabilities each 765
for the Product Readiness node.

The complete set of CPTs for factor and SSI nodes are provided in [80] (Tables
A3-A6).

Step 4 – Estimation Model Generation

Once the CPTs for all the nodes were specified, the complete Bayesian network for 770
the Product Readiness SSI was created using Netica® software [64]. The resulting
estimation model can be found in [80] (Figure A1).

Step 5 – Estimation Model Validation

Once the estimation model for the Product Readiness SSI was generated, we
conducted the two validations mechanisms proposed by the SESSI method: Model 775
Walkthrough and Outcome Adequacy over its factor and SSI nodes.

Model Walkthrough validation

This validation aims to test and recalibrate the estimation model using hypothetical
scenarios and the domain experts’ perceptions for these scenarios. Three domain
experts participated in this activity: the project manager, the team leader and a 780
developer.

A total of 41 hypothetical scenarios and their expected states were provided by the
domain experts. For instance, the domain experts designed 14 hypothetical scenarios
for the Product Stability node. One of the designed scenarios was Build Stability as
“Medium”, Critical Issues (Closed) Ratio as “VeryHigh” and Passed Tests 785
Percentage as “Medium”. For this scenario, the experts specified the most probable
state for the Product Stability factor as “Medium”, which matched the output of the
estimation model. For the cases in which there were mismatches, the corresponding
CPT was modified by tuning the probabilities of the corresponding row. Then, the
previous scenarios were re-introduced into the estimation model, to make sure that the 790
output kept matching with the domain experts’ perception. Individual tables showing
the conducted Model Walkthrough are in [80] (Tables A7-A10). The average
accuracy obtained in this validation was suboptimal due to the high number of
scenarios that required recalibration for the Activity Completion node. In [80] (Figure
A2) we show the recalibrated estimation model resulting from this validation. 795

Outcome Adequacy

It aims to validate the model using real scenarios from the validation dataset. The
project manager and the team leader participated in this validation as domain experts.

Each real scenario from the validation set consisted of the combination of the states
of the parent nodes together with the date when the scenario happened. We showed 800
such information to the domain experts and requested them to specify the resulting
state for each scenario. Their answer was then compared with the output of the
estimation model for that scenario. For instance, for the Product Stability node, there
were 10 real scenarios in the validation set, and domain experts provided a potential
state for each of these scenarios. 3 out of these 10 scenarios resulted in mismatches 805

between the domain experts’ perception and the estimation model output. Therefore,
they required model recalibration. Individual tables showing the conducted Outcome
Validation can be consulted at [80] (Tables A11-A14).

Table 3 shows a summary of the results from the performed validations. It includes
the number of considered scenarios, the number of mismatches that required model 810
recalibration and the percentage of matches (accuracy).

Table 3 Summary of the two validations conducted in the ModelioNG case study

Model Walkthrough Validation
Node Number of scenarios

designed
Required recalibration Matches

(%)
Activity Completion 12 7 41,6
Known Remaining Defects
Closed Ratio

1 0 100

Product Stability 14 4 71,4
Product Readiness 14 4 71,4
Total 41 15 63,4
Outcome Adequacy Validation
Node Number of real

scenarios considered
Required recalibration Matches

(%)
Activity Completion 1 0 100
Known Remaining Defects
Closed Ratio

1 0 100

Product Stability 10 3 70
Product Readiness 6 1 83,3
Total 18 4 77,7

Once the model was successfully recalibrated, the final estimation model for the

Product Readiness SSI was obtained. An excerpt of the resulting estimation model is 815
shown in Figure 11 (a).

Step 6 – Deployment and use of the Product Readiness SSI estimation model

After obtaining the final estimation model for the Product Readiness SSI, we
discussed with Modeliosoft the most feasible alternatives for its deployment in the
organization. 820

Since the very beginning of the case study, Modeliosoft stated their interest on
integrating the resulting estimation model into a dashboard [81] that was being
promoted by its headquarter Softeam to visualize and monitor SSIs.

We built the infrastructure to connect the Product readiness estimation model with
such dashboard. It was feasible as the dashboard has a software orchestrator 825
component that allows the connection of data collectors with the mechanisms to
process the data to be visualized. We developed a software library [73] that obtains
the collected metrics and returns the resulting set of probabilities for each state of the
SSI, which can then be visualized in the dashboard. This architecture is graphically
represented in Figure 11 (b). 830

Figure 11 a) Final estimation model obtained after the two validation processes. 835

b) Architecture to enable the automatic estimations and visualization of the
Product Readiness SSI for ModelioNG

Modeliosoft was interested on what-if analysis to assess scenarios that could help
them to take preventive actions, with the aim of reducing the risk of delivering the
software product without meeting its requirements. To enable such analysis we used 840
Netica® software [64]. Figure 12 shows an example of a what-if analysis conducted
with the Product Readiness estimation model. We manually entered a scenario where
the development of features is almost finished (that is, Development Task Completion
and Specification Task Completion metrics are in “High” and “VeryHigh” states,
respectively) but the percentage of minor bugs addressed is low, as well as every 845
metric belonging to the Product Stability factor. In this scenario, the estimation model
results in “NotReady” as the most probable state for the Product Readiness SSI. This
is because even when the features to deliver are almost completed, the stability of the
software and the percentage of non-closed minor bugs are deficient.

a)

b)

 850

Figure 12 What-if analysis example using the Product Readiness SSI estimation

model resulting from the case study

6.5 Preliminary Feedback

Right after the execution of the SESSI method, we requested the feedback on the 855
application of the method from the case study participants. The questionnaire is
available in [80] (page 8). It contained open and closed questions organized into three
main sections. Each one of these sections focused on:

1. Ranking the execution of the method as: usable, clear, difficult, reliable,
complete, comprehensive and repeatable. 860

2. Positive/negative aspects of the method observed by the participants during its
execution.

3. Opinion on the reproducibility of the method in another case or context
without our support.

Although we requested each participant to fill in the questionnaire, the team leader 865
provided us with a single set of answers that was collaboratively agreed among all
participants during an internal meeting. We did not have knowledge nor control on
this meeting and the resulting answers. We rely on these answers as a representative
agreement among all the participants. The results show that completion, reliability,
comprehensibility, detail, interest and repeatability got the highest scores. Although 870
none of the aspects requested by the questionnaire was negatively scored, the self-
explanatory aspect was scored as neutral. This was somewhat expected as the
participants were not requested to read or be formally trained for the method
execution. Instead, the research team participated as experts on the method and guided
all the activities and tasks. 875

Regarding the open aspects, on the one hand, participants highlighted some
positive aspects related to the support provided by the research team that actively
participated in the execution of the method. They specifically mentioned that the
explanations provided by the research team were clear and contributed to the
understanding of the steps of the method. On the other hand, as negative aspects they 880
highlighted that “historical data selection [for the phase 2 of the method] was not
totally clear”. Such feedback is really appreciated to work on the improvement of the
method.

Finally, regarding the repeatability of the method, participants agreed on the
perception that they would be able to execute the method by themselves without our 885
help.

6.6 Threats to Validity

In this section, we detail the main threats to validity of the case study.
− Internal validity: We conducted a participatory case study, where we as

researchers played an active role assisting the domain experts from 890
Modeliosoft in each step of the method and providing detailed explanations
in an action-research fashion. We are aware that this greatly influences the
observations on the execution of the method and the received feedback. On
the one hand, we should emphasize that our results should be interpreted in
the context of our objective that is: illustrating that the execution of the 895
method is flexible to deal with particular organizational situations and needs.
That is, our intention was to enable the method application as a fundamental
step to achieve our long-term objective, which is to study the worthiness of
the estimation model and related artifacts for decision making and
monitoring purposes. Because of that, the perception of Modeliosoft 900
participants regarding the execution of the method might be biased by our
own implication as participants in the case study. For instance, they never
faced any direct problem or challenge regarding the execution of the method
as we were the ones in charge of fitting and guiding the activities.
There are other factors that might affect the internal validity of the artifacts 905
resulting from the method execution. For instance, participants from
Modeliosoft that participated as domain experts were selected by the team
leader, mainly based on the suitability of the person’s expertise for the
required tasks of the method. We are aware that such selection could have
been affected by the availability of the people to participate in the case study. 910
However, we did not experience any case where the domain expert did not
have the required expertise for providing us the required information. This
aspect is important in order to face the post-deployment part of the case
study as the quality of the resulting artifacts will impact on their accuracy
and usage. 915

− Construct validity: We used the SESSI method guidelines to drive the
execution of the case study. In addition, we designed and validated a
questionnaire to gather participants’ feedback and used our own diaries to

register our observations as case study participants. As we mentioned above,
an important aspect of this case study was that we adapted as much as 920
possible the execution of the method to the needs of Modeliosoft. For
instance, we prepared additional material and adapted some activities of the
method to be performed online instead of face to face with domain experts as
this was more convenient for Modeliosoft. Another adaptation was related to
the feedback questionnaire. It was originally aimed to be answered by each 925
Modeliosoft participant, however, Modeliosoft considered more convenient
to fill in a single questionnaire with the agreement from all participants. To
deal with this situation, we rely on the provided answers as representative of
the general perception of Modeliosoft participants but added a triangulation
activity for confirming the results. This was done by comparing the 930
observations from our individual diaries with the received feedback. All in
all, the design of the case study was quite flexible to deal with contextual
situations and we did not experience relevant problems for such adaptations,
and we could even reuse some previously developed data collectors.

− External validity: Our industrial summative evaluation plan envisages the 935
execution of multiple case studies to tackle different organizational contexts.
In line with such objective, the purpose of the single case study presented
here is not to generalize our observations regarding the execution of the
method but to learn and understand some practical implications of applying
our method in a very specific industrial environment. Therefore, we 940
described the setting of the case study as much as possible (under our non-
disclosure agreements with Modeliosoft) and tried to provide details on the
execution of each step of the SESSI method. Furthermore, the resulting
estimation model and related artifacts should be interpreted with caution,
considering that they were built in the specific context of the ModelioNG 945
case and variations on the activities of the method and the results are
expected for other cases.

7. Conclusions and future work

In this paper, we presented the SESSI method, aimed to support software-
development intensive organizations with guidance and tools for exploiting software 950
development related data and expert knowledge to improve their decision-making.
We also illustrated its application in a case study related to the development of
ModelioNG, a software product from Modeliosoft, a software development firm.

In general, the case study showed that the application of the SESSI method for
specifying and monitoring Product Readiness SSI in ModelioNG was smooth and 955
feasible. The obtained estimation model and its associated data collectors enabled
monitoring and what-if analysis. In addition, we succeeded in putting forward the
infrastructure for the connection of the estimation model with an organizational
dashboard. This last was quite important for promoting the use of the estimation
model in Modeliosoft for the long-term post-deployment study included in the 960
industrial summative evaluation plan.

We should emphasize that we directly participated in the case study and provided
hands-on support to ModelioNG team on the execution of the method. However, we
obtained evidence on the positive perception of the participants regarding the
execution of the method again by themselves without our direct support. 965

 The experience gained in this case study is valuable for our goal of continuously
improving the SESSI method to foster its industrial application. At this respect, we
have learnt some important lessons:
− Participatory involvement was useful to achieve industrial participation. We

found that one important factor that contributed to the willingness of Modeliosoft 970
to participate in the case study was the fact that we offered them direct
involvement in the case in such a way that their employees were disturbed as less
as possible from their usual activities.

− Tradeoff between flexibility and adaptation to organizational constraints/needs
and method requirements. Offering participatory involvement was not enough for 975
smoothly executing the case study. We had to be flexible and creative for dealing
with the organization constraints and rules. For instance, as the quality of the
estimation model directly depends on the knowledge of the domain experts, we
highlighted this point to the team leader, so he paid special attention to assign
suitable personnel. We adapted guidelines and instruments to enable such 980
personnel to fill in the required information taking into account their specific
daily schedules and constraints. In addition, as expected in most organizations,
access to project data was highly restricted and subjected to non-disclosure
agreements. So, we had to set up secure protocols to anonymize the data while
maximize its integrity. 985

− Uncovered method improvements and future work from organizational needs.
Case study participants commented that having forecasting capabilities could
help them preventing SSIs violations. In that matter, we plan to extend the
method with forecasting capabilities at every level of the SSI hierarchy (SSI,
factors and metrics), to enable the forecasting of SSIs while providing traceability 990
support. On the other hand, based on the feedback we got from the survey applied
to the case study participants, we realized that the selection of historical data for
performing the phase 2 of the method was perceived as unclear. Therefore, we
are working on the development of an extension of our current software tools to
support the random selection of historical data and suitable partitions for training 995
and validation sets. We believe that the enhancement of tool support will
contribute to ease the adoption of the method.

− Sharing the case study results is relevant to foster industrial uptake. The smooth
application of the method in an organization implicitly fosters industrial uptake.
Therefore, we paid special attention to all aspects related to the execution of the 1000
case from the methodological and practical perspective. We wanted to make sure
that we maximize all our efforts and resources to achieve a smooth collaboration
that not only ensures the expected long-term involvement with Modeliosoft for
the post-method deployment evaluation but also to promote the participation of
other organizations. So far, we have shared the preliminary results of this case 1005
study with other industrial representatives from our own industrial collaboration
network and they seem interested on applying the method with a similar approach

as the one used in Modeliosoft. This also supports our interest of presenting our
preliminary results in highly reputed venues.

All in all, these results and lessons learnt are not only the basis for improvements 1010
and future research but also for shaping the design of our future case studies and for
preparing the second part of this case study: the post-deployment part.

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and
innovation program (Q-Rapids project, grant agreement N° 732253), and partially by 1015
the Spanish Ministry of Economy and Competitiveness (project GENESIS, grant
agreement TIN2016-79269-R). We also thank Softeam and Modeliosoft for
promoting and participating in the case study, respectively.

References

[1] T. Menzies, T. Zimmermann, Software Analytics: What’s Next?, IEEE Softw. 1020
35 (2018) 64–70. https://doi.org/10.1109/MS.2018.290111035.

[2] C. Matthies, G. Hesse, Towards using Data to Inform Decisions in Agile
Software Development: Views of Available Data, in: Proc. 14th Int. Conf.
Softw. Technol. ICSOFT ’19, SCITEPRESS - Science and Technology
Publications, 2019: pp. 552–559. https://doi.org/10.5220/0007967905520559. 1025

[3] N.B. Moe, A. Aurum, T. Dybå, Challenges of shared decision-making: A
multiple case study of agile software development, Inf. Softw. Technol. 54
(2012) 853–865. https://doi.org/10.1016/j.infsof.2011.11.006.

[4] R.P.L. Buse, T. Zimmermann, Information needs for software development
analytics, in: Proc. 34th Int. Conf. Softw. Eng. ICSE ’12, IEEE, 2012: pp. 1030
987–996. https://doi.org/10.1109/ICSE.2012.6227122.

[5] S. Martinez-Fernandez, A.M. Vollmer, A. Jedlitschka, X. Franch, L. Lopez,
P. Ram, P. Rodriguez, S. Aaramaa, A. Bagnato, M. Choras, J. Partanen,
Continuously Assessing and Improving Software Quality with Software
Analytics Tools: A Case Study, IEEE Access. 7 (2019) 68219–68239. 1035
https://doi.org/10.1109/ACCESS.2019.2917403.

[6] R.B. Svensson, R. Feldt, R. Torkar, The Unfulfilled Potential of Data-Driven
Decision Making in Agile Software Development, in: Proc. 20th Int. Conf.
Agil. Softw. Dev. XP ’19, Springer, Cham, 2019: pp. 69–85.
https://doi.org/10.1007/978-3-030-19034-7_5. 1040

[7] M. Choetkiertikul, H.K. Dam, T. Tran, A. Ghose, J. Grundy, Predicting
Delivery Capability in Iterative Software Development, IEEE Trans. Softw.
Eng. 44 (2018) 551–573. https://doi.org/10.1109/TSE.2017.2693989.

[8] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, S. Li, Software quality
assessment model: a systematic mapping study, Sci. China Inf. Sci. 62 (2019) 1045
191101. https://doi.org/10.1007/s11432-018-9608-3.

[9] M. Perkusich, G. Soares, H. Almeida, A. Perkusich, A procedure to detect

problems of processes in software development projects using Bayesian
networks, Expert Syst. Appl. 42 (2015) 437–450.
https://doi.org/10.1016/j.eswa.2014.08.015. 1050

[10] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, A. Perkusich, A Bayesian
networks-based approach to assess and improve the teamwork quality of agile
teams, Inf. Softw. Technol. 100 (2018) 119–132.
https://doi.org/10.1016/j.infsof.2018.04.004.

[11] M. Janssen, H. van der Voort, A. Wahyudi, Factors influencing big data 1055
decision-making quality, J. Bus. Res. 70 (2017) 338–345.
https://doi.org/10.1016/j.jbusres.2016.08.007.

[12] H.E. Kyburg, J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference., J. Philos. 88 (1991) 434.
https://doi.org/10.2307/2026705. 1060

[13] Q-Rapids, Quality-aware Rapid Software development (Q-Rapids) project.
European Union’s Horizon 2020 research and innovation programme under
grant agreement No 732253., (2019). https://www.q-rapids.eu (accessed June
13, 2020).

[14] R.J. Wieringa, Design Science Methodology for Information Systems and 1065
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
https://doi.org/10.1007/978-3-662-43839-8.

[15] D. Avison, Action research: a research approach for cooperative work, in:
Proc. 7th Int. Conf. Comput. Support. Coop. Work Des. CSCWD ’03,
COPPE/UFRJ, 2003: pp. 19–24. 1070
https://doi.org/10.1109/CSCWD.2002.1047641.

[16] M. Manzano, C. Gomez, C. Ayala, S. Martinez-Fernandez, P. Ram, P.
Rodriguez, M. Oriol, Definition of the On-time Delivery Indicator in Rapid
Software Development, in: Proc. IEEE 1st Int. Work. Qual. Requir. Agil.
Proj. QuaRAP ’18, IEEE, 2018: pp. 1–5. 1075
https://doi.org/10.1109/QuaRAP.2018.00006.

[17] M. Manzano, E. Mendes, C. Gómez, C. Ayala, X. Franch, Using Bayesian
Networks to estimate Strategic Indicators in the context of Rapid Software
Development, in: Proc. 14th Int. Conf. Predict. Model. Data Anal. Softw.
Eng. PROMISE ’18, ACM, New York, NY, USA, 2018: pp. 52–55. 1080
https://doi.org/10.1145/3273934.3273940.

[18] N. Nagappan, T. Ball, Static analysis tools as early indicators of pre-release
defect density, in: Proc. 27th Int. Conf. Softw. Eng. ICSE ’05, ACM Press,
New York, New York, USA, 2005: p. 580.
https://doi.org/10.1145/1062455.1062558. 1085

[19] K. Petersen, A palette of lean indicators to detect waste in software
maintenance: A case study, in: Proc. 13th Int. Conf. Agil. Softw. Dev. XP ’12,
Springer, Berlin, Heidelberg, 2012: pp. 108–122. https://doi.org/10.1007/978-
3-642-30350-0_8.

[20] K. Petersen, C. Wohlin, Measuring the flow in lean software development, 1090
Softw. Pract. Exp. 41 (2011) 975–996. https://doi.org/10.1002/spe.975.

[21] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch,
A. Seidi, A. Goeb, J. Streit, The Quamoco product quality modelling and
assessment approach, in: Proc. 34th Int. Conf. Softw. Eng. ICSE ’12, IEEE,

2012: pp. 1133–1142. https://doi.org/10.1109/ICSE.2012.6227106. 1095
[22] N. Fenton, M. Neil, D. Marquez, Using Bayesian networks to predict software

defects and reliability, Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 222
(2008) 701–712. https://doi.org/10.1243/1748006XJRR161.

[23] J.P. Carvallo, X. Franch, G. Grau, C. Quer, COSTUME: A method for
building quality models for composite COTS-based software systems, in: 1100
Proc. 4th Int. Conf. Qual. Software, QSIC ’04, IEEE, 2004: pp. 214–221.
https://doi.org/10.1109/QSIC.2004.1357963.

[24] V. Antinyan, M. Staron, W. Meding, P. Osterstrom, E. Wikstrom, J. Wranker,
A. Henriksson, J. Hansson, Identifying risky areas of software code in
Agile/Lean software development: An industrial experience report, in: Proc. 1105
1th Softw. Evol. Week - IEEE Conf. Softw. Maintenance, Reengineering,
Reverse Eng. CSMR-WCRE, ’14, IEEE, 2014: pp. 154–163.
https://doi.org/10.1109/CSMR-WCRE.2014.6747165.

[25] S. Ilieva, P. Ivanov, E. Stefanova, Analyses of an agile methodology
implementation, in: Proc. 30th Euromicro Conf. EUROMICRO ’04., IEEE, 1110
2004: pp. 326–333. https://doi.org/10.1109/EURMIC.2004.1333387.

[26] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and
productivity outcomes relating to continuous integration in GitHub, in: Proc.
10th Jt. Meet. Found. Softw. Eng. ESEC/FSE ’15, ACM Press, New York,
New York, USA, 2015: pp. 805–816. 1115
https://doi.org/10.1145/2786805.2786850.

[27] M. Staron, W. Meding, K. Palm, Release Readiness Indicator for Mature
Agile and Lean Software Development Projects, in: Proc. 13th Int. Conf.
Agil. Softw. Dev. XP ’12, Springer, Berlin, Heidelberg, 2012: pp. 93–107.
https://doi.org/10.1007/978-3-642-30350-0_7. 1120

[28] A. Asthana, J. Olivieri, Quantifying software reliability and readiness, in:
Proc. IEEE Int. Work. Tech. Comm. Commun. Qual. Reliab. CQR ’09, IEEE,
2009: pp. 1–6. https://doi.org/10.1109/CQR.2009.5137352.

[29] A.T. Misirli, A.B. Bener, Bayesian Networks For Evidence-Based Decision-
Making in Software Engineering, IEEE Trans. Softw. Eng. 40 (2014) 533–1125
554. https://doi.org/10.1109/TSE.2014.2321179.

[30] N. Fenton, M. Neil, W. Marsh, P. Hearty, Ł. Radliński, P. Krause, On the
effectiveness of early life cycle defect prediction with Bayesian Nets, Empir.
Softw. Eng. 13 (2008) 499–537. https://doi.org/10.1007/s10664-008-9072-x.

[31] M. Staron, W. Meding, C. Nilsson, A framework for developing measurement 1130
systems and its industrial evaluation, Inf. Softw. Technol. 51 (2009) 721–737.
https://doi.org/10.1016/j.infsof.2008.10.001.

[32] M. Staron, W. Meding, Monitoring bottlenecks in agile and lean software
development projects - A method and its industrial use, in: Proc. 12th Int.
Conf. Prod. Focus. Softw. Process Improv. PROFES ’11, Springer, Berlin, 1135
Heidelberg, 2011: pp. 3–16. https://doi.org/10.1007/978-3-642-21843-9_3.

[33] M. Perkusich, K. Gorgônio, H. Almeida, A. Perkusich, A Framework to Build
Bayesian Networks to Assess Scrum-based Development Methods, in: Proc.
29th Int. Conf. Softw. Eng. Knowl. Eng. SEKE ’07, 2017: pp. 67–73.
https://doi.org/10.18293/SEKE2017-139. 1140

[34] E. Mendes, P. Rodriguez, V. Freitas, S. Baker, M.A. Atoui, Towards

improving decision making and estimating the value of decisions in value-
based software engineering: the VALUE framework, Softw. Qual. J. 26
(2018) 607–656. https://doi.org/10.1007/s11219-017-9360-z.

[35] E. Mendes, M. Perkusich, V. Freitas, J. Nunes, Using Bayesian Network to 1145
estimate the value of decisions within the context of Value-Based Software
Engineering, in: Proc. 22nd Int. Conf. Eval. Assess. Softw. Eng. 2018,
EASE’18, ACM Press, New York, New York, USA, 2018: pp. 90–100.
https://doi.org/10.1145/3210459.3210468.

[36] X. Zheng, P. Martin, K. Brohman, L. Da Xu, Cloudqual: A quality model for 1150
cloud services, IEEE Trans. Ind. Informatics. 10 (2014) 1527–1536.
https://doi.org/10.1109/TII.2014.2306329.

[37] R. Baggen, J.P. Correia, K. Schill, J. Visser, Standardized code quality
benchmarking for improving software maintainability, Softw. Qual. J. 20
(2012) 287–307. https://doi.org/10.1007/s11219-011-9144-9. 1155

[38] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, T. Gyimothy, A
probabilistic software quality model, in: Proc. 27th IEEE Int. Conf. Softw.
Maintenance, ICSM ’11, IEEE, 2011: pp. 243–252.
https://doi.org/10.1109/ICSM.2011.6080791.

[39] S. Wagner, A Bayesian network approach to assess and predict software 1160
quality using activity-based quality models, Inf. Softw. Technol. 52 (2010)
1230–1241. https://doi.org/10.1016/j.infsof.2010.03.016.

[40] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval, F.
Bellingard, P. Vaillergues, The squale model - A practice-based industrial
quality model, in: Proc. 25th IEEE Int. Conf. Softw. Maintenance, ICSM ’09, 1165
IEEE, 2009: pp. 531–534. https://doi.org/10.1109/ICSM.2009.5306381.

[41] W. Pedrycz, J.F. Peters, S. Ramanna, Software quality measurement: concepts
and fuzzy neural relational model, in: Proc. IEEE Int. Conf. Fuzzy Syst.
Proceedings. IEEE World Congr. Comput. Intell., IEEE, 1998: pp. 1026–
1031. https://doi.org/10.1109/FUZZY.1998.686259. 1170

[42] L. Zhang, L. Li, H. Gao, 2-D software quality model and case study in
software flexibility research, in: Proc. Int. Conf. Comput. Intell. Model.
Control Autom. CIMCA ’08, IEEE, 2008: pp. 1147–1152.
https://doi.org/10.1109/CIMCA.2008.70.

[43] P. Johnson, R. Lagerström, P. Närman, M. Simonsson, Enterprise architecture 1175
analysis with extended influence diagrams, Inf. Syst. Front. 9 (2007) 163–
180. https://doi.org/10.1007/s10796-007-9030-y.

[44] R. Lagerström, U. Franke, P. Johnson, J. Ullberg, A Method for creating
enterprise architecture metamodels - applied to systems modifiability analysis,
Int. J. Comput. Sci. Appl. 6 (2009) 89–120. 1180
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.4640.

[45] R. Lagerström, P. Johnson, D. Höök, Architecture analysis of enterprise
systems modifiability – Models, analysis, and validation, J. Syst. Softw. 83
(2010) 1387–1403. https://doi.org/10.1016/j.jss.2010.02.019.

[46] P. Närman, M. Buschle, M. Ekstedt, An enterprise architecture framework for 1185
multi-attribute information systems analysis, Softw. Syst. Model. 13 (2014)
1085–1116. https://doi.org/10.1007/s10270-012-0288-2.

[47] P. Närman, H. Holm, M. Ekstedt, N. Honeth, Using enterprise architecture

analysis and interview data to estimate service response time, J. Strateg. Inf.
Syst. 22 (2013) 70–85. https://doi.org/10.1016/j.jsis.2012.10.002. 1190

[48] P. Närman, H. Holm, D. Höök, N. Honeth, P. Johnson, Using enterprise
architecture and technology adoption models to predict application usage, J.
Syst. Softw. 85 (2012) 1953–1967. https://doi.org/10.1016/j.jss.2012.02.035.

[49] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann,
A. Mayr, R. Plösch, A. Seidl, J. Streit, A. Trendowicz, Operationalised 1195
product quality models and assessment: The Quamoco approach, Inf. Softw.
Technol. 62 (2015) 101–123. https://doi.org/10.1016/j.infsof.2015.02.009.

[50] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, S. Li, Software quality
assessment model: a systematic mapping study, Sci. China Inf. Sci. 62 (2019)
191101. https://doi.org/10.1007/s11432-018-9608-3. 1200

[51] T. Sommestad, M. Ekstedt, H. Holm, The Cyber Security Modeling
Language: A Tool for Assessing the Vulnerability of Enterprise System
Architectures, IEEE Syst. J. 7 (2013) 363–373.
https://doi.org/10.1109/JSYST.2012.2221853.

[52] Q-Rapids, Q-Rapids Deliverable D3.1, 2017. https://www.q-1205
rapids.eu/deliverables.

[53] A. Darwiche, Bayesian networks, Commun. ACM. 53 (2010) 80–90.
https://doi.org/10.1145/1859204.1859227.

[54] C.A. Furia, R. Feldt, R. Torkar, Bayesian Data Analysis in Empirical
Software Engineering Research, (2018). 1210
https://doi.org/10.1109/TSE.2019.2935974.

[55] A. Tosun, A.B. Bener, S. Akbarinasaji, A systematic literature review on the
applications of Bayesian networks to predict software quality, Softw. Qual. J.
25 (2017) 273–305. https://doi.org/10.1007/s11219-015-9297-z.

[56] E. Mendes, Practitioner’s knowledge representation: A pathway to improve 1215
software effort estimation, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014. https://doi.org/10.1007/978-3-642-54157-5.

[57] E. Mendes, Using knowledge elicitation to improve Web effort estimation:
Lessons from six industrial case studies, in: Proc. 34th Int. Conf. Softw. Eng.
ICSE ’12, IEEE, 2012: pp. 1112–1121. 1220
https://doi.org/10.1109/ICSE.2012.6227108.

[58] K.P. Murphy, An Introduction to Graphical Models, (2001).
https://www.cs.ubc.ca/~murphyk/Papers/intro_gm.pdf (accessed September 7,
2020).

[59] B. Das, Generating Conditional Probabilities for Bayesian Networks: Easing 1225
the Knowledge Acquisition Problem, CoRR. (2004) 1–24.
https://doi.org/DSTO-TR-0918.

[60] N.E. Fenton, M. Neil, J.G. Caballero, Using Ranked Nodes to Model
Qualitative Judgments in Bayesian Networks, IEEE Trans. Knowl. Data Eng.
19 (2007) 1420–1432. https://doi.org/10.1109/TKDE.2007.1073. 1230

[61] A. Wickenkamp, Q-Rapids-connect, (2019). https://git.io/JvGwf (accessed
June 13, 2020).

[62] X. Franch, C. Ayala, L. Lopez, S. Martinez-Fernandez, P. Rodriguez, C.
Gomez, A. Jedlitschka, M. Oivo, J. Partanen, T. Raty, V. Rytivaara, Data-
Driven Requirements Engineering in Agile Projects: The Q-Rapids Approach, 1235

in: Proc. IEEE 25th Int. Requir. Eng. Conf. Work. REW ’17, IEEE, 2017: pp.
411–414. https://doi.org/10.1109/REW.2017.85.

[63] S. Martinez-Fernandez, A. Jedlitschka, L. Guzman, A.M. Vollmer, A Quality
Model for Actionable Analytics in Rapid Software Development, in: Proc.
44th Euromicro Conf. Softw. Eng. Adv. Appl. SEAA ’18, IEEE, 2018: pp. 1240
370–377. https://doi.org/10.1109/SEAA.2018.00067.

[64] Norsys Software Corp., Netica TM, Application for Belief Networks and
Influence Diagrams, (2002). https://www.norsys.com/netica.html (accessed
February 13, 2020).

[65] S. Matsumoto, R. Carvalho, M. Ladeira, UnBBayes: a java framework for 1245
probabilistic models in AI, Http://Unbbayes.Sourceforge.Net/. (2011).
http://sourceforge.net/projects/unbbayes/. (accessed February 13, 2020).

[66] S. Raschka, Model Evaluation, Model Selection, and Algorithm Selection in
Machine Learning, ArXiv. (2018). http://arxiv.org/abs/1811.12808 (accessed
January 24, 2020). 1250

[67] J. Dougherty, R. Kohavi, M. Sahami, Supervised and Unsupervised
Discretization of Continuous Features, in: Mach. Learn. Proc. 1995, Elsevier,
1995: pp. 194–202. https://doi.org/10.1016/b978-1-55860-377-6.50032-3.

[68] M. Manzano, Qrapids-si_assessment – BayesUtils – makeEqualIntervals,
(2019). https://git.io/JvspC (accessed June 13, 2020). 1255

[69] N. Fenton, M. Neil, Managing risk in the modern world. Applications of
Bayesian networks. A Knowledge Transfer Report, 2007.
http://www.lms.ac.uk/activities/comp_sci_com/KTR/apps_bayesian_networks
.pdf (accessed November 11, 2019).

[70] M. Manzano, Qrapids-si_assessment – BayesUtils – 1260
getFrequencyQuantification, (2019). https://git.io/Jvspr (accessed June 13,
2020).

[71] M. Manzano, WSA-Java implementation, (2019). https://git.io/Jvspi (accessed
June 13, 2020).

[72] M. Manzano, Qrapids-si_assessment – BayesUtils – 1265
getCompatibleConfigurations, (2019). https://git.io/Jvsp1 (accessed June 13,
2020).

[73] M. Manzano, Qrapids-si_assessment, (2019). https://git.io/Jvsph (accessed
June 13, 2020).

[74] A. Balletbó, Qrapids-si_assessment-rest, (2019). https://git.io/Jvshf (accessed 1270
June 13, 2020).

[75] P. Runeson, M. Höst, A. Rainer, B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples, John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2012. https://doi.org/10.1002/9781118181034.

[76] C. Robson, Real world research : a resource for social scientists and 1275
practitioner-researchers, Blackwell Publishers, 2002.

[77] R.K. Yin, Case study research: Design and methods, 4th ed., Thousand Oaks,
CA: SAGE Publications, 2009.

[78] Q-Rapids, Q-Rapids Deliverable D5.1, 2017. https://www.q-
rapids.eu/deliverables. 1280

[79] K. Krippendorff, Content analysis: an introduction to its methodology, SAGE
Publications, 1980.

[80] M. Manzano, Appendix, 2020.
www.essi.upc.edu/~mmanzano/files/Appendix_IST.pdf.

[81] Q-Rapids, Q-Rapids Dashboard, (2019). https://git.io/JvG0Z (accessed June 1285
13, 2020).

	Step 1-Data Splitting
	Step 2-DAG Specification
	Step 3-CPTs Specification
	Step 4 – Estimation Model Generation
	Step 5 – Estimation Model Validation
	Step 6 – Deployment and use of the SSI estimation model
	Step 3 – CPTs Specification
	Step 4 – Estimation Model Generation
	Step 5 – Estimation Model Validation
	Model Walkthrough validation
	Outcome Adequacy
	Step 6 – Deployment and use of the Product Readiness SSI estimation model

