
This is a repository copy of An information theoretic notion of software testability.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179499/

Version: Accepted Version

Article:

Patel, K., Hierons, R. orcid.org/0000-0002-4771-1446 and Clark, D. (2022) An information
theoretic notion of software testability. Information and Software Technology, 143. 106759.
ISSN 0950-5849

https://doi.org/10.1016/j.infsof.2021.106759

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

An Information Theoretic Notion of Software Testability✩

Krishna Patela, Robert M Hieronsa, David Clarkb

aDepartment of Computer Science, The University of Sheffield, Sheffield, S1 4DP, UK
bDepartment of Computer Science, University College London, WC1E 6BT, UK

Abstract

Context: In software testing, Failed Error Propagation (FEP) is the situation in which a

faulty program state occurs during the execution of the system under test (SUT) but this

does not lead to incorrect output. It is known that FEP can adversely affect software

testing and this has resulted in associated information theoretic measures.

Objective: To devise measures that can be used to assess the testability of the SUT.

By testability, we mean how likely it is that a faulty program state, that occurs during

testing, will lead to incorrect output. Previous work has considered a single program

point rather than an entire program.

Method: New, more fine-grained, measures were devised. Experiments were used

to evaluate these and the previously defined measures (Squeeziness and Normalised

Squeeziness). The experiments assessed how well these measures correlated with an

estimate of the probability of FEP occurring during testing. Mutants were used to

estimate this probability.

Results: A strong rank correlation was found between several of the measures and

the probability of FEP. Importantly, this included the Normalised Squeeziness of the

whole SUT, which is simpler to compute, or estimate, than most of the other measures

considered. Additional experiments found that the measures were relatively insensitive

to the choice of mutants and also test suite.

Conclusions: There is scope to use information theoretic measures to estimate how

✩This document is a result of the EPSRC funded research project EP/P006116/2 InfoTestSS: Information

theory and Test Suite Selection.

Email addresses: krishna.patel@sheffield.ac.uk (Krishna Patel),

r.hierons@sheffield.ac.uk (Robert M Hierons), david.clark@ucl.ac.uk (David Clark)

Preprint submitted to Information and Software Technology October 21, 2021

prone an SUT is to FEP. As a result, there is potential to use such measures to prioritise

testing or estimate how much testing an SUT might require.

Keywords: software testability, information theory, failed error propagation

1. Introduction

Software testing involves executing the system under test (SUT) on a number of

test inputs and determining whether the resultant outputs are correct (consistent with

requirements). It has been observed that if the SUT has a fault then this fault will

only be found in testing with a given input if three conditions are satisfied: the fault

is executed (execution); the execution of the fault leads to an incorrect program state

(infection); and the incorrect program state propagates to an incorrect output (prop-

agation). These three conditions are reflected in the PIE framework [1], which was

recently generalised to the RIPR framework [2].

It is possible that a fault is executed but this does not lead to an incorrect output,

with this situation being called coincidental correctness. The results of studies suggest

that coincidental correctness can have a major impact on testing [3, 4]. If one considers

the PIE framework, it is clear that coincidental correctness can occur through a failure

of either infection or propagation. Failed Error Propagation (FEP) represents the sec-

ond of these: a faulty state that occurs during the execution of an SUT that does not

propagate to the output.

The potential for FEP to reduce the effectiveness of testing led to the definition

of a measure, Squeeziness (Sq). Squeeziness measures the information (entropy) loss,

between two random variables in the states occurring at two program points, that results

from the execution of a program [5, 6]. It was found that the probability of FEP, for a

fault that infects the state at a program point p of program P , correlates strongly with

the Squeeziness of the program formed by starting the execution of P at p [6]. Thus,

Sq can be used to reason about the probability of FEP if we are interested in a particular

program point and there are scenarios in which this is valuable. For example, there is

potential to use Sq in order to enhance notions of coverage in order to take into account

how difficult it is to detect a fault at a given program point [6].

2

More recently, it has been observed that Sq does not provide an appropriate basis

for comparing two (sub-)programs that have different input domains [7]. This led to the

definition of a new measure, called Normalised Squeeziness (NSq), which measures the

proportion of entropy lost in program execution. Simulations demonstrated that NSq

is more effective than Sq when comparing programs (functions) with different input

domains [7] but NSq has not hitherto been evaluated on real programs.

Although the above concepts and results can be used to reason about particular

program points, they do not tell us how testable a program P is. Here, by testability we

mean the probability of FEP occurring if an incorrect program state occurs. If we can

find measures that estimate such a notion of testability then these measures might be

used as the basis for estimating either the effectiveness of testing or the expected cost

of testing. The aim of the research reported in this paper was to achieve exactly this:

to propose and evaluate information theoretic measures that might be used to estimate

this form of program testability. For each of Sq and NSq we considered three variants:

1. The Sq or NSq of the entire program P . Note that previous work has looked at

the Sq or NSq of part of a program; that following a fault.

2. The average value over all program points. In order to compute this, for every

program point p of a program P one forms a sub-program Pp representing the

execution of P starting at p and computes the Sq or NSq of Pp. The mean is then

taken over all program points of P .

3. A weighted version of the above, where the weighting for an internal state σ, at

program point p, is based on the proportion of test inputs that lead to state σ at p.

The first of the above, using Sq or NSq, provides the measures that should be

simplest to compute or estimate. Specifically, the other two sets of measures require

the Sq or NSq to be computed n times for a program with n program points, increasing

the computation cost by a factor of n. However, it was unclear whether the Sq or NSq

of a program are sufficiently fine-grained to form the basis of estimates of testability.

In particular, these measures are for the program as a whole but FEP is caused by

only the part of the program that is after the fault executed. Additionally, fine-grained

alternatives can account for the fact that different program points might vary in their

3

contribution to information loss. This observation motivated our interest in the more

fine-grained alternatives.

We evaluated these measures through experiments that used 18 C programs as sub-

jects. In order to estimate the probability of FEP for a program P , we generated a set

MP of mutants of P that included at most one mutant for each program point. We then

tested these mutants with a randomly generated set of test inputs, computing the pro-

portion of inputs for which FEP occurred. We determined the rank correlation between

this estimate of the probability of FEP and the proposed measures. Interestingly, the

Normalised Squeeziness of a program strongly correlated with the probability of FEP

(rank correlation of just over 0.77). This was only beaten by one measure, Weighted

Average Normalised Squeeziness, and the differences were relatively small (a rank cor-

relation of just over 0.78 for Weighted Average Normalised Squeeziness). These results

are promising since, not only were strong correlations found, but these were found for

a measure (NSq) that is relatively easy to compute or estimate. We also found that

approaches based on NSq tended to outperform the corresponding approaches that use

Sq, confirming results previously observed in simulations of programs [7].

We used mutants in the experiments because, for each program P and program

point p, we wanted a version of P in which there is a fault at p. Although there are

repositories that contain faulty versions of programs, we are not aware of any repos-

itories that contain a faulty version for each program point p. We used at most one

mutant for each program point to aid scalability. Several choices might have affected

the results and so we carried out additional experiments in order to investigate these.

First, we performed experiments that explored the effect of using different mutations

at a program point p. It was found that the choice of mutant at program point p typ-

ically had only a relatively small effect on the Sq and NSq values associated with p,

providing some confidence that the choice of mutant is unlikely to have significantly

affected the results. For each program, we also generated 30 different test suites and

estimated each measure using these, leading to 30 different values for each measure.

The results showed only small variations in the values of the measures. This suggests

that the results of the experiments are unlikely to have been affected by the choice of

test suite. Importantly, the results also suggest that there is scope to use sampling to

4

estimate the values of the measures and this should help associated techniques scale.

This paper makes the following main contributions:

1. Four new information theoretic measures: Average Squeeziness, Average Nor-

malised Squeeziness, Weighted Average Squeeziness, and Weighted Average

Normalised Squeeziness.

2. The first evaluation of Normalised Squeeziness on real programs.

3. Empirical evidence that the Normalised Squeeziness of a program strongly cor-

relates with its testability.

4. Empirical evidence that demonstrates that the measures used are relatively in-

sensitive to the choice of test suite and mutants used.

This paper is structured as follows. Section 2 provides background information and

defines the measures used in the paper. Section 3 outlines the design of the experiments.

Section 4 then presents the results of the experiments, while Section 5 discusses factors

that might affect the validity of our results. Section 6 reviews related work. Finally,

Section 7 summarises the main conclusions.

2. Background and Measures Used

This section describes the measures used. We start by saying what we mean by Av-

erage Failed Error Propagation, which is our estimate of the true testability of an SUT.

We then describe six alternative entropy loss measures that are potential predictors of

Average Failed Error Propagation. Two of these are measures that have previously

been described (Squeeziness and Normalised Squeeziness) but were only evaluated in

the context in which we have a known fault location and we consider the sub-program

formed by starting the execution at this program point. We then define what we mean

by Average Squeeziness and Average Normalised Squeeziness. Finally, we introduce

weighted versions of Average Squeeziness and Average Normalised Squeeziness.

Note that all of these measures are defined in terms of a probability distribution on

the input to the program, or sub-program. In principle, the most useful distribution is

the usage distribution: the one collected through use of the program after deployment.

5

Failing that, we observe the Maximum Entropy Principle used in statistics: when the

distribution is unknown, use what you do know to synthesise the distribution with

maximal entropy consistent with your knowledge. When nothing is known, this will

be a uniform distribution. Synthesising a distribution with maximal entropy has the

advantage of being maximally explorative. The measures defined below thus assume

that the input domain of the program is uniformly distributed, but make no assumptions

about the distribution of the output domain. In what follows the term support of a

random variable is the set of events or outcomes that have a non-zero probability while

the notion of a random variable’s entropy being conditioned on another describes the

conditional entropy as defined in Definition 3.

2.1. Average Probability of Failed Error Propagation

Recall that Failed Error Propagation occurs when a corrupted program state man-

ifests in the program (infection occurs), but does not propagate to an output. The

proportion of faulty versions of a program in which corrupted states manifest after the

execution of the fault, but produce the correct outputs, is a natural measure of the prob-

ability of encountering Failed Error Propagation in the program. The first measure we

present is the implementation of such a measure, and is called Average Failed Error

Propagation. The remainder of this section describes Average Failed Error Propaga-

tion.

The actual prevalence of FEP will depend on the specification (or a correct version

of the program), the nature of any faults, and also the test inputs used. We therefore

assume that there is a program P , a set of test inputs T = {tc1, tc2, ..., tcn} for P ,

and also that M = {M1,M2, ...,Mm} is a set of variants of P that represent possible

faults. If there is a fault model, that describes likely faults, then this could be used as

the basis for M but otherwise one could use standard mutation operators.

The execution of a program leads to an execution trace, which is the sequence

of internal states that occur. Weak mutation compares the execution traces produced

when a program P and a mutant Mj are executed using a test input tci. Let P (tci)

denote the execution trace produced when P is executed with tci and, for Mj ∈ M,

let Mj(tci) be the execution trace produced when Mj is executed with tci. Then, Mj

6

is said to have been killed by T under weak mutation if there is some tci in T such that

P (tci) 6= Mj(tci) [6].

Strong mutation testing differs from weak mutation testing through only consider-

ing the program output instead of the entire execution trace. Given a test input tci, let

P (tci)|O denote the output produced when P is executed with tci and, for Mj ∈ M,

let Mj(tci)|O be the output produced when Mj is executed with tci. Then, Mj is

said to have been killed by T under strong mutation if there is some tci in T such that

P (tci)|O 6= Mj(tci)|O. Clearly, if a mutant is killed under strong mutation then it is

also killed under weak mutation.

Failed Error Propagation (FEP) occurs when there is an incorrect/unexpected pro-

gram state during testing but this does not propagate to the output. Clark and Hi-

erons [5] defined a collision as a situation in which two different states are mapped

on to the same state by a function, and observed that collisions are necessary for FEP.

Androutsopoulos et al. [6] recognised that scenarios in which mutants are killed by

Weak Mutation Testing, but not Strong Mutation Testing, occur because of collisions,

and represent all instances of FEP. They proposed a measure called Average Failed Er-

ror Propagation, which measures the frequency of these scenarios, and by implication,

FEP.

Let Ms
j and Mw

j denote the set of test inputs from T that kill mutant Mj under

strong mutation testing and weak mutation testing respectively and assume that Mw
j is

non-zero1. Recall that M contains m mutants.

Definition 1. Average Probability of Failed Error Propagation.

AV GFEP =

∑m

j=1

|Mw
j | − |Ms

j |

|Mw
j |

m

Even though Average Failed Error Propagation is a natural measure of Failed Er-

ror Propagation, its computation can be extremely resource intensive. To that end, it

is desirable to have alternative measures that are less resource intensive. The efficacy

1If a mutant is never killed under weak mutation then the execution of this mutant tells us nothing about

FEP.

7

of alternative measures can be demonstrated by the extent to which they are corre-

lated with Average Failed Error Propagation. Sections 2.2 to 2.3 describe alternative

measures evaluated in this paper.

2.2. Squeeziness and Normalised Squeeziness

Information Theory is a branch of mathematics that is concerned with quantifying

and reasoning about information. Entropy [8] is the most fundamental building block

in information theory; it is a measure of the amount of uncertainty in a discrete random

variable, and is often equated to the information content of a variable. Let us suppose

that X is a random variable and for x ∈ X we use p(x) to denote the probability

associated with x. Then the entropy of X is defined as follows.

Definition 2. Entropy of a random variable.

H(X) = −
∑

x∈X

p(x)log2p(x)

Conditional entropy is defined in terms of two random variables, say A and B, and

can measure, for example, how much entropy is left in A once you know the entropy

of B. This is closely related to the concept of conditional probability. One way of

thinking about it is to measure the entropy of the joint random variable, 〈A,B〉, and

subtract the entropy in B, so

Definition 3. Conditional Entropy of a pair of random variables.

H(A | B) = H(A,B)−H(B)

Shannon defined conditional entropy from first principles but in our definition

above we instead exploited the Chain rule [8].

We are interested in the entropy lost when a program executes and how this can be

used to predict the failure of error propagation in the program. Let P denote a pro-

gram. P can accept an input, x, such that x ∈ ID, where ID is the input domain of

P , and produce an output, y, in response to x, such that y ∈ OD, where OD is the

output domain of P . ID and OD can be modelled as discrete random variables, I and

O respectively. Assuming the program is deterministic, all the entropy in the program

8

during execution comes from the probability distribution on the inputs. Being deter-

ministic, the outputs are then a function of the inputs and the entropy of I conditioned

on O measures the Squeeziness of the program, i.e. the entropy lost through execution

across all inputs.

Squeeziness is a measure of information loss [5, 6] and can be calculated as follows:

Definition 4. Squeeziness.

Sq(I,O) = H(I)−H(O)

Let Dice(D1, D2) be a function that accepts two six-sided dice rolls as input, and

produces the product of D1 and D2 as output. This function will be used as an example

to illustrate the computation of Squeeziness.

The Input Domain of this function can be modelled as a discrete random variable,

I . In particular, I is the set of unique inputs to the function i.e. {(x, y)|1 ≤ x, y ≤ 6}

and a function that maps each unique input to its probability of occurrence. Assume

each input has an equal probability of being selected and there are 36 inputs in total,

each input is associated with 1/36.

The Entropy of I can be calculated using using the H(X) equation that was defined

above. More specifically, 1/36× log2(1/36) would be computed 36 times, the results

of these 36 computations would then be summed, and the result of this summation

would be negated. The Entropy of I is H(I) = 5.17.

The Output Domain of this function can also be modelled as a discrete random

variable, O. More specifically, O is the set of unique outputs that can be produced by

the function i.e. {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36} and a func-

tion that maps each unique output to its probability of occurrence. The probability

of a particular output being selected is based on the probability of an input that can

produce this output being selected. For example, there are only 3/36 inputs ((1, 4),

(2, 2), (4, 1)) that can lead to output 4, and so output 4 would be associated with 3/36.

The outputs are associated with the following probabilities: 1 = 1/36, 2 = 2/36,

3 = 2/36, 4 = 3/36, 5 = 2/36, 6 = 4/36, 8 = 2/36, 9 = 1/36, 10 = 2/36,

12 = 4/36, 15 = 2/36, 16 = 1/36, 18 = 2/36, 20 = 2/36, 24 = 2/36, 25 = 1/36,

30 = 2/36, and 36 = 1/36.

9

The Entropy of O can be calculated using the H(X) equation that was defined

above. More specifically, 1/36 × log2(1/36) would be computed 5 times, 2/36 ×

log2(2/36) would be computed 10 times, 3/36× log2(3/36) would be computed once,

and 4/36×log2(4/36) would be computed twice. The results of these 18 computations

would then be summed, and the results of this summation would be negated. The

Entropy of O is H(O) = 4.04.

As the program is deterministic, Squeeziness can be calculated by using the Sq(I,O)

equation that was defined above. More specifically, Sq(I,O) = 5.17−4.04, or in other

words, Sq(I,O) = 1.13.

Since Squeeziness depends on both the function (program) and the entropy of the

inputs it is not so useful for comparing programs with different initial entropies. By

normalising the entropy loss as relative to the initial entropy, we can enjoy a normalised

scale of interval [0, 1] for comparing programs with different input domain sizes [7].

Note, however, that if I contains only one value or no values then H(I) = 0, but in the

limit as H(I) → 0, (H(I)−H(O))/H(I) → 0.

This leads to the following new definition of Normalised Squeeziness used in this

paper, which extends the previous definition to work when H(I) = 0. Compare with

earlier definition [7].

Definition 5. Normalised Squeeziness.

NSq(I,O) =

0 if H(I) = 0;

Sq(I,O)

H(I)
otherwise.

We now introduce some new measures based on Squeeziness and Normalised Squeezi-

ness.

2.3. Average Squeeziness and Average Normalised Squeeziness

A program is a sequence of n program statements. In this paper, when we refer to

a program, P , we are referring to such a sequence i.e. P = 〈SP
1
, SP

2
, . . . , SP

n 〉.

A mutant, Ma, is another sequence of program statements, Ma = 〈SMa

1
, SMa

2
, . . . ,

SMa
n 〉, such that the difference between Ma and P can be isolated to a single program

statement [9]; this program statement is referred to as the mutation point.

10

As before, let M = {M1,M2, ...,Mm} be a set of m mutants of P . In the rest

of this section, we use MP(Mj) to denote the mutation point of mutant Mj ∈ M.

Further, we use PP(Mj) to denote the (post) program formed by starting the execution

of Mj at the mutation point MP(Mj).

Algorithm 1: Source Code

1 // Entry Point

2 X = 0

3 for I = 1 to 10 do

4 if I ≥ 5 then

5 X = X + 1 //Mutation Point

6 X = X + 1

Algorithm 2: Post Program

1 X = 4

2 for I = 5 to 10 do

3 if I ≥ 5 then

4 // Entry Point

5 X = X + 1 // Mutation Point

6 X = X + 1

Algorithms 1 and 2 show two versions of the same snippet of source code from a

program. These algorithms will be used to exemplify the notion of the post program.

The entry point of the program in Algorithm 1 is on Line 1. Line 2 assigns 0 to X .

Lines 3 to 6 define a loop that iterates 10 times. During each of the first four iterations,

variable X is incremented. The mutation point, which is on Line 5, is reached on the

fifth iteration.

Algorithm 2 is a version of Algorithm 1, which reflects the state of the program

during the execution of Line 4 on the fifth iteration of the loop. Note that I = 5 on

Line 2 reflects the fact that the program is on the fifth iteration of the loop, the comment

11

on Line 4 communicates the point in the program that the execution has reached, and

X = 4 on Line 1 because X would have been incremented four times by the last line

of the loop by this point in the execution. The execution trace of the program, from

this point onwards is said to belong to the post program. Thus, Algorithm 2 can be

conceptualised as the post program, such that the entry point of the post program is

Line 4.

In this section we introduce measures based on taking the average of Squeeziness

or Normalised Squeeziness, where we are averaging over possible post-programs. In

particular, Section 2.3.1 introduces one definition of each of these measures, and Sec-

tion 2.3.2 presents an alternative definition of these measures in which we weight the

contributions made by different program states at a given program point.

2.3.1. Average Squeeziness (ASq) and Average Normalised Squeeziness (ANSq)

Given mutant Mj , if FEP occurs then this is a result of a collision in the post-

program PP(Mj) [5, 6].

Let Ij be a discrete random variable that represents the space of reachable states2

immediately after the mutation point of Mj , where all possible values are given the

same probability (i.e. we use a uniform distribution). Also, let Oj be a discrete ran-

dom variable that represents the collection of program outputs that are produced. The

distribution of Oj is induced by program executions of Mj . The supports for Ij and

Oj are the respective input and output domains of the post-program, PP(Mj). The

first new measures involve measuring the Sq, or NSq, of post-programs and averaging

these values.

Definition 6. ASq

ASq =

∑m

j=1
Sq(Ij , Oj)

m

Definition 7. ANSq

ANSq =

∑m

j=1
NSq(Ij , Oj)

m

2A program state x is said to be reachable at program point p of P if there is an input to P that leads to

the state being x at p.

12

2.3.2. Weighted Averages: WASq and WANSq

The motivation for interest in the above measures is that the FEP is caused by the

post-programs and so an average, over these post-programs, should relate to the overall

prevalence of FEP. However, these measures do not take into account the fact that,

when considering a mutant Mj , some program state values at the mutation point might

make a greater contribution than others since they are more likely to be met in testing.

As before, let T be the set of test inputs being used and consider test input tci

in T and mutant Mj , In order to provide different weights to different state values at

MP(Mj), we define a discrete random variable IWj such that the support for IWj is

the set of states produced at MP(Mj) when using T and the probability assigned to

a state σ in IWj is proportional to the number of test inputs in T that lead to state σ at

MP(Mj). Similar to before, the random variable OW
j is determined by IWj and the

post-program.

Definition 8. WASq

WASq =

∑m

j=1
Sq(IWj , OW

j)

m

Definition 9. WANSq

WANSq =

∑m

j=1
NSq(IWj , OW

j)

m

Note that the difference between the definitions of ASq and WASq is the probability

distributions that are being evaluated by Sq and NSq. In particular, ASq models the

input domain as a uniform distribution, whilst WASq models the input domain based

on a distribution that is induced from program executions. The same difference can be

observed between ANSq and WANSq.

3. Experimental Design

In this section we start by giving the research questions addressed and we follow

this with details of the experimental subjects. We then describe how the experiments

were carried out.

13

3.1. Research Questions

We are interested in measures that can be used to estimate the testability of a pro-

gram in terms of likelihood of FEP: Sq, NSq, ASq, ANSq, WASq, and WANSq. Note

that the metrics are equivalent to their normalised counterparts for situations in which

the size of the test suites are the same. However, some parts of our experiments are

based on test suites that have different sizes, and so we would expect normalisation to

have an impact for these parts of the experiments. This leads to the following research

question for the six information theoretic measures.

Research Question 1. To what extent are entropy loss measures correlated with Aver-

age Failed Error Propagation?

This is the primary research question. We addressed it by producing values for

Average Failed Error Propagation and the six information theoretic measures, based on

experiments with a set of subject programs and mutants of these.

A number of choices, such as the mutants and test suite used, were made when

computing measures. We would like to have measures that are relatively insensitive to

such choices: this would provide additional confidence that the results generalise and

so that the measures are of value in practice. The remaining research questions assess

the robustness of the measures.

Different faulty versions of a program can produce different measures of Squeezi-

ness and Normalised Squeeziness.

Research Question 2. How sensitive is the calculation of Squeeziness and Normalised

Squeeziness to mutations?

This research question explores the extent to which Squeeziness and Normalised

Squeeziness values vary for different faulty versions of the same program - and so to

the choice of mutants used in the experiments.

Recall that a number of the measures were defined in terms of the execution of

mutants of a program P ; an alternative would have been to have defined them in terms

of executions of P .

14

Research Question 3. To what extent does the Squeeziness/Normalised Squeeziness

of the original program differ from the Squeeziness/Normalised Squeeziness of its mu-

tants?

Ideally, we should also obtain similar values for a program and its mutants since

this would indicate that measures used are relatively robust. If this is the case then the

decision, to define measures in terms of mutants rather than the original program, will

have had relatively little effect on the results of the experiments.

The calculation of measures also requires a test suite.

Research Question 4. How stable are measures of Entropy to choice of test suite?

If the measures are relatively unaffected by the choice of test suite then this pro-

vides confidence that the results were not influenced by this choice. It also provides

additional evidence that useful estimates of measures can be obtained by random sam-

pling.

3.2. Tools

A number of tools were used in the experiments. One of the main tools used was

Milu [10], which was used to automatically generate mutants for the experiments. We

selected Milu because it is one of the most widely used mutation testing tools for C,

in software engineering research and has a higher degree of automation than other

mutation testing tools [11]. GDB [12], a debugger for C, was used to collect state

information. We also used CLOC [13], which is a tool for computing the number of

lines of code in a program. Finally, we used an implementation of the Trace Alignment

Algorithm, to identify mutation points; details regarding this algorithm can be found in

Section 3.5.

3.3. Subject Programs

We acquired subject programs from three different sources, all of which contained

open source C projects. One such source was CodeFlaws [14], which is a repository

of programs that were developed for a programming competition. Another source in-

cludes a version of GRETL [15] that was hosted by Github User HelioGuilherme66

15

Project Number of Programs Total number of LOC Number of Mutants

CodeFlaws 4 183 11

GRETL 13 493 91

WBMPlus 1 6 1

Table 1: Subject Programs

(the last commit in this version of GRETL was made on 29th August 2016), which is a

library for economeasure analysis. The final source was WBMPlus, which is a library

for calculating various properties of water. In particular, we acquired the core code base

(and commits) from Github User Bmfekete [16] and the MFlib and CMlib libraries

were obtained from Github User Kettner [17]. The last commit by Bmfekete [16] was

made on 12th January 2018 and the last commit by Kettner was on 30 March 2015.

Table 1 provides more details regarding our subject programs (note that the number of

Lines of Code (LOC) presented were computed by CLOC [13]).

Table 1 shows that we used a total of 18 subject programs. We would like to

note that we had an additional pool of 113 programs (some, but not all, were from

the same projects that are presented in Table 1) that we intended to include in our

experiments, but unfortunately were unable to for various reasons e.g. Milu was not

able to generate viable mutants for many of these programs, and some of the programs

were too expensive, in terms of execution time, to include in the experiments. These

additional open source projects included Naev [18], which is a video game, and was

last updated on 24th February 2019, R [19], which is a statistics library, TCAS [20],

which is an air traffic control system, and TheAlgorithms [21], which is a collection of

implementations of well-known algorithms (the latest commit for TheAlgorithms was

22nd March 2019).

We chose this sample of subject programs because it has the following desirable

properties. First, the developers of these subject programs were not aware of the re-

search, reducing the scope for experimental bias. Second, all of the programs are open

source, which means that the experiments can be replicated. Third, all of the subject

programs accept numeric inputs, simplifying (random) test input generation. Finally,

16

different developers worked on different subject programs; this enhances the represen-

tativeness of the experiments.

Several minor modifications were made to the programs to ensure their compatibil-

ity with the tools used. To illustrate the nature of these modifications, the remainder of

this section will present the set of changes made to one of the programs.

In one class of examples, the unmodified version of the program contained a main

method that used the scanf function to read stdin (user input from keyboard) and as-

signed the user’s input to a variable. We modified this main method by renaming it

and replacing its call to the scanf function with a variable in the method’s signature. In

another class, the unmodified version of the program contained a print statement. We

replaced this print statement by introducing a string that stored the contents that were

to be passed to print statements and added a new print statement that prints this string

just before program termination.

Ideally, we would have used programs and ‘real’ faulty versions of these. However,

for a program P , we wanted to have a faulty version of P for each program point p of

P . Although we were aware of repositories containing faulty versions of programs, we

were not aware of any such sets of faulty versions of a program.

3.4. Producing Mutants

The aim was to produce one mutant for each statement of P . Let M = {M1,

M2, ...,Mm} be the resultant mutants of P , and so no two mutants in M have the same

mutation point. We observed that M did not include a mutant for every statement of

P and that there were two reasons for this. First, M was produced by the Milu [10]

mutation testing tool, which could not generate mutants for certain program statements.

Second, mutants that could not be compiled, crashed, or timed-out3 were removed.

Figure 1 shows the number of lines of code in each program, broken down by mutant

generation information.

3A 10 minute time-out was used to allow the experiments to complete in a reasonable amount of time.

17

Figure 1: Number of lines of code in each program, broken down by mutant generation information.

3.5. Identifying the Mutation Point

One of the limitations of the Milu mutation testing tool is that it can modify the syn-

tax of program statements that are not mutation points. For example, it might introduce

brackets that have no effect on a given program statement; this is akin to refactoring.

This means that it is impossible to confidently conclude that a given program statement

is the mutation point based on the simple observation that corresponding program state-

ments in the subject program and mutant are different. To that end, a more sophisticated

means of identifying the mutation point was required.

Let P be a subject program, and M be a mutant of P . Also let PAST and MAST

denote the Abstract Syntax Trees of P and M respectively. The Trace Alignment

Algorithm [22] consists of two major steps. The first step is applying a well-known

algorithm called the Tree Edit Distance algorithm to PAST and MAST . The Tree Edit

Distance algorithm computes the minimum number of changes that need to be made to

PAST to transform it into MAST and vice versa, and associates each node in PAST

and MAST with a label that describes the required changes e.g. “Keep”, “Added”,

“Deleted”, or “Changed”.

Let TracePi = 〈stmntP
1
, stmntP

2
, . . . , stmntPn 〉 be the sequence of program state-

ments that were executed in response to the execution of P with test input tci. Sim-

18

ilarly, let TraceMi = 〈stmntM
1
, stmntM

2
, . . . , stmntMm 〉 be the sequence of program

statements that were executed in response to the execution of M with the same test

input tci. The second step of the Trace Alignment Algorithm is to filter out program

statements from TracePi that were associated with “Added” or “Deleted” labels in

PAST , and to filter out program statements from TraceMi that were associated with

“Added” or “Deleted” labels in MAST . The output of the Trace Alignment Algorithm

is the filtered versions of TracePi and TraceMi . The first program statement in the

filtered version of TracePi that is associated with a “Changed” label is the mutation

point.

3.6. Experimental Procedure for RQ1

In these experiments, test suites containing 5000 test inputs were randomly gen-

erated for each subject program. We used a test suite of this size in order to obtain

relatively accurate estimates of measures. Thus, when considering a subject program

P from Section 3.3, we used a test suite T = {tc1, tc2, ..., tc5000}. Let O denote the

random variable that corresponds to the resultant outputs. If we let I be the random

variable with support T and uniform distribution, then for P we computed Squeeziness

Sq(I,O) and Normalised Squeeziness NSq(I,O). It is worth noting that we used such

a large test suite since the aim was to provide an estimate of the probability of FEP.

For a program P , we tested each mutant with all test inputs in the corresponding test

suite T . Based on this, it was possible to compute a value for the following measures

described in Section 2.

• Average Probability of Failed Error Propagation (AVGFEP).

• Average Squeeziness (ASq).

• Average Normalised Squeeziness (ANSq).

• Average Weighted Squeeziness (WASq).

• Average Weighted Normalised Squeeziness (WANSq).

19

As a result, for each subject program P we obtained a value for every measure. In

order to address the first research question, we therefore computed the rank correlation4

between our notion of testability (AVGFEP) and the other measures.

3.7. Experimental Procedure for RQ2 and RQ3

These two research questions concern the choice of program used to compute the

information theoretic measures: RQ2 explores the effect of the choice of mutant at a

program point, while RQ3 concerns whether similar values are obtained when using P

or a mutant.

As before, we used Milu to generate mutants. However, in this case we were in-

terested in having multiple mutants for mutation points and so we used a larger set of

mutants. In order to avoid scalability issues, we used at most 30 mutants for a given

mutation points but there were program points where Milu was not able to produce this

many mutants.

Similar to before, we computed values for the information theoretic measures.

However, we now had up to 30 values for a mutation point, allowing us to explore

both how values compared for the original program and a mutant and also how values

compared if we considered different mutants with the same mutation point.

Figure 2 communicates the number of mutants per program, partitioned by the

mutation point.

In this, each bar represents a subject program and the ‘sections’ of the x-axis denote

the project from which a program was obtained e.g. the four left-most bars represent

programs from CodeFlaws. The height of a bar gives the number of mutants generated

for the corresponding program e.g. 19 mutants were generated for the program that is

represented by the left-most bar. Mutants of a program can be grouped by the mutation

point; the partitions of a bar, by colour fills, reflects these groups e.g. the left-most bar

tells us that one mutation point had five mutants, another mutation point had another

five mutants, and a third mutation point had nine mutants.

4We used rank correlations because these are non-parametric.

20

Figure 2: Number of mutants per program, partitioned by the mutation point.

3.8. Experimental Procedure for RQ4

Recall that Research Question 4 concerned how the choice of test suite affected the

values produced for the information theoretic measures. In order to address this, for

each program P we randomly generated 30 different test suites, with each test suite

containing 100 test inputs. We then executed P on all of the test inputs in a test suite

T and computed values for the information theoretic measures. This process led to 30

different values for each information theoretic measure, each produced using a different

test suite.

Note that previously we used 5000 inputs so that sampling leads to relatively ac-

curate estimates of the true values of measures. We used smaller test suites, in the

experiments that addressed RQ4, in order to explore the variability of the estimates

with smaller test suites.

4. Results and Discussion

In this section we describe the results of the experiments and what they tell us about

the research questions.

21

4.1. RQ1. To what extent are entropy loss measures correlated with Average Failed

Error Propagation?

Recall, that the motivation for this question is that we are interested in the Aver-

age Failed Error Propagation, as a measure of testability, and so would like to have

measures that correlate with this and also are less expensive to compute.

(a) ASq (b) ANSq

(c) Sq (d) NSq

(e) WASQ (f) WANSQ

Figure 3: The x-axis of a scatterplot pertains to one of the measures, the y-axis corresponds to Average Failed

Error Propagation, and a marker represents a subject program.

As previously explained, for each subject program P , we produced at most one

mutant per program point of P and used a test suite with 5000 randomly generated

test inputs. Execution of the mutants and program allowed the Average Failed Error

Propagation (AVGFEP) to be computed. Figure 3 plots these AVGFEP values against

22

the information theoretic measures. More specifically, the x-axis of a scatterplot in

Figure 3 pertains to one of the measures, the y-axis corresponds to Average Failed

Error Propagation, and a marker represents a subject program. We now discuss the

results for the three pairs of measures.

4.1.1. ASq and ANSq

Figures 3a and 3b show a tendency for larger values of AVGFEP to be associated

with larger values of both ASq and ANSq. We conducted a Spearman’s ρ test to mea-

sure the correlation between ASq and Average Failed Error Propagation (AVGFEP),

and we obtained a correlation coefficient of 0.43 and a p-value of 0.073. This suggests

that there is a moderate correlation between ASq and AVGFEP, and by implication

ASq can predict AVGFEP to a certain extent.

Similarly, we conducted a Spearman’s ρ test to measure the correlation between

ANSq and AVGFEP. We obtained a correlation coefficient of 0.52 and a p-value of

0.028, which indicates that the correlation is still moderate but is higher than the cor-

relation for ASq.

Clark et al. [7] observed that Normalised Squeeziness (NSq) is more effective than

Squeeziness (Sq) for situations in which programs have variable input domain sizes,

but performed comparably when there was no variation in the input domain size. The

above results support this observation but, unlike the previous work [7], the results are

for programs and not simulations.

4.1.2. Squeeziness and Normalised Squeeziness

Similar to above, Figures 3c and 3d show a tendency for larger values of AVGFEP

to be associated with larger values of both Sq and NSq. In order to further explore

this, we conducted two Spearman’s ρ tests to measure the correlations between Sq and

AVGFEP, and NSq and AVGFEP. We obtained the same correlation coefficient and p-

values for both of the tests: the correlation coefficient was 0.77 and the p-value was

0.00021. It is unsurprising that we obtained the same values for Sq and NSq since, in

this case, the input domains are identical and so normalisation simply involved dividing

by a constant. Note that, in contrast, we obtained different results for ASq and ANSq

23

since the number of test inputs for a mutation point can differ.

Observe that Sq and NSq have a substantially higher correlation with AVGFEP than

the corresponding values observed with ASq and ANSq. These results are promising

for two reasons. First, the efficacy of NSq has not previously been demonstrated on

real programs, and these results show that NSq is effective for real programs. Second,

Sq and NSq are substantially cheaper to compute than ASq and ANSq, so there is no

trade-off associated with using Sq and NSq over ASq and ANSq.

4.1.3. WASq and WANSq

Figures 3e and 3f show similar patterns for the weighted averages. We conducted

a Spearman’s ρ test to measure the correlation between WASq and AVGFEP and ob-

tained a p-value of 0.0016 and a correlation coefficient of 0.69. We also used Spear-

man’s ρ to measure the correlation between WANSq and AVGFEP and acquired a

correlation coefficient of 0.78 and a p-value of 0.00012.

WASq has a substantially stronger correlation than ASq and WANSq’s correlation

is much stronger than that produced with ANSq. This suggests that the additional

information that is considered by WASq and WANSq can add value.

4.1.4. Summary

Table 2 shows the six correlation coefficients. One can see that WANSq obtains the

strongest correlation coefficient of all of the measures, which indicates that it should

be the preferred measure when accuracy is critical. However, WANSq is substantially

more expensive to compute than NSq, which has a correlation that is only marginally

weaker; thus NSq is preferable for situations in which it is acceptable to sacrifice accu-

racy for speed.

The expense of computing NSq increases on a linear scale, as program size in-

creases. In contrast, the expense of WANSq increases much faster, since the increase

in the number of mutants would affect scalability. This means that NSq might be

preferable for situations that involve large programs and limited budget.

The strengths of the correlations supports the following conclusion.

24

measure Correlation Coefficient P-Value

Sq 0.77 0.00021

NSq 0.77 0.00021

ASq 0.43 0.073

ANSq 0.52 0.028

WASq 0.69 0.0016

WANSq 0.78 0.00012

Table 2: Summary of Spearman’s ρ correlation coefficients that were computed between each measure and

Average Failed Error Propagation.

Entropy Loss measures have a moderate to strong correlation with Average Failed

Error Propagation. WANSq obtains the strongest correlation coefficient, but is

substantially more expensive to compute than NSq, which has a marginally weaker

correlation coefficient.

4.2. RQ2. How sensitive are the calculations of Squeeziness and Normalised Squeezi-

ness to mutations?

Recall that we generated up to 30 mutants for each mutation point and we addressed

Research Question 2 by looking at how Sq and NSq varied for the mutants produced at

a single mutation point. The main reason for exploring this was that we wanted to know

whether the choice of mutant, for a given mutation point, might have had a significant

impact on results.

Figure 4 shows the variation in Sq values for the different mutants with the same

mutation point. A value on the x-axis represents a single mutation point and the muta-

tion points are grouped by program. For example, the first three intervals of the x-axis

in Figure 4a represent one subject program. Three values are given for each mutation

point and these are the minimum, mean, and maximum values of Sq obtained for mu-

tants at that mutation point. For example, the last interval of the x-axis in Figure 4b

represents a mutation point where the smallest value of Sq observed was 0, the largest

value was 0.76, and the mean value was 0.065. The mutation points within a region

25

(a)

(b)

Figure 4: Each point on the x-axis represents a single mutation point and for each of these the three vertically

values give the minimum, mean, and maximum Sq obtained for mutants at that mutation point. The x-axis

is divided into intervals representing a subject program.

corresponding to a single program were sorted in ascending order of the number of

mutants. Figure 5 gives the corresponding plot for NSq.

These figures indicate that Sq and NSq vary considerably more for some mutation

points than others. This suggests that for some mutation points, one might obtain

more accurate results, in terms of predicting testability, if one used multiple mutants.

For example, ASQ and ANSQ might be enhanced by sampling multiple mutants per

26

(a)

(b)

Figure 5: This figure gives the data for NSq, in a manner analogous to Figure 4. Its worth noting that the

ordering of x-axis in this figure differs from the ordering of the x-axis in Figure 4 for consecutive mutation

points that have the same number of mutants.

mutation point, instead of just one. We intend to investigate this in future work.

Interestingly, the average Squeeziness and Normalised Squeeziness of the mutation

points in a given program is very similar. This suggests that specific mutation points are

not a particularly important determinant of Squeeziness and Normalised Squeeziness.

Figures 4 and 5 also suggest that the extent to which Sq and NSq values vary at a

mutation point is partly determined by the subject program.

Recall that Figure 2 describes the numbers of mutants used in this analysis. The

27

number of mutants at each mutation point ranged from 2 to 27 (7.4 on average). The

variation in number of mutants for a mutation point might thus be a possible explana-

tion for the variation in Squeeziness/Normalised Squeeziness discussed above.

In order to investigate this further, we plotted the number of mutants generated for a

mutation point against the Standard Deviation of the Squeeziness values that were pro-

duced for mutants at that mutation point. This is shown in Figure 6, in which the x-axis

pertains to the number of mutants that were generated for a mutation point, the y-axis

corresponds to the Standard Deviation of the Squeeziness values that were produced

for mutants at a mutation point, and a marker represents a mutation point. Figure 7 is

the corresponding figure for NSq. These figures suggest that there is relatively little

relationship between the variation in either Sq or NSq and the number of mutants. In

order to explore this further, we conducted a Spearman’s ρ Test to assess the correlation

between the number of mutants generated for a mutation point and the Standard Devi-

ation of the Squeeziness. We obtained a correlation coefficient of 0.27 and a p-value of

0.0047; similar results were produced for NSq. This suggests that, while the variability

of Squeeziness might be partially explained by the number of mutants, this is not the

only factor.

Figure 6: The x-axis pertains to the number of mutants that were generated for a mutation point, the y-

axis corresponds to the Standard Deviation of the Squeeziness values that were produced for mutants at a

mutation point, and a marker represents a mutation point.

28

Figure 7: This figure is the analogue of Figure 6 for Normalised Squeeziness.

Some mutation points have greater variance in Squeeziness/Normalised Squeezi-

ness than others. As a result, the use of multiple mutants for a mutation point

might have benefits. However, the differences observed tended to be relatively

small.

4.3. RQ3. To what extent does the Squeeziness/Normalised Squeeziness of the original

program differ from the Squeeziness/Normalised Squeeziness of its mutants?

Recall that this research question relates to another robustness concern: how Sq

and NSq vary between a program and its mutants. This was motivated by a desire to

know whether the choice to use mutants, in computing the six information theoretic

measures, had a significant impact (we might instead have used the original program).

Figure 8 shows the differences between the Sq values for mutants and the original

program. The x-axis gives the different mutants, while the y-axis gives the difference

between the Squeeziness of a mutant and the original program. As in Figure 4, the

background grey shading enables one to differentiate between subject programs. Fig-

ure 9 gives the corresponding results for Normalised Squeeziness. Figure 10 provides

the proportional difference for the values represented in Figures 8 and 9.

A number of observations can be made from Figures 8, 9, and 10. First, the

29

(a)

(b)

Figure 8: The points on the x-axis correspond to mutants and the y-axis is the difference between the Squeezi-

ness of a mutant and the original program.

Squeeziness/Normalised Squeeziness of most mutants is very similar to that of the

original program. This suggests that in most cases the choice to use mutants, rather

than the original program, will have had little effect.

30

(a)

(b)

Figure 9: This figure is the analogue of Figure 8 for Normalised Squeeziness.

There are a number of exceptions however; these are depicted by the markers sit-

uated in high positions along the Y-Axis. It is worth mentioning that many of these

exceptions relate to only a few subject programs; in particular, the 8th, 16th and 17th

programs in Figure 10. A Squeeziness value is primarily determined by the distribution

31

of a test suite and the outputs of this test suite. Since, all of the mutants used the same

test suites, the distribution of the outputs is the only variable factor. This means that

these exceptions were caused by mutants that more radically altered the distribution of

the outputs.

In most cases, there is little difference between the Squeeziness/Normalised Squeezi-

ness of the original program and a mutant. However, there are exceptions, and

these exceptions seem to be more heavily concentrated in certain subject pro-

grams. Some mutants increase the amount of information loss in the program,

while others reduce it.

Figure 10: Let P be a program with m mutants, M = {M1, . . .Mm}. Also let InfMet be a function

that computes either Squeeziness or Normalised Squeeziness. Finally, let MV al =
∑m

i=1
InfMet(Mi)

m

and Oval = InfMet(Prog). The Average Proportional Difference of Prog can be calculated as

(MV al−Oval)
Oval

. This graph shows the Average Proportional Difference of each Program.

4.4. RQ4. How stable are measures of Entropy to choice of test suite?

Recall from Section 3.6 that, for a given program P and information theoretic mea-

sure, we calculated the measure 30 times based on P , each time with a different ran-

domly generated test suite. Let DSELM denote the 30 ELM values that were pro-

duced for a measure ELM . In this section, we investigate the stability of Entropy Loss

measures, based on the DSELM values.

32

Figure 11 provides a visual representation of the DSELM . Each scatterplot corre-

sponds to a different measure and each point on the x-axis of a given scatterplot denotes

a program. For a given program, three data-points are presented: the minimum, aver-

age, and maximum values in the corresponding set DSELM . One can see from this that

there were only small differences in the values computed. A few exceptions can also

be observed; in these cases, it is likely that the test suites were too small to consistently

provide an accurate approximation of the input domain.

(a) DSASq (b) DSANSq

(c) DSWASq (d) DSWANSQ

(e) DSSQ (f) DSNSQ

Figure 11: Each plot relates to a different measure. The points on the x-axis represent the different subject

programs and the three corresponding values give minimum, average, and maximum observed values of the

measure.

33

ASq ANSq WASq WANSq Sq NSq

Min 0 0 0 0 0 0

Average 0.037 0.0055 0.034 0.0051 0.081 0.012

Max 0.13 0.020 0.14 0.021 0.36 0.054

Table 3: For each program P and measure ELM , we calculated the standard deviation of all of the ELM

values obtained for P . For a measure ELM , the table gives the minimum, average, and maximum standard

deviation values that were observed across all of the programs.

.

For each subject program P and measure ELM , we also calculated the standard

deviation of all of the ELM values obtained for P . The minimum, average, and max-

imum standard deviation values observed across all of the programs is presented in

Table 3.

Figure 11 and Table 3 indicates that all of the Entropy Loss measures are stable

under variation of the test suite, and by implication are reliable measures. These results

provide confidence in the overall results, since they are unlikely to have been affected

by the choice of test suite. They also suggests that, in practice, one might use estimates

of these measures.

All of the Entropy Loss measures are relatively stable under change of test suite.

5. Threats to Validity

There are a number of possible sources of internal threats to validity. The study

relied on a number of tools, which might have faults. To minimise this threat, when we

used third party tools, we used tools that have been widely used in similar work. Tools

developed internally were thoroughly tested.

The experiments used the GDB debugger to capture state information. However,

some of the state information captured was in a hexadecimal format and appeared to

correspond to memory locations. If these memory locations were used in comparing

behaviours then this might lead, for example, to a mutant being incorrectly classified

as weakly killed. We therefore removed such state information. This could threaten

34

the validity of the results because we might have discarded relevant state information.

Recall that the proposed information theoretic measures require data for every pro-

gram statement. In some cases this was not possible, either because Milu was not able

to generate mutants for a given program statement or the test input generator did not

produce test input that reached the mutation point. To minimise this threat to valid-

ity, we used a large number of test inputs for each subject program, to maximise the

probability that test suites reach every mutation point.

Finally, we observed that Milu modified the code of one of the mutants such that

GDB’s definition of a basic block was altered for this mutant. To circumvent this issue,

we excluded this mutant.

There are also external threats to validity. First, we only used 18 subject programs

and all of our subject programs only accept numeric inputs. It is unclear whether the

results would generalise to non-numeric programs. However, we note that numeric

programs form an important and widely used class of programs, and so our results

have value for a large cross-section of programs. It’s also worth noting that we chose

subject programs that are relatively diverse in terms of domain.

The experiments were conducted on mutants instead of real faults. This is a threat

to validity because mutants might not be representative of real faults. Unfortunately, it

was not possible to use real faults in the experiments because there was not a sufficient

number of real faults: most of the programs were only associated with one real fault

but we required at least one fault for each program statement.

The Milu mutation testing tool was unable to generate mutants for every program

statement, which limited the number of mutants that were considered in our experi-

ments. This is a threat to generalisability, since a greater number of mutants might

be available in other contexts. The introduction of handcrafted mutants might have

alleviated this threat, but would then have increased the susceptibility of our results

to experimental bias. We note that there are likely to be scenarios in the field, where

budget pressures would limit the number of mutants that can be used, and so our results

are likely to be representative of such scenarios.

Initially, large test suites, with 5000 test inputs, were used in order to obtain rel-

atively accurate estimates of the probability of FEP. These were not intended to be

35

representative of the types of test suites that will be used in practice. It is not entirely

clear how the probability of FEP, with a randomly generated test suite, will relate to the

probability of FEP for a test suite generated to achieve an objective such as coverage.

We see this as a question for future work. It is worth noting, however, that approxi-

mately 90% of the mutants were killed under strong mutation and this suggests that the

test suites provided relatively high statement coverage.

An additional threat is that the probability of FEP occurring at a particular program

point was estimated based on a single mutant. Whether FEP occurs depends on the

exact nature of the state disruption at a program point. However, estimations based

on single mutant were already expensive. An alternative would be to consider a wide

range of both seeded errors and real faults in order to estimate this probability more

accurately. Such an undertaking will be very expensive and there is at present no

obvious stopping point as the size of the potential error space is likely to be larger than

the size of the program space.

6. Related Work

The notion of FEP was first formally explored in the context of coincidental cor-

rectness; the situation in which a fault in the SUT is executed but the output produced

is correct. Here, the observation was that if the SUT has a fault then this will only be

found in testing if the fault is executed (execution), the execution of the fault leads to

an incorrect program state (infection), and the incorrect program state propagates to

incorrect output (propagation). These three conditions are reflected in the PIE frame-

work [1]. More recently, this has been generalised to the RIPR framework in which it

is recognised that a fourth condition must be satisfied: a test oracle must recognise that

the output is incorrect [2].

A number of empirical studies have found that coincidental correctness can have a

major impact on testing [3, 4]. For example, Masri et al. found that, within a set of

programs studied, most were affected by coincidental correctness and in some cases

many tests were affected. In particular, for 13% of the programs they studied, 60% or

more of the tests were affected [23, 24, 25].

36

If one considers the RIPR framework, it is clear that coincidental correctness can

occur through there being no infection, there being no propagation, or propagation

occurring but not being recognised by the test oracle used. Failed Error Propagation

(FEP) represents the second of these: a faulty state that occurs during the execution of

an SUT does not propagate to the output.

This has motivated a number of researchers to study means of alleviating FEP.

Alshahwan and Harman [26] conjectured that test cases that produce different outputs

are more likely to take different paths through the program and that this diversity might

help avoid FEP. This motivated them to develop a new test selection criterion called

Output Uniqueness, which attempts to maximise the number of test cases in the test

suite that produce unique outputs. The results of their evaluation of Output Uniqueness

were promising.

FEP is caused by two or more program states being mapped to the same program

output and this represents a loss of information. This observation, that FEP represents a

loss of information, led to the definition of a measure, Squeeziness (Sq), that measures

the information (entropy) loss, between two program points, that results from the exe-

cution of a program [5, 6]. It was found that there is a strong correlation between the

probability of FEP (for a fault at a program point p of program P) and the Squeeziness

of the program that is formed by starting the execution of P at p (the post-program) [6].

This demonstrates that Sq can be used to reason about the probability of FEP associated

with a given program point. However, it was observed that if we compare programs

with different size program states then the use of Sq can be misleading. This led to the

definition of Normalised Squeeziness (NSq), which measures the proportion of entropy

lost in program execution. Simulations demonstrated that NSq is more effective than

Sq when comparing programs (functions) with different input domains [7]. However,

this is the first paper to evaluate NSq on real programs. In addition, previous work has

not investigated how the Sq and NSq of a program P relate to the probability of FEP

in P as a whole, where a fault might occur in any statement.

37

7. Conclusions

This paper explored a number of information theoretic measures and how they re-

late to a notion of testability (the probability of Failed Error Propagation occurring in

testing). The measures considered included two previously defined measures (Squeezi-

ness and Normalised Squeeziness) and four novel, more fine-grained, measures.

The measures were assessed through experiments with a number of case studies.

The results were promising, with a strong rank correlation being found between testa-

bility and several of the measures. This indicates that there is potential to use these

measures as part of a process that prioritises testing or estimates how much testing is

required.

Mutants were used to estimate the testability of a program and the experiments used

randomly generated test suites. We therefore carried out additional experiments that

explored how sensitive the measures are to the choice of mutants and the choice of test

suite. Importantly, it was found that changes in mutant or test suite led to only relatively

small changes in estimates. This suggests that the measures, and so the experimental

results, are relatively robust.

An important outcome of the experiments was that the Normalised Squeeziness

of the SUT was one of the most effective measures. This is also one of the simpler

measures to compute or estimate, suggesting that Normalised Squeeziness might be

particularly suitable for use. In addition, the results regarding sensitivity to choice

of test suite suggest that it may be possible to obtain useful estimates of Normalised

Squeeziness through random sampling.

There are a number of lines of future work. First, there would be value in carrying

out additional experiments. For example, the use of mutants was motivated by the

need to have many faults for each experimental subject, but it would be interesting to

see whether similar results are obtained with real faults. It would also be interesting to

see how results are affected by, instead of using randomly generated test suites, using

test suites generated in order to achieve an objective such as coverage. In addition, it

would be interesting to explore the use of the measures in test prioritisation techniques

or in the process of estimating how much testing will be required.

38

References

[1] J. Voas, PIE: a dynamic failure-based technique, IEEE Transactions on Software

Engineering 18 (8) (1992) 717–727.

[2] N. Li, J. Offutt, Test oracle strategies for model-based testing, IEEE Transactions

on Software Engineering 43 (4) (2017) 372–395.

[3] T. Apiwattanapong, R. A. Santelices, P. K. Chittimalli, A. Orso, M. J. Harrold,

MATRIX: maintenance-oriented testing requirements identifier and examiner, in:

P. McMinn (Ed.), Testing: Academia and Industry Conference - Practice And Re-

search Techniques (TAIC PART 2006), IEEE Computer Society, 2006, pp. 137–

146.

[4] R. A. Assi, C. Trad, M. Maalouf, W. Masri, Coincidental correctness in the De-

fects4J benchmark, Software Testing, Verification and Reliability 29 (3) (2019).

[5] D. Clark, R. M. Hierons, Squeeziness: An information theoretic measure

for avoiding fault masking, Information Processing Letters 112 (8-9) (2012)

335–340.

[6] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, M. Harman, An analysis

of the relationship between conditional entropy and failed error propagation in

software testing, in: Proceedings of the 36th International Conference on Soft-

ware Engineering, ACM, New York, USA, 2014, pp. 573–583.

[7] D. Clark, R. M. Hierons, K. Patel, Normalised squeeziness and failed error prop-

agation, Information Processing Letters 149 (2019) 6–9.

[8] T. M. Cover, J. A. Thomas, Elements of Information Theory: Second Edition,

John Wiley & Sons, 2006.

[9] Y. Jia, M. Harman, An analysis and survey of the development of mutation testing,

IEEE Transactions on Software Engineering 37 (5) (2010) 649–678.

[10] Y. Jia, M. Harman, Milu: A customizable, runtime-optimized higher order muta-

tion testing tool for the full C language, in: Proceedings of the Testing: Academic

39

and Industrial Conference - Practice and Research Techniques, IEEE, Windsor,

UK, 2008, pp. 1–5.

[11] P. Delgado-Pérez, I. Habli, S. Gregory, R. Alexander, J. Clark, I. Medina-Bulo,

Evaluation of mutation testing in a nuclear industry case study, IEEE Transactions

on Reliability 67 (4) (2018) 1406–1419.

[12] GNU Project, GDB: The GNU Project Debugger, https://www.gnu.org/

software/gdb/ (2020).

[13] AIDanial, CLOC, https://github.com/AlDanial/cloc (2020).

[14] S. H. Tan, J. Yi, Yulis., S. Mechtaev, A. Roychoudhury, Codeflaws: a program-

ming competition benchmark for evaluating automated program repair tools, in:

Proceedings of the 39th International Conference on Software Engineering Com-

panion (ICSE-C), IEEE, Buenos Aires, Argentina, 2017, pp. 180–182.

[15] A. Cottrell, R. Lucchetti, Gnu Regression, Econometrics and Time-series Library,

https://github.com/HelioGuilherme66/gretl (2016).

[16] B. M. Fekete, Z. Tessler, R. Stewart, Water Balance/Transport Model, https:

//github.com/bmfekete/WBMplus (2018).

[17] A. Kettner, The WBMsed model, https://github.com/

csdms-contrib/wbmsed (2015).

[18] T. G. Community, Naev, https://github.com/naev/naev (2019).

[19] T. R. Community, The R Project for Statistical Computing, https://www.

r-project.org/ (2019).

[20] T. Ostrand, TCAS, https://sir.csc.ncsu.edu/php/

previewfiles.php (2005).

[21] T. G. Community, All Algorithms implemented in C, https://github.

com/TheAlgorithms/C (2019).

40

[22] G. Jahangirova, Oracle Assessment, Improvement and Placement,

https://discovery.ucl.ac.uk/id/eprint/10072699/1/

Jahangirova_10072699_Thesis.pdf (2019).

[23] W. Masri, R. A. Assi, M. El-Ghali, N. Al-Fatairi, An Empirical Study of the

Factors That Reduce the Effectiveness of Coverage-based Fault Localization, in:

Proceedings of the 2nd International Workshop on Defects in Large Software

Systems, ACM, NY, USA, 2009, pp. 1–5.

[24] W. Masri, R. A. Assi, Prevalence of coincidental correctness and mitigation of

its impact on fault localization, ACM Transactions on Software Engineering and

Methodology 23 (1) (2014) 1–28.

[25] R. A. Assi, C. T. M. Maalouf, W. Masri, Does the testing level affect the preva-

lence of coincidental correctness?, CoRR abs/1808.09233 (2018). arXiv:

1808.09233.

URL http://arxiv.org/abs/1808.09233

[26] N. Alshahwan, M. Harman, Coverage and fault detection of the output-

uniqueness test selection criteria, in: Proceedings of the 2014 International Sym-

posium on Software Testing and Analysis, 2014.

41

	Introduction
	Background and Measures Used
	Average Probability of Failed Error Propagation
	Squeeziness and Normalised Squeeziness
	Average Squeeziness and Average Normalised Squeeziness
	Average Squeeziness (ASq) and Average Normalised Squeeziness (ANSq)
	Weighted Averages: WASq and WANSq

	Experimental Design
	Research Questions
	Tools
	Subject Programs
	Producing Mutants
	Identifying the Mutation Point
	Experimental Procedure for RQ1
	Experimental Procedure for RQ2 and RQ3
	Experimental Procedure for RQ4

	Results and Discussion
	RQ1. To what extent are entropy loss measures correlated with Average Failed Error Propagation?
	ASq and ANSq
	Squeeziness and Normalised Squeeziness
	WASq and WANSq
	Summary

	RQ2. How sensitive are the calculations of Squeeziness and Normalised Squeeziness to mutations?
	RQ3. To what extent does the Squeeziness/Normalised Squeeziness of the original program differ from the Squeeziness/Normalised Squeeziness of its mutants?
	RQ4. How stable are measures of Entropy to choice of test suite?

	Threats to Validity
	Related Work
	Conclusions

