
Using Clarification Questions to Improve Software
Developers’ Web Search

Mia Mohammad Imran

Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA

Kostadin Damevski

Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA

Abstract

Context

Recent research indicates that Web queries written by software developers

are not very successful in retrieving relevant results, performing measurably

worse compared to general purpose Web queries. Most approaches up to this

point have addressed this problem with software engineering-specific automated

query reformulation techniques, which work without developer involvement but

are limited by the content of the original query. In other words, these techniques

automatically improve the existing query but can not contribute new, previously

unmentioned, concepts.

Objective

In this paper, we propose a technique to guide software developers in man-

ually improving their own Web search queries. We examine a conversational

approach that follows unsuccessful queries with a clarification question aimed

at eliciting additional query terms, thus providing to the developer a clear di-

mension along which the query could be improved.

Method

We describe a set of clarification questions derived from a corpus of software

developer queries and a neural approach to recommending them for a newly

Email addresses: imranm3@vcu.edu (Mia Mohammad Imran), kdamevski@vcu.edu
(Kostadin Damevski)

Preprint submitted to Elsevier July 27, 2022

ar
X

iv
:2

20
7.

12
76

8v
1

 [
cs

.S
E

]
 2

6
Ju

l 2
02

2

issued query.

Results

Our evaluation indicates that the recommendation technique is accurate,

predicting a valid clarification question 80% of the time and outperforms simple

baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines.

Conclusion

As shown in the experimental results, the described approach is capable

at recommending appropriate clarification questions to software developers and

considered useful by a sample of developers ranging from novices to experienced

professionals.

Keywords: software engineering-related search, clarification questions, query

refinement

1. Introduction

Instead of printed manuals or books, most of software developers’ informa-

tion needs that support their daily tasks are nowadays found through the Web,

using a variety of online sources including Q&A forums, API documentation,

tutorials, and chats [1, 2]. Developers regularly search these sites to lookup

information, reuse code, and learn new concepts and skills. They usually begin

by using Web search engines (e.g., Google, Bing) to locate and access content

on popular software engineering sources (e.g., Stack Overflow, W3Schools, Tu-

torialspoint) [3]. However, numerous developer searches are unsuccessful, con-

suming valuable developer time and effort. In a recent large-scale study of one

million Web search sessions by software developers using Bing, Rao et al. found

that software engineering-related queries are less effective than other types of

queries [4], resulting in higher rates of query reformulations, fewer clicks, and

shorter dwell time compared to non software engineering sessions.

Researchers have studied the Web searches conducted by software developers

towards understanding key behaviors [2, 5, 3], observing that the primary

problem to failed Web searches are poorly constructed queries, i.e., developers

2

commonly fail to specify important technical details in their queries (e.g., specific

IDE, operating system) [6]. To address the problem of short, incomplete and

unspecific queries, researchers have attempted approaches for automated query

reformulation that extend a query behind the scenes using synonyms (e.g., using

WordNet) or common terms present in highly ranked results [7, 8, 9, 10, 11, 12].

However, these automated approaches are limited by the terms in the original

query, as they can only act to extend the meaning already present and cannot

contribute additional novel context.

To overcome the shortcomings of automated query reformulation, we can

aid searchers in manually extending their Web queries by posing clarification

questions that directly address a topic that the original query lacks [13, 14].

Clarification questions pinpoint the exact way a developer should extend their

query in order to retrieve improved, more relevant results. For instance, recent

work by Zhang et al. demonstrates the promise of prompting developers to man-

ually expand their queries in helping them meet their information needs [15], in

their case, for improving question retrieval in Stack Overflow. They proposed

conversational query refinement that assists users in recognizing and clarifying

the technical details missed in their original queries. Their approach significantly

outperforms other approaches to improve question retrieval in Q&A sites and

helps users recognize missing technical details in their queries through gener-

ating clarification questions based on offline analysis of the top-n similar Stack

Overflow questions for a query. However, Zhang et al.’s approach is limited

to search within Stack Overflow, which is focused only on retrieving questions

which are also tagged with keywords (e.g., java, spring). The goal of this paper

is to go beyond Stack Overflow to general Web search, which is where most

developers begin their information search [3].

More specifically, we envision a scenario where a software developer, e.g.,

Alice, writes an initial query, which consists of too few terms and gets a set

of inadequate results (see Figure 1). Within the results Web page, our system

includes a clarification question that immediately guides Alice in how to expand

the query, e.g., Which operating system are you using?. The system also provides

3

a set of common answers to the question, e.g., Windows, Linux, Mac OS, for

convenience. Alice selects Mac OS and this adds the term to the query and

reissues it to the search engine, retrieving another set of results and perhaps

posing another clarification question.

In this paper, we analyze a publicly available dataset of Web queries specific

to software engineering to devise a set of clarification questions appropriate for

this domain. We then devise a neural network based algorithm for automatic

recommendation of clarification questions for a developer query that we train

with a large dataset created via data augmentation. We evaluate the clarifica-

tion question recommendation by comparing to a set of baselines. Finally, we

build a prototype tool based on the proposed technique as a browser extension

that we use to perform a user study to understand both how our technique per-

forms and is perceived by developers as well as the potential of such approaches

for manual query extension.

In summary, the key contributions of this paper are:

• set of clarification questions appropriate for software engineering query

expansion;

• algorithm for recommending clarification questions for a Web search query

that is able to handle the small number of terms present in most queries

(including a data augmentation step to generate appropriate training

data);

• quantitative and qualitative evaluation that aids in understanding the

value of the technique and the potential of the overall idea.

Significance of contributions. This paper is one of the first to propose

using clarification questions to improve Web searches conducted specifically by

software developers with the goal of improving the quality of retrieved results

and, through it, the efficiency with which developers locate relevant informa-

tion on the Web to aid their daily work. Using clarification questions for general

Web search (i.e., so-called conversational search) is recent popular topic in the

4

java ide download Search

Results:

Eclipse IDE for Java Developers | Eclipse Packages
The essential tools for any Java developer, including a Java IDE, a CVS client,
Git client, XML Editor, Mylyn, Maven integration and WindowBuilder.

Download Java IDE - Best Software & Apps - Softonic
Download Java IDE - Best Software & Apps · BlueJ. 5.0.1. 3.8. (2026 votes) ·
NetBeans IDE. 12.4. 3.6. (795 votes). Free Download · IntelliJ IDEA. 2021.2-
build- ...

Download IntelliJ IDEA: The Capable & Ergonomic Java IDE
Download the latest version of IntelliJ IDEA for Windows, macOS or Linux.
Developer: JetBrains

Which OS are you using?

Windows Linux Mac OS other

Figure 1: An example use of the described system for automatically posing clarification ques-

tions to aid developer Web searching.

Information Retrieval community (e.g., see [13, 16]). We contribute a set of

clarification questions and a machine learning technique that successfully rec-

ommends a relevant question for 4 out of 5 queries. Through a browser extension

that implements our technique, we observe that developers value clarification

questions as a way to improve their queries and find our technique generally

useful.

A replication package containing the dataset and code used for the study is

available 1.

2. Eliciting Clarification Questions

Software developers’ Web queries are often short, consisting of a median

of 3 terms [3], and, therefore, it is common for each query to have multiple

1https://anonymous.4open.science/r/Query-Expansion-Questions-5291

5

https://anonymous.4open.science/r/Query-Expansion-Questions-5291

facets (i.e., dimensions of meaning) along which it can be interpreted. Posing

clarification questions to developers for an incomplete query aims to identify

the specific facet that the developer has in mind, so that it can be specified to

the search engine, leading to improved retrieval results.

With the goal of eliciting a set of clarification questions appropriate for soft-

ware engineering-related searches, we define an approach that, first, identifies

the facets of a query and, second, uses the facets to create clarification questions

that would unravel developer search intent. In this section, we discuss the pro-

cess we used for eliciting common clarification questions: 1) selecting a corpus

of software developer Web queries; 2) identifying the (usually several) facets for

each query; 3) generating facet-based clarification questions; and 4) generalizing

the facet-based clarification to a set of common clarification questions.

2.1. Software Development-Related Queries

Logs of actual Web search queries are usually not made publicly available

by search engines. Rao et al. note that a significant bottleneck in this area

of research is the lack of datasets as search logs can not be made public due

to privacy laws (see also Section 5) [4]. In their later work [17], they release

a limited dataset of anonymized software development-related search queries

mined from Bing logs between September 1, 2019 and August 31, 2020. The

dataset contains more than 11,000 real-world search queries related to the C#

and Java programming languages, which they group into 7 categories based on

their search intent: API, HowTo, Installation, Debug, Learn, Navigational and

Miscellaneous. They identify that a query is Java/C# programming language-

related when it contains the term ‘java’ or ‘c#’ respectively, i.e., each query

contains either the term ‘java’ or ‘c#’ and at least one other term.

In this work, we select the Java programming language-related queries re-

leased by Rao et al. [17], which consists of 6,596 queries. Some of the queries

in the dataset are similar (e.g., ‘java api’, and ‘java apis’, ‘java queue’, and

‘java queues’, ‘java for loop’, and ‘for loop java’), and some are noisy (e.g.,

‘java chicken’, ‘java apple’). Therefore, we manually filter out queries that are

6

not software development-related or not unique. From the remaining set, we

randomly sample a set of 200 queries, ensuring representation from each of Rao

et al.’s intent categories (30 queries each from API, HowTo, Installation, Debug,

and Learn). The Miscellaneous category was significantly larger than the rest

so we sampled 50 queries from it. The category of Navigational queries was

excluded as it includes the specific resource or Web page that they developer is

navigating to, which makes it inappropriate to our purpose.

2.2. Facets Identification and Clarification Question Generation

A facet is a topic connected to a specific query that describes a dimension

of meaning of the query. Facets are often described by a set of semantically

related terms that together define a distinct information need or a topic [18, 19,

20, 21, 22, 23]. A typical query usually has multiple, separate facets, e.g., the

query ‘java eclipse download’ has facets such as ‘Linux’,‘Windows’,‘Mac OS’

that describe the operating system used and ‘java 8’,‘java 11’ that describe the

version of the software.

In order to devise facets for the selected 200 queries, we used four human

annotators (including one of the authors of this paper) that are all experienced

software developers (2 graduate students, 1 senior undergraduate and 1 indus-

try). Each annotator processed 40-60 queries, based on a detailed set of instruc-

tions for generating facets and clarification questions. In order to make sure the

annotators were clearly aware of their task, we provided annotation instructions

as a written document that the annotators were asked to read to completion

before beginning. The instructions also included detailed examples of what to

do as well as common mistakes or incorrect approaches to the annotation. We

instructed the annotators to use the following two ways of generating facets for

each query:

1. Search Engine Top 10 Results: We asked the annotators to re-enter the

query into a popular search engine and examine the top 10 retrieved results

in some detail. After examining the results, the annotators were to select

the facets that describe the primary characteristics of relevant groups of

7

Figure 2: (a) Google suggestions for the query - ‘java mail api’, (b) top Google results for

the query ‘java mail api’. Using the information in (a) and (b) the annotators identified the

facets: 1) ‘read ’, ‘compose’, ‘write’; 2) ‘example’, ‘documentation’, ‘tutorial ’ etc.

retrieved results. Sometimes search engine results for the queries included

very specific terms that cannot be grouped into facets. For example, for

the query, ‘add java to path’, the path - /home/user/path/to/env - is too

specific to belong in a facet, and, for the query, ‘java indexof method’ -

the method signature - indexOf(String str, int start) - is too specific. In

Figure 2, we provide a screenshot of top results provided by Google and a

retrieved top page for the query ‘java mail api’. Here, one possible facet

included actions such as ‘compose’, ‘write’, and ‘read ’.

2. Search Engine Auto-complete: Search engines such as Google, Bing, etc.,

offer query completion suggestions (see Figure 2 - left) as the user is typing

their query in the search box. These suggested words often describe a key

characteristic of a query that can sometimes be appropriate as a facet. We

asked the annotators to examine the list of suggested query completions

to discover common themes or topics, however, we warned the annotators

that sometimes the search engines suggest terms that are too specific to

form facets, e.g., (‘example in spring boot ’ in part (a) of Figure 2).

The annotators discovered a total of 1,577 facets across the 200 input queries

(a median of 8 facets per query).

8

Next, we asked the annotators to focus on identifying clarification questions

for each facet they identified. Specifically, the annotators were instructed to:

“Put yourself in the position of someone who has searched using the provided

query. You are to come up with one clarification question that would produce a

specific facet.” It is possible to map several facets to a single clarification ques-

tion and to have multiple clarification question for a single facet. For example,

for the query ‘java mail api’, a possible set of facets is: 1) ‘example’, ‘documen-

tation’, ‘tutorial’, ‘library’ ; 2) ‘maven’, ‘gradle’ ; and 3) ‘create’, ‘send’. Based

on these facets, the annotators came up with several clarification questions, such

as, ‘Are you looking for related API documentation? ’, ‘Do you want to add a

specific library in your build tool? ’, and ‘What type of mail operation do you

want to perform? ’. Finally, the annotators generated a total of 741 clarification

questions across 200 queries (a median of 4 clarification questions per query).

2.3. Grouping into Common Clarification Questions

The clarification questions generated based on the procedure described above

(in Section 2.2) are facet-based clarification questions. The exact form of these

facet-based clarification questions differs from query to query, from facet to

facet, and from annotator to annotator. However, it is possible to group the

facet-based clarification questions into a set of common, semantically-related

clarification questions. For example, the facet-based clarification questions -

‘Are you asking about an example?’, ‘Do you want an example of this API?’,

‘Do you want an example of an abstract class or method?’ - can be expressed by

the common clarification question - ‘What type of document are you interested

in (example)?’. To group the facet-based clarification questions we: 1) group

all the similar query-facet pairs; and 2) examine the corresponding facet-based

clarification questions to formulate a more generic way of expressing them.

Two human annotators (from the initial set of four, including one of the

authors) generated common clarification questions for all facet-based clarifica-

tion questions. The annotators worked independently and then held a Zoom

meeting to discuss disagreements and agree on appropriate clarification ques-

9

tion language. There were a number of facet-based clarification questions where

the annotators were not able to devise a general-purpose common clarification

question as the information need was very specific to the particular query. For

example, for the query ‘binary search method java’ the clarification question

‘Do you want a solution leveraging recursion?’ is very specific to the particular

query and cannot be grouped with other questions in our dataset. In total, we

used 592 out of the 741 clarification questions to construct 16 common clar-

ification questions, discarding 149 questions that could not be grouped. The

common clarification questions, common answers to these questions, and a ex-

ample query, facet, and facet-based clarification question are listed in Table 1.

Common answers are the most common facets regarding the clarification ques-

tions. For simplicity, from this point in the paper, we will refer to the common

clarification questions as clarification questions.

3. Recommending Clarification Questions

In this section, we describe our system that is able to take a user query as

input and produce a ranked list of clarification questions according to the their

suitability to enhance the query. However, while 200 queries are enough to elicit

a reasonable set of clarification questions, they are not adequate to formulate

and train a general machine learning model. In addition, to train such a sys-

tem, we require not just queries, but also their corresponding clarification ques-

tions. Therefore, we devise an approach to create more training data via a semi-

automatic data augmentation process. Our system (called QueryQuestions-SE)

for retrieving and recommending clarification questions consists of two parts: 1)

data augmentation to generate training data, and 2) neural network architecture

to rank clarification questions.

3.1. Data Augmentation

In a recent paper, Chen et al. proposed a technique - Local Additivity based

Data Augmentation (LADA) - aimed at utilizing a limited set of labeled textual

data to generate a diverse augmented dataset in a semi-supervised way [24].

LADA can create a large amount of realistic labeled data while improving the

10

Clarification Question and Common

Answers

Example Query, Facet, and Facet-based

Clarification Question

CQ1 What type of document are you interested in?

A: documentation, example, tutorial, use case,

performance, books

Query: ‘java reflection api’ ; Facet: documen-

tation

Q: Do you want to read API documentation?

CQ2 What type of source code artifact are you in-

terested in?

A: class definition, API, framework, library,

tool, plugin

Query: ‘java immutablelist api’ ; Facet: Guava

Q: Are you referring to Google library Guava?

CQ3 Which IDE are you using?

A: IntelliJ, Eclipse, PyCharm, Jupyter, Visual

Studio, Xcode

Query: ‘java is not recognized as an internal

command’ ; Facet: intellij

Q: Which IDE are you using?

CQ4 What type of operation do you want to per-

form?

A: read, write, print, parse, override, get, find

Query: ‘java imageio’ ; Facet: read, write, re-

size, show, display

Q: What operation on the image do you want

to perform?

CQ5 What is your file type?

A: text, json, xml, csv, zip, png, jpeg

Query: ‘how to open files with java’ ; Facet:

zip, jar, rar

Q: What’s the file type?

CQ6 Which system development toolkit are you us-

ing?

A: Java JDK, iOS SDK, .NET SDK, Android

SDK

Query: ‘java was started return code 1’ ; Facet:

JDK

Q: Do you have a JDK installed?

CQ7 If you are using a specific tool, framework, or

library, which one?

A: -

Query: ‘java.lang.classnotfoundexception:

com.mysql.jdbc.driver’ ; Facet: maven,

databricks, gradle, pyspark, spark

Q: Are you using maven, databricks, gradle,

pyspark, or spark?

11

CQ8 Which version of software are you using?

A: -

Query: ‘install java on raspberry pi’ ; Facet:

java 8

Q: Are you asking about any specific version?

CQ9 What type of installation-related operation

are you interested in?

A: update, configure, install, uninstall, down-

load, version check

Query: ‘java mongodb’ ; Facet: driver

Q: Are you trying to download mongodb

JDBC driver?

CQ10 Which operating system are you using?

A: MacOS, Windows, Linux, Android, iOS

Query: ‘java ide download’ ; Facet: Windows

10, Mac, Linux

Q: Which operating system?

CQ11 This seems to be a comparison. Is there a topic

you want to compare to?

A: -

Query: ‘kotlin vs java’ ; Facet: syntax

Q: Do you want to know the syntax difference

between Java and Kotlin?

CQ12 Which browser are you using?

A: Chrome, Firefox, Opera, Safari, Internet

Explorer

Query: ‘protection menu allow java’ ; Facet:

chrome, firefox, opera

Q: Which browser?

CQ13 Which data type are you interested

in/referring to?

A: integer, string, float, list, map, set, queue

Query: ‘java scanner example’ ; Facet: string,

char

Q: What data type are you trying to scan?

CQ14 Are you interested in information related to

32-bit or 64-bit architecture?

A: 32-bit, 64-bit

Query: ‘latest version of java for windows 10’ ;

Facet: 32-bit

Q: What’s the processor version?

CQ15 What type of an exception-related operation

are you interested in?

A: handle, catch, throw, avoid, implement

Query: ‘missing return statement error java’ ;

Facet: exception

Q: Are you throwing an exception?

CQ16 What type of debugging-related artifact are

you interested in?

A: fix video, fix tutorial, debug, troubleshoot

Query: ‘java package does not exist’ ;

Facet: sub-directory

Q: Is the package in right directory?

Table 1: List of clarification questions, common answers to each question, and a sample

query, corresponding facet, and facet-based clarification questions that were used to generate

the specific clarification question.

12

generalization of learning. Following LADA’s approach, which targets a some-

what different problem - named entity recognition, we design a procedure to

generate enough data so that we can effectively train a ML technique for rank-

ing (i.e., recommending) clarification questions based on a software developer

query. To augment the data, we leverage RoBERTa model, which is a deep neu-

ral model trained on a large-scale corpus of natural language text, to provide

prediction of masked words [25]. The masked words are terms used to augment

each query.

More specifically, for each of our 200 real-world queries and clarification

questions, we perform the following two augmentation procedures to generate

additional queries:

• Using RoBERTa’s masked word prediction, we add one or two masked

terms to the query. That is, we add the {mask} term in all gaps between

terms of the query and use RoBERTa’s suggested replacement for the

{mask} term. For example, if the original query is ‘java mail api’, for

one masked term we create new queries as ‘java {mask} mail api’, ‘java

mail {mask} api’, ‘java mail api {mask}’, and ‘{mask} java mail api’.

Therefore, possible generated queries are ‘java mail api request’, ‘java

mail api error’, ‘java mail api documentation’, and so on. We repeat the

same process with two masked terms. For each instance of a masked query,

we consider the top 100 suggestions generated by RoBERTa.

• Using RoBERTa masked word suggestion, we replace one or two terms.

For example, if the original query is ‘java mail api’, the possible struc-

tures of new queries are - ‘java {mask} api’, ‘{mask} mail api’, ‘java mail

{mask}’, ‘{mask} {mask} api’, etc. From these masked queries, possible

generated queries are ‘python mail api’, ‘java mail server’, and so on. As

before, we consider the top 100 suggestions for each combination.

As RoBERTa’s suggestions may not be high quality or they may make spe-

cific clarification questions that are mapped to a query redundant, we manually

13

verify each suggested query. That is, we validate augmented queries to be

unique, software engineering-related, free of noisy terms, and that the clarifi-

cation questions from the original query are still applicable. For example, the

annotated clarification questions for the query ‘java mail api’ are CQ1 and

CQ2. One of RoBERTa suggestions is ‘secure mail api’, which we consider to

be of sufficient quality with the clarification questions still applicable. Alterna-

tively, the suggested query ‘java mail api tutorial’ is removed because both of

the clarification questions are not applicable, i.e., it already specifies the answer

to CQ1.

Our final training dataset consists of a total of 5,151 unique queries and

11,762 clarification questions, a number that includes the original set of input

queries. Each query is mapped to one or more valid clarification questions.

3.2. Neural Network Architecture

Next, we introduce our neural network model for ranking clarification ques-

tions. As shown in Figure 3, the model computes the probability of a clari-

fication question’s validity for a user query using a neural network composed

of 3 different parts. Each of the parts centers on each of the 3 inputs in our

model: user queries, clarification questions, and the set of common answers.

We use a Convolutional Neural Network (CNN) architecture for user queries,

a Bidirectional Long Short-Term Memory (LSTM) architecture for clarification

questions, and a CNN architecture for common answers. A CNN works well for

queries and common answers as the order of terms is less important than the

different combinations, which a CNN captures well. Clarification questions are

natural language sentences so a LSTM would capture this sequence of words

well.

For each part of the neural net, as the first layer, in order to introduce

additional semantics, we encode the text with GloVe word embeddings that we

pre-trained on the entirety of Stack Overflow (using the Stack Overflow data

dump as of June, 2020) with default parameters (vector size = 200; window size

= 15). As the second layer, we train the three neural networks separately and

14

Figure 3: The neural network architecture of the QueryQuestions-SE model aimed at deter-

mining valid clarification question for software development queries.

merge their outputs. The output of the two CNN layers are two fully connected

layers and the output of LSTM layer is a collection of hidden states. When we

concatenate the 3 networks, we directly use the CNN’s output, while for the

LSTM layer we compute the average of the hidden states. As the third layer,

we use a dense neural network. We apply the logistic sigmoid function over this

output, producing a single floating-point number which can be interpreted as

a probability of how much the current clarification question is applicable for

the user query. This probability can be also leveraged as a threshold for when

not to recommend any clarification questions, i.e., when the query seems clear

enough as is (see also Section 4.2.1).

15

In order to train the model, for each query qi in the set of all queries Q,

we create 16 triplets of query, clarification question CQj , and common answers

CAj , one for each of the 16 possible clarification questions. We consider a

triplet’s label as positive when a clarification question CQj is applicable for the

query qi according to the annotation. Note that there is usually more than one

clarification question that is appropriate for a single query. We use Binary Cross

Entropy loss and the Adam optimizer [26], our implementation leveraging the

popular pytorch library.

For a newly submitted user query q, we use the model for each clarification

questions CQj and common answers CAj separately, collecting the resulting

output probabilities. Based on the output probabilities pj of each triplet (q,

CQj , CAj), we rank the clarification questions from the highest to the lowest

probability and recommend the top one or more.

4. Evaluation

Our evaluation of the proposed approach can be divided into two parts:

quantitative evaluation of the QueryQuestions-SE retrieval model and qualita-

tive evaluation via a developer study. The first evaluation strategy aims to find

out if clarification questions can be accurately predicted (or recommended) for

a newly composed software development-related Web query. The second evalu-

ation strategy focuses on determining if a tool based on the approach described

in this paper can be helpful to developers, and what are its strengths and weak-

nesses. We begin this section by first discussing the quantitative evaluation and

then describing the procedure of developer study and collected feedback.

4.1. Retrieval Evaluation

4.1.1. Baselines

As our approach to pose clarification questions is novel to software engi-

neering and there are no similar, comparable techniques that we could compare

our model to, we validate the effectiveness of QueryQuestions-SE against: 1)

Simple Baselines – straightforward approaches to ranking that do not require a

16

sophisticated model (e.g., directly computing a similarity based on the GloVe

embeddings) and ablation (e.g., using only one part of the model); and 2) Clarifi-

cation Question Ranking (CQR) Baselines – the problem of selecting the highest

ranked clarification question from a set of candidate questions is essentially a

ranking problem. Therefore, the task of the model is to find the optimal order of

candidate questions for a given query. Learning to Rank (LTR) [27] based mod-

els rank a set of candidate questions and choose the one with the highest rank,

and are a popular approach to compare to when recommending clarification

questions [28, 13, 29].

First, we list the Simple Baselines we identified and used:

• Random: We generate a random output of 0 (negative) or 1 (positive) for

each combination of query and clarification question.

• Similar Embedding (δ ≥ 0.5): This baseline generates two vectors: 1)

averaged GloVe embedding of the query, and 2) sum of averaged GloVe

embedding of the clarification question and averaged GloVe embedding of

the common answers. We compute the cosine similarity between these

two vectors, δ, and set a threshold of δ ≥ 0.5 to determine if a query and

clarification question are similar.

• Similar Embedding (δ ≥ 0.7): This baseline is similar to the previous

baseline but with a higher similarity threshold of 0.7.

• Dissimilar Embedding (δ ≤ 0.5): In this baseline, we consider if dissimi-

larity between the GloVe embeddings of a clarification question (and its

common answers) and a query are what determines validity. The intuition

is that the more dissimilar a clarification question is the more likely the

query is in need to the information it offers. We compute the cosine sim-

ilarity δ between these two vectors as before and set a threshold of less

than or equal to 0.5.

• Dissimilar Embedding (δ ≤ 0.3): This baseline is similar to the previous

baseline but with a higher dissimilarity threshold of less than or equal to

17

0.3.

• Query Only Baseline: In this baseline, we use only queries to train the

model, ignoring the text of the clarification question and the common

answers. Instead of clarification question text, we use ids that correspond

to each clarification questions (1, 2, 3, ..., 16). In the neural network, we

use one-hot encoding of the clarification question id.

We also used the following set of CQR Baselines.

• LambdaRank [30]: For this baseline, we adopt the pairwise version of

the algorithm, where each query and their relevant clarification question

(and answers) pair are considered as positive examples. The query and

irrelevant clarification questions (and answers) are considered as negative

examples. We use the concatenated Glove word embedding (as described

in section 3.2) representation of query, clarification question, and answer

used as input features. For LambdaRank implementation, we use Mi-

crosoft’s LightGBM2 package.

• XGBoost ranking [31]: The setup of input documents and input features

is as same as LambdaRank. For implementation, we use the open source

XGBoost (XGBRanker)3 package.

4.1.2. Metrics

We choose several popular information retrieval evaluation metrics, includ-

ing Mean Reciprocal Rank (MRR), Mean Absolute Precision (MAP), and Pre-

cision@K (P@K).

• Mean Reciprocal Rank (MRR): The goal of MRR is to evaluate how effec-

tive is our technique, or a baseline, in locating the first valid clarification

2https://github.com/Microsoft/LightGBM
3https://github.com/dmlc/xgboost

18

question. It is computed as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

, where Q is the set of queries in the test set and ranki refers to the rank

position of the first relevant clarification question for the i-th query.

• Mean Average Precision (MAP): For a set of queries, MAP measures how

well a model can locate all clarification questions relevant to a query. MAP

is calculated as the mean of average precision values (AvgP) for Q queries:

MAP =
1

|Q|

|Q|∑
i=1

AvgP (i)

, where Q is the set of queries in the test set and AvgP (i) refers average

precision for the query at position i.

• Precision@K (P@K): The goal of Precision@K is to measure the number of

valid results when considering the top K positions in the ranking. Unlike

MRR, it considers all, not only the topmost ranked, results. It is computed

as:

P@K =
1

|Q|

|Q|∑
i=1

|v|
K

, where, as before, Q is the set of queries in the test set and v is the set of

valid clarification questions ranked in the top K positions. We use values

of 1, 2 and 3 for K as the median of annotated clarification question is 3.

4.1.3. Results and Discussion

We randomly divide our augmented, annotated dataset using a 80-20 split

to evaluate QueryQuestions-SE, i.e., 80% train.

We summarize the results of our technique versus the identified baselines

in Table 2. The results indicate that our model strongly outperforms all of

the baselines, achieving improvements of 0.08 in MRR, 0.2 in MAP, and 0.09

in Precision@1 over the best baseline. The results suggest that the problem

19

MRR MAP P@1 P@2 P@3

QueryQuestions-SE 0.88 0.77 0.80 0.67 0.57

Simple Baselines:

Random 0.54 0.43 0.43 0.28 0.22

Similar Emb. (δ ≥ 0.5) 0.68 0.55 0.60 0.42 0.32

Similar Emb. (δ ≥ 0.7) 0.67 0.54 0.59 0.41 0.31

Dissimilar Emb. (δ ≤ 0.5) 0.53 0.45 0.31 0.33 0.31

Dissimilar Emb. (δ ≤ 0.3) 0.56 0.44 0.45 0.30 0.23

Query Only 0.56 0.48 0.41 0.31 0.27

CQR Baselines:

LambdaRank 0.80 0.57 0.70 0.45 0.36

XGBoost 0.79 0.56 0.71 0.45 0.35

Table 2: Evaluation results contrasting our system relative to several baselines.

of finding a valid recommendation question for a query is not easily solved by

the simple baselines we devised. Of the simple baselines, we observe that only

the similarity baselines noticeably outperform the random choice; both of the

similarity baselines, regardless of threshold, perform nearly the same. The two

CQR baselines performed similarly to each other and noticeably outperformed

the simple baselines, but were in all metrics weaker than QueryQuestions-SE.

From the perspective of whether the QueryQuestions-SE model provides us-

able results, the key metric is Precision@1 as it indicates how well we recommend

a single clarification question, which is the most common use case. This metric

for QueryQuestions-SE is 0.8, which indicates 4 out of 5 times we recommend a

valid top most result. Precision@2 and Precision@3 decrease significantly from

Precision@1 for all techniques including QueryQuestions-SE. The reason for this

is that a significant subset of queries contain only one valid clarification question

and therefore P@1 has much higher ceiling than P@2 and P@3.

20

4.2. Software Developer Study

To investigate how our QueryQuestions-SE model would perform in the real

world, we conducted a study of software developers using a prototype of our

technique as a browser plugin. We conducted a multi-modal study with a total

of 6 participants some of which were novices (i.e., new to software development).

First, we collected feedback on the clarification questions from the developers

leveraging in-use relevance questions posed after each interaction with the tool.

Second, the participants completed a survey after interacting with the tool for

at least 2 days. Finally, we discussed their experiences and expectations through

an in-person interview. In this subsection, we will first explain the functionality

of the browser plugin, then describe the study participants and study procedure,

and, finally, report and discuss the collected results.

4.2.1. Browser Plugin

To allow study participants to experience receiving clarification questions

first hand, we created a Google Chrome browser plugin that monitors user

Google queries and reacts with a pop-up if a clarification question is recom-

mended by QueryQuestions-SE. If the prediction score is less than 0.5 for all

clarification questions, we do not provide any clarification questions as, in this

case, it is likely that the developer has an adequate query that does not need

clarifying. The pop-up window appears alongside the Google results page and

contains: 1) the highest ranked clarification question; 2) a list of common an-

swers and an input box to provide a typed answer; and 3) two buttons (‘Update

Query’ and ‘Question is Not Relevant’) at the bottom (see Figure 4). When

users press the ‘Update Query’ button, the plugin appends the answer to the

original query and performs a Google search, returning a new set of Google

search results on the same page. The user can also click on the ‘Question is

Not Relevant’ button, which is relevance feedback that we collect for the study.

After selecting ‘Update Query’, alongside the updated Google results page, we

ask the user for in-use feedback on the effectiveness of the clarification question

via another pop-up that asks ‘Was the prior question useful in suggesting how

21

Table 3: Clarification question relevance data collected during use of the plugin.

Industry

Exp.

Active

Days

of

Queries
Relevance Usefulness

P1 (n) 0-3 yrs. 3 12 10/12

(83%)

6/8 (75%), 2

NoAns

P2 (n) 0-3 yrs. 4 23 14/23

(61%)

6/7 (86%), 7

NoAns

P3 (i) 4-6 yrs. 2 21 15/21

(71%)

10/12 (83%),

3 NoAns

P4 (i) 4-6 yrs. 3 24 18/24

(75%)

15/18 (83%)

P5 (i) 4-6 yrs. 4 15 13/15

(87%)

3/4 (75%), 9

NoAns

P6 (i) 6-9 yrs. 6 8 7/8 (87%) 2/6 (33%), 1

NoAns

Table 5: Clarification question relevance data collected during use of the plugin. n = novice,

i = industry.

to clarify the query?’ where the user can select either ‘Yes’ or ‘No’. The user

can also choose to select no option here at all and close the plugin.

4.2.2. Participants and Procedure

Our goal was to attract two groups of developers for our study: experienced

software developers from industry and novice software developers, with the aim

of having representatives from both groups. More specifically, through personal

contacts, we recruited 4 software developers currently employed in industry

(with industry experience ranging from 4 to 9 years) and 2 novice programmers

(students that have recently, in the last 1-2 years, learned how to program) that

were currently programming on a daily basis.

22

Figure 4: Browser plugin for user study.

Through a recruitment email, we communicated the basic context of our

study and provided a short video on how to install and use the plugin. We

asked the participants to watch the video carefully, and then use our plugin

during their regular work for software development-related Web searching.

We asked the participants to let us know once they have used the plugin

sufficiently to develop an opinion and feel ready to proceed (after at least 2

days), allowing them to take additional time using the tool if they chose. After

the participants contacted us that they are ready, we provided them with a link

to a short online survey asking several questions regarding their experiences,

including:

• How often they used the plugin – “How often did you use the plugin in

your Google searches?”, with 3 possible answer options – ‘On all searches

where I didn’t like the initial Google results’, ‘On some searches where I

didn’t like the initial Google results’, and ‘On every software development-

related Google search’.

• Clarification question relevance – “How relevant were the questions pro-

vided by the plugin to your searches?”, answered by a 5 point linear scale

(Least Relevant to Most Relevant).

23

• Clarification question usefulness – “How useful were the questions provided

by the plugin to finding the information you were looking for?”, answered

by a 5 point linear scale (Least Useful to Most Useful).

• Open-ended questions on ideas for improvement – “How would you im-

prove the clarification questions asked by the plugin?”, and “How would

you improve the plugin (apart from the questions themselves)?”.

Following the completion of the study, we organized an online meeting with

each participant separately so that they can share their opinions through a semi-

structured interview. Our questions in the interview can be organized into 3

topics:

• Questions regarding common search behavior and motivation – “Do you

write queries that are not specific enough?”, “When you search, are you

usually satisfied with the results you get?”.

• Questions regarding the clarification questions – “Do you think asking

clarification question on search queries can be useful?”, “How did you

find the questions the tool posed?”, “How do you think the clarification

questions can be improved?”, “Can you think of any additional clarification

questions?”.

• Questions regarding the plugin – “Did you find our plugin useful?”, “Did

the plugin help you get higher quality results from your Google searching?”,

“What did you like and dislike about the plugin?”.

4.2.3. Results and Discussion

One of the study participants (P1) was not able to schedule the interview

for personal reasons. Otherwise, all other participants completed all aspects of

the study, including the in-use (popup-based) feedback and the post-activity

survey.

In-Use Feedback. Table 5 lists the number of queries performed by individual

software developers, the number of days the plugin was actively used (days with

24

at least one query performed are counted), and developer feedback on query rel-

evance (as reported by the button on Figure 4) and usefulness captured through

an additional popup after the query was reformulated (and the updated Google

results shown to the developer). The six developers performed a total of 103

queries, and, of these queries, they deemed 77 (75%) clarification questions as

relevant. Out of these 77 queries, 42 clarification questions are selected as useful,

13 are selected as not useful, and no feedback was provided for the remaining

22 queries; the usefulness rate out of the relevant clarification questions was

76% (42/55), and 52% (42/81) overall, not counting the clarification questions

without feedback.

Survey. On the question - “How often did you use the plugin in your Google

searches?” - 3/6 developers selected ‘On all searches where I didn’t like the

initial Google results’, 2/6 developers selected ‘On some searches where I didn’t

like the initial Google results’, and 1/6 developer selected ‘On every software

development-related Google search’.

The relevance and usefulness of the QueryQuestions-SE model as reported by

the 6 developers on the survey are shown in Figure 5. The results indicate that

4/6 developers found the clarification questions to be relevant (with a score of

least 3 on the linear scale), and 5/6 developers found the clarification questions

useful (with a score of least 3 on the linear scale).

The responses to the two open-ended questions - “How would you improve

the clarification questions asked by the plugin?”, and “How would you improve

the plugin (apart from the questions themselves)?” - were repeated with more

context in the one-on-one interview, therefore, we discuss them there.

Interview. We conducted each interview via Zoom. We started each Zoom

meeting with a warm-up question asking about the type of software development-

related Web searches performed by each participant. Most of the develop-

ers identified more than one search scenario, including both exploratory and

lookup [32]. Next, on the question regarding whether they were satisfied with

typical search engine results, most participants indicated that they were, how-

ever, that they could be improved. When we asked whether clarification ques-

25

Figure 5: Reported relevance and usefulness of QueryQuestions-SE model.

tions could be useful in improving search, all of them agreed that this is a good

mechanism. Specifically, P4 found the experience of our plugin helpful in this

regard, stating “From my experience in using this plugin, I found clarification

questions useful.” P2 and P5 also mentioned that adding terms to queries us-

ing clarification questions is a good idea, while P3 pointed out that clarification

questions could help to narrow down the search results and provide more direc-

tion to generic search queries.

As for the effectiveness of the specific clarification questions provided by our

plugin, P2 noted, “they were good as long as they were relevant.” P3, P4, and

P5 also provided similar opinions, however, P6 disagreed. P6 was concerned

that our approach would not help a domain-expert experienced developer and

in P6’s opinion, “I already knew what I was looking for and search it effectively

on Google.” However, others found the clarification questions helpful, e.g., P3

noted, “It helped me to clarify contexts on some queries when google results were

too broad.” P2 remarked, “I liked it when I just didn’t know what to add to a

search. The tool provided some suggestions.” P5 noted, “It did. I was able to

get a better query. And because of that better results in the search.”

The participants offered several ideas to improve the plugin. P4 remarked,

“What I like is that it is easy to use and questions were most of the cases

relevant... It may be a good improvement if this can be made more interactive.”

The interactive idea was supported by others as well, e.g., P6 stated “What kind

of queries developers make mostly? - for debugging issues by searching for the

26

specific errors, exceptions, etc; tutorials, examples, documentation of specific

library, framework, etc. The clarification question can ask for the type of query

first, and based on that it can suggest specific terms to improve the query.”

P5 suggested improving the approach by using dynamic options for the com-

mon answers suggested by the tool, which would provide common answers that

are more tightly integrated to the specific query. P3 and P6 also expressed that

dynamically generated answer options could be a way to improve the existing

tool. P1 supported this idea as well in her response to the open-ended survey

questions. P5 had another suggestion on improving the tool by reformulat-

ing the queries multiple ways, e.g., other than adding a term at the end, we

could add a term at the beginning, remove unnecessary terms (such as adverbs,

pronouns), etc.

Lastly we asked, “based on your experience using this plugin [...] would you

use it in your daily development work?” All of the participants except for P6

replied positively. P2 said, “Yeah, I will. I don’t think I would use it like every

search. But I think I would use it a fair amount of time.” P5 remarked, “Yes,

yes, of course, it was helping me get better queries.” P3 mentioned, “Yeah,

I will use it as the functionality of the tool narrows down the search domain

and saves development time.” P4 commented, “Why not if the questions are

relevant and the tool can serve my purpose?” P6, however, didn’t dismiss using

improved version of the tool, “Maybe (I will) when you could improve the tool

as the suggestions we have discussed... I like the approach that the tool is trying

to help to search and find better answers.”

Summary. The developer study data collected from the 6 software developers

indicated that the idea of clarification questions has potential. The clarification

questions were mostly valuable (in-use relevance between 61%-87% and useful-

ness between 75%-86%, without P6 (33%); survey at or above 3 out of 5 for

relevance in 4/6 participants and for usefulness in 5/6 participants). In one-on-

one interviews, they noted that clarification questions can provide convenient

suggestions, narrow down search space, and save development time. The key

suggestion for improvement was to add more dynamicity and interactivity, e.g.,

27

suggesting more bespoke answers to the questions or engaging the developers in

a conversation as in conversational search [16].

Comparison to Google’s Related Searches. In order to understand if the

clarification questions can provide the developers with a functionality different

from what is currently available by popular search engines, we compared the

queries expanded by the developers (using our clarification questions) with the

set of query suggestions provided by Google’s Related Searches functionality.

Google’s Related Searches appear at the bottom of each results page, and con-

sist of 8 suggested queries that reformulate the current query provided to the

search engine. While the algorithm for selecting the 8 suggested queries is not

publicly available, Google states that it is based on a corpus of past search

queries.

Out of the 42 queries that were successfully expanded by the developers in our

study, 9 (21%) had an exact or near exact match among the queries suggested by

Google Related Searches (e.g., original query = ‘http vs grpc’ ; expanded query

= ‘http vs grpc performance’ ; Google Related Searches = {‘grpc vs rest perfor-

mance’,‘grpc vs protobuf’,...}). While this indicates that most of the time (79%)

the developer’s queries formulated by using our clarifying questions were differ-

ent, many queries provided by Google Related Searches were topically related

to the queries expanded by the clarification questions. However, we observed

that in 12/42 (29%) queries, all of the 8 queries in Google Related Searches

were completely and significantly different from the expanded queries generated

by the developers (e.g., original query = ‘unity mrtk detect pointer in collider’ ;

expanded query = ‘unity mrtk detect pointer in collider fix tutorial’ ; Google

Related Searches = {‘mrtk gestures’,‘mrtk disable pointer’,...}). Our hypothesis

is that this scenario occurs when the original queries are longer and more spe-

cific as in that case Google Related Searches suggest more simple and generic

alternatives that significantly miss the topical direction that the developer is

interested in.

28

4.3. Threats to Validity

Several limitations may impact the interpretation of our findings on the

proposed approach for automatically posing clarification questions to help de-

velopers’ Web search. We categorize and list each of them below.

Construct validity. Threats to construct validity include the degree to which

our experiments measure what was intended. First, as our original Web query

dataset includes only 200 queries from a relatively narrow scope (i.e., Java soft-

ware development), the model’s training dataset is limited by the topics within

those queries as well. More specifically, the validity concern related to this is

whether the clarification questions and the model for predicting clarification

questions overfit a specific set of topics. One mitigating factor is augmenting

our dataset (using RoBERTa) by replacing query terms, which actually gener-

ates queries that are no longer Java-specific (e.g., replacing the term ‘java’ with

the term ‘python’). Another means to mitigate this concern is the two ways

of evaluation of our model and technique, both indicating that the clarifica-

tion questions and the model were generally relevant to the developer’s search

tasks. For instance, in the developer survey, 77/103 (75%) of clarification ques-

tions were deemed relevant, which is very similar to the model’s quantitative

evaluation results for Precision@1 of 0.8 (80%).

Another threat is the use of common answers as input to our model. As

the common answers are based on facets related to queries, they may be too

specific to the particular domain, and, again, lead to overfitting. With different

and more diverse common answers, the model may learn different patterns. We

mitigate this issue by selecting the broadest common terms, which are likely to

be valid across many different software engineering-specific topics.

Internal validity. Threats to internal validity concern study design factors

that may influence the results. One threat to our study is the artificially gen-

erated dataset. A mitigating factor is the use of a powerful natural language

model, i.e., RoBERTa, to suggest terms to augment our queries. However, it is

possible that some of the queries may be unrealistic and never occur word-for-

29

word in real-life. We address this threat by manually checking each augmented

query to be semantically correct and to still be in need of a specific clarification

question.

External validity. Threats to external validity concern generalizing the ex-

perimental findings beyond our settings. One such limitation of our approach

is the fixed number of clarification questions, which are also limited by our

input set of 200 Java-related Bing queries. It is possible to elicit additional

clarification questions with a larger dataset of queries. For example, we observe

that the common clarification question ‘Which programming language are you

interested in? ’ is missing in our study. This is because our annotated query

dataset contains only Java-related queries and each query explicitly mentions

‘java’. To mitigate this threat, we performed a tool-based study with developers

that worked on other development tasks that did not necessarily include Java

(e.g., Go, Unity, C#, PHP).

5. Related Work

The related work can be categorized into three parts: 1) empirical studies

of software development-related Web search, 2) generating facets from queries,

and 3) automatically posing clarification questions.

Empirical Studies of Software Development-Related Web

Search. Developers use general purpose search engines daily to facilitate their

work. Therefore, there has been considerable interest among researchers in

studying how developers perform these searches [33, 2, 5, 34, 6, 35, 4, 36, 3].

There have been several studies on improving search specifically for source

code [37, 34, 38, 39]. For example, Stolee et al.’s survey notes that 85% of

the software developers use search engines to search for source codes on the

Web at least weekly [40]. They also found that 69% of the respondents used

Web search engines (i.e., Google, Bing) instead of bespoke code search tools.

Xia et al. noted that developers search for many things other than source code,

e.g., debugging, documentation, best practices, how to use a particular tool,

etc. [5] Temla et al. noted that game developers use Web search to get various

30

kinds of help (e.g., instructions, algorithms, and tools) [41]. In addition, there

has been research dedicated to developers’ Web search for software architecture

design patterns [42], algorithms [43], APIs [44], etc.

Sadowski et al. surveyed 27 developers over a two week period to bet-

ter understand when and why software developers search [2]. Rahman et al.

collected search logs from 310 developers, consisting of nearly 150,000 Google

search queries and built an automatic classifier that detected software engineer-

ing related queries [6]. Hora et al. collected 1.3M developers’ queries from a

Search Engine Optimization service and concluded that the queries are usually

short, tend to omit functional words, and are similar among each other [3]. Xia

et al. collected search queries from 60 developers and surveyed 235 software

engineers and grouped search tasks into seven groups: General Search, Debug-

ging and Bug Fixing, Programming, Third Party Code Reuse, Tools, Database,

and Testing [5]. Rao et al. used search query logs from Bing to analyze Web

search behavior for software engineering tasks and classified the search intents

into seven categories: API, Debug, HowTo, Installation, Learn, Navigational

and Miscellaneous [4].

However, most of the above mentioned datasets are not publicly available to

analyze further. In an attempt to encourage contributions to this area, Rao et

al. open-sourced a portion of their Bing dataset [17].

Generating Facets from Queries. Manually and automatically extract-

ing facets from Web query logs has been an area of interest in the research

community for a long period of time due to its potential for query reformula-

tion [45, 22, 46, 20, 47, 13, 48, 49]. Li et al. proposed a system that can auto-

matically generate facets for a query using Wikipedia [50]. Dou et al. developed

an unsupervised model that automatically extracts facets for a query [22, 46].

Kong et al. developed a supervised graphical model to extract facets for a query

based on a set of Web search results [20, 47]. Jiang et al. proposed a model to

generate facets from knowledge bases [23]. Aliannejadi et al. applied a manual

facet generation process similar to ours for a corpus of queries [13]. Specifically

aimed at software engineering-related search, Zhang et al. used Stack Overflow

31

tags as facets [15].

Automatically Posing Clarification Questions. Automatically posing clar-

ification questions has recently become an popular area of study in the fields

of Natural Language Processing and Information Retrieval [13, 51, 15, 14, 52,

53, 54, 55, 56, 57, 58]. The research on asking clarification questions has been

applied within a few different domains and applications such as chatbots [59],

open-domain question answering systems [60, 61], domain-specific question an-

swering systems [15, 62, 63], search engines [14], search queries [28], image con-

tent [64], and e-commerce [51].

Clarification questions are a mechanism to refine user Web search queries

that miss key information. Aliannejadi et al. built a model for query refine-

ment to aid open-domain information seeking conversations [13]. Zamani et

al. proposed a template-based clarification question generation model based

on different aspects of a Web query [58]. Zamani et al. later open-sourced a

dataset for open domain clarification question generation [65] and provided an

analysis of user interaction with clarification questions posed in a popular Web

search engine (Bing) [66]. Sekulić et al. studied how to predict user engagement

with posed clarification questions based on the open source Web search dataset

released by Zamani et al. [67] In our work, we focus on software development-

related clarification questions and release a dataset of annotated queries, facets,

and clarification questions.

6. Conclusions and Future Work

This paper illustrates a technique for posing clarification questions for devel-

opers’ Web search queries. In this paper, first, we identify common clarification

questions based on annotating 200 real-world user queries. Then, we create

an augmented dataset of 5,151 queries that we use to train a machine learn-

ing model that can identify the most relevant clarification question for a given

user query. Our evaluation shows that the proposed approach outperforms all

baselines, while a study of software developers indicates that the clarification

question relevance rate aligned with our quantitative (i.e., test set) results. That

32

is, the participants found 75% clarification questions were relevant, while the

Precision@1 on the test set was 80%. The feedback from the software developer

study, using a prototype we created, suggests that an approach like ours can be

useful to software developers.

There are several avenues for future work. First, we intend on making the

common answers dynamic, i.e., more adaptable to the specific query. Second, we

plan to research an interactive conversation based tool where the users can ask

clarification questions successively and engage the search system in a type of a

conversation. Third, another line of future work is in identifying different set of

clarification questions based on query intents proposed by various literature [5,

4]. Lastly, we can extend the evaluation to a larger set of developers, which

would help in further understanding how to improve the current model and

clarification questions.

References

[1] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, N. A.

Kraft, What information about code snippets is available in different

software-related documents? an exploratory study, in: 2017 IEEE 24th

International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER), 2017, pp. 382–386. doi:10.1109/SANER.2017.7884638.

[2] C. Sadowski, K. T. Stolee, S. Elbaum, How developers search for code: a

case study, in: Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering, 2015, pp. 191–201.

[3] A. Hora, Googling for software development: What developers search

for and what they find, in: 2021 2021 IEEE/ACM 18th Interna-

tional Conference on Mining Software Repositories (MSR) (MSR),

IEEE Computer Society, Los Alamitos, CA, USA, 2021, pp. 317–328.

doi:10.1109/MSR52588.2021.00044.

URL https://doi.ieeecomputersociety.org/10.1109/MSR52588.

2021.00044

33

https://doi.org/10.1109/SANER.2017.7884638
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00044
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00044
https://doi.org/10.1109/MSR52588.2021.00044
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00044
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00044

[4] N. Rao, C. Bansal, T. Z. 0001, A. H. Awadallah, N. Nagappan, Analyzing

web search behavior for software engineering tasks, in: X. Wu, C. Jermaine,

L. X. 0001, X. H. 0001, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai, E. Al-

Masri, Z. C. 0003, J. S. 0001 (Eds.), IEEE International Conference on Big

Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, IEEE,

2020, pp. 768–777. doi:10.1109/BigData50022.2020.9378083.

URL https://doi.org/10.1109/BigData50022.2020.9378083

[5] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, Z. Xing, What do

developers search for on the web?, Empirical Software Engineering 22 (6)

(2017) 3149–3185.

[6] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,

C. Parnin, K. T. Stolee, B. Ray, Evaluating how developers use general-

purpose web-search for code retrieval, in: Proceedings of the 15th Interna-

tional Conference on Mining Software Repositories, 2018, pp. 465–475.

[7] M. Lu, X. Sun, S. Wang, D. Lo, Y. Duan, Query expansion via wordnet

for effective code search, in: 2015 IEEE 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), IEEE, 2015,

pp. 545–549.

[8] M. M. Rahman, C. Roy, Effective reformulation of query for code search

using crowdsourced knowledge and extra-large data analytics, in: 2018

IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2018, pp. 473–484. doi:10.1109/ICSME.2018.00057.

[9] K. Cao, C. Chen, S. Baltes, C. Treude, X. Chen, Automated query refor-

mulation for efficient search based on query logs from stack overflow, in:

2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), 2021, pp. 1273–1285. doi:10.1109/ICSE43902.2021.00116.

[10] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, T. Menzies,

Automatic query reformulations for text retrieval in software engineering,

34

https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/BigData50022.2020.9378083
https://doi.org/10.1109/ICSME.2018.00057
https://doi.org/10.1109/ICSE43902.2021.00116

in: 2013 35th International Conference on Software Engineering (ICSE),

2013, pp. 842–851. doi:10.1109/ICSE.2013.6606630.

[11] F. Zhang, H. Niu, I. Keivanloo, Y. Zou, Expanding queries for code search

using semantically related api class-names, IEEE Transactions on Software

Engineering 44 (11) (2017) 1070–1082.

[12] M. M. Rahman, C. K. Roy, D. Lo, Automatic query reformulation for

code search using crowdsourced knowledge, Empirical Software Engineering

24 (4) (2019) 1869–1924.

[13] M. Aliannejadi, H. Zamani, F. Crestani, W. B. Croft, Asking clarifying

questions in open-domain information-seeking conversations, in: Proceed-

ings of the 42nd International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2019, pp. 475–484.

[14] P. Ren, Z. Chen, Z. Ren, E. Kanoulas, C. Monz, M. De Rijke, Conversations

with search engines: Serp-based conversational response generation, ACM

Trans. Inf. Syst. 39 (4) (Aug. 2021). doi:10.1145/3432726.

URL https://doi.org/10.1145/3432726

[15] N. Zhang, Q. Huang, X. Xia, Y. Zou, D. Lo, Z. Xing, Chatbot4qr: Inter-

active query refinement for technical question retrieval, IEEE Transactions

on Software Engineering (2020).

[16] F. Radlinski, N. Craswell, A theoretical framework for conversational

search, CHIIR ’17, Association for Computing Machinery, New York, NY,

USA, 2017, p. 117–126. doi:10.1145/3020165.3020183.

URL https://doi.org/10.1145/3020165.3020183

[17] N. Rao, C. Bansal, J. Guan, Search4code: Code search in-

tent classification using weak supervision (2021) 575–579doi:

10.1109/MSR52588.2021.00077.

URL https://doi.ieeecomputersociety.org/10.1109/MSR52588.

2021.00077

35

https://doi.org/10.1109/ICSE.2013.6606630
https://doi.org/10.1145/3432726
https://doi.org/10.1145/3432726
https://doi.org/10.1145/3432726
https://doi.org/10.1145/3432726
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00077
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00077
https://doi.org/10.1109/MSR52588.2021.00077
https://doi.org/10.1109/MSR52588.2021.00077
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00077
https://doi.ieeecomputersociety.org/10.1109/MSR52588.2021.00077

[18] X. Wang, D. Chakrabarti, K. Punera, Mining broad latent query aspects

from search sessions, in: Proceedings of the 15th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, 2009, pp.

867–876.

[19] X. Wang, C. Zhai, Learn from web search logs to organize search results,

in: Proceedings of the 30th annual international ACM SIGIR conference

on Research and development in information retrieval, 2007, pp. 87–94.

[20] W. Kong, J. Allan, Extracting query facets from search results, in: Pro-

ceedings of the 36th international ACM SIGIR conference on Research and

development in information retrieval, 2013, pp. 93–102.

[21] R. Song, M. Zhang, T. Sakai, M. P. Kato, Y. Liu, M. Sugimoto, Q. Wang,

N. Orii, Overview of the ntcir-9 intent task., in: NTCIR, Citeseer, 2011.

[22] Z. Dou, S. Hu, Y. Luo, R. Song, J.-R. Wen, Finding dimensions for queries,

in: Proceedings of the 20th ACM international conference on Information

and knowledge management, 2011, pp. 1311–1320.

[23] Z. Jiang, Z. Dou, J.-R. Wen, Generating query facets using knowledge

bases, IEEE transactions on knowledge and data engineering 29 (2) (2016)

315–329.

[24] J. Chen, Z. Wang, R. Tian, Z. Yang, D. Yang, Local additivity based data

augmentation for semi-supervised ner, in: Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP),

2020, pp. 1241–1251.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,

L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretrain-

ing approach, arXiv preprint arXiv:1907.11692 (2019).

[26] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR

abs/1412.6980 (2015).

36

[27] T.-Y. Liu, et al., Learning to rank for information retrieval, Foundations

and Trends® in Information Retrieval 3 (3) (2009) 225–331.

[28] J. Wang, W. Li, Template-guided clarifying question generation for web

search clarification, in: Proceedings of the 30th ACM International Con-

ference on Information & Knowledge Management, 2021, pp. 3468–3472.

[29] Z. Gao, X. Xia, D. Lo, J. Grundy, Technical q8a site answer recommen-

dation via question boosting, ACM Transactions on Software Engineering

and Methodology (TOSEM) 30 (1) (2020) 1–34.

[30] C. Burges, R. Ragno, Q. Le, Learning to rank with nonsmooth cost func-

tions, Advances in neural information processing systems 19 (2006).

[31] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, 2016, pp. 785–794.

[32] G. Marchionini, Exploratory search: from finding to understanding, Com-

munications of the ACM 49 (4) (2006) 41–46.

[33] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, S. R. Klemmer, Two

studies of opportunistic programming: interleaving web foraging, learning,

and writing code, in: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2009, pp. 1589–1598.

[34] L. Martie, A. v. d. Hoek, T. Kwak, Understanding the impact of support

for iteration on code search, in: Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, 2017, pp. 774–785.

[35] M. Hucka, M. J. Graham, Software search is not a science, even among

scientists: A survey of how scientists and engineers find software, Journal

of Systems and Software 141 (2018) 171–191.

[36] S. E. Sim, M. Umarji, S. Ratanotayanon, C. V. Lopes, How well do search

engines support code retrieval on the web?, ACM Transactions on Software

Engineering and Methodology (TOSEM) 21 (1) (2011) 1–25.

37

[37] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, C. Lopes,

Sourcerer: a search engine for open source code supporting structure-based

search, in: Companion to the 21st ACM SIGPLAN symposium on Object-

oriented programming systems, languages, and applications, 2006, pp. 681–

682.

[38] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, Y. L. Traon, Fa-

coy: a code-to-code search engine, in: Proceedings of the 40th International

Conference on Software Engineering, 2018, pp. 946–957.

[39] R. Holmes, Do developers search for source code examples using multi-

ple facts?, in: 2009 ICSE Workshop on Search-Driven Development-Users,

Infrastructure, Tools and Evaluation, IEEE, 2009, pp. 13–16.

[40] K. T. Stolee, S. Elbaum, D. Dobos, Solving the search for source code,

ACM Transactions on Software Engineering and Methodology (TOSEM)

23 (3) (2014) 1–45.

[41] P. Tamla, T. Böhm, K. Gaisbachgrabner, J. Mertens, M. L. Hemmje,

M. Fuchs, Survey: Software search in serious games development., in:

CERC, 2019, pp. 155–166.

[42] M. Soliman, M. Wiese, Y. Li, M. Riebisch, P. Avgeriou, Exploring web

search engines to find architectural knowledge, in: 2021 IEEE 18th In-

ternational Conference on Software Architecture (ICSA), IEEE, 2021, pp.

162–172.

[43] S. Bhatia, S. Tuarob, P. Mitra, C. L. Giles, An algorithm search engine for

software developers, in: Proceedings of the 3rd International Workshop on

Search-Driven Development: Users, Infrastructure, Tools, and Evaluation,

2011, pp. 13–16.

[44] J. Stylos, B. A. Myers, Mica: A web-search tool for finding api compo-

nents and examples, in: Visual Languages and Human-Centric Computing

(VL/HCC’06), IEEE, 2006, pp. 195–202.

38

[45] E. Stoica, M. A. Hearst, M. Richardson, Automating creation of hierarchi-

cal faceted metadata structures, in: Human Language Technologies 2007:

The Conference of the North American Chapter of the Association for

Computational Linguistics; Proceedings of the Main Conference, 2007, pp.

244–251.

[46] Z. Dou, Z. Jiang, S. Hu, J.-R. Wen, R. Song, Automatically mining facets

for queries from their search results, IEEE Transactions on knowledge and

data engineering 28 (2) (2015) 385–397.

[47] W. Kong, J. Allan, Extending faceted search to the general web, in: Pro-

ceedings of the 23rd ACM International Conference on Conference on In-

formation and Knowledge Management, 2014, pp. 839–848.

[48] W. Kong, J. Allan, Precision-oriented query facet extraction, in: Proceed-

ings of the 25th ACM International on Conference on Information and

Knowledge Management, 2016, pp. 1433–1442.

[49] J. Friedrich, C. Lindemann, M. Petrifke, Utilizing query facets for search

result navigation, in: 2015 26th International Workshop on Database and

Expert Systems Applications (DEXA), IEEE, 2015, pp. 271–275.

[50] C. Li, N. Yan, S. B. Roy, L. Lisham, G. Das, Facetedpedia: dynamic gener-

ation of query-dependent faceted interfaces for wikipedia, in: Proceedings

of the 19th international conference on World wide web, 2010, pp. 651–660.

[51] Y. Zhang, X. Chen, Q. Ai, L. Yang, W. B. Croft, Towards conversational

search and recommendation: System ask, user respond, in: Proceedings

of the 27th ACM International Conference on Information and Knowledge

Management, 2018, pp. 177–186.

[52] C. Rosset, C. Xiong, X. Song, D. Campos, N. Craswell, S. Tiwary, P. Ben-

nett, Leading conversational search by suggesting useful questions, in: Pro-

ceedings of The Web Conference 2020, 2020, pp. 1160–1170.

39

[53] L. T. Hien, L. T. T. Ly, C. Pham-Nguyen, T. Le Dinh, H. T. Gia, et al.,

Towards chatbot-based interactive what-and how-question answering sys-

tems: the adobot approach, in: 2020 RIVF International Conference on

Computing and Communication Technologies (RIVF), IEEE, 2020, pp. 1–

3.

[54] A. Elgohary, D. Peskov, J. Boyd-Graber, Can you unpack that? learning to

rewrite questions-in-context, Can You Unpack That? Learning to Rewrite

Questions-in-Context (2019).

[55] S. Vakulenko, S. Longpre, Z. Tu, R. Anantha, Question rewriting for con-

versational question answering, in: L. Lewin-Eytan, D. Carmel, E. Yom-

Tov, E. Agichtein, E. Gabrilovich (Eds.), WSDM ’21, The Fourteenth

ACM International Conference on Web Search and Data Mining, Vir-

tual Event, Israel, March 8-12, 2021, ACM, 2021, pp. 355–363. doi:

10.1145/3437963.3441748.

URL https://doi.org/10.1145/3437963.3441748

[56] R. Anantha, S. Vakulenko, Z. Tu, S. Longpre, S. Pulman, S. Chappidi,

Open-domain question answering goes conversational via question rewrit-

ing, in: Proceedings of the 2021 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies, Association for Computational Linguistics, Online, 2021, pp.

520–534. doi:10.18653/v1/2021.naacl-main.44.

URL https://aclanthology.org/2021.naacl-main.44

[57] S. Stoyanchev, A. Liu, J. Hirschberg, Towards natural clarification ques-

tions in dialogue systems, in: AISB symposium on questions, discourse and

dialogue, Vol. 20, 2014.

[58] H. Zamani, S. Dumais, N. Craswell, P. Bennett, G. Lueck, Generating

clarifying questions for information retrieval, in: Proceedings of The Web

Conference 2020, 2020, pp. 418–428.

40

https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3437963.3441748
https://aclanthology.org/2021.naacl-main.44
https://aclanthology.org/2021.naacl-main.44
https://doi.org/10.18653/v1/2021.naacl-main.44
https://aclanthology.org/2021.naacl-main.44

[59] B. Hancock, A. Bordes, P.-E. Mazaré, J. Weston, Learning from dialogue

after deployment: Feed yourself, chatbot!, in: A. Korhonen, D. R. Traum,

L. Màrquez (Eds.), Proceedings of the 57th Conference of the Association

for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August

2, 2019, Volume 1: Long Papers, Association for Computational Linguis-

tics, 2019, pp. 3667–3684.

URL https://www.aclweb.org/anthology/P19-1358/

[60] M. De Boni, S. Manandhar, An analysis of clarification dialogue for ques-

tion answering, in: Proceedings of the 2003 Human Language Technology

Conference of the North American Chapter of the Association for Compu-

tational Linguistics, 2003, pp. 48–55.

[61] M. De Boni, S. Manandhar, Implementing clarification dialogues in open

domain question answering, Natural Language Engineering 11 (4) (2005)

343–362.

[62] J. Trienes, K. Balog, Identifying unclear questions in community question

answering websites, in: European Conference on Information Retrieval,

Springer, 2019, pp. 276–289.

[63] P. Braslavski, D. Savenkov, E. Agichtein, A. Dubatovka, What do you

mean exactly? analyzing clarification questions in cqa, in: Proceedings of

the 2017 Conference on Conference Human Information Interaction and

Retrieval, 2017, pp. 345–348.

[64] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He, L. Vanderwende,

Generating natural questions about an image, in: Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics, ACL

2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, The

Association for Computer Linguistics, 2016.

URL http://aclweb.org/anthology/P/P16/P16-1170.pdf

[65] H. Zamani, G. Lueck, E. Chen, R. Quispe, F. Luu, N. Craswell, Mim-

ics: A large-scale data collection for search clarification, in: Proceedings

41

https://www.aclweb.org/anthology/P19-1358/
https://www.aclweb.org/anthology/P19-1358/
https://www.aclweb.org/anthology/P19-1358/
http://aclweb.org/anthology/P/P16/P16-1170.pdf
http://aclweb.org/anthology/P/P16/P16-1170.pdf

of the 29th ACM International Conference on Information & Knowledge

Management, 2020, pp. 3189–3196.

[66] H. Zamani, B. Mitra, E. Chen, G. Lueck, F. Diaz, P. N. Bennett,

N. Craswell, S. T. Dumais, Analyzing and learning from user interactions

for search clarification, in: Proceedings of the 43rd International ACM SI-

GIR Conference on Research and Development in Information Retrieval,

2020, pp. 1181–1190.

[67] I. Sekulić, M. Aliannejadi, F. Crestani, User engagement prediction for

clarification in search, in: Proceedings of the Advances in Information Re-

trieval. ECIR 2021, 2021, pp. 619–633.

42

	1 Introduction
	2 Eliciting Clarification Questions
	2.1 Software Development-Related Queries
	2.2 Facets Identification and Clarification Question Generation
	2.3 Grouping into Common Clarification Questions

	3 Recommending Clarification Questions
	3.1 Data Augmentation
	3.2 Neural Network Architecture

	4 Evaluation
	4.1 Retrieval Evaluation
	4.1.1 Baselines
	4.1.2 Metrics
	4.1.3 Results and Discussion

	4.2 Software Developer Study
	4.2.1 Browser Plugin
	4.2.2 Participants and Procedure
	4.2.3 Results and Discussion

	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work

