
Information and Software Technology 152 (2022) 107043

A
0

C
t
D
T
a

b

c

d

e

A

D
x

K
P
P
S
T

1

m
U
g
s
d
A
p
H
t
a
i

t
i
p

z

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

rex: Predicting patch correctness in automated repair of C programs
hrough transfer learning of execution semantics
apeng Yan a, Kui Liu b,∗, Yuqing Niu a, Li Li c, Zhe Liu a, Zhiming Liu d, Jacques Klein e,
egawendé F. Bissyandé e

Nanjing University of Aeronautics and Astronautics, Nanjing, China
Huawei Software Engineering Application Technology Lab, Hangzhou, China
Monash University, Melbourne, Australia
Northwestern Polytechnical University, Xian, China
University of Luxembourg, Luxembourg City, Luxembourg

R T I C L E I N F O

ataset link: https://github.com/1993ryan/cre

eywords:
rogram repair
atch correctness
emantic feature
ransfer learning

A B S T R A C T

A significant body of automated program repair literature relies on test suites to assess the validity of generated
patches. Because such oracles are weak, state-of-the-art repair tools can validate some patches that overfit
the test cases but are actually incorrect. This situation has become a prime concern in APR, hindering its
adoption by the industry. This work investigates execution semantic features based on micro-traces, a form
of under-constrained dynamic traces. We build on transfer learning to explore function code representations
that are amenable to semantic similarity computation and can therefore be leveraged for classifying patch
correctness. Our Crex prototype implementation is based on the Trex framework. Experimental results on
patches generated by the CoCoNut APR tool on CodeFlaws programs indicate that our approach can yield high
accuracy in predicting patch correctness. The learned embeddings were proven to capture semantic similarities
between functions, which was instrumental in training a classifier that identifies patch correctness by learning
to discriminate between correctly patched code and incorrectly patched code based on their semantic similarity
with the buggy function.
. Introduction

Test-based automated program repair (APR) has witnessed great
omentum in recent software engineering research literature [1–3].
nfortunately, the (low) quality of the automatically-generated pro-
ram patches affects potential interest from industry practitioners. The
tate-of-the-art mainly relies on weak test suites as the oracle for vali-
ating repair attempts (i.e., the correctness of APR-generated patches).
nd if a patch generated by an APR tool can make the patched buggy
rogram pass all tests, the patch will be considered as a valid patch.
owever, such validation always yields patches that mostly overfit [4]

he test suites (i.e., they can make the patched buggy programs pass
ll tests, but they do not really fix the related bugs) and are actually
ncorrect [5], or even, sometimes, are introducing more bugs [6].

Towards addressing the challenges of reliable patch validation,
he community is actively exploring various techniques for identify-
ng patch correctness automatically [7]. While some approaches pro-
ose strengthening the validation oracle by augmenting the test suite

∗ Corresponding author.
E-mail addresses: dapeng.yan@nuaa.edu.cn (D. Yan), brucekuiliu@gmail.com (K. Liu), 977012358@qq.com (Y. Niu), li.li@monash.edu (L. Li),

he.liu@nuaa.edu.cn (Z. Liu), zliu@nwpu.edu.cn (Z. Liu), jacques.klein@uni.lu (J. Klein), tegawende.bissyande@uni.lu (T.F. Bissyandé).

through automatic test case generation [8] or inspecting the output
difference in dynamic execution traces [9], the trend in the last couple
of years has been to investigate static features for predicting patch
correctness, in order to bypass the oracle problem in test generation
as well as to scale to the large number of patches produced by APR
tools [5]. In this direction, Csuvik et al. [10] have built up the empirical
observation that buggy code and correctly-patched code share some
textual and structural similarity. Ye et al. [11] followed up by proposing
a supervised learning-based approach with carefully engineered patch
features at the syntax level while Tian et al. [12] leveraged deep
representation learning of code changes for feeding to a classifier of
patch correctness.

While the aforementioned static approaches have achieved promis-
ing performance [7] on benchmarks in the lab, they still suffer from
one fundamental weakness: the lack of code semantic basis in their
decision on patch correctness does not readily allow for practitioner’s
vailable online 12 August 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.107043
eceived 25 January 2022; Received in revised form 6 August 2022; Accepted 8 A
ugust 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
https://github.com/1993ryan/crex
mailto:dapeng.yan@nuaa.edu.cn
mailto:brucekuiliu@gmail.com
mailto:977012358@qq.com
mailto:li.li@monash.edu
mailto:zhe.liu@nuaa.edu.cn
mailto:zliu@nwpu.edu.cn
mailto:jacques.klein@uni.lu
mailto:tegawende.bissyande@uni.lu
https://doi.org/10.1016/j.infsof.2022.107043
https://doi.org/10.1016/j.infsof.2022.107043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107043&domain=pdf

Information and Software Technology 152 (2022) 107043D. Yan et al.

b

2

confidence. In contrast, dynamic-based approaches fully exploit se-
mantic information of patch-based behavior collected from execution
traces. Unfortunately, this is achieved through expensive execution
campaigns of the test suite, which unfavorably affect the efficiency
of the patch validation [5]. The test oracle problem also threatens
dynamic approaches: given a test case, one may always lack an accurate
specification of the output should be [13]. Recent literature has shown
that despite the substantial analysis effort and the use of deep represen-
tation learning, it remains challenging to extract semantic (i.e., from
execution behavior perspective) features from the disparate syntax and
structure of programs [14,15]. Wang et al. have recently further shown
that static approaches struggle with a generalization problem beyond
the subjects they have been trained on [7].

This paper. We aim to find a balance between exploiting static code
information and exploring dynamic execution behavior. To that end, we
refer to strong results in the recent literature on patch correctness: (1)
Xiong et al. [9] observed that the behavior of test case execution for
the correct patch is different from the incorrect patches. This finding
suggests that patch correctness can be decided by reasoning about sim-
ilarity of execution traces. (2) Tian et al. [12], with deep representation
learning, have suggested that patch code syntax deeply embeds some
semantics that can be leveraged to predict correctness. Inspired by the
work of Mckee et al. [14] on binary semantic analysis, we resort to
the notion of micro-execution, which is the ability to execute any code
fragment without a user-provided test driver or input data [16]. Then,
we build on transfer learning to learn execution semantics explicitly
from the micro-traces (cf. Section 2.1) that can be extracted from micro
executions of the buggy and patched code.

We design and implement Crex, a model for identifying patch
correctness based on learned execution semantics. Overall, our contri-
utions are as follows:

• We investigate the automation of patch correctness identification
in automated program repair of C programs. The state-of-the-art
in this research direction has mainly focused on Java programs.
Our efforts to run experimental validations have also uncovered
various reproduction/replication issues with APR tools from the
literature.

• We propose a novel perspective in patch correctness identification
based on micro-executions and transfer learning of execution
semantics. The learned embeddings are used by Crex to learn to
predict correctness based on functional changes.

• We conduct experimental validations based on patches from Co-
CoNut and find that Crex is able to achieve high Recall (at
100%) and high F1 (at 89.0%) when the classifier is trained on
micro-trace based embeddings with a Logistic regression learner.

. Crex

Fig. 1 overviews the main steps of Crex. In the data preprocessing
step, patches are first processed to infer the buggy program code and
patched program code, and we collect execution traces from these code
samples. Then, in the embedding process, these execution traces are
fed to a pre-trained architecture to learn embeddings that characterize
semantic executions of the buggy and patched code. With these embed-
dings, we can readily train classifiers to predict patch correctness in the
last prediction step. In the remainder of this section, we first provide
background information around the main concepts of micro-traces (cf.
Section 2.1) and execution semantics (cf. Section 2.2), before discussing
the design and implementation details of Crex (cf. Section 2.3).

2.1. Micro-traces: Representing execution semantics

Execution semantics refer to the behavior of the program when it
is executed, in contrast to the static syntax of code. Such semantics
are generally inferred by launching a campaign of dynamic tests based
2

on a diverse set of input data covering the program execution paths.
In a recent work, Godefroid [16] has presented the concept of micro-
execution, which is a form of under-constrained dynamic execution
that does not require a user-provided test driver or input data. Instead,
any code fragment can be micro-executed by randomly initializing
registers and memory, which will yield micro-traces of program micro-
executions. A micro-execution indeed will produce five kinds of data:
micro-trace code sequence, micro-trace value sequence, instruction
position sequence, opcode/operand position sequence, and architecture
sequence.

The micro-trace code sequence is an assembly code sequence gen-
erated by tokenizing the assembly instructions in the code fragment:
these tokens capture the syntax and semantics of the instructions. The
micro-trace value sequence is a sequence of the dynamic values of
the corresponding assembly instruction code in the micro-trace. The
instruction position sequence represents the relative positions between
the instructions, and the opcode/operand position sequence repre-
sents the relative positions within each instruction. These positions
are critical for inferring semantics (at the binary level). The architec-
ture sequence describes the input binary’s instruction set architecture
(i.e., x86, x64, ARM, or MIPSgn) to distinguish the syntax of different
architectures.

Fig. 2 illustrates the inference of micro-traces from a code sam-
ple: ‘‘Inst POS’’ and ‘‘OP POS’’ represent the instruction position se-
quence and opcode/operand position sequence. The micro-trace value
sequence consists of four parts (i.e., Byte1, Byte2, Byte3, and Byte4).
The concrete dynamic values in the micro-trace value sequence are
independent tokens, which leads to prohibitively large vocabulary size.
So they are divided into four parts with a hierarchical input encoding
scheme [15].

In a recent work for binary analysis, Pei et al. [15] have demon-
strated that micro-traces, although they only approximate program be-
havior, can be leveraged as carriers of execution semantics to enable
the computation of functional semantic similarity at the binary level.
In this work, we follow the same approach and collect micro-traces for
patched and buggy programs to reason about patch correctness.

2.2. Transfer learning execution semantics

Deep representation learning approaches have been popular in the
recent research literature for extracting features of program code in
order to help reason about software semantics (to some extent). For
example, NLP-based embedding techniques such as Word2Vec [17],
Doc2Vec [17] and BERT [18] have been successfully applied for
semantics-related tasks [12,19,20] and achieved promising results.
However, code is fundamentally structural, which means that NLP mod-
els do not necessarily capture the appropriate signal to infer semantics.
Alon et al. [21] took into consideration structural information in code
and proposed code2vec model to mine semantic features from AST
paths of code functions. Hoang et al. [22] proposed CC2Vec, which
specializes in code changes, for program debugging tasks. Nevertheless,
all these learning models focus on the code syntax and structure, which
does not necessarily relate to program execution semantics [15].

In a recent work, Pei et al. [15] proposed learning execution se-
mantics explicitly from functions’ micro-traces using a hierarchical
Transformer [23]. Their Trex framework has been shown to outperform
state-of-the-art approaches in matching semantically similar functions.
Concretely, considering the diversity of micro-traces that can be in-
ferred from different implementations, architectures, and compilers,
the five kinds of micro-traces sequences can help carry different con-
textual information for code functions. Firstly, the four micro-trace
value sequences are encoded with a hierarchical input encoding scheme
based on a 2-layer bidirectional LSTM model to address the challenge
of the large vocabulary size of values. The other four micro-trace se-
quences are encoded with the one-hot encoded embedding matrix [24].

All of the sequences are encoded with the same embedding dimension

Information and Software Technology 152 (2022) 107043D. Yan et al.
Fig. 1. Overview of Crex.
Fig. 2. Example of micro-traces converted from the code.
to facilitate integrating these encoded sequences into a single sequence
that will be fed to the Transformer. After the sequence encoding, Trex
was trained on an unsupervised pre-training task. In this process, given
the micro-trace of a function, Trex first randomly masks some parts
of the micro-trace and learns a masked language model to predict
the masked parts using the non-masked parts without any additional
labeling effort. To ensure that Trex will capture the execution semantic
similarities beyond the syntactic similarities, the pre-training task of the
masked language model is strengthened with several masking strategies
(e.g., masking registers, masking opcodes, etc.). In addition, to learn
the contextual information, Trex is employed with self-attention lay-
ers [23] to endow the context-sensitive meaning of each token to its
embedding. Each token is assigned to a fixed embedding regardless of
its changed contexts, which is different from the static embeddings with
word2vec [25]. After the self-attention layers, the execution semantics
of each instruction and the overall function will be encoded into final
learned embeddings to represent the execution semantic features.

2.3. Implementation of Crex

Crex is implemented by concerning the three processes of data
preprocessing for extracting the micro-traces related to the program
before and after patching (cf. Section 2.3.1), learning the execution
semantics and producing embeddings (cf. Section 2.3.2) and training
a classifier to predict patch correctness (cf. Section 2.3.3).
3

2.3.1. Data pre-processing
Patches are textual syntax presentations of localized code changes

for fixing bugs in programs. Because it is challenging to have a full
view of the change impact from the patch, we propose rebuilding the
two versions of the programs before and after the patch: the first is the
buggy program; the latter is the patched program. To characterize how
the changes impact the program behavior, we must retrieve execution
semantics from both versions. Code syntax not being sufficient for this
task, we infer micro-traces [15], the under-constrained dynamic traces
(cf. Section 2.1), which we use to represent the execution semantics of
the buggy code and the patch code at the function level. Our proto-
type implementation leverages a state of the art tool implemented by
Godefroid [16] to perform micro-execution of programs. We then adopt
Trex as the framework, which supports micro-executions, to collect the
micro-traces for the buggy code and the patched code.

Trex produces micro-traces at the program level. Our design also
considers the function level as the sweet spot for learning execu-
tion differences between buggy and patched code and deciding on
correctness. Given a patch, we leverage annotations to identify the
changed functions, and then we can circumscribe the relevant part of
the micro-traces for the function. Given assembly language definition,
we leverage the function call notation ‘‘push rbp’’ to pinpoint the
starting point of our target function traces. We observe that the other
representations of the micro-trace actions for each function have the
same position as the micro-trace code sequence in the corresponding
sequences (cf. the example in Fig. 2).

Information and Software Technology 152 (2022) 107043D. Yan et al.

v
u
c
o
3
p

4

4

t
t
d
f

R
b
p
w
t

F
r
c
t
f

J

2.3.2. Embedding execution semantics
Each sequence of micro-traces represents different contextual infor-

mation for the related functions. These sequences should therefore be
appropriately integrated for feature learning of execution semantics. So
far, prior works leveraging representation learning to embed patches
for correctness identification have a focus on the static syntax code
exploiting signals in the token stream or the AST structure [11,12]. In
this work, we propose building representations that embed execution
semantics using the micro-traces. To that end, we leverage a pre-trained
model released by Pei et al. [15]: The model was trained on 1,472,066
functions collected from 13 popular open-source software projects and
fine-tuned with 50,000 random function pairs for each project. This
model was already proven effective in matching semantically similar
functions by exceeding the prevailing state of the art results. Our
implementation of Crex builds on this pre-trained model to produce
embeddings of buggy code functions and patched code functions for
learning to predict patch correctness.

2.3.3. Prediction of patch correctness
Given the previous code embeddings, which encode the execution

semantics of buggy and patched code, we propose training binary
classifiers to predict patch correctness. We consider several learning
algorithms for the patch correctness prediction task: Logistic Regres-
sion, Naïve Bayes, Decision Tree, Random Forest, XGBoost, and Deep
Neural Networks. These algorithms have already been employed in
prior studies of patch correctness [12], and we expect to be able to
compare the performance results on an equal basis.

3. Experimental study design

We enumerate the research questions that are investigated to eval-
uate our contributions before presenting the bugs and patch datasets.
The reason we do it at the function level is so that the code snippets we
analyze can both contain the context of the modification and remove
redundant parts of the code.

3.1. Research questions

This work aims to investigate the possibility of learning execu-
tion semantics from the micro-traces of buggy functions and patched
functions of the patches generated by APR tools to predict patch
correctness. Thus, our investigation is conducted by answering the
following research questions:

• RQ-1. Do the execution semantics learned from the micro-traces (of
the buggy and patched functions) align with the empirically validated
conclusion that correct patches incur small changes? Bug fixes al-
ways leverage small changes. This is a hypothesis that is widely
accepted and built upon in the program repair literature [26–30].
With this RQ, we assess whether embeddings reflecting execution
semantics indeed yield close cosine similarity scores for buggy
and correctly-patched functions.

• RQ-2. To what extent can dissimilarity measurements based on the
execution semantics of buggy and patched code be used to filter out
overfitting patches? In this RQ, we investigate whether a threshold
can be inferred to separate correct and incorrect patches based on
the similarities of learned embeddings.

• RQ-3. Can the Crex approach yield classifiers that are effective in
predicting the correctness of patches generated by APR tools? We
assess the performance of Crex on predicting the correctness of
patches produced by the CoCoNut repair tool. We also present
comparisons against baseline approaches, which we replicated
4

from prior work targeting patch correctness in Java.
3.2. Dataset

Our work applies to C programs. We consider Codeflaws [31] which
is the most suitable benchmark for our work from those available in
literature since it includes the buggy programs, which can be compiled,
as well as the associated correct patches. Other benchmarks (e.g., DBG-
Bench [32], IntroClass [33], and ManyBugs [33]) do not meet all these
requirements at the same time. Codeflaws include C program defects
with clear defect categories. This benchmark was widely used in the
literature. Because of an implementation constraint in the underlying
Trex framework, which must encode 8 micro-trace sequences within
512 characters, our experiments could only focus on 1582 bugs from
the Codeflaws dataset.

Different APR tools have been exploited on C programs [34]. Un-
fortunately, only the authors of CoCoNut [35] publicly released their
generated patches for 413 bugs from Codeflaws. Therefore, our study
focus on the 212 patches from CoCoNut for which micro-traces could
be computed, as the dataset for the experimental validation of the patch
correctness predictor. After a careful manual inspection of patches
generated for each buggy program, we were able to label, among the
212 patches, 170 patches as correct and 42 as incorrect.

3.3. Experimental setup

Crex has been implemented in 1874 lines of Python code. The latest
ersion of the pre-trained Trex model1 provided by Pei at al. [15] is
sed in Crex. All experiments were conducted on a platform with a
onfiguration of 4-core CPU, 16GiB memory, and Ubuntu 16.04 64-bit
perating system. The other configuring environment includes Python
.6, Conda 4.10.1, and the latest PyTorch 1.9 as well as its required
ackages.

. Experimental results

.1. RQ-1: Similarity of execution semantics

We first investigate the distribution of (cosine) similarities between
he execution semantics embeddings of the buggy and patched func-
ions to assess the possibility of using the semantic execution embed-
ing to represent the patches. To that end, we aim to answer the
ollowing three questions:

• RQ-1.1: Do different patches present different similarities be-
tween the buggy functions and patched functions based on their
execution semantics embeddings?

• RQ-1.2: To what extent are the similarities between the buggy
functions and the patched functions different from the similarities
between non-semantically-similar functions?

• RQ-1.3: Will the correct patches present different semantic simi-
larities from the incorrect patches?

Q-1.1:. According to the AST type and Defect type taxonomies2 of
ugs provided by Codeflaws, we classify the 1582 bugs and their related
atches into four AST types and 39 Defect types, respectively. Then,
e calculate the cosine similarities between these buggy functions and

heir patched functions with the execution semantics embeddings.
The similarity distribution of the four AST type bugs is shown in

ig. 3, where ‘‘Higher-order’’, ‘‘OperanD’’, ‘‘Operator’’, and ‘‘Statement’’
epresent the AST types that are related to bug locations as well as the
orresponding code changes of patches. From the AST type category,
he similarities between buggy function and patch function present dif-
erent distributions. The ‘‘OperanD’’ and ‘‘Operator’’ categories contain

1 https://drive.google.com/file/d/1xNcW8r01_
2OTZFh1B0eOG5ikj73zhwe/view.

2 https://codeflaws.github.io.

https://drive.google.com/file/d/1xNcW8r01_J2OTZFh1B0eOG5ikj73zhwe/view
https://drive.google.com/file/d/1xNcW8r01_J2OTZFh1B0eOG5ikj73zhwe/view
https://codeflaws.github.io

Information and Software Technology 152 (2022) 107043D. Yan et al.

a

Fig. 3. Distribution of semantic similarities between buggy functions and patched
functions with AST-type categories.

the bugs located on operand/operator with simple code changes. Thus
the distributions of their semantic similarities tend to span less than the
distribution similarities for patches in ‘‘Higher-order’’ and ‘‘Statement’’
categories where bugs are located and fixed at the statement or higher
AST node levels.

Fig. 4 further shows the similarity distributions with the 39 Defect
categories. Each defect type name is coined by concatenating the first
one character (representing its AST type, i.e., D, H, O, and S represent-
ing OperanD, Higher-order, Operator, and Statement respectively) with
its concrete code change action. For example, HIMS (Insert multiple
non-branches statements, Higher-order type), DRAC (Replace constant
of array initialization, OperanD type), ORRN (Replace relational oper-
ator, Operator type), and SISF (Insert function call, Statement type).
For clearer definitions, please reference the aforementioned website.
As presented in Fig. 4, we can observe that the 39 categories present
different distributions of the similarities between their buggy functions
and patched functions. It implies that the extracted execution semantics
features of the buggy functions and patch functions can be used to
distinguish the different categories of defects.

✍ Answers to RQ-1.1

The embeddings learned from execution semantics of buggy and patched
code capture very well the different semantic characteristics of AST con-
texts per defect type: the yielded embeddings can be used to discriminate
defect types.

RQ-1.2:. For this question, we aim to investigate to what extent the
embeddings (based on execution semantics mined from micro-traces)
help to identify which patched function is associated with which buggy
function based on code semantic similarity. To this end, for the 1582
buggy functions we selected, we first randomly selected their both
different AST and Defect-class types for each function of them to
compose 1582 comparison groups. Therefore, each group of functions
we compared comes from different programs and bug types, so that
we consider that the 1582 groups we matched are not semantically
similar functions and then compute their execution semantics-based
embeddings. We then calculate the cosine similarity between the buggy
function embedding and its non-semantically-similar function embed-
ding. The distributions of these similarity values are illustrated in
Fig. 5.

Only a single outlier of patched functions in Fig. 5 has a much
lower similarity than others. Fig. 6 gives an overview of this outlier by
presenting the function patch, where only a statement is deleted from
the buggy function.

When looking at their micro-traces (shown in Fig. 7), the differences
between these functions appear indeed significant, especially w.r.t.
the four micro-trace value sequences. Such significant differences in
micro-traces led to the low similarity between the buggy function and
the patched one. We infer that the big changes in micro-trace values
cause the differences (highlighted with yellow background, the same
s other similar figures) of execution semantics.
5

Table 1
Statistics on the similarities for the ground-truth dataset.

Embedding 1st Qu. Med. 3rd Qu. Max. Mean

BERT 96.2% 99.5% 100% 100% 95.1%
Word2Vec 99.8% 100% 100% 100% 99.7%
Crex 98.5% 99.5% 99.9% 100% 96.7%

✍ Answers to RQ-1.2

Embeddings learned from execution semantics are faithful to the seman-
tic similarity between a patched function and its buggy version. When
compared to semantically-dissimilar functions, the embeddings present
high dissimilarity.

RQ-1.3:. APR tools generate plausible patches without the possibil-
ity for the imperfect test oracles to decide which are incorrect. As
demonstrated by Xiong et al. [9], incorrect patches present different
semantics, in the execution traces, from the correct patches. In this
question, we thus assess to what extent learn embeddings capture these
differences. To this end, we compute the similarities for the 170 correct
and 42 incorrect patches collected from CoCoNut’s results.

Fig. 8 shows that for correct patches, the similarities between buggy
and patched functions are high, while this is not as often the case
for incorrect patches. We further compute the correlation coefficient
between the two groups of similarities to investigate the relationship
between them. Specifically, we consider the Pearson correlation coef-
ficient. If the Pearson correlation coefficient is closer than zero, the
linear correlation between the two groups of tested data is weaker.
Furthermore, if the value is less than zero, the linear correlation is
negative. The Pearson correlation coefficient value is −0.038874, which
is a negative value close to zero. It indicates that, given a buggy
function, the correctly patched functions can be differentiated, with
significant confidence, from the incorrectly patched functions, based
on the embeddings learned from execution semantics inferred from
micro-traces.

✍ Answers to RQ-1.3

Using the embeddings learned from execution semantics of functions,
similarities between the correctly patched function and the buggy func-
tion significantly differ from the similarity between the incorrectly
patched functions and the buggy function.

4.2. RQ-2: Identifying the correct patches with execution semantics and
straightforward thresholds

Based on the findings in the first research question, we further
investigate the possibility of setting a threshold similarity score to
decide which APR-generated patches are likely incorrect. Results from
this investigation will provide insights into the exploration of execution
semantics in automated program repair.

To answer this question, we first resort the distribution of the
similarities between the 1582 buggy and patched functions to guide
the selection of thresholds. In this experiment, in addition to Crex
embedding, we also consider two popular embedding models (BERT
and Word2Vec) to extract the representation vectors from the syn-
tax and static structure of buggy and patched functions. Both BERT
and Word2Vec embeddings have been demonstrated effective by Tian
et al. [12] for predicting patch correctness related to Java bugs in
program repair. We consider both embedding models as a baseline for
identifying correct patches with simple threshold settings.

Table 1 shows the statistic on the similarities between the 1582
buggy and patched functions. For instance, We can see that with both

Information and Software Technology 152 (2022) 107043D. Yan et al.
Fig. 4. Distribution on semantic similarities between buggy functions and patch functions with Defect-class categories.
Fig. 5. Distributions of the similarities between the buggy functions and the patched
functions against non-semantically-similar functions.

BERT and Crex embeddings, 50% of the buggy and patched functions
have a similarity score higher than 99.5% (column Med., i.e., Median
in Table 1). We also note that with Word2Vec, the similarity score
is extremely high (100%) for most of the cases. More generally, for
all three embeddings, the distribution of the similarities between the
buggy and patched functions is narrow. This can be explained by the
fact that their semantics are highly similar to each other due to simple
code changes.

To answer RQ2, we follow a straightforward process: we consider
the 1st and 3rd quartiles as well as the median and mean as possi-
ble thresholds. We then use these thresholds to predict correct and
incorrect patches on the labeled dataset of 212 patches generated by
CoCoNut. We note that, among these 212 patches, 170 are correct and
42 are incorrect. Table 2 presents the results. Overall, Crex outperforms
BERT and Word2Vec models for the 4 metrics considered (i.e., Accu-
racy, Precision, Recall, and F1 score), except for the scenario with the
1st quartile, where BERT is slightly better. Such results show that lever-
aging the execution semantics assesses patch correctness effectively,
6

and this embedding outperforms the deep representations learned from
the code syntax and static structure (i.e., with BERT or Word2Vec).

Finally, as shown in Table 2, when setting a higher threshold
(i.e., median and 3rd quarter), more incorrect patches are missed.
While setting a relatively lower threshold (i.e., 1st quartile and mean)
can contribute to catching more correct patches (higher recall). Practi-
tioners could decide such a different setting by recalling more
(in)correct patches.

✍ Answers to RQ-2

With the execution semantics learned from the micro-traces, it is possible
to identify the correct patches generated by the APR tool by simply setting
a threshold.

4.3. Predicting patch correctness with execution semantics

With the promising results presented in previous sections, we pro-
pose investigating the feasibility of predicting patch correctness for APR
tools with the execution semantics learned from the micro-traces of
patched functions. To this end, we compare the performance of Crex
using different well-known classifiers: XGBoost, Random Forest, Logis-
tic regression, Decision Tree, Naïve Bayes, and Deep Neural Networks
(DNN). We also compare the performance of Crex against the related
approach proposed by Tian et al. [12]. The authors present an approach
to predict patch correctness with semantic features learned from code
syntax and structure in this recent work. The underlying embedding is
yielded by either BERT or Word2Vec. In this experiment, we consider

Information and Software Technology 152 (2022) 107043D. Yan et al.

a
b
H
s
m
f
F
(
c
s
n
o
s

c
m
t
b

Fig. 6. Example of a patched function with low execution semantic similarity.
Table 2
Classification with different thresholds.
Model Metric Thresholds

1st Qu. Median 3rd Qu. Mean

BERT

#TP 148 110 6 150
#TN 11 20 36 11
#FP 31 22 6 31
#FN 22 60 164 20

Accuracy 75.0% 61.3% 19.8% 75.9%
Precision 82.7% 83.3% 50.0% 82.9%
Recall 87.1% 64.7% 3.5% 88.2%
F1 84.8% 72.8% 6.6% 85.5%

Word2Vec

#TP 133 88 40 110
#TN 10 19 34 14
#FP 32 23 8 28
#FN 37 82 130 60

Accuracy 67.5% 50.5% 34.9% 58.5%
Precision 80.6% 79.3% 83.3% 79.7%
Recall 78.2% 51.8% 23.5% 64.7%
F1 79.4% 62.6% 36.7% 71.4%
#TP 145 118 51 161
#TN 10 23 36 6
#FP 32 19 6 36

Crex #FN 25 52 119 9
Accuracy 73.1% 66.5% 41.0% 78.8%
Precision 81.9% 86.1% 89.5% 81.7%
Recall 85.3% 69.4% 30.0% 94.7%
F1 83.6% 76.9% 44.9% 87.7%
the 212 patches generated by CoCoNut (corresponding to 212 bugs
in Codeflaws). Considering the small size of the dataset, we conduct
10-fold cross-validation in this experiment. We present the results of
the experiment in Table 3 with five metrics: accuracy (Acc.), precision
(Prec.) recall, F-measure (F1), and AUC (area under the ROC curve,
i.e., comprehensive performance of the predictor).

Table 3 presents the performance comparison for predicting patch
correctness. Overall, Crex achieves better performance with XGBoost
nd Logistic regression classifiers than the BERT and Word2Vec models
ut underperforms the two models with the other four classifiers.
owever, when Crex performs worse, the performance of Crex is only

lightly lower than BERT and Word2Vec. Moreover, among all these
etrics, we note that Crex achieves the highest value, i.e., Crex outper-

orms BERT and Word2Vec, for AUC metric at 61.6% (with Random
orest), for F1 at 89.0%, Accuracy at 80.2% and Recall at 100%
with Logistic Regression). Such promising results indicate that Crex
an effectively predict patch correctness by leveraging the execution
emantics learned from the micro-traces of patched functions. We also
ote again that the execution semantics based embedding of Crex
utperforms the approaches of learning semantic features from the code
yntax and structure.

When looking at the different classifiers, we note that the DNN
lassifier performs worse than the other classifiers for all three learning
ethods. It is reasonable considering the very small dataset size, as

he DNN is a deep-learning classifier that should rely on a large and
alanced dataset (as in [12]). When looking at the five other machine
7

Table 3
Performance comparison for predicting patch correctness.

Classifier Embedding Accuracy Precision Recall F1 AUC

XGBoost
BERT 74.1% 79.2% 91.8% 85.0% 46.4%
Word2Vec 76.0% 79.6% 94.1% 86.2% 53.2%
Crex 78.3% 80.8% 95.9% 87.6% 55.9%

Logistic
Regression

BERT 78.3% 80.1% 97.1% 87.7% 55.1%
Word2Vec 76.9% 79.9% 95.3% 86.9% 51.1%
Crex 80.2% 80.2% 100.0% 89.0% 51.4%

Decision
Tree

BERT 67.9% 78.5% 77.1% 77.7% 48.8%
Word2Vec 68.4% 79.2% 84.7% 79.7% 49.2%
Crex 68.4% 81.7% 77.1% 77.9% 47.2%

Random
Forest

BERT 76.9% 80.4% 94.1% 86.7% 50.0%
Word2Vec 74.5% 79.3% 92.4% 85.3% 58.7%
Crex 75.0% 79.1% 93.5% 85.7% 61.6%

Naïve
Bayes

BERT 58.6% 77.9% 65.9% 70.7% 47.7%
Word2Vec 70.0% 82.8% 77.6% 79.7% 60.0%
Crex 66.0% 82.1% 74.1% 77.5% 54.5%

DNN
BERT 56.1% 52.9% 51.0% 47.1% 51.0%
Word2Vec 59.5% 36.0% 52.1% 39.6% 52.1%
Crex 56.9% 28.5% 50.0% 33.7% 50.0%

learning classifiers, the values of the related metrics for the BERT
and word2Vec models vary largely. In contrast, Crex yields relatively
stable values. This result suggests that the execution semantics learned

Information and Software Technology 152 (2022) 107043D. Yan et al.

i
t

A
e
t

p
C
s
p
c

t
m
T
m
b

w

t
b
d
C
r

Fig. 7. Excerpted differences on micro-traces between the buggy function and its patch
n Fig. 6 (differences are highlighted in yellow). (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Distributions of the similarities between the (in)correct patched functions and
the buggy functions.

from micro-traces are less sensitive to the classification algorithm for
predicting patch correctness.

Correct Patch Prediction Overlap: To further investigate the dif-
ferences among the three embedding approaches, we study the classifi-
cation of the correct patches by focusing on a single classifier. To that
end, we take the XGBoost classifier as an example and put the analysis
result in Fig. 9. Overall, the three models have a very high degree
of overlap for identifying correct patches. Compared to the BERT and
Word2Vec models, Crex is more efficient. It can indeed independently
identify more correct patches than the other two models. Meanwhile,
Crex predicted two correct patches that cannot be predicted by either
BERT or Word2Vec. Only five correct patches predicted by both BERT
and Word2Vec could not be predicted by Crex.

Why does Crex fail (#1): As stated, five patches are correctly
classified by both BERT and Word2Vec, but not by Crex. Let us consider
one of these patches to understand better why Crex can fail. This patch,
generated by CoCoNut, is presented in Fig. 10.

From the aspect of code syntax, the patch removed only two tokens
from six tokens with small changes. When looking at their micro-
traces of the buggy function and the patched function, their micro-trace
8

code, Inst POS, OP POS, and architecture sequences are the same, but h
Fig. 9. # identified correct patches.

their micro-trace value sequences present great differences, as shown
in Fig. 11, which leads to the low similarity of execution semantics.

Crex performance by type of patches: Based on the above exper-
iments, we find Crex can identify more correct patches than the other
two models. We further investigate the performance of Crex by different

ST types on correct patches. We also take the XGBoost classifier as an
xample. The classification of bugs is based on their corresponding AST
ypes as described in Section 4.1.

Fig. 12 presents, for each AST type, the number of correct patches
redicted by Crex to be correct or incorrect. Overall, the accuracy of
rex in identifying correct patches is high for each AST type bug (ratio
core always higher than 90%). Crex fails in identifying more correct
atches for OperanD and Operator bugs than for the other two AST
ategories.
Why does Crex fail (#2): We focus on OperanD correct patches

hat have been misclassified by Crex. In particular, we select one
isclassified patch and show the detailed diff information in Fig. 13.
hen we investigate the changes of its Micro-traces in Fig. 14. The
odification of the APR patch has not changed the micro-trace code,

ut micro-trace values have been impacted greatly.
In Fig. 14, we present the excerpted micro-trace value sequences,

here their differences are highlighted in yellow . The small change
of specific values in code leads to the great change of micro-trace
value sequence, which further impacts the execution semantic learning
and eventually results in the incorrect prediction of correct patches.
As illustrated by the previous cases, Crex does not perform well on
capturing the value changes in bug fixes, which should be carefully
solved in the future work.

✍ Answers to RQ-3

❶ With the execution semantics learned from the micro-traces, Crex
presents a promising performance in predicting patch correctness with
the recall and F1 metrics at 100% and 89.0%, respectively. Crex
outperforms the state-of-the-art patch correctness prediction approaches
relying on semantic features learned from code syntax and structure.
❷ The learned execution semantics are not sensitive to classifica-
tion algorithms in contrast to the syntax and structure-based learning
approaches.
❸ Crex might be further improved by reducing the weights of micro-trace
value sequences in the transfer-learning process of execution semantics
considering the value sequences always contain too specific values.

5. Threats to validity

Threats to External Validity: A threat to the validity of our study is
he dataset used in our experiments. There are abundant C program
ugs and patches that can be collected from open-source projects or
atasets used in the literature. However, Crex requires the complete
program as its input. Such datasets released in the community are

are, and collecting such datasets from open-source projects needs
eavy manual efforts to avoid bug-irrelated commits. So we resort

Information and Software Technology 152 (2022) 107043D. Yan et al.

s

Fig. 10. The diff information for CoCoNut patched program of bug ‘‘197-A-bug-4539529-4539541’’.
Fig. 11. Difference of micro-trace value sequences for the bug and patch functions
hown in Fig. 10.

Fig. 12. # of (un)identified correct APR patches with AST types of bugs.

to the Codeflaws benchmark that has been widely used in the APR
community to conduct our pioneer exploration. As for the data used
in prediction, as many APR-generated patches should be considered
as possible. Unfortunately, only CoCoNut made its patches publicly
available. We failed to re-run other C program targeted APR tools
9

mainly because they are not maintained anymore. Collecting more bug-
patch pairs from open-source C programs and collecting APR-generated
patches by repackaging C program targeted APR tools is considered as
a future work of a deeper exploration on using execution semantics for
predicting patch correctness in C programs.

Threats to Internal Validity: A major threat to the internal validity is
from the input limitation of the pre-trained model for execution seman-
tics, which constrains the length of each micro-trace sequence into 512
characters. We thus have to filter out some data in our experiments.
We plan to build an attention neural-network-based model to address
this limitation by concatenating the execution semantics for the long-
sequence functions. The other threat to internal validity is that Crex
can only identify the correctness of patches generated by APR-tools
for single bugs. We plan to address this threat from two aspects: (1)
untangling the patches of multiple bugs into several independent single
patches, and (2) exploring the new identifying approaches that can be
suitable for the correctness identification of patches for single bugs and
multiple ones.

Threats to Construct validity: For our experiment, the considered classi-
fication algorithms are traditional machine learning algorithms, which
might not be as powerful as deep learning algorithms. Our future
studies on collecting more data for training the deep learning models
will mitigate this threat. In the literature, several state-of-the-art deep
learning based approaches have been proposed to predict patch correct-
ness and achieved promising results, but all of them focused on the task
of Java programs. We failed to replicate them on C program. It is the
other threat to the construct validity for the comparison of this work.
We also plan it as a future work with a complete comparison about
different learning based approaches to boost the patch correctness
identification.

6. Related work

Analyzing patch correctness. The correctness of patches is the key to
evaluating the performance of repair methods and tools to repair bugs.
Unfortunately, this task was initially ignored by researchers until the
emergence of research by Smith et al. [6]. They solved the shortcom-
ings of early automatic repair technology evaluation. Early evaluation
of automatic repair technology cannot correctly distinguish between
correct patches and plausible (i.e., test oracle overfitting) patches.
In a contemporary study, Qi et al. [4] analyzed the quality of the
patches generated by three patch generation systems (GenProg [36],
RSRepair [37], and AE [38]), and they found that most of those patches
are actually incorrect but just overfitting to the test cases. Since then,
the problem of patch overfitting has been attracting attention from
researchers in the APR community. However, the patch correctness val-
idation in APR community mainly relies on the manual identification
with practitioners’ knowledge [5,39–43]. Nevertheless, such manual
intervening cannot boost the patch validation of APR. In this work, we
explore learning the execution semantics of programs to predict patch
correctness without human efforts.

Information and Software Technology 152 (2022) 107043D. Yan et al.

F
i

I
i
e
o
(
t
p
o
o
s
e
o
p
I
a
r
t
o
n
i

Fig. 13. The diff for the APR patched program and ground-truth program of bug ‘‘158-C-bug-9815086-9815194’’.
Fig. 14. Difference of micro-trace value sequence for the bug and patch function in
ig. 13. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

dentifying patch correctness. To contribute to patch correctness
dentification, researchers have proposed various approaches. Yang
t al. [44] proposed generating better test cases to improve the process
f validating APR-generated patches by enhancing existing test cases
using fuzzing to generate new test cases). Xin and Reiss [8] used new
est inputs to get the original semantic differences between the error
rogram and the patch program, then tested the patch program based
n these differences and generated the final test case to identify the
ver-fitting patch program. Xiong et al. [9] leveraged the behavior
imilarity generated by the test case execution with new test input to
nhance the test suite to determine the correctness of the new method
f the patch. Experiments by Yu et al. [45] proved that incomplete re-
air and regression introduction are two common causes of overfitting.
n this regard, they proposed a method called UnsatGuided, which uses
dditional tests to alleviate the overfitting problem of synthetic-based
epair techniques. The above experiments are all used to enhance the
est cases to predict the correctness of the patch. In the experiment
f Ye et al. [11] pointed out that even very high test coverage may
ot be available. However, enhancing test cases for patch correctness
dentification always presents the generalizing problem [46]. Different
10
from these studies, we resort to predict the correctness of the patch by
learning the execution semantics from the micro-traces of programs.

In various recent studies, representational learning technology has
also been widely used in the task of program repair. Hoang et al. [22]
used the attention mechanism to model the hierarchy of code changes
in Java programs and learn the representation of code changes guided
by the accompanying log messages. Ye et al. [11] proposed a new type
of overfitting detection system called ODS to predict the overfitting
patches generated by APR. The model first statically extracts code fea-
tures from the AST editing script between the generated patch and the
error code. After that, ODS learns an ensemble probability model from
the extracted static features, and the learning model classifies and ranks
new potential overfitting patches. ODS requires manual identification
of features, which makes these features unable to be generalized to
other programming languages and data sets. Csuviket al. [10] utilized
Doc2Vec and BERT to embed the textual and structural features of
the original (error) program and to predict the correct patch. Tian
et al. [12] evaluated the possibility of predicting the patch correctness
with deep representation learning of code changes. Nevertheless, all
of these state-of-the-art learning-based approaches focus on learning
the potential semantic feature from the code syntax and structure.
Comparing with them, we are the first to predict patch correctness for
C programs by leveraging the transfer learning technique to extract the
execution semantics from the micro-traces of C program functions.

7. Conclusion

To boost the momentum of APR, predicting the correctness of APR-
generated patches has been explored with various approaches in the
community. In this work, we proposed to predict the patch correctness
for C programs, topic that has not been yet explored in the literature.
To that end, we implemented a patch correctness prediction tool,
named Crex. Specially, Crex leverages a transfer learning technique to
extract the execution semantics from the micro-traces of C program
functions. According to the different execution similarities, Crex is
implemented with six different classification algorithms to predict the
correctness of patches generated by a given APR tool. Our experimental
results show that Crex achieves promising performance on predicting
the patch correctness, which outperforms the state-of-the-art learning
based approaches that leverage BERT and Word2Vec models to embed
semantic features from the code syntax and structure. The transfer
learned execution semantics point out the new potential direction for
patch correctness validation in automated program repair.

CRediT authorship contribution statement

Dapeng Yan: Conceptualization, Methodology, Software, Writing –
original draft. Kui Liu: Supervision, Methodology, Writing – review &
editing. Yuqing Niu: Visualization, Investigation. Li Li: Visualization,
Investigation. Zhe Liu: Funding acquisition. Zhiming Liu: Validation.
Jacques Klein: Supervision, Writing – review & editing. Tegawendé
F. Bissyandé: Supervision, Writing – review & editing.

Information and Software Technology 152 (2022) 107043D. Yan et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

For the sake of Open Science, we provide to the community the
replication package with source code and all collected data for this
study at the following address: https://github.com/1993ryan/crex.

Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China (Grant No. 62172214), the National Key R&D Pro-
gram of China (No. 2020AAA0107704), the Natural Science Founda-
tion of Jiangsu Province, China (Grant No. BK20210279), and the
Open Project Program of the State Key Laboratory of Mathematical
Engineering and Advanced Computing (No. 2020A06).

References

[1] C.L. Goues, M. Pradel, A. Roychoudhury, Automated program repair, Commun.
ACM 62 (12) (2019) 56–65.

[2] M. Monperrus, Automatic software repair: a bibliography, ACM Comput. Surv.
51 (1) (2018) 1–24.

[3] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, T.F. Bissyandé, A critical
review on the evaluation of automated program repair systems, J. Syst. Softw.
171 (2021) 110817.

[4] Z. Qi, F. Long, S. Achour, M. Rinard, An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems, in: Proceedings
of the 24th International Symposium on Software Testing and Analysis, 2015,
pp. 24–36.

[5] K. Liu, S. Wang, A. Koyuncu, K. Kim, T.F. Bissyandé, D. Kim, P. Wu, J. Klein,
X. Mao, Y.L. Traon, On the efficiency of test suite based program repair:
A systematic assessment of 16 automated repair systems for java programs,
in: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 615–627.

[6] E.K. Smith, E.T. Barr, C. Le Goues, Y. Brun, Is the cure worse than the disease?
overfitting in automated program repair, in: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 532–543.

[7] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, H. Jin, Automated
patch correctness assessment: How far are we?, in: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, 2020,
pp. 968–980.

[8] Q. Xin, S.P. Reiss, Identifying test-suite-overfitted patches through test case
generation, in: Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2017, pp. 226–236.

[9] Y. Xiong, X. Liu, M. Zeng, L. Zhang, G. Huang, Identifying patch correctness in
test-based program repair, in: Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 789–799.

[10] V. Csuvik, D. Horváth, F. Horváth, L. Vidács, Utilizing source code embeddings
to identify correct patches, in: Proceedings of the 2nd International Workshop
on Intelligent Bug Fixing, IEEE, 2020, pp. 18–25.

[11] H. Ye, J. Gu, M. Martinez, T. Durieux, M. Monperrus, Automated classification
of overfitting patches with statically extracted code features, IEEE Trans. Softw.
Eng. (2021).

[12] H. Tian, K. Liu, A.K. Kaboré, A. Koyuncu, L. Li, J. Klein, T.F. Bissyandé, Evalu-
ating representation learning of code changes for predicting patch correctness in
program repair, in: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2020, pp. 981–992.

[13] F. Tsimpourlas, A. Rajan, M. Allamanis, Learning to encode and classify test
executions, 2020, arXiv preprint arXiv:2001.02444.

[14] D. McKee, N. Burow, M. Payer, Software ethology: An accurate, resilient, and
cross-architecture binary analysis framework, 2019, arXiv preprint arXiv:1906.
02928.

[15] K. Pei, Z. Xuan, J. Yang, S. Jana, B. Ray, TREX: Learning execution semantics
from micro-traces for binary similarity, 2020, arXiv preprint arXiv:2012.08680.

[16] P. Godefroid, Micro execution, in: Proceedings of the 36th International
11

Conference on Software Engineering, 2014, pp. 539–549.
[17] Q. Le, T. Mikolov, Distributed representations of sentences and documents, in:
Proceedings of the 31th International Conference on Machine Learning, PMLR,
2014, pp. 1188–1196.

[18] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidi-
rectional transformers for language understanding, in: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tionalLinguistics: Human Language Technologies, 2019, pp. 4171–4186, http:
//dx.doi.org/10.18653/v1/n19-1423.

[19] K. Liu, D. Kim, T.F. Bissyandé, S. Yoo, Y.L. Traon, Mining fix patterns for
FindBugs violations, IEEE Trans. Softw. Eng. 47 (1) (2021) 165–188, http:
//dx.doi.org/10.1109/TSE.2018.2884955.

[20] K. Liu, D. Kim, T.F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim, Y. Le Traon,
Learning to spot and refactor inconsistent method names, in: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp.
1–12.

[21] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: Learning distributed
representations of code, in: Proceedings of the ACM on Programming Languages,
Vol. 3, ACM New York, NY, USA, 2019, pp. 1–29, POPL.

[22] T. Hoang, H.J. Kang, D. Lo, J. Lawall, Cc2vec: Distributed representations of
code changes, in: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 518–529.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, in: Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.

[24] D. Harris, S. Harris, Digital Design and Computer Architecture, Morgan
Kaufmann, 2010.

[25] S.H. Ding, B.C. Fung, P. Charland, Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler
optimization, in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE,
2019, pp. 472–489.

[26] E.T. Barr, Y. Brun, P. Devanbu, M. Harman, F. Sarro, The plastic surgery
hypothesis, in: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2014, pp. 306–317.

[27] J. Chen, A.F. Donaldson, A. Zeller, H. Zhang, Testing and verification of
compilers (Dagstuhl seminar 17502), Dagstuhl Rep. 7 (12) (2017) 50–65, http:
//dx.doi.org/10.4230/DagRep.7.12.50.

[28] J. Jiang, L. Ren, Y. Xiong, L. Zhang, Inferring program transformations from sin-
gular examples via big code, in: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2019, pp. 255–266.

[29] K. Liu, D. Kim, A. Koyuncu, L. Li, T.F. Bissyandé, Y. Le Traon, A closer
look at real-world patches, in: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2018, pp. 275–286.

[30] M. Martinez, M. Monperrus, Mining software repair models for reasoning on the
search space of automated program fixing, Empir. Softw. Eng. 20 (1) (2015)
176–205.

[31] S.H. Tan, J. Yi, Yulis, S. Mechtaev, A. Roychoudhury, Codeflaws: a program-
ming competition benchmark for evaluating automated program repair tools,
in: Proceedings of the IEEE/ACM 39th International Conference on Software
Engineering Companion, 2017, pp. 180–182, http://dx.doi.org/10.1109/ICSE-
C.2017.76.

[32] M. Böhme, E.O. Soremekun, S. Chattopadhyay, E. Ugherughe, A. Zeller, Where
is the bug and how is it fixed? an experiment with practitioners, in: Proceedings
of the 11th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE 2017, 2017, pp. 1–11.

[33] C. Le Goues, N. Holtschulte, E.K. Smith, Y. Brun, P. Devanbu, S. Forrest, W.
Weimer, The ManyBugs and IntroClass benchmarks for automated repair of C
programs, IEEE Trans. Softw. Eng. 41 (12) (2015) 1236–1256.

[34] C. Le Goues, M. Pradel, A. Roychoudhury, S. Chandra, Automatic program repair,
IEEE Softw. 38 (4) (2021) 22–27.

[35] T. Lutellier, H.V. Pham, L. Pang, Y. Li, M. Wei, L. Tan, Coconut: combining
context-aware neural translation models using ensemble for program repair, in:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020, pp. 101–114.

[36] C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each, in: Proceedings
of the 34th International Conference on Software Engineering, IEEE, 2012, pp.
3–13.

[37] Y. Qi, X. Mao, Y. Lei, Z. Dai, C. Wang, The strength of random search on
automated program repair, in: Proceedings of the 36th International Conference
on Software Engineering, ACM, 2014, pp. 254–265, http://dx.doi.org/10.1145/

2568225.2568254.

https://github.com/1993ryan/crex
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb1
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb1
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb1
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb12
http://arxiv.org/abs/2001.02444
http://arxiv.org/abs/1906.02928
http://arxiv.org/abs/1906.02928
http://arxiv.org/abs/1906.02928
http://arxiv.org/abs/2012.08680
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb17
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.1109/TSE.2018.2884955
http://dx.doi.org/10.1109/TSE.2018.2884955
http://dx.doi.org/10.1109/TSE.2018.2884955
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb25
http://dx.doi.org/10.4230/DagRep.7.12.50
http://dx.doi.org/10.4230/DagRep.7.12.50
http://dx.doi.org/10.4230/DagRep.7.12.50
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb29
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb29
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb29
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb29
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb29
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb30
http://dx.doi.org/10.1109/ICSE-C.2017.76
http://dx.doi.org/10.1109/ICSE-C.2017.76
http://dx.doi.org/10.1109/ICSE-C.2017.76
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb36
http://dx.doi.org/10.1145/2568225.2568254
http://dx.doi.org/10.1145/2568225.2568254
http://dx.doi.org/10.1145/2568225.2568254

Information and Software Technology 152 (2022) 107043D. Yan et al.
[38] W. Weimer, Z.P. Fry, S. Forrest, Leveraging program equivalence for adaptive
program repair: Models and first results, in: E. Denney, T. Bultan, A. Zeller (Eds.),
Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, IEEE, 2013, pp. 356–366, http://dx.doi.org/10.1109/ASE.
2013.6693094.

[39] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, L. Zhang, Precise
condition synthesis for program repair, in: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), IEEE, 2017, pp. 416–426.

[40] K. Liu, A. Koyuncu, D. Kim, T.F. Bissyandé, Avatar: Fixing semantic bugs with fix
patterns of static analysis violations, in: 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), IEEE, 2019, pp.
1–12.

[41] K. Liu, A. Koyuncu, D. Kim, T.F. Bissyandé, Tbar: revisiting template-based auto-
mated program repair, in: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 31–42.
12
[42] K. Liu, A. Koyuncu, K. Kim, D. Kim, T.F. Bissyandé, LSRepair: Live search
of fix ingredients for automated program repair, in: Proceedings of the 25th
Asia-Pacific Software Engineering Conference, IEEE, 2018, pp. 658–662, http:
//dx.doi.org/10.1109/APSEC.2018.00085.

[43] M. Wen, J. Chen, R. Wu, D. Hao, S.-C. Cheung, Context-aware patch generation
for better automated program repair, in: 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), IEEE, 2018, pp. 1–11.

[44] J. Yang, A. Zhikhartsev, Y. Liu, L. Tan, Better test cases for better automated
program repair, in: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 831–841.

[45] Z. Yu, M. Martinez, B. Danglot, T. Durieux, M. Monperrus, Alleviating patch
overfitting with automatic test generation: a study of feasibility and effectiveness
for the Nopol repair system, Empir. Softw. Eng. 24 (1) (2019) 33–67.

[46] H. Tian, Y. Li, W. Pian, A.K. Kaboré, K. Liu, J. Klein, T.F. Bissyande, Checking
patch behaviour against test specification, 2021, arXiv preprint arXiv:2107.
13296.

http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1109/ASE.2013.6693094
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb40
http://dx.doi.org/10.1109/APSEC.2018.00085
http://dx.doi.org/10.1109/APSEC.2018.00085
http://dx.doi.org/10.1109/APSEC.2018.00085
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00156-2/sb45
http://arxiv.org/abs/2107.13296
http://arxiv.org/abs/2107.13296
http://arxiv.org/abs/2107.13296

	Crex: Predicting patch correctness in automated repair of C programs through transfer learning of execution semantics
	Introduction
	Crex
	Micro-traces: Representing execution semantics
	Transfer learning execution semantics
	Implementation of Crex
	Data pre-processing
	Embedding execution semantics
	Prediction of patch correctness

	Experimental study design
	Research questions
	Dataset
	Experimental setup

	Experimental results
	RQ-1: Similarity of execution semantics
	RQ-2: Identifying the correct patches with execution semantics and straightforward thresholds
	Predicting patch correctness with execution semantics

	Threats to validity
	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

