
Reflections on Surrogate-Assisted Search-Based Testing:

A Taxonomy and Two Replication Studies based on

Industrial ADAS and Simulink Models

Shiva Nejatia,∗, Lev Sorokinb, Damir Safinb, Federico Formicac,
Mohammad Mahdi Mahboobc, Claudio Menghic,d

aUniversity of Ottawa, Canada, Ottawa, K1N6N5, Canada
bFortiss, Munich, Germany

cMcMaster University, 1280 Main St W, Hamilton, ON L8S4L8, Canada
d University of Bergamo, via Salvecchio 19, Bergamo, 24129, Italy

Abstract

Context. Surrogate-assisted search-based testing (SA-SBT) aims to reduce
the computational time for testing compute-intensive systems. Surrogates
enhance testing techniques by improving test case generation focusing the
testing budget on the most critical portions of the input domain. In addition,
they can serve as approximations of the system under test (SUT) to predict
test results instead of executing the tests on compute-intensive SUTs.

Objective. This article reflects on the existing SA-SBT techniques, partic-
ularly those applied to system-level testing and often facilitated using simu-
lators or complex test beds. Recognizing the diversity of heuristic algorithms
and evaluation methods employed in existing SA-SBT techniques, our objec-
tive is to synthesize these differences and present a comprehensive view of
SA-SBT solutions. In addition, by critically reviewing our previous work on
SA-SBT, we aim to identify the limitations in our proposed algorithms and
evaluation methods and to propose potential improvements.

Method. We present a taxonomy that categorizes and contrasts existing
SA-SBT solutions and highlights key research gaps. To identify the evalua-

∗Corresponding author
Email addresses: snejati@uottawa.ca (Shiva Nejati), sorokin@fortiss.org (Lev

Sorokin), safin@fortiss.org (Damir Safin), formicaf@mcmaster.ca (Federico
Formica), mahbom2@mcmaster.ca (Mohammad Mahdi Mahboob),
claudio.menghi@unibg.it (Claudio Menghi)

Preprint submitted to Information and Software Technology May 2, 2023

ar
X

iv
:2

30
5.

00
08

3v
1

 [
cs

.S
E

]
 2

8
A

pr
 2

02
3

tion challenges, we conduct two replication studies of our past SA-SBT solu-
tions: One study uses industrial advanced driver assistance system (ADAS)
and the other relies on a Simulink model benchmark. We compare our results
with those of the original studies and identify the difficulties in evaluating
SA-SBT techniques, including the impact of different contextual factors on
results generalization and the validity of our evaluation metrics.

Results. Based on our taxonomy and replication studies, we propose fu-
ture research directions, including re-considerations in the current evaluation
metrics used for SA-SBT solutions, utilizing surrogates for fault localization
and repair in addition to testing, and creating frameworks for large-scale
experiments by applying SA-SBT to multiple SUTs and simulators.

Keywords:
Search-based testing, surrogate models, advanced driver assistance systems,
Simulink models, simulators, replications, evaluation metrics

1. Introduction

To test complex and emerging systems at scale, the use of simulators is
necessary. Simulators provide a flexible, effective, and efficient infrastructure
to ensure the safety of complex systems compared to testing deployed systems
in their operational environment (e.g., vehicles’ on-road testing). However,
executing each simulation scenario still takes a non-negligible amount of time,
particularly when simulators need to be real-time such as in the case of
simulators for autonomous vehicles. Since simulators’ input spaces are very
large and high-dimensional, we require techniques to make simulation-based
testing scalable. For example, non-trivial simulations of an industrial model
of a satellite system, capturing the satellite behavior for 24h, take, on average,
around 84 minutes (∼1.5 hours) Menghi et al. (2020). To test this satellite
model for all of its parameters and inputs, we need to execute hundreds of
such simulations, which can take months or even years to complete.

Search-based testing (SBT) has been traditionally used as an effective and
efficient guidance for test generation performed at system-level Zeller (2017).
SBT algorithms provide flexibility in representing the input search space and
choosing a strategy to traverse a subset of the search space. To scale SBT
to handle compute-intensive cyber-physical systems (CPS) with large and
multi-dimensional input spaces, a promising approach is to combine SBT

2

with surrogate models Jin (2011) that enable effectively guiding the search
exploration.

Surrogate models can enhance SBT in two ways: (1) They identify the
most critical regions of the input domain (i.e., the regions that include tests
revealing critical faults) and sample test inputs that are in these regions.
(2) They predict simulation results instead of computing them. In both
cases, surrogate models are generated and iteratively refined based on the
intermediary test executions. As surrogate models improve through succes-
sive refinements, their predictions can help improve the search guidance, as
described by the first use case above. Alternatively, their predictions are
used in lieu of actual test executions, as suggested by the second use case
above, to reduce the search computation time by executing fewer tests.

This article reflects on four papers published between 2014 and 2021 Matin-
nejad et al. (2014); Abdessalem et al. (2016, 2018a); Menghi et al. (2020) that
propose surrogate-assisted search-based testing (SA-SBT) techniques for au-
tonomous systems. The papers evaluated their proposed testing techniques
on industrial Advanced Driving Assistance Systems (ADAS) Abdessalem
et al. (2016, 2018a), a satellite system, and an open-source benchmark of
Simulink models Menghi et al. (2020) as well as an industrial controller from
the automotive domain Matinnejad et al. (2014). Since these papers are the
main subjects of our analysis, we refer to these four papers as the subject
papers hereafter in this article.

The subject papers apply SBT enhanced using surrogate models to system-
level testing and demonstrate that this combination is effective for complex,
emerging case studies such as self-driving and satellite systems. These subject
papers complement existing SBT techniques that focus on testing software
code and unit-level testing, and the research on testing and verification of
CPS based on formal methods Clarke et al. (2001). These four papers, while
studying CPS with different behaviours and varying degrees of autonomy and
complexity, motivate the need for SA-SBT techniques as follows: In the con-
text of CPS and given the safety-critical nature of these systems, system-level
testing is typically performed using simulators. CPS simulators, particularly
those that are real-time, are compute-intensive, and their input spaces are
large and high-dimensional. SA-SBT techniques are then proposed to scale
simulation-based testing for CPS.

The four subject papers adopt an empirical approach and evaluate their
SA-SBT techniques using case studies from different domains. The tech-
niques that these papers propose, although all can be categorized as SA-SBT,

3

vary in several details. For example, three of the subject papers Matinnejad
et al. (2014); Abdessalem et al. (2016); Menghi et al. (2020) use surrogates to
reduce the computation time of computing fitness functions, while the fourth
paper Abdessalem et al. (2018a) uses surrogates to guide the search explo-
ration more effectively. Given the differences in case studies and proposed
techniques, it is uncertain how the results can be generalized to similar sys-
tems. In this reflection paper, we review our previous research and attempt
to answer two questions: (1) What are the different types and variations of
SA-SBT techniques? and (2) To what extent can we reproduce the results
of these four subject papers? To answer the first question, we propose a
taxonomy for SA-SBT techniques and use it to categorize the subject papers
and some recent papers that build on our research. To answer the second
question, we report two replication studies that attempt to reproduce the
results of two of the subject papers Abdessalem et al. (2018a); Menghi et al.
(2020). In particular, one replication study applies the SA-SBT solution
proposed by Abdessalem et. al. Abdessalem et al. (2018a) to an industrial
ADAS. For the second replication study, we present the results obtained by
ARIsTEO Menghi et al. (2020), an approximation-refinement testing tech-
nique based on surrogate models, in three consecutive editions (2020 Ernst
et al. (2020), 2021 G. Ernst et al. (2021), and 2022 Ernst et al. (2022)) of
the ARCH competition ARCH. The ARCH competition is a friendly yearly
competition between testing tools for continuous and hybrid systems ARCH.

We use Kolb’s model of experiential learning Dyb̊a et al. (2014) as a
framework for our reflection study, which includes a taxonomy and two repli-
cation experiments. The Kolb model, shown in Figure 1, outlines the steps
of experiential learning and emphasizes the role of reflection in turning direct
experiences into abstract concepts and knowledge that drive further research.
The process starts with obtaining concrete experience, followed by reflective
observations in light of existing knowledge. Reflection should focus on any
discrepancies between existing knowledge and the new experience. From
reflections, the researcher develops observations into abstract concepts and
generalizations, and tests these through active experimentation.

We structure our reflection study following the experiential learning loop
in Figure 1. We develop a taxonomy (Section 2) that provides a set of
abstract concepts and categories to help researchers classify and compare
different SA-SBT research. We use the taxonomy to reflect on the current
state of research and practice in the SA-SBT field, and to identify current re-
search gaps (Section 3). We replicate two of our subject papers Abdessalem

4

Active

Experimentation

Concrete

Experience

Abstract

Conceptualization

Reflective

Observation

Figure 1: Experiential learning cycle.

et al. (2018a); Menghi et al. (2020) and present our observations based on the
replication studies (Section 4). Our findings, which include the taxonomy,
the categorization of the state-of-art along with the taxonomy dimensions,
and two replication studies lead us to identify a number of shortcomings and
challenges that impact the research on SA-SBT. We discuss future research
directions that the software testing researchers can embark on to improve and
unify the research in this field. Section 5 presents our recommendations for
future research which are listed as follows: (1) standardizing metrics for eval-
uating SA-SBT solutions, (2) using surrogates to improve fault localization
and repair, (3) creating frameworks for large-scale and consistent application
of SA-SBT across multiple SUTs and simulators, and (4) developing bench-
marks and organizing international competitions to promote the continuous
replication of research tools.

2. Taxonomy

This section presents our taxonomy for SA-SBT research and classifies
the existing research along these categories. Figure 2 presents a mind map
diagram representing our taxonomy. The diagram visualizes the concepts
captured by our taxonomy and their relations. SA-SBT (the center node
of the mind map diagram) is connected to eight categories representing rele-
vant problems to be considered in the design of SA-SBT techniques (purpose,
usage, subject, design, type, context, scope, and evaluation metrics). Each

5

problem is connected with sub-categories nodes representing relevant solu-
tions and parameters to be considered when addressing these problems. In
the following, we first describe a brief background on search-based testing
(SBT). We then describe the categories of our taxonomy and discuss the
sub-categories related to each of these categories.

SA-
SBT

Purpose

Fitness
Compu-
tation

Test
Generation
Guidance Individuals

Selection

Usage

Test case
generation

– single

Test case
filtering

Test case
generation
– ensemble

Subject Model

Model&
Req.-Ass

Design

Manual

AutomaticAutomatic

Static

Dynamic

Type

Model
Type

White
Box

Grey
BoxBlack

Box

Output
Type

Single
Data

Time
Series

Context

Model-in-
the-Loop

Software-
in-the-
Loop

Hardware-
in-the-
Loop

Scope

Local
Search

Global
Search

Eval.
Met-
rics

Number of
Iterations

Execution
Time

Estimated
Execution

Time

Figure 2: A Taxonomy for Surrogate-Assisted Search-Based Testing (SA-SBT).

6

Background. SBT relies on metaheuristic search Luke (2013) to gener-
ate a limited and effective set of test cases. Briefly, SBT algorithms work by
building a set of initial candidate tests, iteratively applying tweak operations
to one or more candidates to create new ones, and using a fitness function to
decide whether to keep a candidate test for future iterations or to discard it.

Purpose. It refers to the way surrogates are combined with the meta-
heuristic search algorithm underlying an SBT technique and the search el-
ements that they aim to improve. We identify three different purposes for
surrogates: (1) fitness computation, (2) test generation guidance, and (3) in-
dividuals selection.

• Fitness computation. Surrogates reduce the fitness computation time
by approximating the procedure for computing fitness values that often
requires simulating the SUT.

• Test generation guidance. Surrogates replace or augment search op-
erators (a.k.a. tweak operators). Specifically, they help identify the
regions of the search space that include fitter individuals. New candi-
dates can thus be generated from within these regions.

• Individuals selection. Decisions during the search process can be re-
placed with decisions guided by surrogates. For example, surrogates
can be used to select fitter individuals for the initial population at the
start.

Usage. It refers to the way surrogates improve the test generation ap-
proach of an SBT technique. We can use individual surrogates or an ensemble
of surrogates. Surrogates may completely replace the SUT for test genera-
tion, or they may filter poor candidate test cases, while the more promising
candidates are evaluated on SUT. We identify three different purposes for
surrogates: (1) test case generation using single surrogates, (2) test case fil-
tering using single surrogates, and (3) test case generation using ensemble
surrogates.

• Test case generation using single surrogates. Surrogates are used to
generate candidate test cases without any need to execute the original
SUT during the test generation. To determine if the generated tests
should be kept or discarded, they are assessed on the original SUT only
at the end.

7

• Test case filtering using single surrogates. Surrogates are used to prune
candidates that have no chance of surviving the search selection process.
They only discard poor test cases. The remaining test cases are assessed
on the original SUT.

• Test case generation using ensemble surrogates. An ensemble of sur-
rogates is used to assess individual test cases. A voting mechanism is
used to determine, for a given test case, if the surrogates are precise
enough, i.e., the surrogates produce the same (or close) fitness values.
Otherwise, if the surrogates produce drastically different fitness values,
the test case is re-evaluated on the SUT.

Subject. It refers to the artifacts approximated by a surrogate model.
We identify two kinds of artifacts to which surrogates can be applied: model
and model&requirement assessment approximation.

• Model. The model approximation technique relies on the creation of
an approximation of the SUT that closely mimics its behavior, but is
significantly cheaper to execute.

• Model&requirement-assessment. It relies on a function to predict whether
test cases satisfy or violate the system requirements. That is, the sur-
rogate approximates both the dynamics of the SUT and the assessment
of the requirement.

Design. It refers to the process used to build a surrogate model. We
identify two processes for the design of surrogate models: manual and auto-
matic.

• Manual. In the manual process, engineers define a surrogate model by
relying on their own experience and knowledge of SUT.

• Automatic. In the automatic process, engineers rely on some mea-
surements to automatically construct a surrogate model. For example,
these measurements can include logs recording the inputs and out-
puts of the SUT. We consider two variations for the automatic process:
dynamic and static. The dynamic process improves surrogate mod-
els over time (e.g., thorough an approximation-refinement loop). The
static process does not improve or modify surrogate models after they
are computed.

8

Type. It captures the characteristics of surrogate models, and has two
dimensions: the Model type and the Output type.

• Model Type. It captures the degree of information we have about the
structure of surrogate models which can be one of the following three
options: white box, grey box, and black box. The white box type in-
dicates that surrogates are designed manually based on the knowledge
that engineers have about the SUT. Hence, there is full observability to
their structure. Black box models are used when the structure of the
surrogate model is unknown, and engineers do not have any knowledge
about the SUT, such as the physics and control laws that regulate the
system behavior. Gray box models are used when there is partial infor-
mation about the structure of surrogate models. For example, gray box
models are useful when the engineer knows the physics and control laws
that regulate the system behavior but does not know some parameters,
e.g., the heat transfer coefficient of a car engine. Automatic techniques
are needed to compute black box models and unknown parameters of
grey box models.

• Output Type. It refers to the format of the outputs of surrogate models.
We recognize two types of outputs: Single Data and Time Series. Some
surrogate models produce a single data point as output, e.g., a Boolean
value indicating whether a property is satisfied or a real value indicating
a degree of satisfaction. Alternatively, surrogate models may generate
time series data that is a sequence of data points indexed in time order.

Context. It refers to the context where surrogates are used. We iden-
tify three different usage contexts for surrogates: Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL).

• Model-in-the-Loop. It concerns with surrogate models that approxi-
mate a virtual and high-level representation of the system, e.g., some
type of software model.

• Software-in-the-Loop. It relates to surrogate models that approximate
software code.

• Hardware-in-the-Loop. It is about surrogate models that are built based
on the measurements obtained from the actual operating system includ-
ing its hardware components.

9

Scope. It refers to the portion of the search space surrogate models
approximate. The search domain a surrogate model targets can be global or
local.

• Global. When surrogate models capture a global view of the search
space of the SUT, they approximate the entire search space, and hence,
enable an explorative search.

• Local. It refers to the case in which surrogate models capture a local
view by approximating a region of the search space that includes desired
information. In that case, surrogates are utilized for an exploitative
search.

Evaluation Metrics. It refers to the metrics used to assess an SBT
approach. We identify three metrics: Number of Iterations, Execution Time,
and Estimated Execution Time.

• Number of Iterations. It is the number of times an SBT approach
executes the SUT.

• Execution Time. It measures the time the approach requires to detect
a requirement violation.

• Estimated Execution Time. It predicts the time the approach would
take to be applied to a compute-intensive system based on the results
obtained for non-compute-intensive systems.

We will refect on these metrics in detail in Section 5.

3. Positioning against the State of the Art and Practice

To position the existing literature against the state of the arts and prac-
tice, one of the authors collected existing papers and classified relevant re-
search literature along our taxonomy categories. We considered 14 papers,
the four subject papers of our study Matinnejad et al. (2014); Abdessalem
et al. (2016, 2018a); Menghi et al. (2020) and a set of ten papers by other
researchers that employ SBT for testing complex software systems identified
by forward snowballing Beglerovic et al. (2017); Arrieta et al. (2017); Wang
et al. (2022); Innes and Ramamoorthy (2022); Zhang and Arcaini (2021);
Pedrielli et al. (2021); Humeniuk et al. (2021, 2022); Zhong et al. (2021);

10

Haq et al. (2022), and classified relevant research literature along our tax-
onomy categories. We relied on Google Scholar for the forward snowballing:
we identified new papers by consulting papers citing the four subject papers,
we reviewed the retrieved papers, and we selected the papers that proposed
a new SBT approach. The forward snowballing activity lead to ten papers,
including one paper Zhong et al. (2021) proposing fuzz testing techniques
and six papers presenting falsification techniques Innes and Ramamoorthy
(2022); Zhang and Arcaini (2021); Pedrielli et al. (2021); Humeniuk et al.
(2021, 2022). These works are specific instances of SBT techniques: fuzz
testing is an SBT technique that injects unexpected inputs into a system
to reveal software defects, and falsification techniques are SBT techniques
driven by a requirement expressed using a formal language. We used these
papers to demonstrate example research for different aspects of our taxon-
omy, and also, to analyze what sub-categories of our taxonomy are lesser
studied compared to the others. Table 1 classifies relevant research literature
along our taxonomy categories. Note that some papers are listed for some
categories in Table 1. For example, for the evaluation metrics category, we
do not list papers that do not evaluate their solutions. Table 1 shows that
the SA-SBT techniques we reviewed cover all the nine top-level categories,
and only two sub-categories (the Automatic-Static sub-category of the design
category, and the SiL sub-category of the Context category) are not covered.
In the following, we discuss the main findings for each category.

Purpose. Most of the techniques we reviewed use surrogates for fitness
computation (8 out of 14), followed by test generation guidance (3 out of
14) and individual selection (3 out of 14). Although research literature has
focused less on using surrogates for test generation guidance and individ-
ual selection compared to fitness computation, incorporating surrogates can
greatly enhance SBT techniques by pinpointing critical regions of the test
input domain and selecting the most crucial individuals (test cases).

Usage. Most of the techniques we reviewed use test case generation using
single surrogates (7 out of 14), followed by test case generation using ensemble
surrogates (4 out of 14), and test case filtering using single surrogates (3 out
of 14). Although techniques that use single surrogates for test case generation
are prevalent, surrogate models are also used for other testing activities (i.e.,
test case filtering) and aggregated into ensembles. Since surrogate models are
a relatively new technology in SBT, their potential usages are still unclear
and will grow over time.

11

Table 1: Classifying the SA-SBT techniques based on our taxonomy

Category References

Purpose
Fitness Computation Abdessalem et al. (2016); Matinnejad et al. (2014); Haq et al. (2022); Beglerovic et al. (2017); Arrieta
et al. (2017); Pedrielli et al. (2021); Humeniuk et al. (2022); Wang et al. (2022)

Test GenerationGuidance Abdessalem et al. (2018a); Humeniuk et al. (2021); Zhang and Arcaini (2021)

Individual Selection Menghi et al. (2020); Zhong et al. (2021); Innes and Ramamoorthy (2022)

Usage
TC generation–single Menghi et al. (2020); Abdessalem et al. (2018a); Beglerovic et al. (2017); Arrieta et al. (2017); Zhong et al.
(2021); Pedrielli et al. (2021); Innes and Ramamoorthy (2022)

TC filtering Abdessalem et al. (2016); Matinnejad et al. (2014); Zhang and Arcaini (2021)

TC generation–ensemble Haq et al. (2022); Humeniuk et al. (2021, 2022); Wang et al. (2022)

Subject
Model Menghi et al. (2020); Beglerovic et al. (2017); Zhong et al. (2021); Pedrielli et al. (2021); Zhang and Arcaini (2021); Innes
and Ramamoorthy (2022)

Model and Requirement-Assessment Haq et al. (2022); Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Arrieta
et al. (2017); Humeniuk et al. (2021, 2022); Wang et al. (2022)

Design
Manual Arrieta et al. (2017); Humeniuk et al. (2021)

Automatic–Static

Automatic–Dynamic Menghi et al. (2020); Haq et al. (2022); Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Beglerovic
et al. (2017); Zhong et al. (2021); Pedrielli et al. (2021); Humeniuk et al. (2022); Zhang and Arcaini (2021); Wang et al. (2022);
Innes and Ramamoorthy (2022)

Model Type
White Box Menghi et al. (2020); Beglerovic et al. (2017); Humeniuk et al. (2021, 2022); Zhang and Arcaini (2021); Innes and
Ramamoorthy (2022)

Gray Box Menghi et al. (2020); Humeniuk et al. (2022)

Black Box Menghi et al. (2020); Haq et al. (2022); Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Arrieta et al. (2017);
Zhong et al. (2021); Pedrielli et al. (2021); Humeniuk et al. (2022); Wang et al. (2022)

Output Type
Single Data Haq et al. (2022); Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Arrieta et al. (2017); Zhong et al. (2021);
Humeniuk et al. (2021, 2022); Wang et al. (2022)

Time Series Menghi et al. (2020); Beglerovic et al. (2017); Pedrielli et al. (2021); Zhang and Arcaini (2021); Innes and Ramamoor-
thy (2022)

Context
MiL Menghi et al. (2020); Haq et al. (2022); Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Beglerovic et al. (2017);
Arrieta et al. (2017); Zhong et al. (2021); Pedrielli et al. (2021); Humeniuk et al. (2021, 2022); Zhang and Arcaini (2021); Wang
et al. (2022); Innes and Ramamoorthy (2022)

SiL

HiL Beglerovic et al. (2017)

Scope
Global Search Menghi et al. (2020); Haq et al. (2022); Abdessalem et al. (2016, 2018a); Beglerovic et al. (2017); Arrieta et al.
(2017); Zhong et al. (2021); Pedrielli et al. (2021); Humeniuk et al. (2021, 2022); Zhang and Arcaini (2021); Wang et al. (2022);
Innes and Ramamoorthy (2022)

Local Search Haq et al. (2022); Matinnejad et al. (2014); Pedrielli et al. (2021); Wang et al. (2022)

Metric
Estimated Execution Time Menghi et al. (2020)

Execution Time Abdessalem et al. (2016); Matinnejad et al. (2014); Haq et al. (2022); Abdessalem et al. (2018a); Beglerovic
et al. (2017); Arrieta et al. (2017); Humeniuk et al. (2021, 2022)

Num of Iterations Menghi et al. (2020); Zhong et al. (2021)

Subject. For 6 out of 14 papers, the subject of the surrogate model is the
original model under test, while for the remaining eight papers, it includes
both the model and the requirement assessment. Using a surrogate model to
approximate the original model under test and a fitness function to evaluate
the different test cases ensures that the system’s dynamics are approximated
while the fitness computation is accurate. Differently, also considering an
approximation of the fitness function introduces additional noise. There is a
need for more empirical studies to precisely identify the situations where one
of these approaches is preferred.

12

Design. Most of the techniques we reviewed (12 out of 14) automatically
compute the surrogate model and use dynamic processes that improve the
surrogate model over time. Two techniques manually defined the surrogate
model. None of the techniques we reviewed used a static surrogate model, i.e.,
a fixed surrogate model that is not improved over time. Although automatic
techniques do not require manually defining the surrogate model, in many
applications, the manual design offers several benefits since engineers can
incorporate knowledge about the structure of the SUT in the design of the
surrogates. More empirical studies are needed to identify the scenarios in
which one technique must be preferred over the other.

Model Type. Most of the techniques we reviewed are black box (8 out
of 14), followed by white box (4 out of 14). Two techniques, Menghi et al.
(2020); Humeniuk et al. (2022), are generic and rely on other technologies
such as system identification (SI) Bittanti (2019); AMS and Electromag-
netism (1989) that enable them to support black box, white box, and gray
box model types. In particular, SI enables us to create surrogates that belong
to all the three categories. Although less studied, gray box technologies can
offer a good trade-off in situations in which engineers have some knowledge
about the system’s internal structure and need to be aware of the values of
some of the parameters that still need to be discovered.

Output Type. For 9 out of 14 techniques, the output type is Single
Data. The remaining five techniques use time series. Therefore, in most
cases, the surrogates directly predict the single data fitness value for a test
input. Surrogates that use time series as output type are more recent Menghi
et al. (2020). Time series data leads to the generation of more data points
that help with better training of surrogate models.

Context. For all the techniques we considered, the surrogate context
is MiL. One technique Beglerovic et al. (2017) claims that their approach
also supports HiL in addition to MiL. The prevalence of MiL techniques
is justified by the fact that MiL relies on simulators and system models,
which are often publicly available. In contrast, SiL and HiL involve running
the software under test on real or emulated hardware and require direct
access to the source code and system hardware, which can be challenging
in an industrial context. To overcome this hurdle, close collaboration with
industry partners is often necessary. Furthermore, creating the necessary
hardware infrastructure and setup can be both costly and time-consuming,
particularly in an academic setting.

13

Scope. The scope of 10 out of 14 techniques is global search. The scope
of one techniques is exclusively local search. Three techniques consider both
for local and global search. We noticed that the boundary between global and
local search was often blurry. Additional research work is needed to precisely
identify and define the boundary between the local and global search for SBT.

Evaluation Metric. Most of the techniques use execution time as an
evaluation metric (8 out of 14), followed by the number of iterations (2 out of
14), and the estimated execution time (1 out of 14). Some techniques either
did not use any evaluation metric, as they propose theoretical solutions which
are not empirically evaluated, or their evaluation did not involve a compari-
son of SA-SBT solutions. Although the execution time measures the actual
time required for fault-finding, it makes experiments hardly reproducible as
it depends from the actual hardware platform on which the experiments are
executed. On the contrary, the number of iterations enables experiment repli-
cation as the hardware platform does not influence it. However, the execution
time of the iterations may differ across different techniques. We provide ad-
ditional reflections and considerations on the evaluation metric category in
Section 5.

4. Replication Studies

Papers listed in Table 1 do not present studies that try to replicate the
approaches of the subject papers. In the next two sections, we present two
replication studies based on two of the subject papers. Specifically, we re-
port replication studies of NSGAII-DT Abdessalem et al. (2018a) and ARIs-
TEO Menghi et al. (2020). NSGAII-DT and ARIsTEO belong to different
sub-categories under the purpose, subject, model type, output type, and eval-
uation metric categories in our taxonomy. Replicating these complementary
approaches allows us to gain insightful observations and lessons learned.

4.1. Replication Study: ADAS Case Study

In this section, we report on the replication of the experiments from the
subject paper proposing the NSGAII-DT technique, which was evaluated
using an industrial ADAS case study Abdessalem et al. (2018a). The repli-
cation attempt was performed by different researchers (the second and third
authors of the paper) and by considering an ADAS which has been developed
in collaboration with industrial partners and is different from that used in

14

Figure 3: SUT of the original study Abdessalem et al. (2018a): a pedestrian crosses the
lane of the ego car equipped with the AEB system.

the original paper Abdessalem et al. (2018a). In the following, we first de-
scribe the experiment setup of the original and the replication studies, then
we present our results.

4.1.1. Experiment setup

System under test (SUT). The system under test for the original sub-
ject paper is the Automated Emergency Breaking (AEB) system presented
in Figure 3. The AEB identifies pedestrians in front of a vehicle and avoids
collision by applying the brake when necessary. The ego car (i.e., the self-
driving car equipped with AEB) drives from the left-end on an urban street,
and a pedestrian starts crossing the street from the middle of the street.

For the replication study, we consider an Automated Valet Parking (AVP)
system presented in Figure 4: A driver leaves the car at the entrance of a
parking lot and AVP autonomously parks the car in an available parking
spot. The ego car is equipped with a Lidar sensor and an AEB to ensure
that the car does not collide with other objects, e.g., pedestrians or cars.
The AVP is tested using a scenario where an occluded pedestrian appears in
the path of the ego car as the ego car approaches a free parking spot. An
occluded pedestrian is a pedestrian who is partially or completely obscured
from the ego car’s view by another object (e.g., a pillar or a parked vehicle).

Search Space. The original study tests are obtained by varying the
following features of the AEB test scenario (see Figure 3): The speed of the

15

Figure 4: AVP testing scenario from the replication study: a pedestrian occluded by a
parking car is crossing the lane of the ego car, which is approaching a free parking spot.

ego car (vc0), the initial position of the pedestrian with respect to the ego
car (xp0, yp0), the speed (vp0) and the orientation (θp) of the pedestrian, the
weather type, which can be either normal, rainy and snowy, and the road
shape, which can be either straight, curved or ramped. For the curved and
ramped roads, the test input includes the curve radius and the ramp height.
For the snowy and rainy weather types, the test input includes the level of
precipitation and the presence of fog with different density levels.

The search space for the replication study varies the speed of the ego
car (vc0), the speed of the pedestrian (vp0) and the time that the pedestrian
starts running after the start of the simulation (twait). The variable twait
has a similar purpose as the variables (xp0, yp0) in the original study. Both
twait and (xp0, yp0) help generate different tests where the ego car and the
pedestrian appear in different proximities to one another. The AVP testing
excludes road shape and weather-related factors, as they are not essential for
assessing AVP functionality. Given the confined parking lot environment,
fluctuations in these conditions are considered non-essential for evaluating
system performance. In addition, the AVP testing scenario is focused on
occluded pedestrians, and for them, the initial position and the orientation
are not relevant since they are blocked from the ego car’s field of view at
the beginning. Instead, for occluded pedestrians, the relevant information
for testing is when they appear in front of the ego car (variable twait), which
is included as a test input in the replication study.

16

Both the original and the replication studies use the PreScan simula-
tor pre (2023) to test their respective SUT. Both studies set 100 as the
sampling rate for PreScan and generate simulations with the duration of 10s.

Fitness functions. Both studies define multiple fitness functions to as-
sess the quality of individual simulations. Fitness functions measure how
close the scenario is to a collision. The original study defines three fitness
functions: (F1) The minimum distance between the pedestrian and the field
of view of the ego car, (F2) The velocity of the ego vehicle at the time where
the distance between the ego car and the pedestrian is at its lowest value,
i.e., when the minimum for F1 is computed, and (F3) The certainty of the
detection of a pedestrian. By minimizing F1 and maximizing F2, we obtain
scenarios that either represent near-collision situations or collisions with a
high speed of the ego car. In addition, the original study considers maximis-
ing F3 since the study was focused on identifying scenarios where AEB detects
a pedestrians but fails to avoid a collision with the pedestrian. Otherwise,
scenarios where the pedestrian cannot be detected are due to the failure of
the object detection component and not the failure of AEB.

The replication study defines two fitness functions: (1) F′1 (similar to
F1) this function computes the minimum distance between the ego car and
the pedestrian. However, in the replication study, this distance is defined
to be the distance between the pedestrian and the front side of the car.
Hence, the F′1 function is defined such that it assigns more optimal values
to collisions where the pedestrian hits the car from the front. This is to
provide more effective guidance for the search to generate scenarios where
the collision is realistic and meaningful. That is, the front side of the ego car
hits a pedestrian. (2) F′2 (similar to F2) this function captures the velocity
of the ego vehicle at the time where the distance between the ego car and
the pedestrian is at its lowest value. The replication study does not consider
the third fitness function (i.e., the certainty of detection) as in the original
study, because the AVP does not provide detailed output that measures the
certainty of detection.

In addition to fitness functions, both studies define when a scenario rep-
resents a failure of the SUT. For both studies, a failure is when the ego car
hits the pedestrian with a high speed. Failure revealing scenarios are identi-
fied by setting a threshold on F1 and F2 (resp. F′1 and F′2 in the replication
study) to indicate that the car and the pedestrian collide and the car has a
high speed at the time of the collision. Since the SUTs in the original and
the replication studies are different, the threshold values for what defines a

17

failure in these two studies are different too. Hence, the thresholds in these
studies were defined independently and based on the requirements of their
respective SUTs.

Initial population. The replication study uses Latin Hypercube Sam-
pling McKay et al. (1979), a quasi-random sampling strategy, to generate the
initial population. The original study used combinatorial testing using the
Pledge tool Henard et al. (2013) to generate an initial population of diversi-
fied individuals. Given that the purpose of both strategies is to generate a
diverse initial set of individuals, we believe the differences in generating the
initial populations do not significantly impact the results of our study.

Search Algorithm. Both the original and the replication study rely on
NSGAII-DT. NSGAII-DT uses machine learning decision tree models and
multi-objective evolutionary search Luke (2013). Decision tree models are
developed based on the scenarios generated at intermediary search iterations.
The models learn the characteristics of the critical test scenarios and iden-
tify critical regions in an input space (i.e., the regions of a test input space
that are likely to contain more fault-revealing test cases and test cases that
reveal more severe faults). The subsequent search iterations then focus on
the critical regions, and select and evolve critical scenarios in those regions.
When the search inside the critical regions is terminated, a new decision tree
model is re-generated using the entire population. NSGAII-DT continues by
iteratively building decision trees followed by search iterations focused on
critical regions identified by the trees until the search time budget runs out.
The original and replication studies consider the same values for the search
parameters, such as mutation and crossover rates. The main parameters and
setup elements of the replication and the original studies are listed in Table 2.

4.1.2. Results

The original study provides two sets of metrics to evaluate the results of
NSGAII-DT: (1) Quality indicators for Pareto-based search algorithms Chen
et al. (2020), and (2) the number of distinct critical scenarios representing
failures of the SUT. As a Pareto-based search algorithm, NSGAII-DT aims
to find a set of non-dominated solutions in a multi-objective optimization
problem. These algorithms are typically assessed based on a special cat-
egory of metrics, referred to as quality indicators Chen et al. (2020) that
compare Pareto-based search algorithm in terms of convergence, uniformity,
spread and cardinality. In particular, the original study used three well-
known quality indicators, Hypervolume (HV), Spread (∆) and Generational

18

Table 2: Experimental setup for replication study vs. the study in original paper Ab-
dessalem et al. (2018a)

Category Replication study setup Original study setup

SUT Longitudinal/Latitudinal ve-
hicle dynamics, Path Fol-
lower, Lidar

3D vehicle dynamics, Object
detection, Lidar

Sampling rate 1/100 1/100
Scenario Pedestrian crossing street Pedestrian crossing street
fitness functions 2 3
Initial sampling LHS Combinatorial Testing
Mutation probability 1/n 1/n
Crossover probability 0.6 0.6

Distance (GD), to compare the results of NSGAII-DT with those of NSGAII.
Below we describe the experiment setup for our replication study and then
compare and discuss the results of both studies.

Setup. We evaluate the performance of NSGAII-DT and NSGAII on
the AVP case study for a minimum of 300 minutes. We note that NSGAII
served as a baseline in the original study. The average execution time of
a single AVP simulation is approximately 19 seconds, allowing for at least
1000 simulations (fitness evaluations) to be completed within the 300-minute
computation time. We rerun each of NSGAII-DT and NSGAII for 10 times
to account for their randomness. The experiments were performed on a
computer with an i7-8700 processor with 3.19 Ghz (12 cores) and 32 GB
RAM.

Note that the AEB simulations in the original study took significantly
longer than the AVP simulations, with an average execution time of 1.2
minutes for AEB and 19 seconds for AVP. In the original study, both NSGAII-
DT and NSGAII algorithms were run for a 24-hour period, providing enough
time for at least 1000 minimum AEB simulations, similar to our replication
study.

Metrics. For NSGAII, we compute HV, Spread (∆) and GD after each
generation. But, for NSGAII-DT, we compute these metrics after each gen-
eration of each of the NSGAII algorithm runs performed inside the critical
regions. HV measures the size of the space covered by the members of a
Pareto front generated by a search algorithm Chen et al. (2020). The higher
this size, the better the results of the algorithm. GD measures the Euclidean

19

distance between members of the calculated Pareto front and the nearest so-
lutions on a reference Pareto front Chen et al. (2020). The lower the value of
GD, the more optimal the calculated Pareto front solutions are. Spread mea-
sures the extent of spread among the members of a Pareto front generated by
a search algorithm Deb et al. (2002). The lower the Spread values, the better
spread out the search outputs. In addition, we compute the number of dis-
tinct critical scenarios generated by NSGAII and NSGAII-DT, following the
definition provided in the original study, where distinct scenarios are defined
as those that differ in at least one input value Abdessalem et al. (2018a).

Data Availability. The implementation of NSGAII and NSGAII-DT for
AVP and the detailed results of these algorithms for our replication study
are available online res (2023).

Comparison of the results. Figures 5 and 6 show the results of the
HV, Spread and GD metrics over time for NSGAII and NSGAII-DT for our
original and replication study, respectively. The results for the original study
are shown at every four-hour time interval starting at 2h until the time limit
of 24h, while the results for the replication study are shown at every 60 min
starting from 60min and until 300min. Since the original and replication
experiments are performed on different case studies with different inputs and
fitness functions, we cannot make direct comparisons between the values of
these metrics, but instead, we aim to compare the trends of these metrics
over time.

In both the original and replication study, the HV values for NSGAII-DT
are better than those of NSGAII at the start of the experiments. However,
over time, the differences between the HV values of the two algorithms tend
to decrease. In the replication study, this reduction is quite steep, with
the HV values of NSGAII and NSGAII-DT eventually becoming equal. In
contrast, in the original study, the HV values of the two algorithms seem
to stabilize at a certain point. The GD values of NSGAII-DT are slightly
better than those of NSGAII over the entire duration both in the original
study and in the replication study. However, at the end of the simulation,
which is 300 minutes, the GD values of NSGAII slightly improve over those
of NSGAII-DT in the replication study. Further, the variations of the GD
values for NSGAII-DT in the replication study are noticeably higher than
those of the GD values of NSGAII-DT in the original study. There are
remarkable differences between the replication and the original studies in the
values of the Spread metric obtained for NSGAII-DT. While in the original
study the values of Spread for NSGAII-DT are considerably better than those

20

H
V

0.0

0.4

0.8

G
D

0.05

0.15

0.25

SP

2
0.6

1.0

1.4

6 10 14 18 22 24
Time (h)

NSGAII-DT
NSGAII

Sp
re
ad

Figure 5: The comparison of HV, GD and Spread (∆) values obtained by NSGAII and
NSGAII-DT from the original study Abdessalem et al. (2018a).

of NSGAII, for the replication study the values of Spread for both NSGAII
and NSGAII-DT are almost the same.

Table 3 shows the number of distinct critical scenarios generated by
NSGAII-DT and NSGAII in the replication and original studies. As shown
in the table, in both studies, provided with the same search time budget,
NSGAII-DT is able to find considerably more distinct critical scenarios com-
pared to NSGAII. In particular, the number of distinct critical scenarios that
NSGAII-DT finds are, respectively, 1.8 and 2.7 times more than those that
NSGAII can find in the original and replication studies.

Summary. The replication study supports some of the conclusions of the
original study. However, there are some disparities with some specific find-
ings. Both studies confirm that the surrogate-based SBT method, NSGAII-
DT, generates significantly more distinct failures than its non-surrogate coun-
terpart within the same search time budget. However, the consistency of the
results comparing the quality of the Pareto-based solutions generated by
NSGAII and NSGAII-DT is questionable. The HV and GD results from the
replication study partially align with those from the original study, whereas

21

Figure 6: The comparison of HV, GD and Spread values obtained by NSGAII and NSGAII-
DT from the replication study.

the results of the Spread metric are significantly different. Despite our efforts
to align the two studies as much as possible, the SUTs, and hence, the test
inputs and fitness functions remain to be different. These factors may have
contributed to the discrepancies in the outcomes. Independently from the
real sources of these differences, our replication study allowed us to gain a
deeper understanding of the limitations and significance of the metrics used
to evaluate NSGAII-DT, which we elaborate on in Section 5.

4.2. Replication Study: Simulink

In this section, we report on an attempt to replicate the experiments of
ARIsTEO, an approximation-refinement testing technique driven by surro-
gate models proposed by one of the subject papers Menghi et al. (2020).
The ARIsTEO technique is showcased by a plugin of S-TaLiRo Annpureddy
et al. (2011), a falsification-based testing tool for Simulink models. In their

22

Table 3: The number of distinct critical scenarios obtained by NSGAII and NSGAII-DT
from the replication and original study.

Replication study Original study

NSGAII 639 411
NSGAII-DT 1733 731

Ratio NSGAII-DT / NSGAII 2.7 1.8

paper, the authors of ARIsTEO, evaluated their contribution by considering
a set of case studies which included some of the benchmark models of the
ARCH competition G. Ernst et al. (2021) and one additional industrial case
study from the satellite domain. The industrial case study is not publicly
available since the authors could not release it due to a non-disclosure agree-
ment. However, the authors provided a complete replication package with
the other benchmark models and results. In addition, they participated in
the ARCH competition, editions of 2020 Ernst et al. (2020), 2021 G. Ernst
et al. (2021), and 2022 Ernst et al. (2022). The ARCH competition is a
friendly yearly competition between testing tools for continuous and hybrid
systems ARCH. The competition includes several participants, such as Fal-
CAuN Waga (2020), S-TaLiRo Annpureddy et al. (2011), falsify Yamagata
et al. (2021), FalStar Ernst et al. (2018), ForeSee Zhang et al. (2021). The
models and requirements considered by the competition are publicly available
and provided under different licenses.

We report on our attempt to replicate the results generated from ARIs-
TEO from editions 2020 Ernst et al. (2020), 2021 G. Ernst et al. (2021), and
2022 Ernst et al. (2022).

4.2.1. Experiment Setup

Our benchmark consists of seven models: Automatic Transmission (AT) Hoxha
et al. (2015), Fuel Control on Automotive Powertrain (AFC) Jin et al. (2014),
Neural Network Controller (NN)NN (2022), Wind Turbine (WT) Schuler
et al. (2017), Chasing Cars (CC) Hu et al. (2000), Aircraft Ground Colli-
sion Avoidance System (F16) Heidlauf et al. (2018), and Steam Condenser
(SC) Yaghoubi and Fainekos (2019). These Simulink models have different
sizes and complexity: the number of Simulink blocks spans from 13 (CC) to
302 (AFC). The models are from different domains: automotive (AT, AFC),
neural networks (NN), and energy (SC). AFC is from Toyota. The models
come with different licenses, including GPLv2.

23

Table 4: Results for piecewise continuous input signals.

2020 2021 2022

FR S S̃ FR S S̃ FR S S̃

AT1 0 - - 0 - - 0 - -
AT2 50 4.4 4 50 4.1 3 10 5.4 2.0
AT51 nSbyA 0 - - 0 - -
AT52 nSbyA 50 3.2 2 10 1.7 1.5
AT53 nSbyA 50 2.6 2 10 12.8 8.5
AT54 nSbyA 3 295.1 300 0 - -
AT6a 45 90.7 69 50 39.0 23 10 93.4 70.0
AT6b 50 18.1 15 49 101.7 83 4 112.3 127
AT6c 44 95.6 66 50 27.2 16 10 124.2 111.5
AT6abc NPofB 50 27.2 16 10 73.4 30.5

NN 50 62.8 46 50 62.8 46 1 299.0 299.0
NNx NPofB NPofB 0 - -

WT1 50 15.6 10 50 13.0 10 NPofB
WT2 50 1.5 1 50 1.3 1 NPofB
WT3 50 3.4 3 50 2.4 2 NPofB
WT4 50 1.0 1 50 1.0 1 NPofB

CC1 50 16.1 11 50 27.0 15 10 24.8 17.5
CC2 50 1.0 1 50 9.2 6 10 14.6 9.0
CC3 50 45.8 27 50 56.3 46 10 29.5 35.0
CC4 50 1.0 1 0 - - 0 - -
CC5 49 52.5 40 50 25.9 17 10 18.8 18.0
CCx NPofB 15 250.0 300 4 134.0 74.0

F16 nSbyA 0 - - 0 - -

SC 50 1.0 1 0 - - 0 - -

The models of the ARCH competition are associated with 27 requirements
expressed using a logic-based language. Each requirement is associated with
an identifier that starts with the model’s name. The rows of Table 4 and
Table 5 represent different requirements. For example, the row with the iden-
tifier AT6a refers to the requirement AT6a of the AT model. The interested
reader can find additional information about the models and requirements
in the report of the ARCH competition (i.e., G. Ernst et al. (2021); Ernst
et al. (2020, 2022)).

The same configuration is considered for ARIsTEO across the three years
it participated in the competition. Specifically, ARIsTEO is configured as fol-

24

Table 5: Results for constrained input signals.

2020 2021 2022

FR S S̃ FR S S̃ FR S S̃

AT1 0 - - 0 - - 0 - -
AT2 50 4.5 3 50 5.1 4 10 12.9 8.0
AT51 nSbyA 50 8.4 6 10 19.0 10.0
AT52 nSbyA 50 3.5 3 9 74.7 46.0
AT53 nSbyA 50 2.6 2 10 1.4 1.0
AT54 nSbyA 50 29.4 17 10 44.0 40.0
AT6a 41 116.3 72 47 103.1 80 7 65.1 62.0
AT6b 50 36.3 27 45 164.7 174 5 91.2 74.0
AT6c 44 89.8.6 73 49 89.1 60 7 175 141.0
AT6abc NPofB 50 79.1 70 9 84.1 81.0

AFC27 50 2.3 1 50 2.3 1 9 21.9 25.0
AFC29 50 28.5 23 50 1.0 1 10 3.4 3.5
AFC33 50 24.7 16 50 1.0 1 0 - -

NN 50 62.8 46 50 62.8 46 10 117 82.5
NNx NPofB 50 1.0 1 0 - -

WT1 50 1.4 1 50 1.4 1 NPofB
WT2 50 1.0 1 50 1.0 1 NPofB
WT3 50 1.1 1 50 1.1 1 NPofB
WT4 50 1.0 1 50 1.0 1 NPofB

CC1 50 28.8 22 50 9.1 6 10 9.1 8.0
CC2 50 1.0 1 50 6.7 4 10 10.8 9.0
CC3 50 18.1 16 50 18.9 15 10 12.8 13.4
CC4 50 1.0 1 0 - - 0 - -
CC5 48 66.9 44 50 29.1 12 10 21.1 11.5
CCx NPofB 20 229.4 12 3 97 103.0

SC 50 1 1 0 - - 0 - -

lows. We used an arx model (arx-2) with order na = 2, nb = 2, and nk = 21

as the structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs, the dimen-
sion of the matrix na, nb, and nk are changed depending on the number
of inputs and outputs. For the other parameters, we assigned the default
configuration values of S-TaLiRo. We considered the same parametrization
of S-TaLiRo for the input signals. ARIsTEO executes the original Simulink

1https://nl.mathworks.com/help/ident/ref/arx.html

25

https://nl.mathworks.com/help/ident/ref/arx.html

model to learn the initial surrogate model. The competition sets the cut-off
values for the number of simulations of the original model to 300 for 2020
and 2021 and do not impose a maximal number of simulations that can be
run in one falsification trial for 2022. This choice was performed to enable a
more accurate assessment of the difficulty of the benchmarks. We considered
this value also for the number of simulations of the surrogate model (per
trial). However, we considered 300 as the maximum number of iterations for
ARIsTEO in 2022 since we aimed to maintain consistency with the previous
years of the competition. Notice that this choice penalizes ARIsTEO over
the other competing tools in 2022.

During the competition, the participants must test the model for each
requirement: piece-wise continuous input signals, and constrained input sig-
nals. The first option let the participant decide the shape of the input signals,
and the second option precisely fixes the format of the input signal. Table 4
and Table 5 respectively report the results obtained by ARIsTEO for the
two options. In addition, the competition required participants to execute
experiments 50 times in 2020 and 2021 and 10 times in 2022 due to the non-
determinism of the underlying search-based algorithms. In 2022 the number
of experiments was reduced from 50 to 10 since there was no upper bound
on the maximal number of simulations that can be run in one falsification
trial.

4.2.2. Results

Table 4 and Table 5 report the results of our experiments. For each year,
they report the falsification rate with respect to the number of trials (FR),

mean (S) and median (S̃) number of simulations (rounded down) over suc-
cessful trials (“–” if FR is zero). Cells labeled with NPofB (Not Part of the
Benchmark) specifies that the model was not part of the benchmark models
considered by the competition that year. For the first year (2020) of the
competition, the cells for the benchmarks AT51, AT52, AT53, and AT54 are
labeled with nSbyA (not supported by ARIsTEO) since ARIsTEO could not
process the benchmark. Indeed, for the first year of the competition, ARIs-
TEO could not support property specifications that use locations. Locations
are used by S-TaLiRo Annpureddy et al. (2011) (the tool ARIsTEO extends)
to specify properties that involve variables that can assume values within a
finite set of values.

The results from Table 4 show that the falsification rates for AT1, AT2,
AT51, AT52, AT53, AT6abc, WT1, WT2, WT3, WT4, CC1, CC2, CC3,

26

CC5, F16 are the same for all the three years of the competition. The mean
(S) and median (S̃) number of simulations (rounded down) over success-
ful trials are also consistent for these benchmarks (small fluctuations are
caused by the non-determinism of the underlying search-based algorithm).
For AT54, the property was not falsified in 2022 while it was falsified in 3
cases in 2021. However, unlike 2021 that require the experiments to be exe-
cuted 50 times, in 2022 experiments were only executed 10 times. For AT6a,
AT6b, AT6c, and CCX small fluctuations in the falsification rate, mean (S)

and median (S̃) number of simulations are caused by the non-determinism of
the underlying search-based algorithm which may produce different results
across multiple experiments. For NN, we noticed that the results of 2022 are
significantly different from the ones obtained in 2020 and 2021. Unlike 2022,
in 2020 and 2021, there was a mistake in the specification of the require-
ment: there was a typo in one of the temporal operators used to specify the
requirement (�[1,18] instead of �[1,37]). For CC4 and SC, the results of 2020
(the first year in which ARIsTEO participated in the competition) are signif-
icantly different from the ones obtained in 2021 and 2022. For CC4, in 2020,
the predicate was written incorrectly: y4 − y5 ≥ 8 instead of y5 − y4 ≥ 8.
The former is immediately falsified. Furthermore, the simulation time in
2020 was 30s, which was lower than the temporal operators of the require-
ment (in 2021-22 it was 100s). For SC, in 2020, ARIsTEO used 12 control
points and a simulation time of 100s. In 2021-22, ARIsTEO used 20 control
points, and the simulation time was reduced to 35s. Furthermore, for piece-
wise continuous input signals ARIsTEO reports the results for constrained
input signals: the piecewise continuous input signals let the participant be
free to decide the shape of their input signals, and it was decided to use the
one mandated by the constrained input signals.

The results from Table 5 show that the falsification rates for AT1, AT2,
AT51, AT53, AT54, AFC29, NN, WT1, WT2, WT3, WT4, CC1, CC2, CC3,
are the same for all the three years of the competition. The mean (S) and me-

dian (S̃) number of simulations (rounded down) over successful trials are also
consistent for these benchmarks (small fluctuations are caused by the non-
determinism of the underlying search-based algorithm). For AT52, AT6a,
AT6b, AT6c, AT6abc, AFC27, and CC5 small fluctuations in the falsifica-
tion rate, mean (S) and median (S̃) number of simulations are caused by the
non-determinism of the underlying search-base algorithm which may produce
different results across multiple runs. For AFC33, we noticed that the re-

27

sults of 2022 are significantly different from the ones obtained in 2020 and
2021. AFC33 has a different input range compared to AFC27 and AFC29.
In 2020 and 2021, the input range of AFC27 and AFC29 was erroneously
considered. In 2020, the wrong input range was considered (there was a bug
in the code that was supposed to change the range). In 2021, the input range
was correct, but the control points were considered in the wrong order. For
NNx, the results of 2022 are significantly different from the ones obtained
in 2021 (NNx was not part of the benchmark models in 2020). NNx has a
different input range compared to NN. However, in 2021, the input range for
NN was erroneously considered. For CC4, the results of 2020 are significantly
different from the ones obtained in 2021 and 2022. As previously reported,
the cause was a problem in the specification of one of the predicates and
a different simulation time. For SC, the success rate for 2022 should be 0;
there was a typo on the report for ARCH 2022. In addition, for SC, in 2020,
ARIsTEO considered a different simulation time and a different number of
control points.

5. Lessons Learned

In this section, we reflect on the lessons learned from our replication stud-
ies and the creation of a taxonomy for the SA-SBT literature. Our lessons
concern the methods and metrics used to evaluate SA-SBT solutions, the
scope and purpose of using surrogates in SBT, and the need for frameworks
to facilitate extensive experimentation in this domain. We believe our lessons
would be most relevant for software engineering researchers and practition-
ers working on the verification and testing of cyber-physical and autonomous
systems.

5.1. Metrics for Evaluating SA-SBT

The evaluation metrics used in the subject papers and the research re-
viewed in Section 3 can be grouped into three categories: (1) Metrics to
assess the effectiveness of SA-SBT. The effectiveness of a SA-SBT solution
is evaluated by its ability to identify failures in the SUT and is quantified
by the number of distinct failure scenarios it detects and the severity of each
scenario, as indicated by the fitness function values. (2) Metrics to assess
the efficiency of SA-SBT. As discussed in Section 2 under the evaluation
metrics category, the efficiency of SA-SBT techniques is typically evaluated
based on the number of iterations, execution time and estimated execution

28

time. (3) Metrics to assess the performance SA-SBT solutions that rely on
Pareto-based search algorithms. These include metrics such as HV, Spread
and GD discussed in Section 4.1. Below, we discuss the limitations of some
of these metrics when applied to SA-SBT solutions, and suggest alternatives
to these metrics or ways to redefine these metrics to be applicable to SA-SBT
solutions.

Metrics for assessing effectiveness. Papers on software testing often
report the number of generated failures as a metric to evaluate effectiveness
(e.g., Abdessalem et al. (2018a); Haq et al. (2022)). However, for SA-SBT
solutions, particularly when they are applied to case studies such as ADAS,
it is important to report failures that are distinct and valid. Failures are con-
sidered distinct when they are generated by test inputs that are significantly
different. In the study that we replicated in Section 4.1, distinct scenarios
are defined as those that differ in at least one input value Abdessalem et al.
(2018a). While this definition might be sufficient for the AEB and AVP case
studies in Section 4.1, it may fall short in other situations where two test in-
puts may differ in variables that are not related to failures. For example, we
may have two pedestrians in the initial scene where one is far away from the
collision. Changing the position of the far-away pedestrian would not help
reveal interesting and diverse failure situations. In addition, small variations
in continuous input variables may not reveal diverse failures. For example,
in Figure 3, slightly moving the pedestrian to the left or right in a failing
test input may still lead to failures that are essentially the same. In a recent
study, Zhong et. al. Zhong et al. (2021) proposed an improved definition
of distinctness that requires variations in a minimum number of input vari-
ables and differences between continuous variables to exceed a user-defined
threshold. However, this definition relies on user-defined parameters that
can vary between domains, making it difficult to replicate and generalize the
evaluation results.

In addition to being distinct, failures should be valid and meaningful. For
example, both AVP and AEB fail if the car speed is higher than the speed
limit for urban areas (i.e., 100km/h). To ensure the validity of failures, it
is important that we select the input variable ranges such that they satisfy
the expected preconditions of the SUT. Unmet preconditions may cause fail-
ures that are not faults in the SUT, but rather caused by invalid inputs.
The validity of failures, further, depends on the way we formalize the notion
of failure or the way we define test oracles. In our NSGAII-DT study, the
criticality function acts as a test oracle and determines whether, or not, a

29

scenario is a failure. For the AEB case study, the criticality function was de-
fined using a conjunction of predicates over fitness functions that are capped
by some thresholds. The formalization of the fitness functions, however, had
limitations which led to some invalid failures, e.g., the pedestrian hitting the
car from the side Abdessalem et al. (2016, 2018a). We addressed this issue,
in our replication study (Section 4.1), by redefining the fitness functions such
that scenarios where the pedestrians approach the ego car from the sides are
penalized and are not considered as critical.

Metrics for assessing efficiency. A primary research question for eval-
uating SA-SBT techniques is to assess whether they improve the efficiency
of testing while ensuring its effectiveness. All the SA-SBT techniques we
reviewed in Table 1 answer this research question by comparing SA-SBT
with some non-surrogate SBT baseline. They use different metrics for this
comparison though. Specifically, all the approaches, except for Menghi et.
al. Menghi et al. (2020), use the execution time metric. That is, they execute
the SA-SBT and the baseline techniques for the same amount of time and
compare the results. In all these cases, however, the compute-intensive study
subjects used for evaluation are simulators or Simulink models that take be-
tween two to ten minutes to execute. When the execution times of the study
subjects are in the order of a few minutes, it is still feasible to execute the
SA-SBT and the baseline several times and draw conclusions using statistical
tests. It is, however, important to note that, in these papers, the number
of times experiments were repeated to account for randomness was rather
low, i.e., between 10 to 30 times. This can negatively impact the accuracy
of the statistical test results. Further, none of these papers performed any
extensive meta-evaluations or hyper-parameter optimizations.

In the case of Menghi et. al. Menghi et al. (2020), a single simulation of
the compute-intensive subject takes 1.5 hour, and the approach of the paper
which involves the use of SI requires extensive hyper-parameter optimiza-
tions. Performing all the required experiments on their compute-intensive
subject could take in the order of 50 years to complete. Hence, Menghi
et. al. Menghi et al. (2020) perform a part of their experiments on non-
compute-intensive subjects, measure the number of iterations required to
detect failures and compute the estimated execution time, i.e., the estimated
time that performing these numbers of iterations would require for compute-
intensive models. The testing techniques are then compared by considering
the estimated execution time instead of the same execution time.

30

Metrics for assessing the performance of Pareto-based algo-
rithms. The quality indicators typically determine how fast the outputs
of a Pareto-based algorithm converge towards an ideal or true Pareto front.
These indicators may not directly relate to the main objective of a test gen-
eration algorithm though. Hence, there needs to be a justification as to
why a quality indicator is used to assess a test generation algorithm. In our
original study we selected three indicators, HV, Spread and GD, based on
their widespread use and their collective ability to evaluate complementary
aspects of convergence, spread, and uniformit Wu et al. (2022). As a result
of our replication, we have reached at two observations related to the use
of quality indicators for assessing Pareto-based test generation algorithms:
(1) GD and Spread metrics are most meaningful for comparing population
sets with equal sizes. Spread, while being normalised to the size of a pop-
ulation set, provides different values for two sets of different sizes, in which
individuals are equally separated, which might lead to wrong interpretation
of the spread for comparing populations of the same algorithm generated over
subsequent runs. Even though GD does not have exactly the same problem,
introduction of another individual to a population set of a small size might
heavily worsen the metric value, and therefore, might also lead to incorrect
interpretation of convergence over a run. We note that in contrast to classical
Pareto optimization algorithms (e.g. NSGAII), NSGAII-DT allows for a flex-
ible population size during the search. Relaxing the population size in search
algorithms employed for testing is common not only for SA-SBT techniques
but also in the many-objective search algorithms Abdessalem et al. (2018b);
Panichella et al. (2015). The flexibility in the population size allows for more
targeted exploration guided by surrogates, or to maintain a subset of the so-
lutions on an optimal Pareto that are useful for the testing problem at hand.
However, flexible population sizes can also affect metrics such as Spread and
GD leading to potential misinterpretation of the results. (2) Among the
three quality indicators used in our original study, the results related to HV
in the replication study are the most faithful to those obtained from the
original study. This might be partly due to the issue that Spread and GD
are not suitable metrics for comparing Pareto-based algorithms with vary-
ing populations while HV is not dependent on the population size. Overall,
in our experience, HV showed as a better metric for assessing our proposed
Pareto-based SA-SBT test generation algorithms.

31

5.2. Surrogates for fault localization and repair

The main objective of existing SA-SBT approaches is to generate test
cases that can effectively reveal failures. Empirical evidence from our sub-
ject papers Abdessalem et al. (2016, 2018a); Matinnejad et al. (2014); Menghi
et al. (2020), the research reviewed in Section 3 and our two replication
studies support the idea that the incorporation of surrogates into SBT sig-
nificantly enhances the effectiveness and efficiency of automated testing in
revealing failures. However, it is important to ensure that the techniques
do not generate spurious failures, e.g., failures caused by invalid inputs and
not due to system faults or failures that represent unrealistic situations. In
our paper introducing NSGAII-DT, we utilized surrogate models to identify
input conditions that led to failures, which we then validated against do-
main knowledge Abdessalem et al. (2018a). These conditions are valuable
because they can help explain why failures occurred, which in turn can aid in
root-cause analysis, fault localization, and bug fixing. However, we did not
leverage these conditions to distinguish between valid and spurious failures,
nor did we use them to identify root causes of failures. To the best of our
knowledge, no prior research has explored the potential of surrogate models
in explaining failure conditions. We believe that these models can serve as
effective tools for identifying spurious failures, as well as developing fault
localization and repair strategies.

5.3. Frameworks for large-scale experimentation

Further advancements in the area of SA-SBT require systematic evalu-
ation frameworks that promote accuracy, transparency and reproducibility.
Our first lessons-learned highlighted the challenge of defining proper evalua-
tion metrics, but there is also the additional obstacle of limited platforms and
benchmarks available for large-scale experimentation with SA-SBT methods.
As discussed in our taxonomy (Section 2), SA-SBT methods may be applied
in the MiL, SiL and HiL contexts, but the main focus of the research so
far has been on MiL testing. The majority of MiL testing has been per-
formed on case studies based on simulation-based testing of autonomous
driving systems or Simulink models. A variety of simulators and ADAS
components have been used in the literature for simulation-based testing of
autonomous driving systems. The example simulators include: PreScan pre
(2023), Pro-SiVIC Belbachir et al. (2012), CARLA Dosovitskiy et al. (2017),
and BeamNG Gambi et al. (2019), and the ADAS components include both
industrial and proprietary ADAS and open source DNN-enabled components.

32

A framework is needed to enable experimentation and evaluation of testing
algorithms using different simulators and ADAS alternatives, as most current
test generation algorithms are evaluated on a small subset, or even a single,
simulator and ADAS. Our replication in Section 4.1 concerned reproducing
results from an original study using the same simulator but two different
ADAS. As shown there, a number of different factors need to be considered
when we apply a heuristic algorithm to two different ADAS even when the
simulator is the same. Other replication attempts in the context of ADAS
testing include the work of Borg et. al. Borg et al. (2021) on replicating
the results of a search-based testing algorithm on two different simulators
(i.e., ProSiVic and PreScan) for the same ADAS component, and the work
of Stocco et. al. Stocco et al. (2022) on generalizing the testing results ob-
tained using an ADAS simulator to a physical platform. Both studies observe
notable discrepancies between the testing results obtained from the different
simulators and platforms. In particular, the latter work which is a rare ex-
ample of transferring the testing result from MiL to HiL shows some major
reality gaps between the virtual and physical world. A notable effort in eval-
uating and comparing MiL, SiL and HiL test setups is the recent work by
Mandrioli et. al. Mandrioli et al.. This work which is performed in the con-
text of drones demonstrates that the results obtained from MiL, SiL and HiL
levels have notable differences, and in fact, these levels have complementary
capabilities in revealing faults for CPS.

5.4. International Competitions

International competitions are a successful instrument to support exper-
iment replication effectively. While participating in competitions requires
significant effort, these competitions offer several benefits. We learned many
lessons over our three-year participation in the ARCH competition that we
summarize below.

Forces tools updates. Authors need to constantly update their tools to en-
sure specific formatting of their inputs and outputs to adhere to the rules of
the competition. From our experience, we learned that this activity improved
our tool. For example, participating in the competition in 2021 enabled us
to extend the implementation of ARIsTEO to support property specifica-
tions that use locations. This activity extended the support of ARIsTEO to
benchmarks AT51, AT52, AT53, and AT54.

Supports experiment replication and verification of previous results. Repli-
cating previous experiments is not always a trivial and straightforward ac-

33

tivity. Replicating the experiments for AT51, AT52, AT54, and AT54 was
not trivial. ARIsTEO is a plugin for S-TaLiRo. S-TaLiRo requires to specify
these requirements using “control locations” (Pred(i).loc), i.e., specific con-
structs used to establish fitness metrics of hybrid systems. Despite S-TaLiRo
being widely documented and the explanations being detailed and exhaus-
tive, the documentation of this construct should be improved. Specifically,
to analyze these requirements, we had to install MatlabBGL Mat (2022), a
library containing a set of algorithms to work with graphs, and recompile the
C++ files that are used to compute the fitness metric using an old version
(1 36 0 boo (2022)) of Boost, a portable C++ and GCC library. However,
this needed to be more precisely detailed since we had to reverse engineer the
version of the library to be used: we could not use newer versions of Boost
since they are not retro-compatible for this case. ARIsTEO participation was
managed by different students across the years. We spent significant time in
2021 adding support for these requirements by extending the implementation
of ARIsTEO and understanding how to install the different libraries. How-
ever, we did not precisely document our activity, and we had to perform the
same reverse engineering process in 2022. We now have a detailed description
of the libraries that need to be installed to support these requirements, add
it to our documentation, and contact the developers of S-TaLiRo to extend
their documentation. Finally, as detailed in Section 4.2, participating in con-
secutive years of the competition enables spotting configuration errors and
improving the reliability of the published results.

Discovering new results over time. The set of benchmark models change
over time: the ARCH competition is organized as part of the International
Workshop on Applied Verification of Continuous and Hybrid Systems, which
contains an explicit call for new benchmark models. For example, in 2022,
the organizers removed the WT model from the set of benchmark models con-
sidered in the competition, and the pacemaker model Ayesh et al. (2022) was
proposed at the workshop and is likely to be added to the set of benchmark
models to be considered in future editions of the competition. The variation
of the benchmark models enables a continuous comparison and assessment of
the tools on models from different domains and with various characteristics
(e.g., number of blocks).

Supports networking and research collaborations. The ARCH competition
is a friendly competition with the primary purpose of keeping researchers and
practitioners updated with the latest advancements in the field. It is designed
to support and foster networking and research collaborations. This decision

34

ensures that participants are offered a friendly and cordial environment. We
learned that this offered a great opportunity (especially for students) for net-
working, getting new research ideas, and establishing research collaborations.

Finally, we learned that organizing and managing the competition is a
significant undertaking. The coordinator of the Falsification Category of the
ARCH Competition (Gidon Ernst) did a significant job across the three years
in which we participated to ensure the competition’s success. Organizing the
meetings to define the rules of the competition, collecting and analyzing
the results, leading the writing of the competition report, and reporting the
results at the workshop are a significant service to the community that should
be acknowledged and appropriately rewarded.

Our taxonomy can support the organizers of the ARCH competition by
supporting activities such as adding new benchmarks. For example, the
organizers may extend the benchmarks to include models with more com-
plexity and longer execution time. Further, the metrics we discussed earlier
in this section can be used as part of the benchmark and competition since,
currently, the number of iterations is the only metric used for the tool com-
petition.

6. Conclusions

This paper reflects on four papers published between 2014 and 2021 Ab-
dessalem et al. (2016, 2018a); Menghi et al. (2020); Matinnejad et al. (2014)
that propose surrogate-assisted search-based testing (SA-SBT) techniques for
autonomous systems. We developed a taxonomy based on our synthesis of
different SA-SBT approaches. Our taxonomy identifies the main dimensions
of SA-SBT solutions and we demonstrate how different SA-SBT solutions
can be positioned along these dimensions. We report on two replication
studies using an industrial advanced driver assistance system (ADAS) and a
benchmark of Simulink models. The results of our taxonomy and replication
studies highlight the need for improvement in the metrics used to evaluate
SA-SBT, the potential for using surrogates in fault localization and repair,
and the importance of benchmarking, international competitions and creat-
ing frameworks for large-scale experiments involving SA-SBT techniques.

35

Acknowledgements

We acknowledge Gidon Ernst for leading the Falsification Category of the
ARCH Competition in 2020, 2021, and 2022. We also acknowledge Khouloud
Gaaloul that supported the participation of ARIsTEO in the 2020 and 2021
editions of the ARCH competition.

We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) [funding reference numbers RGPIN-
2022-04622,DGECR-2022-0040]. This research paper has further received
funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 956123.

References

, 2022. boost. https://sourceforge.net/projects/boost/files/boost/
1.36.0/. Accessed: 2022-11-21.

, 2022. Design narma-l2 neural controller in simulink.
https://www.mathworks.com/help/deeplearning/ug/

design-narma-l2-neural-controller-in-simulink.html. Accessed:
2022-11-21.

, 2022. Matlabbgl. https://www.mathworks.com/matlabcentral/

fileexchange/10922-matlabbgl. Accessed: 2022-11-21.

, 2023. Results replication NSGAII-DT. URL: https://github.com/

Leviathan321/reflection_study.

, 2023. Simcenter Prescan. URL: https://www.plm.automation.siemens.
com/global/de/products/simcenter/prescan.html. accessed: 2023-02-
02.

Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T., 2016. Testing ad-
vanced driver assistance systems using multi-objective search and neural
networks, in: International Conference on Automated Software Engineer-
ing (ASE), IEEE/ACM. pp. 63–74.

Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T., 2018a. Testing vision-
based control systems using learnable evolutionary algorithms, in: Chau-
dron, M., Crnkovic, I., Chechik, M., Harman, M. (Eds.), International
Conference on Software Engineering, (ICSE), ACM. pp. 1016–1026.

36

https://sourceforge.net/projects/boost/files/boost/1.36.0/
https://sourceforge.net/projects/boost/files/boost/1.36.0/
https://www.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
https://www.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html
https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl
https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl
https://github.com/Leviathan321/reflection_study
https://github.com/Leviathan321/reflection_study
https://www.plm.automation.siemens.com/global/de/products/simcenter/prescan.html
https://www.plm.automation.siemens.com/global/de/products/simcenter/prescan.html

Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.,
2018b. Testing autonomous cars for feature interaction failures using
many-objective search, in: Huchard, M., Kästner, C., Fraser, G. (Eds.),
International Conference on Automated Software Engineering (ASE),
ACM/IEEE. pp. 143–154.

AMS, M.M., Electromagnetism, P., 1989. System identification .

Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S., 2011. S-taliro:
A tool for temporal logic falsification for hybrid systems, in: Tools and
Algorithms for the Construction and Analysis of Systems, Springer. pp.
254–257.

ARCH, 2022 [Online]. International Competition on Verifying Contin-
uous and Hybrid Systems. URL: https://cps-vo.org/group/ARCH/

FriendlyCompetition.

Arrieta, A., Wang, S., Markiegi, U., Sagardui, G., Etxeberria, L., 2017.
Search-based test case generation for cyber-physical systems, in: Congress
on Evolutionary Computation (CEC), IEEE. pp. 688–697.

Ayesh, M., Mehan, N., Dhanraj, E., El-Rahwan, A., Opalka, S.E., Fan, T.,
Hamilton, A., Jacob, A.M., Sundarrajan, R.A., Widjaja, B., Menghi, C.,
2022. Two simulink models with requirements for a simple controller of a
pacemaker device, in: International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH22), EasyChair. pp. 18–25.

Beglerovic, H., Stolz, M., Horn, M., 2017. Testing of autonomous vehicles
using surrogate models and stochastic optimization, in: International Con-
ference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1–6.

Belbachir, A., Smal, J.C., Blosseville, J.M., Gruyer, D., 2012. Simulation-
Driven Validation of Advanced Driving-Assistance Systems. Procedia -
Social and Behavioral Sciences 48, 1205–1214. doi:10.1016/j.sbspro.
2012.06.1096.

Bittanti, S., 2019. Model identification and data analysis. John Wiley &
Sons.

Borg, M., Abdessalem, R.B., Nejati, S., Jegeden, F., Shin, D., 2021. Dig-
ital twins are not monozygotic - cross-replicating ADAS testing in two

37

https://cps-vo.org/group/ARCH/FriendlyCompetition
https://cps-vo.org/group/ARCH/FriendlyCompetition
http://dx.doi.org/10.1016/j.sbspro.2012.06.1096
http://dx.doi.org/10.1016/j.sbspro.2012.06.1096

industry-grade automotive simulators, in: Conference on Software Test-
ing, Verification and Validation (ICST), IEEE. pp. 383–393.

Chen, T., Li, M., Yao, X., 2020. How to evaluate solutions in pareto-based
search-based software engineering? A critical review and methodological
guidance. CoRR abs/2002.09040. URL: https://arxiv.org/abs/2002.
09040, arXiv:2002.09040.

Clarke, E.M., Biere, A., Raimi, R., Zhu, Y., 2001. Bounded model checking
using satisfiability solving. Formal Methods in System Design 19, 7–34.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation 6, 182–197. doi:10.1109/4235.996017.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. Carla:
An open urban driving simulator. arXiv preprint arXiv:1711.03938 .

Dyb̊a, T., Maiden, N.A.M., Glass, R., 2014. The reflective software engineer:
Reflective practice. IEEE Softw. 31, 32–36.

Ernst, G., Arcaini, P., Bennani, I., Donzé, A., Fainekos, G., Frehse, G., Math-
esen, L., Menghi, C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Yamagata,
Y., Zhang, Z., 2020. ARCH-COMP 2020 category report: Falsification, in:
International Workshop on Applied Verification of Continuous And Hybrid
Systems, EasyChair. pp. 140–152.

Ernst, G., Arcaini, P., Fainekos, G., Formica, F., Inoue, J., Khandait, T.,
Mahboob, M.M., Menghi, C., Pedrielli, G., Waga, M., Yamagata, Y.,
Zhang, Z., 2022. Arch-comp 2022 category report: Falsification with
ubounded resources, in: International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH22), EasyChair. pp. 204–221.
doi:10.29007/fhnk.

Ernst, G., Sedwards, S., Zhang, Z., Hasuo, I., 2018. Fast falsification of
hybrid systems using probabilistically adaptive input. arXiv preprint
arXiv:1812.04159 .

G. Ernst, P. Arcaini, I.B.A.C., Donzé, A., Fainekos, G., Frehse, G., Gaaloul,
K., Inoue, J., Khandait, T., Mathesen, L., Menghi, C., Pedrielli, G.,
Pouzet, M., Waga, M., Yaghoubi, S., Yamagata, Y., Zhang, Z., 2021.

38

https://arxiv.org/abs/2002.09040
https://arxiv.org/abs/2002.09040
http://arxiv.org/abs/2002.09040
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.29007/fhnk

ARCH-COMP category report: Falsification with validation of results,
in: Workshop on Applied Verification of Continuous and Hybrid Systems,
EasyChair. pp. 133–152.

Gambi, A., Müller, M., Fraser, G., 2019. AsFault: testing self-driving car
software using search-based procedural content generation, in: Atlee, J.M.,
Bultan, T., Whittle, J. (Eds.), International Conference on Software En-
gineering: Companion Proceedings (ICSE), IEEE / ACM. pp. 27–30.

Haq, F.U., Shin, D., Briand, L., 2022. Efficient online testing for dnn-enabled
systems using surrogate-assisted and many-objective optimization, in: In-
ternational Conference on Software Engineering (ICSE 2022), pp. 811–822.

Heidlauf, P., Collins, A., Bolender, M., Bak, S., 2018. Verification chal-
lenges in F-16 ground collision avoidance and other automated maneuvers,
in: Frehse, G. (Ed.), ARCH18. 5th International Workshop on Applied
Verification of Continuous and Hybrid Systems, EasyChair. pp. 208–217.
doi:10.29007/91x9.

Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L., 2013.
PLEDGE: a product line editor and test generation tool, in: International
Software Product Line Conference co-located workshops (SPLC’13), ACM.
pp. 126–129.

Hoxha, B., Abbas, H., Fainekos, G., 2015. Benchmarks for temporal logic
requirements for automotive systems, in: Frehse, G., Althoff, M. (Eds.),
ARCH14-15. 1st and 2nd International Workshop on Applied veRification
for Continuous and Hybrid Systems, EasyChair. pp. 25–30. doi:10.29007/
xwrs.

Hu, J., Lygeros, J., Sastry, S., 2000. Towards a theory of stochastic hybrid
systems, in: International Workshop on Hybrid Systems: Computation
and Control, Springer. pp. 160–173.

Humeniuk, D., Antoniol, G., Khomh, F., 2021. Data driven testing of cyber
physical systems. CoRR abs/2102.11491. URL: https://arxiv.org/abs/
2102.11491, arXiv:2102.11491.

Humeniuk, D., Khomh, F., Antoniol, G., 2022. A search-based framework for
automatic generation of testing environments for cyber-physical systems.
Inf. Softw. Technol. 149, 106936. doi:10.1016/j.infsof.2022.106936.

39

http://dx.doi.org/10.29007/91x9
http://dx.doi.org/10.29007/xwrs
http://dx.doi.org/10.29007/xwrs
https://arxiv.org/abs/2102.11491
https://arxiv.org/abs/2102.11491
http://arxiv.org/abs/2102.11491
http://dx.doi.org/10.1016/j.infsof.2022.106936

Innes, C., Ramamoorthy, S., 2022. Automated testing with temporal logic
specifications for robotic controllers using adaptive experiment design, in:
International Conference on Robotics and Automation (ICRA), IEEE. pp.
6814–6821. doi:10.1109/ICRA46639.2022.9811579.

Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K., 2014. Powertrain
control verification benchmark, in: International Conference on Hybrid
Systems: Computation and Control, ACM. pp. 253–262. doi:10.1145/
2562059.2562140.

Jin, Y., 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 61–70.

Luke, S., 2013. Essentials of Metaheuristics. second ed., Lulu. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

Mandrioli, C., Carlsson, M.N., Maggio, M., . Testing abstractions for cyber-
physical control systems. Submitted for publication.

Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T., 2014. Mil testing of
highly configurable continuous controllers: scalable search using surrogate
models, in: Crnkovic, I., Chechik, M., Grünbacher, P. (Eds.), International
Conference on Automated Software Engineering (ASE), ACM/IEEE. pp.
163–174.

McKay, M.D., Beckman, R.J., Conover, W.J., 1979. A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics 21, 239–245. URL: http://www.
jstor.org/stable/1268522.

Menghi, C., Nejati, S., Briand, L., Parache, Y.I., 2020. Approximation-
refinement testing of compute-intensive cyber-physical models: An ap-
proach based on system identification, in: IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pp. 372–384.

Panichella, A., Kifetew, F.M., Tonella, P., 2015. Reformulating branch cov-
erage as a many-objective optimization problem, in: International Con-
ference on Software Testing, Verification and Validation (ICST), IEEE
Computer Society. pp. 1–10.

40

http://dx.doi.org/10.1109/ICRA46639.2022.9811579
http://dx.doi.org/10.1145/2562059.2562140
http://dx.doi.org/10.1145/2562059.2562140
http://www.jstor.org/stable/1268522
http://www.jstor.org/stable/1268522

Pedrielli, G., Khandait, T., Chotaliya, S., Thibeault, Q., Huang, H.,
Castillo-Effen, M., Fainekos, G., 2021. Part-x: A family of stochas-
tic algorithms for search-based test generation with probabilistic guaran-
tees. CoRR abs/2110.10729. URL: https://arxiv.org/abs/2110.10729,
arXiv:2110.10729.

Schuler, S., Adegas, F.D., Anta, A., 2017. Hybrid modelling of a wind tur-
bine, in: Frehse, G., Althoff, M. (Eds.), ARCH16. International Workshop
on Applied Verification for Continuous and Hybrid Systems, EasyChair.
pp. 18–26. doi:10.29007/tf1p.

Stocco, A., Pulfer, B., Tonella, P., 2022. Mind the gap! a study on the
transferability of virtual vs physical-world testing of autonomous driving
systems. IEEE Transactions on Software Engineering , 1–13doi:10.1109/
tse.2022.3202311.

Waga, M., 2020. Falsification of cyber-physical systems with robustness-
guided black-box checking, in: International Conference on Hybrid Sys-
tems: Computation and Control, ACM. pp. 11:1–11:13.

Wang, Y., Yu, R., Qiu, S., Sun, J., Farah, H., 2022. Safety performance
boundary identification of highly automated vehicles: A surrogate model-
based gradient descent searching approach. IEEE Transactions on Intelli-
gent Transportation Systems , 1–12doi:10.1109/TITS.2022.3191088.

Wu, J., Arcaini, P., Yue, T., Ali, S., Zhang, H., 2022. On the preferences
of quality indicators for multi-objective search algorithms in search-based
software engineering. Empirical Software Engineering 27, 144. doi:10.
1007/s10664-022-10127-4.

Yaghoubi, S., Fainekos, G., 2019. Gray-box adversarial testing for control
systems with machine learning components, in: International Conference
on Hybrid Systems: Computation and Control (HSCC).

Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J., 2021. Falsification
of cyber-physical systems using deep reinforcement learning. IEEE Trans-
actions on Software Engineering 47, 2823–2840. doi:10.1109/TSE.2020.
2969178.

41

https://arxiv.org/abs/2110.10729
http://arxiv.org/abs/2110.10729
http://dx.doi.org/10.29007/tf1p
http://dx.doi.org/10.1109/tse.2022.3202311
http://dx.doi.org/10.1109/tse.2022.3202311
http://dx.doi.org/10.1109/TITS.2022.3191088
http://dx.doi.org/10.1007/s10664-022-10127-4
http://dx.doi.org/10.1007/s10664-022-10127-4
http://dx.doi.org/10.1109/TSE.2020.2969178
http://dx.doi.org/10.1109/TSE.2020.2969178

Zeller, A., 2017. Search-based testing and system testing: A marriage in
heaven, in: International Workshop on Search-Based Software Testing,
(SBST@ICSE), IEEE/ACM. pp. 49–50.

Zhang, Z., Arcaini, P., 2021. Gaussian process-based confidence estimation
for hybrid system falsification, in: Huisman, M., Pasareanu, C.S., Zhan,
N. (Eds.), Formal Methods (FM), Springer. pp. 330–348.

Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J., 2021. Effec-
tive hybrid system falsification using monte carlo tree search guided by
QB-robustness, in: Silva, A., Leino, K.R.M. (Eds.), Computer Aided Ver-
ification, Springer. pp. 595–618.

Zhong, Z., Kaiser, G.E., Ray, B., 2021. Neural network guided evo-
lutionary fuzzing for finding traffic violations of autonomous vehicles.
CoRR abs/2109.06126. URL: https://arxiv.org/abs/2109.06126,
arXiv:2109.06126.

42

https://arxiv.org/abs/2109.06126
http://arxiv.org/abs/2109.06126

	1 Introduction
	2 Taxonomy
	3 Positioning against the State of the Art and Practice
	4 Replication Studies
	4.1 Replication Study: ADAS Case Study
	4.1.1 Experiment setup
	4.1.2 Results

	4.2 Replication Study: Simulink
	4.2.1 Experiment Setup
	4.2.2 Results

	5 Lessons Learned
	5.1 Metrics for Evaluating SA-SBT
	5.2 Surrogates for fault localization and repair
	5.3 Frameworks for large-scale experimentation
	5.4 International Competitions

	6 Conclusions

