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ABSTRACT
Automated bug priority inference can reduce the time overhead of bug triagers for priority as-
signments, improving the efficiency of software maintenance. Currently, there are two orthogo-
nal lines for this task, i.e., traditional machine learning based (TML-based) and neural network
based (NN-based) approaches. Although these approaches achieve competitive performance,
our observation finds that existing approaches face the following two issues: 1) TML-based ap-
proaches require much manual feature engineering and cannot learn the semantic information of
bug reports; 2) Both TML-based and NN-based approaches cannot effectively address the label
imbalance problem because they are difficult to distinguish the semantic difference between bug
reports with different priorities. In this paper, we propose CLeBPI (Contrastive Learning for
Bug Priority Inference), which leverages pre-trained language model and contrastive learning to
tackle the above-mentioned two issues. Specifically, CLeBPI is first pre-trained on a large-scale
bug report corpus in a self-supervised way, thus it can automatically learn contextual representa-
tions of bug reports without manual feature engineering. Afterward, it is further pre-trained by a
contrastive learning objective, which enables it to distinguish semantic differences between bug
reports, learning more precise contextual representations for each bug report. When finishing
pre-training, we can connect a classification layer to CLeBPI and fine-tune it for bug priority
inference in a supervised way. To verify the effectiveness of CLeBPI, we choose four baseline
approaches and conduct comparison experiments on a public dataset. The experimental results
show that CLeBPI outperforms all baseline approaches by 23.86%-77.80% in terms of weighted
average F1-score, showing its effectiveness.

1. Introduction
Bug traigers usually assign priorities for newly submitted bugs by fully understanding their corresponding bug

report, which can enable developers to quickly fix the bugs with relatively high priorities, improving the efficiency of
software maintenance and software quality. With the rapidly increasing number of bugs in software products, however,
it takes bug traigers much time to manually assign the bug priority, affecting the bug triagers’ efficiency. For example,
according to Fang et al.’s [15] statistics, there are more than 150 newly submitted bug reports in Mozilla1 project
everyday. In addition, except for the bug priority assignment, bug traigers also perform other software maintenance
activities, such as bug severity assignment [52, 53], bug fixer assignment [30, 64], and duplicate bug detection [21, 45].
To improve the efficiency of software maintenance, researchers have proposed some automated approaches to auto-
matically predict the bug priority according to corresponding bug report [15, 54, 55, 56]. Tian et al. [54] proposed
DRONE, a linear regression-based model that uses multiple manually selected features of bug reports. Additionally,
they also dealt with the label imbalance problem by a thresholding method. Umer et al. [55] proposed cPur, a convolu-
tional neural network-based approach that can learn the local semantic information of bug reports and does not require
manual feature engineering. Fang et al. proposed a graph convolutional network-based approach, namely PPWGCN,
which can learn the global word co-occurrence information. Moreover, they tackle the label imbalance problem by
introducing the label penalty factor to the cross-entropy loss function. Hence, PPWGCN achieves state-of-the-art re-
sults in bug priority inference. Although these approaches perform well, by diving into these studies, we find that two
major issues affect the effectiveness of existing approaches.

The first issue is that traditional machine learning based (TML-based) approaches (e.g., DRONE) require
much manual feature engineering and cannot learn the semantic information of bug reports. The former means
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that researchers need to take much time for selecting suitable features from bug reports, thus the quality of the dataset
may affect the models’ effectiveness. The latter means that TML-based approaches can only learn the shallow features
from bug reports, which limits their performance. For example, if two bug reports have many identical words but
they have different priority labels, it is hard for TML-based approaches to effectively distinguish them. The reason is
that these two bug reports are different in semantics but manually selected features are based on information retrieval
techniques (e.g., BM25) and cannot capture the semantic feature.

The second issue is that both TML-based and neural network-based (NN-based) approaches cannot effec-
tively address the label imbalance problem because they are difficult to distinguish the semantic difference be-
tween bug reports with different priorities. Specifically, in the Bugzilla platform2, priority is divided into five
classes, i.e., P1 to P5, where P1 denotes the highest priority while P5 denotes the lowest priority. The number of bug
reports with priority P4 and P5 is much less than bug reports with other priority labels3, which causes the label im-
balance problem in the bug report dataset. For TML-based approaches, they can hardly make accurate predictions for
bug reports with priorities P4 and P5 because simple shallow features cannot effectively distinguish bug reports with
rare priorities. Although DRONE introduces an extra thresholding method to address the label imbalance problem, the
effect is slight. As for NN-based approaches, although they can learn the semantic information of bug reports, they can
only perform effective learning for bug reports with non-rare priorities. In other words, they tend to learn the feature
of the priority that have large-sized samples and ignore the feature of the priority that have small-sized samples. An
obvious example is that cPur can achieve a high F1-score for predicting bug reports with the P3 label but it cannot
make any correct prediction for bug reports with P4 and P5 labels.

To resolve the aforementioned two issue, we propose CLeBPI (Contrastive Learning for Bug Priority Prediction),
an automated bug priority inference approach designed by the combination of the pre-trained language model [12, 34]
and contrastive learning [18, 31]. To tackle the first issue, we utilize a Transformer-based architecture to construct
CLeBBP and pre-train it on a large-scale bug report corpus by a masked language model (MLM) objective [12] in
a self-supervised way. Specifically, MLM randomly masks parts of tokens in each bug report sequence, and makes
CLeBPI predict masked tokens according to their context. Hence, CLeBPI can automatically learn the contextual
representation of bug reports while needing no manual feature engineering. To resolve the second issue, we perform a
supervised pre-training for CLeBPI by introducing a contrastive learning objective, by which CLeBPI can effectively
distinguish the semantic difference between bug reports with different priority, learning a more precise contextual
representation for each bug report. Finally, we add a classification layer to CLeBPI and perform supervised fine-tuning
on it for achieving automated bug priority inference.

To evaluate the effectiveness of CLeBPI, we re-use the public dataset released by Fang et al. [15], then choose
state-of-the-art TML-based model DRONE [54] and three NN-based approaches, including cPur [55], word2vec [42],
and state-of-the-art NN-based model PPWGCN [15], as the baseline approaches. Specifically, we first divide this
dataset into the training set, validation set, and testing set according to the previous split ratio [24]. Afterward, we
use the training set to perform the pre-training for CLeBPI. When finishing pre-training, we fine-tune CLeBPI on the
training set and evaluate it on the testing set. The experimental results show that CLeBPI outperforms all baseline
approaches by 23.86%-77.80% in terms of weighted F1-score. We also analyze the effect of bug reports’ length on the
performance of CLeBPI, and the results show that CLeBPI can provide accurate bug priority inference for bug reports
with any length.

To sum up, the major contributions of this paper are as follows:
• We propose CLeBPI, a novel automated bug priority inference approach, which combines the pre-trained lan-

guage model and contrastive learning to learn the precise contextual representation of bug reports with different
priorities.

• We alleviate the label imbalance problem in bug priority inference by introducing contrastive learning pre-
training for CLeBPI, which helps it effectively learn the semantic difference between bug reports.

• We verify the effectiveness of CLeBPI by comparing it with four baseline approaches, including state-of-the-
art TML-based and NN-based approaches. Our experimental results demonstrate that CLeBPI significantly
outperforms all the baseline approaches.

2All bug reports used in our experiments are collected from this bug tracking platform.
3P4 and P5 thus are regarded as the rare priority label.
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Description

Comment 1

Bug 554567 - Drag-n-drop a component into a xAB impossible

Status: RESOLVED
FIXED

Alias: None

Product: Capella
Component: Diagram
(show other

bugs)
Version: 0.8.5   

Hardware: PC
Windows 10

Importance: P3
minor
(vote)
Target

Milestone: 0.8.6

Assignee: Minh Tu Ton That 

Reported: 2016-03-31 07:40 EDT by Minh Tu Ton That 

Modified: 2016-04-01 04:20 EDT
(History)
CC List: 0 users

See Also:

Minh Tu Ton That 2016-03-31 07:40:22 EDT

If we have this structure:

Physical System

---- PC1

-------- PC1.1

-------- [PAB] diagram

---- PC2

It is possible to drag'n'drop PC1.1 from the Project Explorer into the diagram, but 
not PC1 nor PC2.

Polarsys Genie 2016-03-31 07:42:02 EDT

New Gerrit change created: https://git.polarsys.org/r/2468

Figure 1: An example of bug report with id 554567 in Eclipse platform.

The remaining of this paper includes the following parts. Section 2 introduces the background knowledge of
CLeBPI and our motivation. Section 3 elaborates on the framework of the proposed CLeBPI. Section 4 and 5 present
the experimental setup and experimental results, respectively. Section 6 presents ablation experiments and discusses
the threats to the validity of this work. Section 7 introduces the related works. Finally, Section 8 concludes the paper
and points out the future research plans.

2. Background and Motivation
In this section, we introduce the background of our work, including bug reports, priority prediction, pre-trained

language models, and contrastive learning. Then, we introduce the motivation for our work.
2.1. Bug Reports

bug reports are submitted by developers or users to the bug tracking systems (e.g., Bugzilla, LogRocket) and contain
descriptive information about the newly reported bug, such as where is the bug and what is wrong. Since different bug
tracking systems may have different ways to define the bug priority [48], in this paper, we conduct research on bug
reports managed by the Bugzilla platform, which is one of the most widely used bug tracking systems.

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 3 of 22



CLEBPI: Contrastive Learning for Bug Priority Inference

Table 1
The description of main elements in the bug report.

Element Description

Summary It laconically describes what a submitted bug is.
Status It describes the current state of a bug.
Product It indicates the project where a bug appears.

Component It is part of the Product and indicates a more specific location where a bug appears.
Version It denotes the version of the software the bug appears in.

Importance
It contains two labels: one is the priority label that describes how soon the developers should
fix the submitted bug; another one is the severity label that describes how severe the submitted bug is.

Description It mainly describes the reported bug specifically such as where is the bug generated.
Comment Users or developers can add their comments on the reported bug.

Fig. 1 gives a bug report in the Eclipse project collected from the Bugzilla platform. From the figure, we can
observe that a bug report is composed of multiple elements, such as Description, Comment, Summary, Status, Product,
Component, Version, Assignee, etc. Each element has its meaning. For example, the Summary element laconically
describes what the submitted bug is and the Description element specifically describes the reported bug such as where
is the bug generated. Amore specific introduction for the element in the bug report can be seen in Table 1. Note that we
only use the Description and Summary elements to perform bug priority inference since these two elements contain
sufficient textual information and are more general. Although the Comment element also has the above features, it
is written by other developers or users and is not always related to the submitted bug. For example, the Comment
element in Fig. 1 is simple log information. We also note that DRONE [54] utilized bug severity information to assist
bug priority inference since they regard there is potential consistency between bug priority and severity. For example,
a website exists some problems in some legacy browsers, such as the logo does not load and text scrambles. Since it
hurts product functionality and affects user experience, its bug severity is high. However, since it only exists in legacy
browsers, it has little influence on a large number of users, which means its low bug priority.
2.2. Priority Inference

Priority assignment is the early work in the cycle of software maintenance [65]. When a new bug report is sub-
mitted, a bug triager first needs to ensure whether the submitted bug is a newly generated bug or enhancement [15].
Since the developer needs to deal with a large number of bug reports, the bug triager generally prioritizes the bug
report before assigning it to a suitable one to resolve it. By accurately assigning bug priority, developers can fix bugs
in the most efficient order, which helps improve software quality and user experience. The Bugzilla platform divides
the priority into P1-P5 five different levels, where P1 is the highest fixing priority and P5 is the opposite. Although
bug triagers can pre-prioritize the bug report, the growing number of bug reports makes this task time-consuming and
boring. Therefore, researchers proposed some approaches to automatically recommend the bug priority for the newly
submitted bug, which we described in Section 1.
2.3. Pre-trained Language Model

Pre-trained language models [12, 46, 63] are first proposed in the natural language processing (NLP) community,
which can learn the general contextual representation of words by an unsupervised pre-training on a large-scale corpus
likeWikipedia. Then, the pre-trained languagemodel can be used in different NLP tasks, such as text classification [43],
machine translation [5, 51], text summarization [32], etc, by a supervised fine-tuning [12, 63]. Massive experimental
results in the NLP community show that pre-trained language models have achieved state-of-the-art results in all kinds
of tasks [12], leading the research tendency.

As the pre-trained language model becomes more popular, many domains start to privatize it [7, 34, 44]. In detail,
they use the domain-specific corpus to pre-train the pre-trained language model again, making them serve a specific
domain. The main reason is that the pre-trained language model pre-trained on the domain-specific corpus can learn
the more precise contextual representation for domain-specific data, which further improves its performance on the
domain-specific task. In the biomedical domain, for example, Lee et al. [34] proposed BioBERT, which is pre-trained
on a large-scale biomedical corpus and achieves the state-of-the-art results in various biomedical text mining tasks
such as biomedical question answering [29] and biomedical relation extraction [59]. In the scientific domain, Beltagy

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 4 of 22



CLEBPI: Contrastive Learning for Bug Priority Inference

et al. released SCIBERT, which is pre-trained on a large multi-domain corpus of scientific publications and brings new
results to a series of scientific tasks like sequence tagging [26] and dependency parsing [36]. COVID-Twitter-BERT
[44] is similar to SCIBERT, but it is pre-trained on a large corpus of Twitter messages with the topic of COVID-19.
2.4. Contrastive Learning

The core concept of contrastive learning [18, 19] is to make samples that are semantically similar close together
and push apart samples that are not semantically similar. According to the prior work [9], the training objective of
contrastive learning is constructed with a cross-entropy objective with in-batch negatives [10, 23]. Specifically, given
a set of paired examples that are semantically similar, namely  = {(bi, b+i )}

n
i=1, we assume that ri and r+i are the

representations of bi and b+i , then the training objective of contrastive learning for (xi, x+i ) with batch size N can be
calculated as follows:

�i = − log esim(ri,r
+
i )∕�

∑N
n=1 e

sim(ri,r+n )∕�
(1)

where sim(ri, r+i ) is the cosine similarity rTi r
+
i

||ri||⋅||r+i ||
and � is a temperature hyperparameter. From the above equation, we

can find that one critical factor of using contrastive learning is how to collect (ri, r+i ) pairs. From the above introduction,
we can note that in a mini-batch with size N , every sample has N − 1 negative samples. Hence, the key challenge in
contrastive learning is how to produce the positive sample for the task-specific data.
2.5. Motivation

Automated bug priority inference can accelerate the efficiency of software maintenance, further improving product
quality and user experience. Although existing automated bug priority inference approaches (NN-based) have reported
remarkable performance, we find that they only perform the accurate inference for the priority label that has large-sized
samples. The major reason is that neural networks tend to learn the semantic feature of the priority label corresponding
to large-sized samples. Consequently, neural networks ignore the semantic features of bug reports with the rare priority
label (it only has small-sized samples). According to our investigation, all existing approaches cannot achieve more
than a 10% F1-score for the priority inference of bug reports with label P4, which also can be seen in Section 5.1.

The above investigation result motivates us to analyze the potential reason by diving into existing approaches. By
our careful analysis, we think that the existing approaches face the following two issues: 1) According to our statistics,
most of bug reports (Description and Summary elements) are usually composed with source code and natural language,
and a simple neural architecture cannot fully learn the contextual information of the whole bug reports; 2) the number
of bug reports with rare priority label is quite few, thus existing approaches are hard to learn effective semantic features
from them. These two issues make existing approaches difficult cope with the label imbalance problem.

Inspired by the success of the pre-trained language model [12, 39], we think that it has the potential to help us
learn the effective contextual representation of bug reports by the combination of the deep neural architecture and self-
supervised pre-training. Considering that contrastive learning can boost the semantic recognition ability of pre-trained
models, we can utilize contrastive learning [18] to learn the deep semantic differences between bug reports, helping the
model distinguish bug reports with different priorities. In this paper, therefore, we actively explore how to effectively
combine pre-trained language models and contrastive learning, and apply them to the bug priority inference.

3. Approach
In this section, we first introduce how to build vocabulary for bug reports. Afterward, we describe the pipeline of

CLeBPI, includingmodel architecture, pre-training CLeBPI bymasked languagemodel objective, pre-training CLeBPI
by contrastive learning, and training CLeBPI for bug priority inference.
3.1. Vocabulary

To represent bug reports by CLeBPI, we first need to map them into a set of discrete numerical sequences by a
vocabulary  . Generally, the vocabulary size is equal to the number of the unique word in the bug report corpus.
However, bug report contains many compound words (e.g., FileNotFoundException and simpleconfigurator), which
makes the vocabulary size become large, hurting the model learning [3] since a large vocabulary exists severe data
sparsity problem. Although we can control the vocabulary size by filtering low-frequency words or using top-k words
Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 5 of 22
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Inputs Word

Embedding

Position

Encodiing

Linear
Q
K
V

Multi-Head

Self-Attention


Network
Layer Norm

Feed Forward

NetworkLayer NormOutputs

Figure 2: A single layer of Transformer encoder. Note that although we describe the word embedding and position
encoding, they are not the components of the Transformer encoder layer.

with the highest frequency to build vocabulary, these operations cause the out-of-vocabulary problem [49], which has
a negative effect on the model’s performance and generalizability. According to the prior study [58], we utilize BBPE
to build the vocabulary for the bug report corpus. BBPE is based on UTF-8 encoding and has 256 basic bytes. Thus,
BBPE can decompose all potential words into a set of byte n-gram, by which it can effectively control the vocabulary
size.

We give an example to show how BBPE decomposes bug reports into different byte n-grams. The following is a
bug report that contains Summary and Description elements.

Pasting code with JUnit asserts prompts for static import inclusion I am using JUnit3, so my test classes ex-
tend junit.framework.TestCase. However every time when I am coping and pasting a block of text containing
TestCase methods(for example assertTrue()) NetBeans asks if I want to add import clause: "import static ju-
nit.framework.Assert.assertTrue;". Not only such line is unnecessary, but it also brakes build as project source
level is set to "1.4" - no static imports are available.

When finishing BBPE, the bug report is transformed into a set of byte n-grams, which can be seen in the following.

P asting Ġcode Ġwith ĠJ Unit Ġasserts Ġprompts Ġfor Ġstatic Ġimport Ġinclusion ĠI Ġam Ġusing ĠJ Unit
3 , Ġso Ġmy Ġtest Ġclasses Ġextend Ġjun it . framework . Test Case . ĠHowever Ġevery Ġtime Ġwhen
ĠI Ġam Ġcoping Ġand Ġpast ing Ġa Ġblock Ġof Ġtext Ġcontaining ĠTest Case Ġmethods ( for Ġexample
Ġassert True ()) ĠNet Be ans Ġasks Ġif ĠI Ġwant Ġto Ġadd Ġimport Ġclause : Ġ" import Ġstatic Ġjun it .
framework . Ass ert . assert True ; ". ĠNot Ġonly Ġsuch Ġline Ġis Ġunnecessary , Ġbut Ġit Ġalso Ġbrakes
Ġbuild Ġas Ġproject Ġsource Ġlevel Ġis Ġset Ġto Ġ" 1 . 4 " Ġ- Ġno Ġstatic Ġimports Ġare Ġavailable .

Note that Ġ is a start marker that can be used to recover the encoded sentence. We can find that BBPE decomposes
compound words into a set of byte n-grams (e.g., assertTrue->assert+True, NetBeans->Net+Be+ans).
3.2. Model Architecture

We design CLeBPI by stacking Transformer [57] encoder layer. As shown in Fig. 2, it is one Transformer encoder
layer, which is composed of two sub-layers, including a multi-head self-attention network and a fully connected feed-
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forward network. Specifically, given a bug report sequence S = {t1, t2, ..., tl} where l is the sequence length, we firstinsert two special tokens into S, namely S = {[CLS], t1, t2, ..., tl, [EOS]}. Before inputting the S into the Transformer
encoder, we need to perform a word embedding [42] and a position encoding to it. For word embedding, we utilize a
lookup table  ∈ ℝdw×|| to map each token in S into a non-contextual vector vl ∈ ℝdw , where dw is the dimension
of the word embedding and || is the vocabulary size. As for position encoding, we use a simple relative position
encoding [12] replace the absolute position encoding used in vanilla Transformer [57]. The major reason is that the
absolute position encoding ignores the relative position information between tokens [50]. More specifically, we use
another lookup table  ∈ ℝdw×, where  is the max length of bug reports, to map the position of token tl intoa position vector pl ∈ ℝdw , thus CLeBPI can learn the relative position information between tokens in the training
process. The input of Transformer encoder layer can be expressed as follows:

Si = (S) + (S) (2)
When getting the input of Transformer encoder layer, we first utilize three individual and learned linear projections

to transform it into Q, K , and V vectors:
Q = SiWQ (3)
K = SiWK (4)
V = SiWV (5)

where Q, K , and V ∈ ℝdm , and WQ, WK , and WV ∈ ℝdw×dm . Generally, dm is equal to dw. To get the output of
multi-head self-attention network, we can first calculate the output of the single-head self-attention network, which is
shown as follows:

SHSAN(Q,K,V) = softmax(QKT
√

dm
)V (6)

The output of multi-head self-attention network can be expressed by the concatenation of multiple single-head self-
attention network:

MHSAN(Q,K, V ) = Concat(SHSAN1, ...,SHSANℎ)WO (7)
where Concat is a concatenation operation and SHSANℎ can be computed as follows:

SHSANℎ = SHSAN(QW Q
ℎ , KW

K
ℎ , V W

V
ℎ ) (8)

where the projections W Q
ℎ ∈ ℝdm×dq , W K

ℎ ∈ ℝdm×dk , W V
ℎ ∈ ℝdm×dv , and WO ∈ ℝhdv×dm . Note that dq = dk =

dv = dm∕ℎ. Next, we add a residual connection [22] component to multi-head self-attention network, followed by a
layer normalization [4], thus the output can be calculated as follows:

OLN = LN(Si +MHSAN(Q,K, V )) (9)
where OLN is the output of the normalization layer and LN denotes the layer normalization. Both residual connection
and layer normalization can accelerate the convergence of the model and avoid the vanishing gradients problem. The
multi-head self-attention network is connected with a fully connected feed-forward network, which is also followed by
a residual connection and a layer normalization. The output of the Transformer encoder layer is computed as follows:

outputs = LN(OLN + (ReLU(OLNW1 + b1)W2 + b2)) (10)
whereW1 ∈ ℝdm×dff andW2 ∈ ℝdff×dm are parameter matrices. b1 ∈ ℝdff and b2 ∈ ℝdm are biases. dff is equal
to 4 ⋅ dm.
3.3. Pre-training CLeBPI

The left of Fig. 3 gives a pipeline of pre-training CLeBPI with a masked language model objective. We first need
to perform a masking operation for each bug report sequence. Specifically, we randomly select parts of tokens in the
bug report sequence and replace them with a special [MASK] token. Following the prior work [12], we choose 15%
of tokens in each bug report sequence and mask them in the following three ways:

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 7 of 22
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Summary Description

Text Encoding & Dynamic Masking

Word Embedding & Position
Encoding

Transformer Encoder

Masked Tokens Prediction

T1 T2 T3 T4 T5 T6 T7 T8 T9 ...

T1 M T3 T4 M T6 M T8 T9 ...

Dynamic Masking

M T2 M T4 T5 T6 T7 T8 M ...
T1 T2 M T4 M M T7 T8 T9 ...

Figure 3: The left is the pipeline of pre-training CLeBPI with a masked language model, and the right is a simple example
of dynamic masking.

• Replacing them with [MASK] with the 80% probability;
• Replacing them with random tokens with the 10% probability;
• Keeping unchanged with the 10% probability.

Different from BERT which uses static masking, we utilize dynamic masking for each bug report sequence, which is
the same as RoBERTa [39]. As shown in the right of Fig. 3, dynamic masking can mask different positions for the
same bug report sequence in every iteration. The advantage of this operation is that the model can thoroughly learn the
contextual representation of bug reports by predicting different masked tokens. As for static masking, it only masks
some stable positions of each bug report in the whole pre-training process, thus the model may tend to focus on the
context of masked tokens, ignoring the context of the entire bug report. More specifically, we mask each bug report
in a dynamic masking way ten times, which means that each bug report has ten variants and the scale of the original
dataset becomes ten times larger.

When CLeBPI learns the representation of masked bug reports, we exploit the masked language model objective
to train it by maximizing the following log-likelihood:

MLM (�) =
∑

i∈
− log p(ti|Ŝ) (11)

where � is the learned parameters, is a set of positions of masked tokens, the probability p(⋅) is modeled by CLeBPI,
ti is the masked token, and Ŝ is the remaining tokens. Compared with the standard autoregressive language model
[47] that predicts the next token according to its left context, the masked language model enables the model to compre-
hensively consider both the left and right context of the masked token, making a reasonable inference. By the masked
language model, CLeBPI can effectively learn the contextual representation of bug reports, capturing their semantic
information.

Table 2 gives the details of pre-training CLeBPI with a masked language model. Following the prior work [12, 39],
the hyperparameter setting of CLeBPI is: L = 12, ℎ = 12, dw = dm = 768, dff = 3072, and dq = dk = dv = 64.
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Table 2
Statistics of the dataset.

Dateset Preject Size

L the number of Transformer encoder layer 12
dw, dm Hidden size 768
dff Inner hidden size of feed-forward network 3072
h Attention heads 12
dq , dk, dv Attention head size 64
Dropout Dropout rate 0.1
Attention Dropout Dropout rate in self-attention network 0.1
Warmup Steps Number of steps used for a linear warmup from 0 to learning rate 1K
Learning rate The initial learning rate for AdamW optimizer 5e-5
Batch Size - 16
Weight Decay Weight decay for AdamW optimizer 0.01
Max Steps Total number of training steps to perform 275K
Learning rate decay The scheduler type to use Linear
Adam � The � hyperparameter for Adam optimizer 1e-8
AdamW �1 The �1 hyperparameter for AdamW optimizer 0.9
AdamW �2 The �2 hyperparameter for AdamW optimizer 0.999

CLeBPP Encoder CLeBPP Encoder

A B C D A' B' C' D'

Pooling Pooling

Cosine

Similarity

A
A'

B
B'

C
C'

D
D'

Figure 4: The left is a pipeline of pre-training CLeBPI with contrastive learning, and the right is an example to show the
effect of contrastive learning.

We optimize CLeBPI by a AdamW optimizer [40] with a learning rate of 5e-5, �1 = 0.9, �2 = 0.999, L2 weight decay
of 0.01, and a linear decay of the learning rate. We set the batch size and max length of bug report sequence to 16
and 512, respectively. We pre-train CLeBPI 20 epochs, which is equal to about 275,000 training steps. We initialize
CLeBPI with the weight of RoBERTa [39], which is the same as CodeBERT [17] and BioBERT [34].
3.4. Pre-training CLeBPI with Contrastive Learning

The left of Fig. 4 gives a pipeline of pre-training CLeBPI with contrastive learning objective [18, 25]. As we
describe in Section 2.4, the major challenge of contrastive learning is how to produce positive instances for the given
bug report (denote it as A). Inspired by the masked language model, we can produce positive instances for the given
bug report by randomly replacing one token in it with a [MASK] token (denote the generated positive instance as
A′). According to the previous studies [18, 25], a minor modification to a textual sequence has little influence on its
semantics. In this situation, A and A′ are semantically similar since they just have one different token. Hence, we can
regard this augmented bug report A′ as a positive instance of bug report A. Additionally, considering that some slight
grammar errors cannot affect reading and understanding, we also use two extra methods to generate positive instances
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for the given bug report: 1) randomly delete one word in the original bug report; 2) randomly exchange the positions
of two words in the original bug report. In our experiments, we produce the positive instance for the given bug report
by exchanging the positions of two words in it because this method can bring the highest performance improvement.
We also make a comprehensive comparison of these three methods in Section 6.

Formally, we can use the above method to build a set of semantically similar bug report pairs, denoting them as
 = {(si, s+i )}. Afterward, we can generate negative samples by in-batch augmentation method [18, 25, 27]. Suppose
that the batch size isN , which means that each batch containsN semantically similar bug report pairs. For each pair
(si, s+i ), we can pair si withN − 1 positive instances generated from other bug reports, and regard theN − 1 pairs as
the negative instances for pair (si, s+j ). The training objective of contrastive learning is to minimize li:

li = − log esim(ri,r+i )∕�

∑N
j=1 e

sim(ri,r+j )∕�
(12)

where sim(⋅) is the cosine similarity, ri, r+i , and r+j are the contextual representations of si, s+i , and s+j , and � is
temperature factor. As shown in the right of Fig. 4, we give an example to elaborate on the function of contrastive
learning. It makes the semantically similar samples close together (e.g., A and A′, B and B′, etc) and the semantically
dissimilar samples apart from each other (e.g., C and D, C′ and D). In other words, contrastive learning enables CLeBPI
to learn the semantic difference between bug reports, which helps it distinguish bug reports with different priorities.
From a representation learning perspective, contrastive learning works because it can alleviate the anisotropy problem
in the representation modelled by pre-trained language models [13, 35]. That is, the learned embedding by masked
language model objective occupies a narrow cone in the vector space, in which two semantically dissimilar vectors are
close with each other. As a result, the model cannot distinguish the semantic difference between vectors. Due to the
property of contrastive learning (i.e., makes the negative instances apart), it can alleviate the anisotropy problem by
improving the uniformity of vector space [18].
Pre-training details The most hyperparameter settings in pre-training CLeBPI by contrastive learning objective are
the same as that in pre-training CLeBPI by masked language model objective. We mainly change the batch size,
learning rate, and the number of the training epoch to 32, 3e-5, and 5, respectively. Before pre-training CLeBPI by
contrastive learning objective, we initialize it with the weight of CLeBPI pre-trained by the masked language model
objective.
3.5. Training CLeBPI for Bug Priority Inference

When finishing the two-stage pre-training of CLeBPI, we can utilize pre-trained CLeBPI to perform bug pri-
ority inference. Fig. 5 shows how to train CLeBPI for bug priority inference. Given a batch of bug reports  =
{bug report1, ..., bug reportn}, where n is the batch size, we input it to the CLeBPI and obtain the corresponding out-
put:

Ox = CLeBPI() (13)
Then, we input Ox to an aggregation layer and perform a mean pooling to it, getting the contextual representation of
each bug report.

Omp = meanpooling(Ox) (14)
Finally, we feed Omp into a classification layer to predict the priority label c of each bug report:

p(c|Omp) = softmax(WOmp) (15)
whereW is a parameter matrix and softmax is a classifier. We train the parameters of CLeBPI andW by maximizing
the log-probability of the correct label.
Training details In the training phase, most hyperparameter settings are the same as that in the pre-training phase.
We mainly change the batch size, learning rate, and the number of the training epoch to 64, 5e-6, and 10, respectively.
We also limit the max length of bug reports to 256 because CLeBPI can get the best performance with this setting. We
also discuss the effect of the max length of bug reports in Section 5.3.
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BR-1 BR-2 ... BR-n

CLeBPP

Mean Pooling

Classification Layer

category 1 category 2

...
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Figure 5: CLeBPI for bug priority inference.

4. Experiment Setup
4.1. Research Questions

Our work mainly explore the following three research questions (RQ):
RQ1: How effective is CLeBPI when compared with (1) the state-of-the-art TML-based approach, and (2) the
state-of-the-art NN-based approaches?

In RQ1, wemainly explore the effectiveness of CLeBPI, which includes two parts: one is whether CLeBPI performs
better than the existing approaches, and another one is whether CLeBPI can effectively address the label imbalance
problem by comparison with the existing approaches. The former can demonstrate that CLeBPI can learn the effective
contextual representation of bug reports comparedwith the existing approaches, and the latter can verify that contrastive
learning can help CLeBPI alleviate the label imbalance problem by learning the deep semantic differences between
bug reports. Thus, we choose one state-of-the-art TML-based approach and three effective NN-based approaches
(including the state-of-the-art approach), then compare CLeBPI with them on an open-source dataset, to evaluate its
performance.

RQ2: How effective is CLeBPI when compared with the pre-trained language model in other fields (e.g.,
BERT in the NLP field)?

In RQ2, we mainly investigate whether CLeBPI is more effective than some pre-trained language models in other
fields. The reason we perform such research is that CLeBPI is also pre-trained bymasked languagemodel objective and
contrastive learning objective, we thus think that it is necessary to compare CLeBPI with existing pre-trained language
models. Additionally, existing pre-trained language models claim that they can achieve competitive results on various
of downstream tasks by a supervised fine-tuning. If CLeBPI performs better than these pre-trained language models,
it can further support the effectiveness of CLeBPI.

RQ3: How does the length of bug report affect the performance of CLeBPI?
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Table 3
The statistics of the bug report in each project of the Bugzilla platform.

Project Number of Bug Reports Average Length

Mozillag 112,750 142.61
Eclipse 106,627 114.13

Netbeans 23,236 200.15
GCC 33,026 229.21

Overall 275,639 171.53

Table 4
The statistics of the bug report dataset that is used in the bug priority inference.

- Number of Bug Reports
Training set Valid set Test set

Bug Priority Inference 176,588 21,939 21,909

Table 5
The statistics of bug reports according to the priority label.

- Number of Priority Labels
Training set Valid set Test set

P1 34,544 4,375 4,344
P2 32,569 4,031 3,960
P3 102,634 12,703 12,782
P4 2,935 352 350
P5 3,906 478 473

In RQ3, we mainly explore (1) whether bug reports with different lengths affect the performance of CLeBPI, and
(2) whether the choice of the max length of bug report affects the performance of CLeBPI. The reason to perform the
former exploration is that some previous studies [52, 64, 65] find that short bug reports may have a negative impact
on models’ performance since they only contain limited textual information. Considering that CLeBPI is proficient
in learning contextual representation and semantic differences of bug reports, we tend to explore whether CLeBPI
can eliminate this negative impact. As for the latter research, we mainly explore how the choice of bug reports’ max
length affects the performance of CLeBPI, including the effectiveness and training time. To perform the first research,
we divide bug reports into 6 intervals by the length with strides of 100, including 0-100, 100-200, 200-300, 300-
400, 400-500, and more than 500. Then, we calculate the inference accuracy of CLeBPI in each length interval and
observe whether CLeBPI has different performance in each length interval. To perform the second research, we choose
different bug reports’ max length settings when we train CLeBPI for the bug priority inference, i.e., 64, 128, 256, and
512. Then, we calculate the inference accuracy and training time of CLeBPI under each max length setting.
4.2. Dataset and Baselines
4.2.1. Dataset

We conduct all the experiments in this work on the open-source dataset released by Fang et al. [15]. Specifically,
they collected more than 270,000 bug reports from four open-source projects in the Bugzilla platform, i.e., Mozilla,
Eclipse, Netbeans, and GNU compiler collection (GCC), from Feb. 2000 to Sep. 2020. As shown in Table 3, it gives
the detailed statistics of bug reports in each project. For each bug report, we only reserve its Summary and Description
elements, then combine these two elements and use the Summary element as the first sentence. Moreover, we have no
pre-processes for bug reports because BBPE can effectively encode each token in bug reports. Although bug reports
contain other elements, we think these two elements can provide enough sufficient textual information to be learned
by CLeBPI. Afterward, following the prior work [16, 24], we divide 80% of all bug reports into the training set, 10%
of all bug reports into the validation set, and the remaining bug reports into the testing set, respectively. We use the

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 12 of 22



CLEBPI: Contrastive Learning for Bug Priority Inference

training set to perform the first-stage pre-training for CLeBPI and evaluate it on validation and testing sets. To perform
the second-stage pre-training, we build a new dataset based on the dataset used for the first stage. We conduct a data
augmentation for each bug report by randomly exchanging the positions of two tokens in it, to generate a positive
instance for each bug report, then we combine them into a tuple as the input in the second-stage pre-training.

When finishing pre-training, we need to further process the dataset used in the first-stage pre-training for the fol-
lowing training of bug priority inference. Specifically, we filter bug reports that have no priority label because the
training process for bug priority inference is supervised and requires labeled data. The statistics of labeled bug reports
are shown in Table 4. In addition, there exists a severe label imbalance problem in the bug report dataset. As shown
in Tabel 5, from the table we can observe that bug report with priority P3 occupies most parts of the whole dataset
and are about 30 times more than bug report with priority P4 or P5, causing the label imbalance problem. The label
imbalance problem may make the model focus on learning features of the bug report whose priority is P3 and ignore
the features of bug reports with priority P4 or P5. Consequently, the model has extremely high accuracy on the priority
inference of bug reports with label P3 while cannot make any effective inference for the bug report whose priority is
P4 or P5.
4.2.2. Baselines
Baselines in RQ1 We choose four baseline approaches and compare them with CLeBPI. In detail, we choose one
state-of-the-art TML-based approach, namely DRONE [54], which is a linear regression model that uses multiple
factors of bug reports and deals with the label imbalance problem by a thresholding method. Additionally, we choose
three NN-based approaches, i.e., word2vec [42], cPur [55], and PPWGCN [15], all of which are word embedding,
convolutional neural network, and graph convolutional network based approaches. Especially, PPWGCN is the state-
of-the-art bug priority inference approach.
Baselines in RQ2 We choose two famous pre-trained language models in the NLP field as the baseline approaches,
namely BERT [12] and RoBERTa [39], all of which have achieved the state-of-the-art results on all kinds of NLP tasks.
Besides, we also choose CodeBERT [17], a pre-trained language model used for the representation of source code and
natural language, as another baseline approach. We compare CLeBPI against them to verify its effectiveness.
4.3. Evaluation Metrics

Following the prior bug priority inference approaches [15, 54, 55], we choose accuracy (A), precision (P), recall
(R), and F1-score (F) as the evaluation metrics, and we can define these metrics by the following equations:

A =
Number of labels that are predicted correctly

The total number of labels (16)

Pi =
TP

TP + FP
,Ri =

TP
TP + FN

, Fi =
2 × Pi × Ri
Pi + Ri

(17)
where TP (true positive) is the number of bug reports with priority i that are predicted correctly, FP is the number
of bug reports with other priority but are predicted as priority i, and FN is the number of bug reports with priority i
but are predicted as other priority. In order to alleviate the influence of label imbalance on the model performance, we
also calculate the weighted average for all priority classes:

Pwa =
∑

i∈

Ni
Nt

× Pi, Rwa =
∑

i∈

Ni
Nt

× Ri, Fwa =
∑

i∈

Ni
Nt

× Fi (18)

where  is a set of priority classes,Ni is the number of bug reports with priority i, andNt is the total number of bug
reports. Especially, the weighted average F1-score is not always between Pwa and rwa4.
4.4. Experiment Settings

We conduct all experiments on a deep learning server that contains two Intel Xeon 2.20GHz CPUs, 256GB mem-
ory, and two NVIDIA Tesla V100 GPUs with 16GB memory. To implement CLeBPI, we use the following python
packages: PyTorch V.1.6.0, transformers V.4.17.0 [61], NumPy V.1.16.3 [20], and datasets V.1.17.0 with GPU sup-
port. The CUDA version we use is 10.2. For the baseline approaches in RQ1, if the authors have released the

4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
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Table 6
The performance comparison of baseline approaches and CLeBPI on the bug priority inference.

Model Metric
Bug Priority Inference

P1 P2 P3 P4 P5 Weighted Average

CLeBPI

Precision (%) 66.87 56.91 84.12 36.78 77.65 74.89

Recall (%) 69.81 50.77 88.11 23.71 64.12 76.19

F1-score (%) 68.31 53.66 86.07 28.83 70.24 75.53

Accuracy (%) 76.19

DRONE

Precision (%) 50.52 29.45 48.48 1.43 25.01 44.19

Recall (%) 55.05 24.98 43.37 8.73 1.16 40.90

F1-score (%) 52.69 27.03 45.78 2.46 2.22 42.48

Accuracy (%) 40.90

word2vec

Precision (%) 49.56 23.22 60.08 1.28 35.87 49.87

Recall (%) 18.01 12.23 88.79 0.22 43.79 58.53

F1-score (%) 26.42 16.02 71.67 0.38 39.44 53.85

Accuracy (%) 58.53

cPur

Precision (%) 60.34 63.45 65.98 0.00 0.00 61.93

Recall (%) 29.32 8.21 90.44 0.00 0.00 60.06

F1-score (%) 39.46 14.54 76.29 0.00 0.00 60.98

Accuracy (%) 60.06

PPWGCN

Precision (%) 57.43 37.52 80.16 3.39 48.21 66.03

Recall (%) 58.88 40.73 59.42 41.28 55.98 55.57

F1-score (%) 58.15 39.06 68.25 6.27 51.81 60.35

Accuracy (%) 55.57

source code, we directly re-run the source code on our built dataset. For the baseline approaches that do not re-
lease the source code, we re-implement them according to the corresponding literature. Particularly, we keep all
parameter settings constant when re-running the baseline approaches. For the baseline approaches in RQ2, we down-
load all pre-trained language models from transformers hub5 and fine-tune them on our built dataset. We use API
sklearn.metrics.precision_recall_fscore_support in scikit-learn package to calculate all the evaluation
metrics.

5. Experimental Results
In this section, we present the experimental results and answer the three research questions proposed in Section 4.1.

5.1. Answer to RQ1: Retrieval Performance
The comparison of effectiveness Table 6 gives the effectiveness comparison between CLeBPI and the baseline ap-
proaches. We calculate the accuracy (A), precision (P), recall (R), F1-score (F), and weighted average P, R, and F to
measure each approach. Specifically, in terms of weighted average F1-score, CLeBPI outperforms DRONE, word2vec,
cPur, and PPWGCN by 77.80%, 40.26%, 23.86%, and 25.15%. In terms of accuracy, CLeBPI outperforms DRONE,
word2vec, cPur, and PPWGCN by 86.28%, 30.17%, 26.86%, and 37.11%. All these results support the effectiveness

5https://huggingface.co/models
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of CLeBPI. More specifically, DRONE is the worst performing approach, and the potential reason is that traditional
machine learning algorithms cannot capture the semantic information of bug reports, which hinders them to perform
effective priority inference for each bug report. Besides, the generalization of manual features is limited. The other
three baseline approaches are based on neural networks and can automatically capture the semantic information of
bug reports, thus performing better than DRONE. However, word2vec is the worst performing NN-based approach be-
cause the word embedding technique cannot learn contextual information of the whole bug report. Although cPur has
a higher weighted average F1-score than PPWGCN, we can observe that cPur almost tends to learn the features of bug
reports with priority P3 and cannot make any effective inference for bug reports with priority P4 or P5. By contrast,
PPWGCN has a more balanced performance than cPur and makes effective inferences for bug reports with priority P5.
Since we perform two-stage pre-training for CLeBPI with masked language model objective and contrastive learning
objective respectively, CLeBPI can learn the precise contextual representation of bug reports and capture their semantic
differences. As a result, CLeBPI performs better than all baseline approaches at each priority label inference.
Retrieval label imbalance As we described in Section 4.2.1, there exists a severe label imbalance problem in the
dataset for bug priority inference (i.e., P4 and P5 are rare labels), which is also shown in Table 5. From Table 6 we
can find that all baseline approaches cannot effectively address the label imbalance problem. Specifically, DRONE
deals with the label imbalance by introducing a thresholding method but the effect is slight because DRONE is unable
to perform accurate inference for bug reports whose priority is P4 or P5. As for word2vec and cPur, they perform
well on priority inference for bug reports with priority P3 because it occupies the most parts of the whole bug reports
and neural networks are easy to learn the semantic features of bug reports with priority P3. However, these two
approaches thus are difficult to learn the semantic features of bug reports with other priorities and perform badly on
priority inference for them. Different from the above two NN-based approaches, PPWGCN tackles the label imbalance
by introducing a weighted loss function. Although it has the close weighted F1-score with cPur, PPWGCN performs
well on the priority inference for bug reports whose priorities belong to P1, P3, and P5. In other words, PPWGCN
can alleviate the label imbalance to a certain degree. Since we use a contrastive learning objective to perform an extra
pre-training for CLeBPI, it can effectively distinguish the semantic differences between bug reports. Thence, CLeBPI
effectively copes with the label imbalance problem. In detail, for the priority inference of bug reports with the P4
label, CLeBPI gets the absolute improvement by 22.56% in terms of F1-score by comparison with the state-of-the-art
baseline approach PPWGCN. As for the priority inference of bug reports with the P5 label, CLeBPI also outperforms
the state-of-the-art result by 18.43% in terms of F1-score. These results fully verify that CLeBPI is able to effectively
alleviate the label imbalance problem.

Answer to RQ1: By comparing the performance of CLeBPI with the baseline approaches, we find that CLeBPI
achieves the state-of-the-art results on bug priority inference, which supports the effectiveness of CLeBPI.
Additionally, we also find that CLeBPI can effectively alleviate the label imbalance problem compared with
all the baseline approaches, verifying the effectiveness of contrastive learning.

5.2. RQ2: Effectiveness Comparison
As shown in Table 7, it contrasts the effectiveness of CLeBPI against three existing pre-trained models. We cal-

culate the accuracy (A), precision (P), recall (R), F1-score (F), and weighted average P, R, and F to measure each
model.

We first can observe that although these three pre-trained language models are not designed for bug priority in-
ference, they outperform all the baseline approaches in RQ1, which demonstrates that pre-trained language models
have powerful context learning abilities. By comparing CLeBPI with BERT, RoBERTa, and CodeBERT, it can obtain
the absolute improvements of 6.32%, 4.97%, and 5.43% in terms of weighted average F1-score. In terms of accuracy,
CLeBPI gets the absolute improvements by 6.28%, 5.09%, and 5.47% when compared with BERT, RoBERTa, and
CodeBERT. These experimental results verify two things: 1) Pre-training CLeBPI on bug report corpus can further
improve its representation ability for bug reports, which helps CLeBPI perform more precise bug priority inference; 2)
Contrastive learning can help the CLeBPI to learn the deep semantic differences between bug reports, improving the
classification performance. Additionally, we can also observe that these three pre-trained language models perform
better than all the baseline approaches in RQ1 for addressing the label imbalance problem, which shows that contextual
information helps models distinguish bug reports with different priority labels. It also further supports that contrastive
learning is helpful for dealing with the label imbalance problem.

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 15 of 22



CLEBPI: Contrastive Learning for Bug Priority Inference

Table 7
The performance comparison of CLeBPI and pre-trained language models on bug priority
inference.

Model Metric
Bug Priority Inference

P1 P2 P3 P4 P5 Weighted Average

CLeBPI

Precision (%) 66.87 56.91 84.12 36.78 77.65 74.89

Recall (%) 69.81 50.77 88.11 23.71 64.12 76.19

F1-score (%) 68.31 53.66 86.07 28.83 70.24 75.53

Accuracy (%) 76.19

BERT

Precision (%) 62.43 47.01 79.32 18.99 63.21 68.82

Recall (%) 60.65 44.09 82.79 12.21 52.00 69.61

F1-score (%) 61.52 45.50 81.02 14.86 57.06 69.21

Accuracy (%) 69.91

RoBERTa

Precision (%) 62.88 47.12 80.99 22.65 66.23 70.03

Recall (%) 62.67 45.54 83.97 13.89 57.11 71.10

F1-score (%) 62.77 46.32 82.45 17.22 61.33 70.56

Accuracy (%) 71.10

CodeBERT

Precision (%) 62.13 45.12 81.02 18.98 66.74 69.49

Recall (%) 62.67 43.77 83.96 11.00 56.89 70.72

F1-score (%) 62.40 44.43 82.46 13.93 61.42 70.10

Accuracy (%) 70.72

Table 8
The accuracy (%) of CLeBPI on bug reports in different length intervals.

- Length of Bug Reports
0-100 100-200 200-300 300-400 400-500 >500

Bug Priority Inference 76.16 76.03 75.31 78.11 79.12 77.98

Answer to RQ2: Since we perform a two-stage pre-training for CLeBPI, it can learn the more precise con-
textual representation of bug reports than our selected three pre-trained language models. Additionally, the
success of CLeBPI in addressing the label imbalance problem shows that contrastive learning helps alleviate
the label imbalance in the dataset by making CLeBPI learn the deep semantic differences between bug reports
with different priority labels.

5.3. RQ3: Retrieval the Effect of bug report’s Length
The effect of bug reports’ length Table 8 gives the performance of CLeBPI on the priority inference for bug reports
with different length intervals. From the table we can obviously find that CLeBPI achieves more than 75% accuracy on
the priority inference for bug reports with each length interval, which shows that short bug reports have no influence
on the performance of CLeBPI. We also find that CLeBPI achieves better performance on the priority inference for
bug reports that belong to 400-500 length interval, which is similar to zhang et al.’s study [64] that developers take
fewer days to fix bugs whose bug reports are between 400 to 500 in length. As the bug reports’ length increases (when
more than 500), CLeBPI cannot get the performance improvement. We guess the potential reason is that bug reports
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Table 9
The performance of CLeBPI with different settings of the max length of the bug report.

Max length of Bug Reports Bug Priority Inference
Weighted Average F1-score (%) Accuracy (%) training time/min

64 73.77 74.25 225.66
128 74.98 75.43 307.12
256 75.53 76.19 509.56
512 75.54 76.22 998.43

Table 10
The performance comparison of CLeBPI between using contrastive learning and ignoring it.

- Bug Priority Inference
Weighted Average F1-score (%) Accuracy (%)

CLeBPI w/ contrastive learning objective 75.53 76.19
CLeBPI w/o contrastive learning objective 72.33 72.89

Table 11
The performance comparison of different data augmentation methods used for contrastive learning.

- Bug Priority Inference
Weighted Average F1-score (%) Accuracy (%)

Masking one word in bug report 74.84 75.47
Deleting one word in bug report 74.35 74.89
Exchanging the position of two words in bug report 75.53 76.19

whose length is more than 500 contain much redundant information, which may be regarded as noise by models.
The effect of bug reports’ max length To explore the impact of bug reports’ max length on the performance of
CLeBPI, we choose four different settings of bug reports’ max length when training CLeBPI for bug priority inference,
i.e., 64, 128, 256, and 512. As shown in Table 9, it gives the performance of CLeBPI when training with different
settings of bug reports’ max length. As the bug reports’ max length increases, CLeBPI can obtain a higher weighted
average F1-score and accuracy. However, we must notice that the training time has a more dramatic increase, thus we
need to comprehensively consider the effectiveness and training time. From the table, we observe that when increasing
the bug reports’ max length from 256 to 512, CLeBPI only obtains a slight improvement. Meanwhile, we can find that
the training time raises about 2 times when increasing the max length from 256 to 512. It means that the setting of
the max length is not the larger the better. Therefore, we think that setting the max length of bug reports to 256 is a
suitable choice that both consider the effectiveness and training overhead.

Answer to RQ3: To sum up, we confirm two things: 1) the bug reports’ length have limited influence on
the performance of CLeBPI, which shows its powerful representation learning ability; 2) The setting of bug
reports’ max length is not the larger the better since it causes an aggressive increase in the training time, thus
setting the max length of bug reports to 256 is an appropriate selection.

6. Discussion
In this section, we first perform some ablation experiments, then specifically discuss the threats to the validity of

our experiments.

Wen-Yao Wang et al.: Preprint submitted to Elsevier Page 17 of 22



CLEBPI: Contrastive Learning for Bug Priority Inference

Table 12
The performance of CLeBPI on the priority inference for bug reports with different learning rates.

- Learning Rate
1e-6 2.5e-6 5e-6 7.5e-6 1e-5

Weighted Average F1-score (%) 74.16 74.77 75.53 75.01 74.83
Accuracy (%) 74.80 75.42 76.19 75.77 75.36

6.1. Ablation Experiment
6.1.1. The Impact of Contrastive Learning

We explore whether contrastive learning helps CLeBPI improve the effectiveness of bug priority inference. Specif-
ically, we re-run the whole training process of CLeBPI but ignore the second-stage pre-training that uses a contrastive
learning objective, then compare its performance with CLeBPI that is conducted the entire pre-training process. As
shown in Table 10, we can find that CLeBPI without contrastive learning performs better than all the baseline ap-
proaches in RQ1 and RQ2, which supports that pre-training on bug report corpus is effective. However, we also find
that CLeBPI without contrastive learning fails to deal with the label imbalance problem because its F1-score on the
priority inference of bug reports with the P4 label is just 13.97%, which is far lower than the performance of CLeBPI
with contrastive learning (i.e., 28.83%). Additionally, when using contrastive learning to perform a second-stage pre-
training for CLeBPI, it gets the absolute improvements of 3.20% and 3.30% in terms of weighted average F1-score and
accuracy, respectively. All these facts verify the effectiveness of contrastive learning.

We also investigate the impact of different data augmentation methods on the performance of contrastive learning.
As shown in Table 11, we can find that each data augmentation method is helpful for pre-training CLeBPI with a
contrastive learning objective, which supports the effectiveness of contrastive learning. We also can observe that the
data augmentation method that exchanges the position of two words achieves the highest scores both in weighted
average F1-score and accuracy. We guess the potential reason is that exchanging the position of two words in bug
reports can produce a more challenging pseudo-positive example, which enforces CLeBPI to learn the deep and useful
semantic differences of bug reports, to effectively distinguish them.
6.1.2. The Impact of Learning Rate

To investigate the effect of learning rate on CLeBPI, we set five different learning rates and train CLeBPI with
them for the bug priority inference. Table 12 gives the performance of CLeBPI when training with different learning
rates. Specifically, as the learning rate increases, CLeBPI can get higher scores both in weighted average F1-score and
accuracy. When the learning rate is more than 5e-5, the performance of CLeBPI starts decreasing. Considering that
the setting of the learning rate only affects the model’s performance, setting the learning rate to 5e-6 is a good choice.
6.2. Threats to Validity

This paper mainly suffers from some threats to validity. One critical threat to the internal validity is how to ef-
fectively set the hyper-parameters in CLeBPI. We mitigate this threat by setting most hyper-parameters according to
the prior studies [12, 39], which are verified that these settings are optimal. For other hyper-parameter settings, we
also perform sufficient experiments to find the optimal settings, which can be seen in Section 5.3 and Section 6.1. An-
other threat to the internal validity is that we produce positive instances for bug reports (used for contrastive learning
pre-training) by exchanging positions of any two words in bug reports. However, there are other methods to produce
positive instances for bug reports and we cannot ensure our selected method is more effective. We mitigate this threat
by comparing our selected method with other methods, and we evaluate CLeBPI’s performance with different methods,
which can be seen in Sec 6.1.1.

One threat to the external validity is that CLeBPI can only serve for bug reports from the Bugzilla platform. There
are many different bug tracking systems that also contain lots of bug reports, and they also have a requirement for
automated bug priority inference. However, we cannot confirm whether CLeBPI can serve for bug reports from these
bug tracking systems because theymay have different definitions for the bug priority. Amitigating factor is that CLeBPI
can be applied to other bug tracking systems by the transfer learning [60]. Although bug tracking systems have their
own definitions for the bug priority, bug reports in these systems also contain Summary and Description elements,
which enables CLeBPI to be quickly transformed to these systems by the transfer learning [60]. Specifically, we only
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need to directly fine-tune CLeBPI on bug reports from the new bug tracking system for the bug priority inference and
need not pre-train it again.

7. Related Work
In this section, we describe some related studies, including bug priority inference, pre-trained language models,

and bug report-related software engineering tasks.
7.1. Priority Inference

Bug priority inference is first proposed by Abdelmoez et al. [1], which is an orthogonal task of bug severity
prediction [53, 65] and can improve the efficiency of software maintenance by distinguishing the fixing priority of
the newly reported bug. Specifically, they utilized naïve Bayes classifier to analyze bug reports for distinguishing the
fixing time of their corresponding bugs, by which they can realize the bug priority inference. Afterward, Alenezi et al.
[2] compared the performance of naïve Bayesian, random forest, and decision tree on the bug priority inference. Their
experimental results show that decision tree and random forest are better than naïve Bayesian. Tian et al. proposed
DRONE, a linear regression based model that performs bug priority inference by exploiting multiple factors of bug
reports. To resolve the label imbalance problem, they extra introduced a thresholding method. Hence, DRONE is the
state-of-the-art TML-based approach.

As deep learning [33] becomes popular, NN-based approaches outperform TML-based approaches because neural
networks can automatically learn semantic features and need not manual feature engineering. Choudhary et al. [11]
utilized multilayer perceptron to perform the bug priority inference, which needs no manual feature engineering and
reduces the time-consuming. Umer et al. [55] proposed cPur, which is based on a convolutional neural network and
can learn the local semantic information of bug reports, outperforming DRONE on the bug priority inference. Bani-
Salameh et al. [6] proposed a novel approach for the bug priority inference, which is built by stacking five layers of
RNN-LSTM neural networks. Fang et al. [15] proposed PPWGCN, a graph convolutional network based approach
than introduces a weighted loss function to deal with the label imbalance problem, thus it becomes the state-of-the-art
NN-based approach for the bug priority inference.

Different from the above-mentioned approaches, we first pre-train CLeBPI with a masked language model ob-
jective, to learn the contextual representation of bug reports. Then, we further pre-train CLeBPI with a contrastive
learning objective, by which CLeBPI can learn the deep semantic differences between bug reports. Finally, we train
CLeBPI for the bug priority inference, which achieves state-of-the-art results on the bug priority inference and can
effectively alleviate the label imbalance problem.
7.2. Pre-trained Language Model in Software Engineering

Pre-trained language models have been widely utilized to perform other software engineering tasks. For example,
Feng et al. [17] proposed CodeBERT, which can learn contextual representation of code and natural language, achiev-
ing state-of-the-art results both in code search [14] and code comment generation tasks [24]. Jiang et al. proposed
CURE, which is a neural machine translation based automated program repair approach. Before performing the auto-
mated program repair, it is pre-trained on a large-scale software codebase to fully learn the contextual information of
the source code. Liu et al. [38] proposed CugLM, a Transformer-based pre-trained language model pre-trained with a
hybrid objective, containing both code understanding and code generation. Their approach thus brings new results to
code completion tasks on two public datasets.

Different from the aforementioned approaches, CLeBPI is pre-trained to learn the contextual representation of bug
reports and is used for the bug priority inference. Moreover, to deal with the label imbalance problem, we introduce
contrastive learning and perform a two-stage pre-training for CLeBPI, by which we effectively alleviate the label
imbalance problem while improving the performance of CLeBPI.
7.3. bug report-Related Software Engineering Tasks

Except for the bug priority inference, there are other bug report-related automated software engineering tasks
[21, 41, 52, 62, 66]. For example, duplicate bug report detection [28] can help developers find bugs that have been
reported, improving their efficiency. Bug report summarization can automatically generate the titles for bug reports,
which helps fixers quickly understand the bug and perform effective fixing. As for the bug severity prediction [65], it
can tell the severity of the newly submitted bug, and bug traiger can perform the reasonable assignment. Automated
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bug triaging [8] can assign a newly submitted bug to the appropriate developer to fix it, which can increase the fixing
rate and speed of bugs. Bug localization [37] can help developers quickly locate where the bug appears, improving the
fixing speed of bugs. To sum up, all bug report-related tasks can help improve the efficiency of software maintenance.

8. Conclusion
In this paper, we focus on improving the performance of bug priority inference based on bug reports, including

effectiveness and addressing the label imbalance problem in the dataset. To achieve our goal, we propose CLeBPI,
a Transformer-based pre-trained language model. To improve the effectiveness of CLeBPI, we pre-train it with a
masked language model objective to learn the precise contextual representation of bug reports. To cope with the
label imbalance problem, we perform a second-stage pre-training for CLeBPI with a contrastive learning objective, to
learn the deep semantic differences between bug reports. Finally, we train CLeBPI for the bug priority inference and
experimental results show that it outperforms all baseline approaches and effectively alleviates the label imbalance
problem.

In the future, we plan to further explore the label imbalance problem by diving into bug reports with rare priority
labels, to find a more effective approach to resolve it. Additionally, we will also plan to explore the generalizability of
CLeBPI by applying it to other bug report-related software engineering tasks.
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