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Abstract

Context: Designing effective automatic smart contract comment generation approaches can facilitate developers’ comprehension,
boosting smart contract development and improving vulnerability detection. The previous approaches can be divided into two
categories: fine-tuning paradigm-based approaches and information retrieval-based approaches.
Objective: However, for the fine-tuning paradigm-based approaches, the performance may be limited by the quality of the gathered
dataset for the downstream task and they may have knowledge-forgetting issues, which can reduce the generality of the fine-tuned
model. While for the information retrieval-based approaches, it is difficult for them to generate high-quality comments if similar
code does not exist in the historical repository. Therefore we want to utilize the domain knowledge related to smart contract code
comment generation in large language models (LLMs) to alleviate the disadvantages of these two types of approaches.
Method: In this study, we propose an approach SCCLLM based on LLMs and in-context learning. Specifically, in the demonstra-
tion selection phase, SCCLLM retrieves the top-k code snippets from the historical corpus by considering syntax, semantics, and
lexical information. In the in-context learning phase, SCCLLM utilizes the retrieved code snippets as demonstrations for in-context
learning, which can help to utilize the related knowledge for this task in the LLMs. In the LLMs inference phase, the input is the
target smart contract code snippet, and the output is the corresponding comment generated by the LLMs.
Results: We select a large corpus from a smart contract community Etherscan.io as our experimental subject. Extensive experi-
mental results show the effectiveness of SCCLLM when compared with baselines in automatic evaluation and human evaluation.
We also show the rationality of our customized demonstration selection strategy in SCCLLM by ablation studies.
Conclusion: Our study shows using LLMs and in-context learning is a promising direction for automatic smart contract comment
generation, which calls for more follow-up studies.

Keywords: Smart Contract Comment, Large Language Model, In-Context Learning, Demonstration Selection, Information
Retrieval

1. Introduction

Smart contracts [1, 2] are self-executing digital contracts
running on blockchain technology. They automate, validate,
and enforce agreement terms without intermediaries, offering
transparency and security. However, Yang et al. [3] found that
most of the smart contract code comments are unavailable, which
can make it challenging for developers to understand the code’s
logic, purpose, and intended functionality. Moreover, smart
contracts are susceptible to vulnerabilities and exploits. In a
previous study, He et al. [4] found that 10% of the vulnerabil-
ities were caused by code clones. If smart contract code lacks
comments to explain potential risks and mitigate strategies, it
becomes difficult to identify and address security vulnerabili-
ties, which can increase the chances of hacks or attacks. To
this end, it is necessary to automatically generate concise and
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fluent natural language descriptions for smart contract codes.
Based on the above analysis, we can find designing effective au-
tomatic comment generation approaches can facilitate develop-
ers’ comprehension, boosting smart contract development and
detecting vulnerabilities. However, when compared to source
code summarization [5, 6, 7], the specific challenges associated
with smart contract comment generation can be summarized as
follows. First, smart contracts are typically written in Solid-
ity. Understanding their codes requires specialized knowledge
of these languages and the Ethereum platform. Second, given
the implications of smart contracts in financial transactions and
agreements, generating relevant and concise comments is cru-
cial. Any misinterpretation could potentially have significant
financial or legal implications. Finally, smart contracts encap-
sulate detailed business logic, which can be complex and mul-
tifaceted. This business logic should be adequately captured in
the comments for a comprehensive understanding.

Until now, smart contract comment generation has received
continuous attention. For example, Yang et al. [3] proposed the
approach MMTrans. This approach learns the smart contract
code representation from two heterogeneous modalities: SBT
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sequences [8] (i.e., global semantic information) and graphs
(i.e., local semantic information) based on abstract syntax trees.
Later MMTrans uses two encoders to extract the semantic infor-
mation from these two modalities respectively and then uses a
joint decoder to generate code comments. Later we [9] pro-
posed an information retrieval-based approach CCGIR due to
the widespread presence of code cloning in smart contract de-
velopment. This approach employs CodeBert [10] to extract
semantic vectors from the target code snippet and retrieve the
top-k code snippets based on their semantic similarity scores.
Subsequently, it further considers the syntactic and lexical sim-
ilarity of the code by combining these scores, which leads to the
retrieval of the most similar code snippet. The comment from
this retrieved code snippet is then reused for the target code
snippet.

However, for the fine-tuning paradigm-based approaches [3],
the performance may be limited by the quality of the gathered
dataset for the downstream task. Moreover, they may have the
issue of knowledge forgetting [11]. Specifically, if a pre-trained
model is fine-tuned on a specific downstream task, the model
might start to forget the general knowledge it acquired during
the pretraining phase. This issue can limit the model’s gener-
alization and versatility. While for the information retrieval-
based approaches [9], it is difficult for them to generate high-
quality comments if similar smart contract codes do not exist in
the historical repository. To overcome the limitations of these
two kinds of approaches for the smart contract comment gen-
eration, we want to leverage the emerging capabilities of large
language models (LLMs), which have been pre-trained on vast
amounts of data and possess a wealth of hidden domain knowl-
edge, for automatic smart contract comment generation. How-
ever, merely utilizing LLMs without effectively leveraging their
related domain knowledge may not yield optimal results. As
highlighted in Section 4.3, our experiments reveal that directly
employing LLMs in the zero-shot learning setting1 fails to out-
perform baselines based on fine-tuning. To address this limi-
tation, recent research has shown that the in-context learning
paradigm offers a promising solution for harnessing the domain
knowledge encapsulated within LLMs [12]. Specifically, given
limited examples as the prompt, this paradigm can imitate the
human ability to leverage prior knowledge (i.e., demonstration
examples) to generate comments without parameter updating.
However, the effectiveness of in-context learning heavily re-
lies on the quality and quantity of demonstration examples pro-
vided [13, 14].

Based on the above research motivations, we propose a novel
approach SCCLLM ( Smart Contract Comment Generation via
Large Language Models), which mainly contains three phases.
In particular, we employ a customized two-phase retrieval strat-
egy during the demonstration selection phase. This strategy al-
lows us to retrieve the top-k high-quality demonstration exam-
ples from a historical corpus, considering the semantic, syntac-
tic, and lexical information of the code snippets. Subsequently,
in the in-context learning phase, we leverage these retrieved

1For large language models, zero-shot learning refers to the capability of the
model to perform tasks without explicit examples.

top-k demonstrations to construct a customized prompt. By in-
corporating these demonstrations, we can utilize the knowledge
related to smart contract comment generation within LLMs through
in-context learning. Once the prompt is constructed, we pro-
ceed to the LLMs inference phase. Here, we directly utilize
the interface of LLMs, providing the customized prompt along
with the target smart contract code snippet as input. The out-
put is then generated by LLMs, representing the corresponding
comment for the given code snippet.

To evaluate the effectiveness of our proposed approach SC-
CLLM, we conduct extensive experiments on a dataset with
29,720 ⟨method, comment⟩ pairs, which were gathered from
40,933 smart contracts in a smart contract community Ether-
scan2. We use ChatGPT3 as the representative LLM due to its
promising performance for code intelligence tasks (such as au-
tomated program repair [15, 16, 17], automatic code genera-
tion [18, 19]). In our empirical study, we first compare SC-
CLLM with three state-of-the-art baselines [9, 20, 21] in terms
of automatic performance measures. For example, SCCLLM
can average improve the performance by 7.70%, 8.14%, 2.49%,
and 17.26% in terms of BLEU, ROUGE-1, ROUGE-2, and
ROUGE-L respectively. Moreover, we show the effectiveness
of our customized demonstration selection strategy through ab-
lation studies. Our ablation studies show that our used strat-
egy can help to select higher-quality demonstration examples
when compared to a set of control strategies, which were de-
signed to evaluate the rationality of the component settings in
our customized strategy. Later, we also analyze the influence
of the number of demonstrations on SCCLLM and find that the
performance of SCCLLM is low when only a small number
of demonstrations are provided. However, when more high-
quality demonstrations are provided, the performance of SC-
CLLM can be substantially improved, which can eventually
outperform state-of-the-art baselines. Since the automatic per-
formance measures can only reflect the lexical similarity be-
tween the generated smart contract comment and the ground-
truth smart contract comment, we finally conduct a human study
to evaluate the quality of the generated comments. By follow-
ing the human study methodology considered in the previous
study for similar tasks [22, 23], we find SCCLLM can generate
higher-quality comments than baselines in terms of similarity,
naturalness, and informativeness perspectives.

Our automatic and human evaluation results show using
LLMs and in-context learning is a promising direction to im-
prove the smart contract comment quality. Therefore, we hope
that more researchers can conduct follow-up research in this
promising direction, and our proposed approach can be also
customized for other software document generation tasks (such
as commit message generation [24, 25], issue title generation [26,
27], and pull request title generation [28]).

The main contributions of our study can be summarized as
follows:

• Direction. Recently, LLMs have shown high performance

2https://etherscan.io/
3https://chat.openai.com/
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in different software engineering tasks (such as program
repair, code generation, and test case generation) [29,
30]. However, to our best knowledge, the potential of
LLMs to enhance the performance of smart contract com-
ment generation has not been thoroughly investigated in
previous studies. In light of the promising results shown
by our research, we encourage more follow-up studies to
the exploration of using LLMs in this specific task.

• Approach. We propose a novel approach SCCLLM based
on the representative LLM (i.e., ChatGPT). Specifically,
SCCLLM uses an effective customized retrieval strategy
for selecting top-k high-quality demonstrations and per-
forms in-context learning by these retrieved demonstra-
tions. After the in-context learning, SCCLLM can gener-
ate a corresponding comment for the target smart contract
code snippet.

• Study. We conducted a comprehensive empirical study
on the dataset with 29,720 ⟨method, comment⟩ pairs. Com-
parison results based on automatic performance measures
and human studies show the effectiveness of SCCLLM.
Ablation studies also show the rationality of our customized
demonstration selection strategy.

To encourage the follow-up studies for applying LLMs to
smart contract code comment generation, we share data, code,
and detailed results at our project home:

https://github.com/jun-jie-zhao/SCCLLM.
The rest of this paper is organized as follows. Section 2

shows the framework and details of our proposed approach SC-
CLLM. Section 3 shows the empirical settings of our study, in-
cluding research questions and design motivation, experimental
subjects, performance measures, baselines, implementation de-
tails, and running platform. Section 4 presents our result anal-
ysis for research questions. Section 5 discusses the limitations
of our study and threats to validity analysis. Section 6 summa-
rizes related studies to our work and emphasizes the novelty of
our study. Finally, Section 7 concludes our study and shows
potential future directions.

2. Our Proposed Approach

We show the overall framework of our proposed approach
SCCLLM in Figure 1. In this figure, we can find that SCCLLM
mainly contains three phases. Specifically, in the demonstra-
tion selection phase, SCCLLM retrieves the top-k smart con-
tract code snippets from the historical corpus that are most sim-
ilar to the target smart contract code snippet by considering
syntax, semantics, and lexical information. In the in-context
learning phase, SCCLLM utilizes the retrieved top-k smart
contract code snippets and their associated comments as demon-
stration examples, which can be used to mine potentially do-
main knowledge related to smart contract code comment gen-
eration from LLMs by in-context learning. In the LLMs infer-
ence phase, the input is the target smart contract code snippet,
and the output is the corresponding comment generated by the

LLMs. In the rest of this section, we show the details of these
three phases.

2.1. Demonstration Selection Phase

According to the recent survey for in-context learning [31],
a customized demonstration example selection strategy can ef-
fectively utilize the domain knowledge hidden in the LLMs
since high-quality demonstration examples that are highly re-
lated to the target can help LLMs better understand the inves-
tigated task. In previous study [13], demonstration selection
strategies have typically been designed using token-based and
sequence-based methods. However, these methods only con-
sider one type of code information during demonstration re-
trieval. To address this issue, our study aims to employ a novel
retrieval strategy that integrates multiple types of code infor-
mation. The primary challenge faced in our design is how to
effectively fuse various code information types (i.e., seman-
tic information, lexical information, and syntactic similarity).
Therefore, in this phase, we adopt our previously proposed in-
formation retrieval approach CCGIR [9] as our demonstration
selection strategy. By using our customized demonstration se-
lection strategy, we can select top-k similar smart contract code
snippets from the historical repository by considering semantic,
syntactic, and lexical information when given the target smart
contract code snippet. Our demonstration selection strategy can
be divided into two parts: (1) the semantic-based retrieval part
(i.e., the first part) and (2) the syntax and lexical-based retrieval
part (i.e., the second part). Specifically, in the first part, we use
CodeBERT [10] and BERT-whitening [32] to extract semantic
information from smart contract code snippets. Then, we re-
trieve the top-n smart code snippets from the historical corpus
that are most similar to the target smart contract code snippet
as candidates. However, directly using these top-n candidate
smart contract code snippets in terms of only semantic infor-
mation may ignore their structural information and lexical in-
formation. Therefore, in the second part, we further consider
the syntax and lexical information of these top-n candidates.
We calculate their lexical and syntactic similarities and then ob-
tain the top-k code snippets as the final demonstration examples
based on the weighted sum of these two similarities. In the rest
of this subsection, we show detailed information for these two
parts.

2.1.1. Semantic-based Retrieval Part
In this part, we first split the smart contract codes in the his-

torical corpus (i.e., the training set) according to the CamelCase
naming convention to obtain input sequences {xi}

N
i=1, which N

denotes the number of the smart contract code snippets in the
historical corpus. Then, by following previous studies [33, 34,
35], we feed these sequences into CodeBERT [10] to obtain
semantic vectors Xi ∈ RD, in which D represents the hidden di-
mension. Later, we further process the semantic vectors using
BERT-whitening [32], which uses a simple linear transforma-
tion to enhance the isotropy of sentence representations, to re-
duce the dimensionality of the vector from D to d, and perform
a linear transformation to obtain

{
X̃i

}N
i=1

. The purpose of using
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Figure 1: Framework of our proposed approach SCCLLM

BERT-whitening is to improve the quality and effectiveness of
the embeddings generated by the BERT model. Previous stud-
ies show that this technique can help reduce the redundancy in
the embeddings, result in faster training times, and better handle
noisy data [36, 37]. Finally, we calculate the semantic similar-
ity between the two smart contract code embeddings X̃a and X̃b

by the L2 distance, which can be calculated as follows.

semantic similarity
(
X̃a, X̃b

)
=

d∑
i=1

(
X̃a[i] − X̃b[i]

)2
(1)

2.1.2. Syntax and Lexical-based Retrieval Part
Based on semantic similarity, we can retrieve the top-n can-

didate smart contract code snippets from the corpus. However,
only considering semantic information based on CodeBERT
and BERT-whitening may ignore the structural and lexical in-
formation in the smart contract code. Therefore, in this part,
we further incorporate syntactic and lexical similarity. Specif-
ically, we employ AST (Abstract Syntax Tree) sequences and
code tokens to compute a mixed score, which can help to iden-
tify more similar smart contract code snippets. The reason why
we first consider semantic similarity in our two-stage demon-
stration selection strategy is that compared to lexical similarity
or syntax similarity, the retrieval quality of semantic similarity
is higher [9, 38, 39].

For two smart contract code snippets A and B, we use the
method SimSBT [40] to generate two sequences Ã and B̃. SimSBT
is used to generate the sequence for each AST, which can bet-
ter represent the structure of the AST. We calculate the syntax
similarity using the following formula:

syntactic similarity(A,B) =
sum(len(Ã), len(B̃)) − lev

sum(len(Ã), len(B̃))
(2)

Where lev is the Levenshtein distance [41] between sequences
Ã and B̃.

Lexical information mainly considers tokens in two smart
contract code snippets. Since code snippets often contain many
repeated tokens, to address this issue, we treat the code as a
sequential structure and represent the tokens of two smart con-
tract code snippets through sets. Based on the code sequence,
we remove duplicate tokens to obtain two token sets setA and
setB. Then we calculate the lexical similarity by the Jaccard
similarity.

lexical similarity(A, B) =
| setA ∩ setB |

| setA ∪ setB |
(3)

Based on the top-n similar smart contract code snippets re-
trieved in the first part, we further select the top-k most similar
smart contract code snippets by fusing the syntax similarity and
the lexical similarity as follows:

mixed score(A, B) = λ × lexical similarity(A, B)
+(1 − λ) × syntactic similarity(A, B)

(4)

where λ is a parameter that can adjust the weights between dif-
ferent similarities.

2.2. In-Context Learning Phase
In-Context Learning [31] is a novel paradigm distinct from

the fine-tuning paradigm. Fine-tuning is a resource-intensive
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process, particularly as the current training parameters of large
language models have significantly increased, leading to promis-
ing performance in many downstream tasks [42]. In contrast,
in-context learning is a paradigm that utilizes a small number of
demonstration examples to leverage the related domain knowl-
edge in the LLMs for new tasks. It eliminates the need for gath-
ering massive high-quality training data for new tasks, thereby
avoiding the limitations of the fine-tuning paradigm.

However, the effectiveness of in-context learning is deter-
mined by the quality and quantity of the selected demonstra-
tion examples. In this phase, we utilize the top-k smart con-
tract code snippets retrieved in our customized demonstration
selection phase as the demonstration examples. Based on these
examples, we can construct the prompt for in-context learning.
The prompt template used by SCCLLM is shown in Figure 2.
Specifically, the constructed prompt consists of three parts: nat-
ural language prompt part, code demonstration part, and test
query part. In particular, in the natural language prompt part,
we first inform the LLMs to generate comments for the target
smart contract code. According to the study of Sun et al. [43],
a classical LLM ChatGPT, which is used in our study, often
tends to generate overly lengthy comments, which may con-
tain redundant information. In their empirical study, they find
that using “short”, “in one sentence”, and “no more than xx
words” in the prompt can effectively limit the length of gen-
erated comments. Based on their findings, we designed our
introductory content for constructing the prompt as “To gener-
ate a short summarization in one sentence for smart contract
code”. To help the LLMs capture demonstration examples in
in-context learning, we added “ To alleviate the difficulty of this
task, we will give you top-k examples. Please learn from them”
in this part. In the code demonstration part, we use “#” to sep-
arate comments in the natural language and smart contract code,
and add the top-k demonstration examples in sequence to this
prompt, which can help to utilize the related domain knowledge
for smart contract comment generation in the LLMs. Finally, in
the test code part, we input the target smart contract code and
provide a prompt for generating a corresponding comment. No-
tice that to further prevent the LLMs from generating lengthy
comments, we add the prompt “The length should not exceed ⟨
comment ⟩” after generating the comment. The purpose of this
setting is to further limit the length of the generated comment.
Notice in our study, we fill the comment of the retrieved code
with the highest similarity into “comment”.

2.3. LLMs Inference Phase
For previous deep learning-based methods [3], the perfor-

mance depends on high-quality labeled data, which was time-
consuming and laborious for the data labeling process. With the
continuous development of ChatGPT, API invocation has also
become the main means of using ChatGPT for various tasks.
Our proposed approach SCCLLM does not require any model
training and can directly generate code comments by calling the
API interface. Specifically, we input the constructed prompt di-
rectly through the API gpt-3.5-turbo provided by OpenAI and
then get the generated comment for the target smart contract
code. The API gpt-3.5-turbo is the current mainstream version

To generate a short summarization in one sentence for smart contract code.

To alleviate the difficulty of this task, I will give you top-k examples.

Please learn from them.

Natural Language Prompt Part

Code Demonstration Part

function is running pre ico ( uint date ) 

  public view returns ( bool ) { 

    return start pre ico date <= date && date <= end pre ico date ; 

}

#example code 1 :

#example summarization 1 :

return true if date in phase with give number .

…………
#example code k : <code k>

#example summarization k : <comment k>

#a smart contract code :

function is phase ( uint number , uint date ) 

  view public returns ( bool ) { 

    return start dates [ number ] <= date && date <= end dates [ number ] ; 

}

Test Code Part

#Generated summarization(The length should not exceed <comment>):

Figure 2: The prompt template used by our proposed approach SCCLLM

of ChatGPT, which is trained on more training data and has
lower usage costs.

3. Experimental Setup

In this section, we show the details of our experimental
setup, including research questions and their design motiva-
tion, experimental subject, performance measures, state-of-the-
art baselines, implementation details, and running platform.

3.1. Research Questions

To evaluate the effectiveness of our proposed approach SC-
CLLM and the rationality of the component setting in SCCLLM,
we design the following four research questions (RQs).

RQ1: How effective is SCCLLM when compared with
state-of-the-art baselines via automatic evaluation?

Motivation. In this RQ, we want to investigate whether
SCCLLM can generate higher-quality smart contract code com-
ments than state-of-the-art baselines. Therefore, we select CC-
GIR [9], CodeT5 [20], and Rencos [21] as the state-of-the-art
baselines. To evaluate the quality of smart contract code com-
ments generated by different approaches automatically, we con-
sider BLEU [44], ROUGE-1, ROUGE-2 and ROUGE-L [45] as
our automatic performance measures.

RQ2: How effective is our proposed demonstration ex-
ample selection strategy in SCCLLM?

Motivation. In previous studies [13, 46, 47], the researchers
found that the quality of demonstrations can have a signifi-
cant impact on the effectiveness of in-context learning. There-
fore, in this RQ, we want to investigate whether our customized
demonstration selection strategy can help to select high-quality
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demonstrations, which can further improve the performance of
SCCLLM. Specifically, we compare our demonstration selec-
tion strategy with three control approaches, which can investi-
gate the influence of demonstration selection, BERT-whitening
usage, and fusion layer usage by considering syntactic similar-
ity and lexical similarity.

RQ3: Whether the number of demonstration examples
affect the effectiveness of SCCLLM?

Motivation. In RQ2, we mainly analyze the influence of
different demonstration selection strategies. In this RQ, we
want to further investigate the influence of the number of demon-
stration examples on the effectiveness of SCCLLM.

RQ4: How effective is SCCLLM when compared with
state-of-the-art baselines via human study?

Motivation. Performance measures (such as BLEU [44],
ROUGE-1, ROUGE-2, and ROUGE-L [45]) can only evaluate
the lexical similarity between the generated smart contract com-
ments and the ground-truth comments. However, these perfor-
mance measures are inadequate in reflecting the real semantic
differences for comments [48]. Therefore, we want to conduct
a human study for smart contract comment quality evaluation
for different approaches in this RQ by considering similarity,
naturalness, and informativeness perspectives.

3.2. Experimental Subject

The raw data of our experimental subject was originally
shared by Zhuang et al. [49] for studying smart contract vulner-
ability detection, which was gathered from 40,932 smart con-
tracts written in solidity on a popular and active smart contract
community Etherscan.io4. Then this raw data was processed by
Yang et al. [3] for studying the smart contract comment gen-
eration. For example, they only considered normal functional
methods and modifiers. They removed smart contract codes,
which contain less than four words. However, after the man-
ual analysis in our study, we found there were still low-quality
pairs in their processed dataset: (1) There are smart contract
code snippets with different semantics but the duplicated com-
ments, and (2) There are template comments, which may be
automatically generated by smart contract development tools or
paste copy behavior from developers. Figure 3 illustrates cor-
responding cases for these two problems. In the case of dupli-
cated comments with different semantics, the two code snippets
in this Figure have the same comments, but they have different
semantics. In code 1, the triggering condition for the modi-
fier is when the block number is NULL, whereas in code 2, the
triggering condition is when the block number is not NULL.
Although these two smart contract code snippets have different
semantics, their corresponding comments are the same. In the
case of template comments, these comments appear more fre-
quently in the dataset than other comments and these comments
cannot provide very clear semantics. However, the two smart
contract code snippets shown in this Figure clearly have differ-
ent semantics and need more clarified and concise comments.
To improve the quality of our experimental subject, we removed

4https://etherscan.io/

Duplicated Comments With Different Semantics

code 1

modifier no feeding in progress ( ) {
      require ( pending feedings [ msg . sender ] . block number == NUM_ , STR_ ) ;
      _ ;
}

comment 1： require that the user isnt feed a horsey already .

code 2

modifier feeding in progress ( ) {
      require ( pending feedings [ msg . sender ] . block number != NUM_ , STR_ ) ;
       _ ;
}

comment 2： require that the user isnt feed a horsey already .

Template Comments

code 1
function transfer ( address _to , uint256 _value ) public returns ( bool success ) {
      _transfer ( msg . sender , _to , _value ) ;
      return BOOL_ ;
}

comment 1：set the mine leader .

code 2

function set mint helper ( address _mint helper ) external only owner {
  mint helper = _mint helper ;
}

comment 2：set the mine helper .

Figure 3: Examples of two problems in the dataset shared by Yang et al. [3].

low-quality pairs with these problems as many as possible in
a manual way. Finally, we obtain 29,720 ⟨method, comment⟩
pairs in our experimental subjects.

By following the previous experimental setting for smart
contract code comment generation studies [49, 3], we split the
dataset into the training set (80%), the validation set (10%), and
the testing set (10%). Notice, different from baselines, our pro-
posed approach SCCLLM does not need to use the validation
set.

The statistical information of our experimental subject can
be found in Table 1. After the dataset partitioning, the dataset
is divided into 23,776 pairs for the training set, 2,972 pairs for
the validation set, and 2,972 pairs for the testing set. Moreover,
we also show the average (Avg.) tokens in the smart contract
code snippets and comments for different sets.

Table 1: Statistical information of our experimental subject

Statistic Train Validation Test

Number 23,776 2,972 2,972
Avg. tokens in codes 80.54 80.13 82.27

Avg. tokens in comments 12.05 11.97 12.1

3.3. Performance Measures

To evaluate the performance of SCCLLM and baselines,
we consider automatic performance measures, such as BLEU,
ROUGE-1, ROUGE-2, and ROUGE-L. These performance mea-
sures can effectively evaluate the lexical similarity between the
generated smart contract code comments and the ground-truth
comments and have been widely used in previous smart con-
tract code comment generation studies [9, 3] and similar gener-
ation tasks for software engineering (such as source code sum-
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marization [8, 40], Stack Overflow title generation [50, 51], is-
sue title generation [26, 27], code generation [52, 53, 54]). We
show the details of these performance measures as follows.

• BLEU. BLEU [44] (Bilingual Evaluation Understudy) is
a machine translation metric that measures the text sim-
ilarity between two texts by measuring the overlap of n-
grams. In our study, we select the BLEU-4 variant (n-
gram precision of 4) to measure the quality of the gener-
ated smart contract comments.

• ROUGE-N. ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation)-N [45](N refers to n-gram, with values 1,
2, 3, 4) is an automatic evaluation measure based on n-
grams. It assesses the quality of comments by counting
the number of overlapping basic units between the gen-
erated and ground-truth comments. In our study, we only
select ROUGE-1 and ROUGE-2, as they are well-suited
for short comments and accurately capture text similarity.

• ROUGE-L. ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation)-L [45] is an evaluation measure for mea-
suring the similarity between the ground-truth comment
and the generated comment by comparing their longest
common subsequence.

For these performance measures, the value range is between
0 to 1, and the values are displayed as a percentage. Notice
the higher the value of these performance measure values, the
closer the generated comment is to the ground-truth comment
(i.e., the better performance of the corresponding approach).
To alleviate the internal threat due to implementation errors for
these performance measures, we use nlg-eval library5 to com-
pute BLEU measure and Rouge library6 to compute ROUGE
measures.

3.4. Baselines
To evaluate whether our proposed approach SCCLLM can

achieve state-of-the-art performance, we consider the following
three baselines related to our study.

• CCGIR. CCGIR [9] is an information retrieval technique
for smart contract code comment generation that demon-
strates superior performance among different information
retrieval methods. It employs an information retrieval ap-
proach to retrieve the most similar smart contract code in
the historical repository by considering semantic similar-
ity, lexical similarity, and syntactic information. Finally,
it reuses the comments associated with the retrieved most
similar smart contract code.

• CodeT5. CodeT5 [20] is an encoder-decoder transformer
model that is pre-trained based on T5 [55]. Compared
to other deep learning models, it exhibits better com-
prehension of code information and possesses stronger

5https://github.com/Maluuba/nlg-eval
6https://github.com/pltrdy/rouge

generation capabilities. This model employs a unified
framework to seamlessly support code understanding and
generation tasks, while also enabling multitask learning,
thereby demonstrating excellent performance across var-
ious downstream tasks.

• Rencos. Rencos [21] is a hybrid approach for source
code summarization that combines information retrieval
and deep learning. Specifically, Rencos not only trains an
attention-based encoder-decoder model using code snip-
pets and comments from the training set but also incor-
porates two most similar code snippets retrieved based
on semantic and syntactic similarities. During the encod-
ing phase, the input code is combined with the two most
similar code snippets. Finally, during the decoding phase,
the comment is generated by incorporating the fused in-
formation.

Notice the first baseline CCGIR can be treated as the state-
of-the-art baseline for smart contract code comment genera-
tion. In our previous study [9], we find CCGIR can signifi-
cantly outperform the smart contract code comment generation
approach MMTrans [3]. Therefore, we do not consider MM-
Trans as our baseline. To conduct a comprehensive evaluation,
we also consider a representative deep learning-based baseline
(i.e., CodeT5 [20]) and a representative hybrid baseline (i.e.,
Rencos [21]) for our investigated generation task.

To alleviate the internal threats, we utilize the scripts shared
by these baselines [9, 21] and follow the hyperparameter set-
tings suggested in their original studies. For the pre-trained
model CodeT5, we implement it with Hugging Face7.

3.5. Implementation Details

In our experiments, the detailed parameter settings in our
demonstration selection phase can be found in Table 2. These
values are configured based on the suggestions from previous
studies [9, 32] and the optimization of our experimental results.

Table 2: The configuration of Hyper-parameters in our demonstration selection
phase

Hyper-parameter Value

Maximum input length of code snippet xa 256
Dimension D before BERT-whitening 768
Dimension d after BERT-whitening 256

mixed score coefficient λ 0.7
Number of top-n candidates 10

In the LLMs inference phase, we only select five demon-
stration examples to construct the prompt for the in-context
learning. The reason is the prompt size of the LLMs is lim-
ited, and the escalation in experimental expenses is associated

7https://huggingface.co/Salesforce/codet5-base
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with an excess of demonstrations. For our experiments, we uti-
lize the API interface version gpt-3.5-turbo, which has demon-
strated good performance in various downstream tasks [56, 57].
To guarantee a fair comparison, we also optimize the parame-
ters of the baseline methods to achieve optimal performance.

3.6. Running Platform
We run all the experiments on a computer (CPU 3.50GHz)

with a GeForce RTX4090 GPU (24GB graphic memory). The
running operating system is Windows 10.

4. Result Analysis

4.1. RQ1: Comparison with baselines via automatic evalua-
tion

Method. To show the effectiveness of our proposed ap-
proach SCCLLM in smart contract comment generation, we
select the information retrieval approach CCGIR [9], the deep
learning approach CodeT5 [20], and the hybrid approach Ren-
cos [21] as baselines. Notice in this RQ, for SCCLLM, we uti-
lize the top-5 most similar code snippets as our demonstrations
for in-context learning.

Table 3: Comparison results between SCCLLM and baselines in terms of four
performance measures

Approach BLEU Rouge-1 Rouge-2 Rouge-L

CCGIR 31.21 32.94 17.33 24.05
CodeT5 30.93 32.63 16.89 23.69
Rencos 30.92 32.58 16.78 23.62

SCCLLM 33.41 35.38 17.42 27.89

Result. Table 3 presents the comparison results between
SCCLLM and the baselines for smart contract comment gener-
ation. In this table, we emphasize the best performance for dif-
ferent performance measures in bold. Specifically, SCCLLM
can achieve the performance of 33.41%, 35.38%, 17.42%, and
27.89% in terms of BLEU, ROUGE-1, ROUGE-2, and ROUGE-
L performance measures. Compared to the baselines, the per-
formance of SCCLLM can be improved on average by 7.70%,
8.14%, 2.49%, and 17.26% in terms of four performance mea-
sures. Then to check whether the performance difference be-
tween SCCLLM and baselines is significant, we conduct Wilcoxon
signed-rank tests [58] at the confidence level of 95%. Our p-
value is smaller than 0.05, which means the performance im-
provement of SCCLLM compared to baselines is significant.

When comparing two baselines CodeT5 and Rencos, we
find they achieve similar results in our study. Although the
experimental results of Rencos [21] indicate that the hybrid
approach can outperform the deep learning approach. How-
ever, we consider CodeT5 as the deep learning-based baseline
in our study, which is a state-of-the-art code pre-trained model,
while the deep learning model part of Rencos only considers
the attentional encoder-decoder model, which is trained from
scratch. It is worth noting that the information retrieval ap-
proach CCGIR still outperforms the deep learning approach

CodeT5 and the hybrid approach Rencos in terms of all the
performance measures in our study. This finding is consis-
tent with our previous research findings [9] due to the exten-
sive code reuse (i.e., code clone) during smart contract devel-
opment. However, our proposed approach SCCLLM can out-
perform CCGIR, which shows applying LLMs to smart con-
tract generation is a valuable direction and worth paying at-
tention to. Here, we find all the approaches achieve low per-
formance for the ROUGE-2 measure. The possible reason is
that ROUGE-2 is mainly focused on 2-gram overlap when com-
pared to ROUGE-1 and most generation-based approaches tend
to generate lengthy code comments.

Finally, we use two cases in Figure 4 to show the effective-
ness of our proposed approach. In the first case, CodeT5 and
Rencos can learn the keyword “balance” in the target smart con-
tract code. However, these two baselines fail to understand the
specific meaning of the target code. CCGIR cannot retrieve suf-
ficiently similar code, so its reused comment is independent of
the semantics of the target code. While the comment generated
by SCCLLM conveys an identical semantic when compared
with the ground-truth comment. In the second case, the com-
ments generated by SCCLLM as well as the ground-truth com-
ment both contain the key phrases “modifier” and “not locked”.
This indicates that SCCLLM can effectively understand the tar-
get smart contract code and generate the corresponding com-
ment by LLMs and in-context learning. However, the com-
ments generated by three baselines can only convey the basic
notion of “not lock”, resulting in low-quality comments. Based
on these two cases, we find that baselines struggle to learn
the knowledge of the target smart contract code from the lim-
ited corpus, but SCCLLM can leverage the related knowledge
of LLMs to generate better comments for smart contract code
snippets.

Answer to RQ1
By combining LLMs with in-context learning, SCCLLM out-
performs all baselines in terms of four automatic performance
measures. For example, SCCLLM can outperform the base-
lines by at least 7.70% in terms of BLEU.

4.2. RQ2: Ablation study on Demonstration Selection Strategy

Method. In this RQ, we want to show the effectiveness
of our customized demonstration selection strategy in selecting
high-quality demonstrations for in-context learning. As intro-
duced in Section 2.1, our customized demonstration selection
strategy includes two major components. The first component
utilizes CodeBERT and BERT-Whitening for semantic vector
extraction, capturing code semantic information. The second
component integrates AST sequences with code tokens in the
fusion layer, combining syntax and lexical information to iden-
tify more similar smart contract code snippets. Based on the
component settings of our customized demonstration selection
strategy, we design the following three control strategies.

• The first control strategy. To show the significance of
our customized demonstration selection strategy for SC-
CLLM, we randomly select k smart contract code snip-
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Smart Contract Code

function get balance ( )
    public view returns ( uint256 balance ) {
         return this . balance ;
}

Ground Truth: return current contract balance .

SCCLLM: return the balance of the contract .

CCGIR: return bonuspool .

CodeT5: get balance .

Rencos: check the balance .

Smart Contract Code

modifier not locked ( ) {
     require ( ! locked ) ;
     _ ;
}

Ground Truth: modifier to make a function callable only when the
contract be not lock .

SCCLLM: this modifier ensures that the contract is not locked .

CCGIR: agreement not lock .

CodeT5: check if the generation period be not lock .

Rencos: agreement not lock .

Figure 4: Comments generated by SCCLLM and baselines for two cases

pets from the historical repository and use “w/o DSS” to
denote this control strategy.

• The second control strategy. In this control strategy, we
aim to investigate whether using the BERT-whitening [32]
can help to select demonstrations with higher quality and
use “ w/o BERT-whitening” to denote this control strat-
egy. Specifically, we remove the BERT-whitening opera-
tion in our demonstration selection strategy and directly
utilize CodeBERT to generate code embeddings without
any optimization or dimensionality reduction.

• The third control strategy, In this control strategy, we
aim to investigate whether further considering the syn-
tactic similarity and lexical similarity can help to select
demonstrations with higher quality and use “ w/o (Lexi-
cal & Syntactic Similarity)” to denote this control strat-
egy. Specifically, we remove the fusion layer based on
lexical and syntactic similarity from our demonstration
selection strategy, which can retrieve the top k most simi-
lar examples by only considering code semantic informa-
tion.

Due to the high economic cost of calling ChatGPT to per-
form ablation experiments when considering all the smart con-
tract code snippets in the test set, we employ a sampling method [59]
that randomly selects samples from the test set. The formula for
the sampled number can be computed as follows:

MIN =
n0

1 + n0−1
size

(5)

Where n0 represents the confidence level, and size is the size
of the test set. There is an error range

(
Z2×0.25

e2

)
for n0, where e

is the hyper-parameter and Z is the confidence level score. In
RQ2, we chose the smallest sample based on a confidence level
of 95% and e=0.05. In the end, we needed to randomly select
340 samples from the test set according to this formula.

Result. We show our ablation study results in Table 4. From
this table, we observe that when randomly providing demon-
strations without using the customized demonstration selection
strategy, the quality of comments directly generated by LLMs is
low, with a performance drop of 39.99%, 45.17%, 80.45%, and
49.65%, respectively in terms of four performance measures.
This highlights using high-quality demonstrations in in-context
learning can help to fully utilize the related domain knowledge
in LLMs.

For the second control strategy, we find the performance
of SCCLLM decreases when the code embeddings are not opti-
mized by BERT-whitening, with a performance drop of 10.05%,
10.52%, 17.57%, and 10.97%, respectively. This demonstrates
the effectiveness of using BERT-whitening in improving the re-
trieval ability of our demonstration selection strategy in select-
ing higher-quality demonstration examples.

For the third control strategy, we find the performance of
SCCLLM decreases when removing the syntax and lexical-based
retrieval part in our demonstration selection strategy, with a per-
formance drop of 11.79%, 13.36%, 21.98%, and 13.29%, re-
spectively. Therefore, further considering the lexical informa-
tion and the syntax information can help to select higher-quality
demonstration examples, which eventually improves the perfor-
mance of SCCLLM.

Answer to RQ2
By using our customized demonstration selection strategy,
SCCLLM can help to select higher-quality demonstrations
for in-context learning, which can finally improve the per-
formance of SCCLLM.

4.3. RQ3: Performance influence on the number of demonstra-
tions

Method. In this RQ, we want to examine the performance
influence of the number of demonstrations for SCCLLM. Specif-
ically, we conduct experiments with different settings (i.e., zero-
shot learning, one-shot learning, and few-shot learning), and
compare the performance of different settings with three base-
lines (i.e., CCGIR [9], CodeT5 [20] and Rencos [21]). We use
“zero-shot learning” to refer to the setting where no demonstra-
tion is provided for SCCLLM. “one-shot learning” refers to the
setting where only a single demonstration is provided for SC-
CLLM, while “few-shot learning” refers to settings where a few
demonstrations are provided for SCCLLM.

Due to the maximum prompt size limitation for the API
gpt-3.5-turbo, we use at most five demonstrations to construct
the prompt in our study. In this experiment, we investigate the
performance influence of different demonstration numbers by
using all the smart contract code snippets in the test set. To
guarantee a fair comparison, we use the same prompt template
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Table 4: Ablation results of SCCLLM with different demonstration selection strategies

Demonstration Selection Strategy BLEU GOUGE-1 GOUGE-2 GOUGE-L

w/o DSS 19.04 17.15 3.06 13.49
w/o BERT-whitening 28.54 27.99 12.90 23.85

w/o (Lexical & Syntactic Similarity) 27.99 27.10 12.21 23.23
Our Customized Strategy 31.73 31.28 15.65 26.79

shown in Figure 2, but the difference is that the number of
demonstrations differs.

Result. We show the performance of SCCLLM with the
different number of demonstrations in Table 5. From this ta-
ble, we find that when using zero-shot learning and one-shot
learning settings, the performance of SCCLLM is very low in
terms of four performance measures. For example, if using the
zero-shot learning setting, the performance of SCCLLM de-
creases 27.48%, 49.71%, 83.13%, and 46.64%, respectively,
when compared to the fine-tuning approach CodeT5. Our find-
ing indicates that SCCLLM cannot effectively utilize the related
domain knowledge for smart contract comment generation task
in the LLMs if we at most give one demonstration for in-context
learning. In this table, we find that using the zero-shot learning
setting can outperform using the one-shot learning setting. The
potential reason is that for zero-shot learning, we do not provide
any demonstration for the prompt and simply set the length of
the generated comment should not exceed 15 words. There-
fore, shorter comments may result in a higher performance of
SCCLLM when using zero-shot learning.

When using few-shot learning, we observe a significant per-
formance improvement for SCCLLM. Specifically, when pro-
viding three demonstration examples for in-context learning,
the performance of SCCLLM can achieve similar performance
with CodeT5. When providing five demonstration examples for
in-context learning, SCCLLM can eventually outperform all the
baselines.

Table 5: The performance influence of different demonstration numbers for
SCCLLM

Approach BLEU Rouge-1 Rouge-2 Rouge-L

CCGIR 31.21 32.94 17.33 24.05
CodeT5 30.93 32.63 16.89 23.69
Rencos 30.92 32.58 16.78 23.62

with zero-shot 22.43 16.41 2.85 12.64
with one-shot 18.42 16.09 3.10 12.47
with 3-shot 29.05 27.21 11.60 23.19
with 5-shot 33.41 35.38 17.42 27.89

Answer to RQ3
When providing five high-quality demonstration examples
for in-context learning, SCCLLM can more effectively utilize
the related knowledge for smart contract comment generation
and achieve better performance than baselines.

4.4. RQ4: Comparison with baselines via human study

Method. Based on the findings of the recent study by Sun
et al. [43], the current automatic performance evaluation mea-
sures cannot be used to effectively assess the quality of com-
ments generated by LLMs. To alleviate this construct threat,
we perform a human study to further assess the effectiveness
of our proposed approach SCCLLM. In our human study, we
mainly follow the methodology used by previous studies for
source code summarization [22, 23]. Specifically, we recruit
five participants, who have at least three years of experience
in smart contract development and maintenance. These par-
ticipants are senior researchers or developers, who are not co-
authors of our study. We employed the same sampling method
used in RQ2 and finally randomly selected 340 smart contract
code snippets in the test set. For each smart contract code, we
show the participants the ground-truth comments and the com-
ments generated by four different approaches. To guarantee a
fair comparison, the participants do not know which approach
generates the comment. Later, we allowed the participants to
use the Internet to facilitate understanding the target smart con-
tract codes if there exist concepts or codes that they are unfa-
miliar with. Before they participated in our human study, we
ensured that all involved participants received a comprehensive
tutorial. This process was designed to familiarize each partic-
ipant with both the task expectations and the evaluation mea-
sures at hand. This training aimed to mitigate the risk of in-
herent biases and inconsistency in their assessments. Finally,
we require each participant to evaluate only 20 smart contract
codes in a half-day to avoid biases caused by fatigue. Each par-
ticipant is asked to rate the generated four comments from three
perspectives.

• Similarity. This perspective reflects the similarity be-
tween the generated smart code comments and the ground-
truth comments.

• Naturalness. This perspective reflects the fluency of gen-
erated smart contract comments from grammar.

• Informativeness. This perspective reflects the informa-
tion richness of the generated smart contract comments.

We use a five-point system for scoring (i.e., 1 for poor, 2 for
marginal, 3 for acceptable, 4 for good, and 5 for excellent). We
show a questionnaire used in our human study in Figure 5.

Result. We show our human study results in Figure 6.
Specifically, SCCLLM can achieve 3.31, 3.80, and 3.92 in terms
of Similarity, Naturalness, and Informativeness. In terms of
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Promble Description：

In the following questionnaire, for each given smart contract code snippet, there will be corresponding ground-truth comment
and comments generated by three different approaches. You are required to rate these four comments. We adopt a five-point
system for scoring (i.e., 1 for poor, 2 for marginal, 3 for acceptable, 4 for good, and 5 for excellent).

Smart Contract Code

function get balance ( )
    public view returns ( uint256 balance ) {
         return this . balance ;
}

Grount Truth: return current contract balance .

Comment 1: return the balance of the contract . Comment 2: get balance .

Comment 4: check the balance .Comment 3: return bonuspool .

Question 1: Please evaluate the similarity between these comments and the Ground Truth.

Question 2: Please evaluate the fluency of these comments and whether their semantics are coherent.

Question 3: Please assess whether these comments are information-rich from a content perspective.

Figure 5: A questionnaire used in our human study
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Figure 6: Our human study results between SCCLLM and baselines

similarity, due to the richer semantics in the smart contract com-
ments generated by SCCLLM, they exhibit a higher seman-
tic similarity with the ground-truth comments. The result of
3.31 implies that the smart contract comments generated by
SCCLLM have higher quality than baselines. In terms of nat-
uralness and informativeness, SCCLLM still performs better
than all baselines, demonstrating that most of the smart contract
comments generated by SCCLLM are easy to understand and
read, and excel in semantic comprehension. These more read-
able comments will help smart contract developers understand
the code better and increase development efficiency.

Answer to RQ4
Our human study results show that SCCLLM can outperform
baselines when evaluating the quality of the smart contract
comments from similarity, naturalness, and informativeness
perspectives.

5. Discussions

5.1. Limitations of SCCLLM
Though SCCLLM shows competitive performance when com-

pared to baselines for automatic evaluation and human eval-
uation, we also find that SCCLLM may generate low-quality
comments. In this subsection, we randomly select 50 cases of
this type and analyze these comments manually. Finally, we
identify the three challenging types of smart contract comment
generation for SCCLLM.

01. // Target Smart Contract Code
02. function add ( uint256 a , uint256 b ) 
03.   internal pure returns ( uint256 c ) { 
04.       c = a + b ; 
05.       assert ( c >= a ) ; 
06.       return c ; 
07. }
08.  
09. // Ground Truth: safemath add function .
10. // SCCLLM: adds two numbers, ensuring no overflow occurs .

Figure 7: Case with semantic similarity but low lexical similarity.

The first challenge type is generating comments with se-
mantic similarity but low lexical similarity. In Figure 7, we
present a case to show this challenge type. In this case, the
ground-truth comment indicates that the smart contract code
snippet employs the “add” function from the “safemath” library,
which in the Solidity language is used for secure algorithms to
prevent data overflow. While the comment generated by SC-
CLLM directly explains this code, indicating its purpose of pre-
venting overflow. We observe that both the ground-truth com-
ment and the comment generated by SCCLLM can accurately
convey the functionality of this code, but differ in the level of
expertise: the ground-truth comment being more professional
and the comment generated by SCCLLM being straightforward
and somewhat redundant. In this case, the low lexical similar-
ity can result in a low score in automatic evaluation. Therefore,
designing new performance measures based on comment se-
mantic similarity can alleviate this challenge type.

The second challenge type is failing to fully comprehend
the target smart contract code and directly reusing the com-
ments from similar demonstrations. In our approach SCCLLM,
we provide high-quality demonstrations for in-context learning.
However, there are cases in the provided demonstrations where
the code is the same but the comments differ, leading SCCLLM
to directly reuse the comments. In Figure 8, we present a case
to show this challenge type. We find that the target code and
retrieved code are almost same, but correspond to different cor-
rect comments. SCCLLM reuses the demonstration comments
directly after learning the demonstration. Although the reused
comments are semantically correct, they will result in a lower
score in terms of automatic evaluation measures and will be
treated as low-quality comments.

The third challenge type is difficulties in effectively under-
standing code purposes/functionality for some smart contract
code snippets. In Figure 9, we present a case to show this chal-
lenge type. The ground-truth comment shows the purpose of
this smart contract code (i.e., “check for the possibility of buy
tokens”). However, SCCLLM can only capture the words (such
as “cap”, “period”, and “non-zero purchase”) in the target smart
contract code, which can only provide shallow information for
this code.

5.2. Threats to Validity

In this subsection, we mainly discuss the potential threats to
our empirical findings.

Internal threats. The first internal threat is the potential
implementation faults in SCCLLM. To alleviate this threat, we
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01. # Target Smart Contract Code
02. function transfer for multi addresses ( address [ ] _addresses , uint256 [ ] _amounts ) 
03.    can transfer public returns ( bool ) { 
04.        for ( uint256 i = NUM_ ; i < _addresses . length ; i ++ ) { 
05.              require ( _addresses [ i ] != address ( NUM_ ) ) ; 
06.              require ( _amounts [ i ] <= balances [ msg . sender ] ) ; 
07.              require ( _amounts [ i ] > NUM_ ) ; 
08.              balances [ msg . sender ] = balances [ msg . sender ] . sub ( _amounts [ i ] ) ; 
09.              balances [ _addresses [ i ] ] = balances [ _addresses [ i ] ] . add ( _amounts [ i ] ) ; 
10.              transfer ( msg . sender , _addresses [ i ] , _amounts [ i ] ) ; 
11.        } 
12.    return BOOL_ ; 
13. }
14. 
15. # Retrieved Code
16. function transfer for multi addresses ( address [ ] _addresses , uint256 [ ] _amounts ) 
17.    can transfer public returns ( bool ) { 
18.        for ( uint256 i = NUM_ ; i < _addresses . length ; i ++ ) { 
19.              require ( _addresses [ i ] != address ( NUM_ ) ) ; 
20.              require ( _amounts [ i ] <= balances [ msg . sender ] ) ; 
21.              require ( _amounts [ i ] > NUM_ ) ; 
22.              balances [ msg . sender ] = balances [ msg . sender ] . sub ( _amounts [ i ] ) ; 
23.              balances [ _addresses [ i ] ] = balances [ _addresses [ i ] ] . add ( _amounts [ i ] ) ; 
24.              transfer ( msg . sender , _addresses [ i ] , _amounts [ i ] ) ; 
25.        } 
26.    return BOOL_ ; 
27. }
28. # Retrieved Code Comment：transfer tokens to multiple address .
29. # Ground Truth：same functionality a transfer .
30. # SCCLLM: transfer tokens to multiple address .

Figure 8: Case where the target smart contract code is not fully understood, and
the comments from the provided demonstrations are directly reused.

01. //Target Smart Contract Code
02. function valid purchase ( ) 
03.   internal constant returns ( bool ) { 
04.      bool within cap = wei raised . add ( msg . value ) <= hard cap ; 
05.      bool within period = now >= start time && now <= end time ; 
06.      bool non zero purchase = msg . value != NUM_ ; 
07.      return ( within period && non zero purchase ) 
08.      && within cap && is within sale time limit ( ) ; 
09. }
10.  
11.  
12. //Ground Truth: check for the possibility of buy tokens .
13. //SCCLLM: check if the purchase is valid based on the cap, period, and non-zero purchase .

Figure 9: Case where the purposes/functionality of the smart contract code is
not effectively comprehended.

perform code inspection in our implemented code, especially
the demonstration selection strategy part. The second inter-
nal threat is the number of demonstrations used in our study.
To alleviate this threat, we analyze the performance influence
of demonstration number for SCCLLM in Section 4.3 and find
that only using five demonstrations can achieve promising per-
formance and outperform baselines. However, improving the
number of demonstrations may further improve the performance
of SCCLLM but at the cost of a higher escalation in experimen-
tal expenses.

External threats. The first external threat is the quality
of the experimental subject. To alleviate this threat, we use
the gathered ⟨method, comment⟩ smart contract pairs shared by
Yang [3]. In their study, they performed a set of processing
to filter the low-quality pairs from the raw data provided by
Zhuang et al. [49]. After the manual analysis in our study, we
also found there still exists some low-quality pairs, which have
duplicated comments but with different semantics or have tem-
plate comments. We also identify and remove these kinds of
pairs, which can further improve the experimental subject qual-
ity. The second external threat is the customized demonstration
selection strategy used in SCCLLM. In our study, we designed
a set of experiments to verify the rationality of the component
setting in this strategy. Moreover, comparison results with base-
lines also show the effectiveness of this strategy for retrieving
high-quality demonstrations for in-context learning.

Conclusion threats. The conclusion threat is related to
evaluation bias in our human study. To alleviate this threat,
we first invite participants who are familiar with smart contract
development. Second, we provided a tutorial before our human

study, which ensured that all of the participants could under-
stand our protocol. Finally, we follow the methodology used by
previous studies for a similar task (i.e., source code summariza-
tion) [22, 23] to guarantee the quality of our human study.

Construct threats. The construct threat is related to the
performance measures. To alleviate this threat, we consider
four performance measures, which have been widely used in
previous similar tasks, such as source code summarization [60,
61, 23]. Since the automatic measures can only evaluate the
lexical similarity between the generated smart contract com-
ments and the ground-truth comments, we further conducted
a human study to evaluate the quality of the generated smart
contract comments by considering similarity, naturalness, and
informativeness.

6. Related Work

In this section, we present the relevant research on smart
contract comment generation and recent advances in applying
LLMs to Software Engineering tasks.

6.1. Smart Contract Code Comment Generation

To the best of our knowledge, Yang et al. [3] were the first
to study the automatic smart contract comment generation prob-
lem. Their proposed approach MMTrans learns the smart con-
tract code representation from two heterogeneous modalities
(i.e., SBT sequences and graphs based on abstract syntax trees).
Their experimental results show that MMTrans can outperform
some state-of-the-art baselines for source code summarization
(such as Hybrid-DeepCom [5], code+gnn+GRU [62], and Vanilla-
Transformer [63]). Since code reuse is common in smart con-
tract development, we [9] further propose a simple but effec-
tive information retrieval-based approach CCGIR. For the tar-
get smart contract code, this approach can effectively retrieve
the most similar code from the historical repository and directly
reuse the corresponding comment. In our empirical study, we
find CCGIR can outperform different information retrieval ap-
proaches (such as NNGen [24]) and MMTrans [3].

However, the performance of the previous studies [3, 9] is
still limited due to the amount of available training data. This
issue is more obvious for the information retrieval-based ap-
proach CCGIR [9]. To alleviate this problem, we aim to gen-
erate smart contract comments by using LLMs. To achieve this
goal, we use the customized demonstration selection strategy to
select high-quality demonstrations and use in-context learning
to fully utilize the related knowledge in the LLMs for the target
smart contract code. To the best of our knowledge, we are the
first to apply LLMs to smart contract comment generation. Our
experimental results confirm that this direction is practical and
feasible.

6.2. Applying LLMs to Software Engineering Tasks

Large language models (LLMs) refer to a class of artifi-
cial intelligence models that use an enormous amount of pa-
rameters and are designed to process and generate human-like
text based on large-scale language datasets [64]. As a result,
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LLMs have been used for many mainstream software engineer-
ing tasks. For the task of automated program repair, Xia et
al. [15] utilized LLMs to directly generate correct code given
the prefix and suffix context. Then they [16] conducted exten-
sive empirical evaluations by considering nine different LLMs
on five popular program repair datasets. Recently, they [17] fur-
ther leveraged test failure information and earlier patch attempts
in a conversational manner, which can prompt LLMs to gener-
ate more correct patches. For automated code generation tasks,
Dong et al. [18] proposed a self-collaboration approach for code
generation by ChatGPT. Liu et al. [19] guided ChatGPT to gen-
erate better code with prompt engineering for two code genera-
tion tasks (i.e., text-to-code generation and code-to-code gener-
ation). Liu et al. [65] proposed a code generation benchmarking
framework, which can rigorously evaluate the functional cor-
rectness of the codes generated by ChatGPT. For the task of
source code summarization, Zhu et al. [66] performed empir-
ical studies between deep learning methods (including LLMs)
and information retrieval methods. Sun et al. [43] performed
source code summarization via ChatGPT and discussed the ad-
vantages and disadvantages of ChatGPT in this task. In our
study, we aim to apply LLMs to a new software engineering
task and propose a novel approach SCCLLM, which can effec-
tively utilize the related domain knowledge in LLMs for smart
contract comment generation via in-context learning.

7. Conclusion

In this study, we are the first to automatically generate smart
contract comments by LLMs and in-context learning. In our
proposed approach, we utilize the customized demonstration
selection strategy to select high-quality demonstrations, which
can effectively utilize the related knowledge in LLMs via in-
context learning for smart contract comment generation. Our
experimental results show SCCLLM can significantly outper-
form baselines in automatic evaluation and human evaluation.
Our ablation studies also provided guidelines for effectively us-
ing SCCLLM.

In the future, we first aim to further improve the perfor-
mance of SCCLLM by designing more effective demonstra-
tion selection strategies. We second want to guide ChatGPT to
generate higher-quality comments by prompt engineering. Fi-
nally, we want to design more practical performance measures,
which can effectively measure the semantic similarity between
the ground-truth smart contract comments and the comments
generated by SCCLLM.
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