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Abstrat

The notion of intuitionisti fuzzy sets was introdued by Atanassov

as a generalization of the notion of fuzzy sets. In this paper, we onsider

the intuitionisti fuzzi�ation of the onept of sub-hyperquasigroups

in a hyperquasigroup and investigate some properties of suh sub-

hyperquasigroups. In partiular, we investigate some natural equiva-

lene relations on the set of all intuitionisti fuzzy sub-hyperquasigroups

of a hyperquasigroup.
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1 Introdution and preliminaries

The theory of hyperstrutures whih is a generalization of the onept of alge-

brai strutures �rst was introdued by Marty [19℄ and then many researhers

have been worked on this new �eld of modern algebra and developed it. A

short review of the theory of hyperstrutures appear in [6℄ and [23℄. A re-

ent book [5℄ ontains a wealth of appliations. There are appliations to the

following subjets: geometry, hypergraphs, binary relations, latties, fuzzy

sets and rough sets, automata, ryptography, ombinatoris, odes, arti�ial

intelligene, and probabilities. The theory of fuzzy sets proposed by Zadeh

[24℄ has ahieved a great suess in various �elds. Out of several higher or-

der fuzzy sets, intuitionisti fuzzy sets introdued by Atanassov [1, 2, 3℄ have

E-mail address: dudek�im.pwr.wro.pl (W. A. Dudek), davvaz�yazduni.a.ir (B.

Davvaz), ybjun�nongae.gsnu.a.kr (Y. B. Jun) (hyper/His/INS394.tex)
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been found to be highly useful to deal with vagueness. Gau and Buehrer [15℄

presented the onept of vague sets. But, Burillo and Bustine [4℄ showed

that the notion of vague sets oinides with that of intuitionisti fuzzy sets.

Szmidt and Kaprzyk [22℄ proposed a non-probabilisti-type entropy measure

for intuitionisti fuzzy sets. De et al. [11℄ studied the Sanhez's approah

for medial diagnosis and extended this onept with the notion of intuition-

isti fuzzy set theory. Dengfeng and Chuntian [12℄ introdued the onept

of the degree of similarity between intuitionisti fuzzy sets, presented sev-

eral new similarity measures for measuring the degree of similarity between

intuitionisti fuzzy sets, whih may be �nite or ontinuous, and gave orre-

sponding proofs of these similariry measures and disussed appliations of

the similarity measures between intuitionisti fuzzy sets to pattern reofni-

tion problems. The notion of join spae has been introdued by Prenowitz

and used by him and afterwards together Jantosiak to build again several

branhes of geometry. A join spae is a hypergroup with additional ondi-

tions. A generalization of join spaes for the point of view of independene,

dimension et., is that of ambiste hypergroups studied by Freni. Notiing

that a hypergroup is a hyperquasigroup with the assoiative hyperoperation,

the results of this paper will make a ontribution to disuss a generalization

of join spaes, to deal with several notions in geometries sine there are deep

relations between geometries and hypergroups (or, to say multigroups), and

to develop the intuitionisti fuzzy theory in several algebrai strutures.

A hypergroupoid (G, ◦) is a non-empty set G with a hyperoperation ◦
de�ned on G, i.e., a mapping of G×G into the family of non-empty subsets

of G. If (x, y) ∈ G×G, its image under ◦ is denoted by x ◦ y. If A,B ⊆ G
then A ◦B is given by A ◦ B =

⋃

{x ◦ y | x ∈ A, y ∈ B}. x ◦ A is used for

{x} ◦ A and A ◦ x for A ◦ {x}.

De�nition 1.1. A hypergroupoid (G, ◦) is alled a hypergroup if for all

x, y, z ∈ G the following two onditions hold:

(i) x ◦ (y ◦ z) = (x ◦ y) ◦ z,

(ii) x ◦G = G ◦ x = G.

The seond ondition, alled the reproduiblity ondition, means that for

any x, y ∈ G there exist u, v ∈ G suh that y ∈ x ◦ u and y ∈ v ◦ x.
A hypergroupoid satisfying this ondition is alled a hyperquasigroup.

Thus a hypergroup is a hyperquasigroup with the assoiative hyperoperation.

A non-empty subset K of a hyperquasigroup (G, ◦) is alled a sub-

hyperquasigroup if (K, ◦) is a hyperquasigroup.

The onept of fuzzy sets was introdued by Zadeh [24℄ in 1965. A

mapping µ : X → [0, 1], where X is an arbitrary non-empty set, is alled a

fuzzy set in X. The omplement of µ, denoted by µc
, is the fuzzy set in X

given by µc(x) = 1− µ(x) for all x ∈ X.
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For any fuzzy set µ in X and any t ∈ [0, 1] we de�ne two sets

U(µ; t) = {x ∈ X | µ(x) ≥ t} and L(µ; t) = {x ∈ X | µ(x) ≤ t},

whih are alled an upper and lower t-level ut of µ and an be used to the

haraterization of µ.
In 1971, Rosenfeld [21℄ applied the onept of fuzzy sets to the theory of

groups and studied fuzzy subgroups of a group. Davvaz applied in [8℄ fuzzy

sets to the theory of algebrai hyperstrutures and studied their fundamental

properties. Further investigations are ontained in [7℄, [9℄ and [10℄.

De�nition 1.2. (f. [8℄) Let (G, ◦) be a hypergroup (resp. hyperquasigroup)
and let µ be a fuzzy set in G. Then µ is said to be a fuzzy sub-hypergroup

(resp. fuzzy sub-hyperquasigroup) of G if the following axioms hold:

(1) min{µ(x), µ(y)} ≤ inf{µ(z) | z ∈ x ◦ y} for all x, y ∈ G,

(2) for all x, a ∈ G there exists y ∈ G suh that x ∈ a ◦ y and

min{µ(a), µ(x)} ≤ µ(y),

(3) for all x, a ∈ G there exists z ∈ G suh that x ∈ z ◦ a and

min{µ(a), µ(x)} ≤ µ(z).

As an important generalization of the notion of fuzzy sets inX, Atanassov

[1℄ introdued the onept of intuitionisti fuzzy sets de�ned on a non-empty

set X as objets having the form

A = {(x, µA(x), λA(x)) | x ∈ X},

where the funtions µA : X → [0, 1] and λA : X → [0, 1] denote the degree

of membership (namely µA(x)) and the degree of nonmembership (namely

λA(x)) of eah element x ∈ X to the set A respetively, and 0 ≤ µA(x) +
λA(x) ≤ 1 for all x ∈ X.

Suh de�ned objets are studied by many authors (see for example two

journals: 1. Fuzzy Sets and Systems and 2. Notes on Intuitionisti Fuzzy

Sets) and have many interesting appliations not only in mathematis (see

Chapter 5 in the book [3℄). In partiular, Kim, Dudek and Jun in [16℄ intro-

dued the notion of an intuitionisti fuzzy subquasigroup of a quasigroup.

Also in [17℄, Kim and Jun introdued the onept of intuitionisti fuzzy ideals

of semigroups.

For every two intuitionisti fuzzy sets A and B in X we de�ne (f. [2℄):

(1) A ⊆ B i� µA(x) ≤ µB(x) and λA(x) ≥ λB(x) for all x ∈ X,

(2) Ac = {(x, λA(x), µA(x)) | x ∈ X},
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(3) A ∩B = {(x,min{µA(x), µB(x)},max{λA(x), λB(x)}) | x ∈ X},

(4) A ∪B = {(x,max{µA(x), µB(x)},min{λA(x), λB(x)}) | x ∈ X},

(5) �A = {(x, µA(x), µ
c
A(x)) | x ∈ X},

(6) ♦A = {(x, λc
A(x), λA(x)) | x ∈ X}.

2 Intuitionisti fuzzy sub-hyperquasigroups

For the sake of simpliity, we shall use the symbol A = (µA, λA) for the

intuitionisti fuzzy set A = {(x, µA(x), λA(x) | x ∈ X}.
In what follows, let G denote a hyperquasigroup, and we start by de�ning

the notion of intuitionisti fuzzy sub-hyperquasigroups.

Based on [16℄, we an extend the onept of the intuitionisti fuzzy sub-

quasigroup to the onept of intuitionisti fuzzy sub-hyperquasigroups in the

following way:

De�nition 2.1. An intuitionisti fuzzy set A = (µA, λA) in G is alled an

intuitionisti fuzzy sub-hyperquasigroup of G (IFSH of G for short) if

(1) min{µA(x), µA(y)} ≤ inf{µA(z) | z ∈ x ◦ y} for all x, y ∈ G,

(2) for all x, a ∈ G there exist y, z ∈ G suh that x ∈ (a ◦ y) ∩ (z ◦ a) and

min{µA(a), µA(x)} ≤ min{µA(y), µA(z)},

(3) sup{λA(z) | z ∈ x ◦ y} ≤ max{λA(x), λA(y)} for all x, y ∈ G,

(4) for all x, a ∈ G there exist y, z ∈ G suh that x ∈ (a ◦ y) ∩ (z ◦ a) and

max{λA(y), λA(z)} ≤ max{λA(a), λA(x)}.

Lemma 2.2. If A = (µA, λA) is an IFSH of G, then so is �A = (µA, µ
c
A).

Proof. It is su�ient to show that µc
A satis�es the third and fourth onditions

of De�nition 2.1. For x, y ∈ G we have

min{µA(x), µA(y)} ≤ inf{µA(z) | z ∈ x ◦ y}

and so

min{1− µc
A(x), 1 − µc

A(y)} ≤ inf{1− µc
A(z) | z ∈ x ◦ y}.

Hene

min{1− µc
A(x), 1 − µc

A(y)} ≤ 1− sup{µc
A(z) | z ∈ x ◦ y}
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whih implies

sup{µc
A(z) | z ∈ x ◦ y} ≤ 1−min{1− µc

A(x), 1 − µc
A(y)}.

Therefore

sup{µc
A(z) | z ∈ x ◦ y} ≤ max{µc

A(x), µ
c
A(y)}.

Hene the third ondition of De�nition 2.1 is veri�ed.

Now, let a, x ∈ G. Then there exist y, z ∈ G suh that x ∈ a◦y, x ∈ z ◦a
and

min{µA(a), µA(x)} ≤ min{µA(y), µA(z)}.

So

min{1− µc
A(a), 1 − µc

A(x)} ≤ min{1− µc
A(y), 1− µc

A(z)}.

Hene

max{µc
A(y), µ

c
A(z)} ≤ max{µc

A(a), µ
c
A(x)},

and the fourth ondition of De�nition 2.1 is satis�ed.

Lemma 2.3. If A = (µA, λA) is an IFSH of G, then so is ♦A = (λc
A, λA).

Proof. The proof is similar to the proof of Lemma 2.2.

Combining the above two lemmas it is not di�ult to see that the fol-

lowing theorem is valid.

Theorem 2.4. A = (µA, λA) is an IFSH of G if and only if �A and ♦A
are IFSHs of G. �

Corollary 2.5. A = (µA, λA) is an IFSH of G if and only if µA and λc
A

are fuzzy sub-hyperquasigroups of G. �

Theorem 2.6. If A = (µA, λA) is an IFSH of G then the upper t-level ut
U(µA; t) of µA and the lower t-level ut L(λA; t) of λA are sub-hyperquasigroups

of G for every t ∈ Im(µA) ∩ Im(λA).

Proof. Let t ∈ Im(µA) ∩ Im(λA) ⊆ [0, 1] and let x, y ∈ U(µA; t). Then

µA(x) ≥ t and µA(y) ≥ t and so min{µA(x), µA(y)} ≥ t. It follows from the

�rst ondition of De�nition 2.1 that inf{µA(z) | z ∈ x ◦ y} ≥ t. Therefore

for all z ∈ x ◦ y we have z ∈ U(µA; t), so x ◦ y ⊆ U(µA; t). Hene for all

a ∈ U(µA; t) we have a ◦ U(µA; t) ⊆ U(µA; t) and U(µA; t) ◦ a ⊆ U(µA; t).
Now, let x ∈ U(µA; t) then there exist y, z ∈ G suh that x ∈ a ◦ y, x ∈
z ◦ a and min{µA(x), µA(a)} ≤ min{µ(y), µ(z)}. Sine x, a ∈ U(µA; t), we
have t ≤ min{µA(x), µA(a)} and so t ≤ min{µA(y), µA(z)} whih implies

y ∈ U(µA; t), z ∈ U(µA; t) and these prove that U(µA; t) ⊆ a ◦ U(µA; t) and
U(µA; t) ⊆ U(µA; t) ◦ a. Hene a ◦ U(µA; t) = U(µA; t) = U(µA; t) ◦ a.

Now let x, y ∈ L(λA; t). Then λA(x) ≤ t, λA(y) ≤ t and, onsequently,
max{λA(x), λA(y)} ≤ t. It follows from the third ondition of De�nition

5



2.1 that sup{λA(z) | z ∈ x ◦ y} ≤ t. Therefore for all z ∈ x ◦ y we have

z ∈ L(λA; t), so x ◦ y ⊆ L(λA; t). Hene for all a ∈ L(λA; t) we have a ◦
L(λA; t) ⊆ L(λA; t) and L(λA; t)◦a ⊆ L(λA; t). Now, let x ∈ L(λA; t). Then
there exist y, z ∈ G suh that x ∈ a ◦ y, x ∈ z ◦ a and max{λA(y), λA(z)} ≤
max{λ(a), λ(x)}. Sine x, a ∈ L(λA; t), we have max{λA(a), λA(x)} ≤ t and
so max{λA(y), λA(z)} ≤ t whih implies y ∈ L(λA; t), z ∈ L(λA; t) and

these prove that L(λA; t) ⊆ a ◦ L(λA; t) and L(λA; t) ⊆ L(λA; t) ◦ a. Thus

a ◦ L(λA; t) = L(λA; t) = L(λA; t) ◦ a.

Theorem 2.7. If A = (µA, λA) is an intuitionisti fuzzy set in G suh that

the non-empty sets U(µA; t) and L(λA; t) are sub-hyperquasigroups of G for

all t ∈ [0, 1], then A = (µA, λA) is an IFSH of G.

Proof. For t ∈ [0, 1], assume that U(µA; t) 6= ∅ and L(λA; t) 6= ∅ are sub-

hyperquasigroups of G. We must show that A = (µA, λA) satis�es the all

onditions in De�nition 2.1. Let x, y ∈ G, we put t0 = min{µA(x), µA(y)}
and t1 = max{λA(x), λA(y)}. Then x, y ∈ U(µA; t0) and x, y ∈ L(λA; t1).
So x ◦ y ⊆ U(µA; t0) and x ◦ y ⊆ L(λA; t1). Therefore for all z ∈ x ◦ y we

have µA(z) ≥ t0 and λA(z) ≤ t1 whih imply

inf{µA(z) | z ∈ x ◦ y} ≥ min{µA(x), µA(y)}

and

sup{λA(z) | z ∈ x ◦ y} ≤ max{λA(x), λA(y)}

The onditions (1) and (3) of De�nition 2.1 are veri�ed.

Now, let x, a ∈ G. If t2 = min{µA(a), µA(x)}, then a, x ∈ U(µA; t2). So
there exist y1, z1 ∈ U(µA; t2) suh that x ∈ a ◦ y1 and x ∈ z1 ◦ a. Also we

have t2 ≤ min{µA(y1), µA(z1)}. Therefore the ondition (2) of De�nition

2.1 is veri�ed. If we put t3 = max{λA(a), λA(x)}, then a, x ∈ L(λA; t3). So
there exist y2, z2 ∈ L(λA; t3) suh that x ∈ a ◦ y2 and x ∈ z2 ◦ a and we

have max{λA(y2), λA(y2)} ≤ t3, and so the ondition (4) of De�nition 2.1 is

veri�ed. This ompletes the proof.

Corollary 2.8. Let K be a sub-hyperquasigroup of a hyperquasigroup (G, ◦).
If fuzzy sets µ and λ are de�ned on G by

µ(x) =

{

α0 if x ∈ K,
α1 if x ∈ G \K,

λ(x) =

{

β0 if x ∈ K,
β1 if x ∈ G \K,

where 0 ≤ α1 < α0, 0 ≤ β0 < β1 and αi + βi ≤ 1 for i = 0, 1, then
A = (µ, λ) is an IFSH of G and U(µ;α0) = K = L(λ;β0). �

Corollary 2.9. Let χ
K
be the harateristi funtion of a sub-hyperquasigroup

K of (G, ◦). Then K = (χ
K
, χc

K
) is an IFSH of G. �
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Theorem 2.10. If A = (µA, λA) is an IFSH of G, then for all x ∈ G we

have

µA(x) = sup{α ∈ [0, 1] | x ∈ U(µA;α)}
and

λA(x) = inf{α ∈ [0, 1] | x ∈ L(λA;α)}.

Proof. Let δ = sup{α ∈ [0, 1] | x ∈ U(µA;α)} and let ε > 0 be given. Then

δ − ε < α for some α ∈ [0, 1] suh that x ∈ U(µA;α). This means that

δ − ε < µA(x) so that δ ≤ µA(x) sine ε is arbitrary.

We now show that µA(x) ≤ δ. If µA(x) = β, then x ∈ U(µA;β) and so

β ∈ {α ∈ [0, 1] | x ∈ U(µA;α)}.

Hene

µA(x) = β ≤ sup{α ∈ [0, 1] | x ∈ U(µA;α)} = δ.

Therefore

µA(x) = δ = sup{α ∈ [0, 1] | x ∈ U(µA;α)}.

Now let η = inf{α ∈ [0, 1] | x ∈ L(λA;α)}. Then

inf{α ∈ [0, 1] | x ∈ L(λA;α)} < η + ε

for any ε > 0, and so α < η + ε for some α ∈ [0, 1] with x ∈ L(λA;α).
Sine λA(x) ≤ α and ε is arbitrary, it follows that λA(x) ≤ η.

To prove λA(x) ≥ η, let λA(x) = ζ. Then x ∈ L(λA; ζ) and thus

ζ ∈ {α ∈ [0, 1] | x ∈ L(λA;α)}. Hene

inf{α ∈ [0, 1] | x ∈ L(λA;α)} ≤ ζ,

i.e. η ≤ ζ = λA(x). Consequently

λA(x) = η = inf{α ∈ [0, 1] | x ∈ L(λA;α)},

whih ompletes the proof.

Theorem 2.11. Let Ω be a non-empty �nite subset of [0, 1]. If {Kα | α ∈ Ω}
is a olletion of sub-hyperquasigroups of G suh that

(i) G =
⋃

α∈Ω

Kα,

(ii) α > β ⇐⇒ Kα ⊂ Kβ for all α, β ∈ Ω,

then an intuitionisti fuzzy set A = (µA, λA) de�ned on G by

µA(x) = sup{α ∈ Ω | x ∈ Kα} and λA(x) = inf{α ∈ Ω | x ∈ Kα}

is an IFSH of G.
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Proof. Aording to Theorem 2.7, it is su�ient to show that the non-empty

sets U(µA;α) and L(λA;β) are sub-hyperquasigroups of G. We show that

U(µA;α) = Kα. This holds, sine

x ∈ U(µA;α) ⇐⇒ µA(x) ≥ α
⇐⇒ sup{γ ∈ Ω | x ∈ Kγ} ≥ α
⇐⇒ ∃γ0 ∈ Ω, x ∈ Kγ0 , γ0 ≥ α
⇐⇒ x ∈ Kα (since Kγ0 ⊆ Kα).

Now, we prove that L(λ;β) 6= ∅ is a sub-hyperquasigroup of G. We have

x ∈ L(λA;β) ⇐⇒ λA(x) ≤ β
⇐⇒ inf{γ ∈ Ω | x ∈ Kγ} ≤ β
⇐⇒ ∃γ0 ∈ Ω, x ∈ Kγ0 , γ0 ≤ β

⇐⇒ x ∈
⋃

γ≤β

Kγ

and hene L(λA;β) =
⋃

γ≤β

Kγ . It is not di�ult to see that the union of any

family of inreasing sub-hyperquasigroups of a given hyperquasigroup is a

sub-hyperquasigroup. This ompletes the proof.

3 Relations

Let α ∈ [0, 1] be �xed and let IFSH(G) be the family of all intuitionisti

fuzzy sub-hyperquasigroups of a hyperquasigroup G. For any A = (µA, λA)
and B = (µB , λB) from IFSH(G) we de�ne two binary relations U

α
and L

α

on IFSH(G) as follows:

(A,B) ∈ U
α ⇐⇒ U(µA;α) = U(µB;α)

and

(A,B) ∈ L
α ⇐⇒ L(λA;α) = L(λB ;α) .

These two relations U
α
and L

α
are equivalene relations. Hene IFSH(G)

an be divided into the equivalene lasses of U
α
and L

α
, denoted by [A]Uα

and [A]Lα
for any A = (µA, λA) ∈ IFSH(G), respetively. The orre-

sponding quotient sets will be denoted by IFSH(G)/Uα
and IFSH(G)/Lα

,

respetively.

For the family S(G) of all sub-hyperquasigroups of G we de�ne two maps

Uα and Lα from IFSH(G) to S(G) ∪ {∅} by putting

Uα(A) = U(µA;α) and Lα(A) = L(λA;α)

for eah A = (µA, λA) ∈ IFSH(G).
It is not di�ult to see that these maps are well-de�ned.
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Lemma 3.1. For any α ∈ (0, 1) the maps Uα and Lα are surjetive.

Proof. Let 0 and 1 be fuzzy sets in G de�ned by 0(x) = 0 and 1(x) = 1
for all x ∈ G. Then 0∼ = (0,1) ∈ IFSH(G) and Uα(0∼) = Lα(0∼) = ∅
for any α ∈ (0, 1). Moreover for any K ∈ S(G) we have K∼ = (χ

K
, χc

K
) ∈

IFSH(G), Uα(K∼) = U(χ
K
;α) = K and Lα(K∼) = L(χc

K
;α) = K. Hene

Uα and Lα are surjetive.

Theorem 3.2. For any α ∈ (0, 1) the sets IFSH(G)/Uα
and IFSH(G)/Lα

are equipotent to S(G) ∪ {∅}.

Proof. Let α ∈ (0, 1). Putting U∗
α([A]Uα) = Uα(A) and L∗

α([A]Lα) = Lα(A)
for any A = (µA, λA) ∈ IFSH(G), we obtain two maps

U∗
α : IFSH(G)/Uα → S(G) ∪ {∅} and L∗

α : IFSH(G)/Lα → S(G) ∪ {∅}.

If U(µA;α) = U(µB;α) and L(λA;α) = L(λB ;α) for some A = (µA, λA)
and B = (µB, λB) from IFSH(G), then (A,B) ∈ U

α
and (A,B) ∈ L

α
,

whene [A]Uα = [B]Uα
and [A]Lα = [B]Lα

, whih means that U∗α and L∗
α

are injetive.

To show that the maps U∗
α and Lα are surjetive, let K ∈ S(G). Then

for K∼ = (χ
K
, χc

K
) ∈ IFSH(G) we have U∗

α([K∼]Uα) = U(χ
K
;α) = K and

L∗
α([K∼]Lα) = L(χc

K
;α) = K. Also 0∼ = (0,1) ∈ IFSH(G). Moreover

U∗
α([0∼]Uα) = U(0;α) = ∅ and L∗

α([0∼]Lα) = L(1;α) = ∅. Hene U∗
α and L∗

α

are surjetive.

Now for any α ∈ [0, 1] we de�ne a new relation R
α
on IFSH(G) by

putting:

(A,B) ∈ R
α ⇐⇒ U(µA;α) ∩ L(λA;α) = U(µB;α) ∩ L(λB;α),

where A = (µA, λA) and B = (µB, λB). Obviously R
α
is an equivalene

relation.

Lemma 3.3. The map Iα : IFSH(G) → S(G) ∪ {∅} de�ned by

Iα(A) = U(µA;α) ∩ L(λA;α),

where A = (µA, λA), is surjetive for any α ∈ (0, 1).

Proof. If α ∈ (0, 1) is �xed, then for 0∼ = (0,1) ∈ IFSH(G) we have

Iα(0∼) = U(0;α) ∩ L(1;α) = ∅ ,

and for any K ∈ S(G) there exists K∼ = (χ
K
, χc

K
) ∈ IFSH(G) suh that

Iα(K∼) = U(χ
K
;α) ∩ L(χc

K
;α) = K.

Theorem 3.4. For any α ∈ (0, 1) the quotient set IFSH(G)/Rα
is equipo-

tent to S(G) ∪ {∅}.
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Proof. Let I∗α : IFSH(G)/Rα → S(G) ∪ {∅}, where α ∈ (0, 1), be de�ned

by the formula:

I∗α([A]Rα) = Iα(A) for eah [A]Rα ∈ IFSH(G)/Rα.

If I∗α([A]Rα) = I∗α([B]Rα) for some [A]Rα , [B]Rα ∈ IFSH(G)/Rα
, then

U(µA;α) ∩ L(λA;α) = U(µB;α) ∩ L(λB ;α),

whih implies (A,B) ∈ R
α
and, in the onsequene, [A]Rα = [B]Rα . Thus

I∗α is injetive.

It is also onto beause I∗α(0∼) = Iα(0∼) = ∅ for 0∼ = (0,1) ∈ IFSH(G),
and I∗α(K∼) = Iα(K) = K for K ∈ S(G) and K∼ = (χ

K
, χc

K
) ∈ IFSH(G).

4 Connetions with binary quasigroups

A groupoid (Q, ·) is alled a (binary) quasigroup if eah of the equations

ax = b and ya = b has a unique solution for any a, b ∈ Q. Sine a non-

empty subset of Q losed with respet to this operation is not in general a

quasigroup we must use the another equivalent de�nition of a quasigroup.

A quasigroup (Q, ·) an be de�ned (f. [20℄) as an algebra (Q, ·, \, /) with
three binary operation suh that (Q, ·) is a quasigroup in the above sense

and

x \ y = z ⇔ xz = y and x/y = z ⇔ zy = x

for all x, y, z ∈ Q. In this ase a non-empty subset of Q is a subquasigroup

of (Q, ·) (and (Q, ·, \, /)) if and only if it is losed with respet to these three

operations. This gives the possibility to the introdution of a good de�nition

of intuitionisti fuzzy subquasigroups of binary quasigroups [16℄.

De�nition 4.1. Let (Q, ·) be a quasigroup. An intuitionisti fuzzy set A =
(µA, λA) in Q is alled an intuitionisti fuzzy subquasigroup of Q if

(i) min{µA(x), µA(y)} ≤ µA(x ∗ y)

(ii) λA(x ∗ y) ≤ max{λA(x), λA(y)}

hold for all x, y ∈ Q and ∗ ∈ {·, \, /}.

In this ase an intuitionisti fuzzy set A = (µA, λA) is an intuitionisti

fuzzy subquasigroup of (Q, ·, \, /) if and only if all non-empty U(µ; t) and
L(µ; t) are subquasigroups of (Q, ·, \, /) (f. [16℄).

A hyperquasigroup (G, ◦) is alled regular if

x ∈ y ◦ z implies y ∈ x ◦ z and z ∈ y ◦ x

10



for all x, y, z ∈ G. Let (G, ◦) be a regular hyperquasigroup. The relation β∗

is the smallest equivalene relation on G suh that the quotient G/β∗
, the set

of all equivalene lasses, is a quasigroup. β∗
is alled the fundamental equiv-

alene relation on G and G/β∗
is alled the fundamental quasigroup. The

equivalene relation β∗
was introdued by Koskas [18℄ and studied mainly

by Corsini [6℄ and Freni [13℄, [14℄ onerning hypergroups and Vougiouklis

[23℄ onerning Hv-groups.

Let us denote by U the set of all �nite produts of elements of G as

follows:

xβy if and only if {x, y} ⊆ u for some u ∈ U .

The fundamental relation β∗
is the transitive losure of the relation β (see

Theorem 1.2.2 in [23℄). Suppose β∗(a) is the equivalene lass ontaining

a ∈ G. Then the produt � ·� on G/β∗
is de�ned as follows:

β∗(a) · β∗(b) = β∗(c) for all c ∈ β∗(a) ◦ β∗(b).

In this ase, eah of the equations β∗(a) · β∗(x) = β∗(b) and β∗(y) · β∗(a) =
β∗(b) has a unique solution for any β∗(a), β∗(b) ∈ G/β∗

. The quasigroup

(G/β∗, ·, \, /) orresponds to quasigroup (G/β∗, ·), where

β∗(x) \ β∗(y) = β∗(z) ⇐⇒ β∗(x) · β∗(z) = β∗(y),
β∗(x)/β∗(y) = β∗(z) ⇐⇒ β∗(z) · β∗(y) = β∗(x).

Let µ be a fuzzy set in G. The fuzzy set µβ∗
in G/β∗

is de�ned as follows:

µβ∗ : G/β∗ → [0, 1], β∗(x) 7→ sup{µ(a) | a ∈ β∗(x)}.

Now, we have

Theorem 4.2. Let G be a regular hyperquasigroup and A = (µA, λA) an

intuitionisti fuzzy sub-hyperquasigroup of G. Then A/β∗ = (µβ∗ , λβ∗) is an
intuitionisti fuzzy subquasigroup of the fundamental quasigroup G/β∗

.
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