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Abstract. In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process 

is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent 

Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent �imitate� teachers 

in diagnosing students� characteristics, and equips the intelligent learning environment with reasoning 

capabilities that can be further user to drive pedagogical decisions depending on the student learning style. The 

neuro-fuzzy implementation helps to encode both structured and non-structured teachers� knowledge: when 

teachers� reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers� 

reasoning is not well defined but is available through practical examples illustrating their experience, then the 

networks can be trained to represent this experience. The proposed approach has been tested in diagnosing 

aspects of student�s learning style in a discovery-learning environment that aims to help students to construct the 

concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared 

against the recommendations of a group of five experienced teachers, and the results produced by two alternative 

soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages 

the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, 

even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, 

some times, conflicting judgments. 
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1.  Introduction 

User and student modeling is a fundamental mechanism to achieve individualized interaction 

between computer systems and humans [41]. It is usually concerned with modelling several 

user related issues, such as goals, plans, preferences, attitudes, knowledge or beliefs. The most 

difficult task in this context is the process of interpreting the information gathered during 

interaction in order to generate hypotheses about users and students behaviour [41], and 

involves managing a good deal of uncertainty. Interactive computer systems deal in general 

with more meagre and haphazardly collected users� data than it usually happens when humans 

are engaged in face-to-face interaction [26]. Thus, the gap between the nature of the available 

evidence and the conclusions that are to be drawn is often much greater [26]. Numerical 

techniques have been employed in several cases in order to manage uncertainty, [3] [13] [22] 

[23] [24] [26] [27] [30] [42] [59], and neural networks have been used in order to add learning 

and generalization abilities in user models and draw conclusions from existing user profiles 

[10] [19] [21] [32] [36] [37] [43] [46] [53] [61]. 

According to Self, [50], student modelling is the process of creating and maintaining 

student models. It is divided into the design of two different but tightly interwoven 

components [55]: (i) the student model which, in its simplest form, is a data structure that 

stores information about the student; (ii) the diagnostic module which performs the diagnostic 

process that updates the student model. Student models are distinguishing features of 

Artificial Intelligence, (AI), based computer-based instructional systems.  

This work focuses on an application of student modelling in Intelligent Learning 

Environments (ILE). ILEs are considered as generalization of traditional Intelligent Tutoring 
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systems (ITS), which are based on objectivist epistemology, and embrace instructional 

environments that make use of theories on constructivism and situated cognition [1]. 

Naturally, a good background for building student models for ILEs is provided by research 

conducted in the area of ITSs [8]. ITSs make use of AI techniques to represent and process 

knowledge about the domain and the student, and usually follow a natural division of the task 

of knowledge communication into four distinct components: domain expertise, model of the 

student, communication strategies or pedagogical expertise, and interface with the student 

[60]. The student model-centered architecture is also proposed for ILEs in order to support 

student-driven learning and knowledge acquisition [8].  

Ideally, the student model should include all the aspects of student's behaviour and 

knowledge that have repercussions for their performance and learning [60]. In practice, the 

contents of the student model depend on the application. It includes learner goals and plans, 

capabilities, attitudes and/or knowledge or beliefs, and is used as a tool to adapt ILE�s 

behaviour to the individual student [25][50]. Inferring a student model is called diagnosis 

because it is much like a medical task of inferring a hidden physiological state from 

observable signs [55], i.e. the ILE uncovers the hidden cognitive state (student characteristics) 

from observable behavior.  

Researchers in student modelling area have used AI techniques in order to develop models 

that provide detailed diagnosis of student's knowledge, bugs and misconceptions, and/or 

simulate the cognitive behaviour of a student during learning and problem solving activities 

(see [39] for reports on various approaches, and [49][51][55][60] for reviews).  

Along these lines, the model of the diagnostic process that is proposed in this paper aims to 

diagnose student behaviour based on teachers� expertise for the purpose of adapting 

pedagogical decisions to the individual student. Evidence shows that human teaching is not 

based on fine-grained diagnostic behaviour [48]. In particular, studies in human tutoring have 
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found little evidence to suggest that human tutors build detailed cognitive models as a basis 

for understanding student performance and adapting their tutoring strategy [35][47]. More 

recently, researchers have tried to identify the constructs that tutors use to classify and 

discriminate among different students states for the purpose of adapting tutoring to student 

individual differences [15]. Their results have been based on the assumption that, during 

tutoring, the expert tutor gathers evidence and forms relatively general ideas of the kind of 

tutoring that might work better for each student. According to these findings, all tutors judged 

and classified students in terms of two underlying dimensions that were similarly defined, 

through not exactly alike, across tutors: motivation and intellectual ability.  

The neural network-based fuzzy model presented in this paper aims to �imitate� teacher's 

knowledge acquisition procedure in evaluating student's learning characteristics, such as 

capabilities, attitudes, knowledge level, motivation and learning style. Fuzzy logic is used to 

provide a mode of qualitative reasoning, which is closer to human decision making since it 

handles imprecision and vagueness by combining fuzzy facts and fuzzy relations, whilst 

neural networks provide a convenient way to achieve adaptability of the diagnostic process to 

teacher's subjective reasoning and judgments. Thus, a neuro-fuzzy implementation helps the 

system to encode both structured and unstructured knowledge, e.g. fuzzy rules and learning 

from examples, respectively. 

The paper is organized as follows. In Section 2 we give a brief overview of fuzzy logic and 

neural network techniques in user and student modelling, and provide a general description of 

our approach explaining its differences from existing techniques. Section 3 covers several 

aspects of our model: data gathering, knowledge representation and implementation details of 

the neural-network based fuzzy model. Section 4 presents an application of the proposed 

model in a discovery learning environment, giving details on the environment, the aspects of 
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the students� learning style diagnosed by our model, and comparative evaluation results. 

Lastly, conclusions are drawn and directions for future work are presented.  

 

2.  Fuzzy and neural approaches to user and student modelling 

As already mentioned a variety of numerical techniques have been employed in user and 

student modelling systems in order to handle the imprecise information provided by the users, 

and reason under vagueness and uncertainty; a comparative review of techniques can be found 

in [26]. For example, Bayesian networks have been successfully used to relate in a 

probabilistic way user�s knowledge and characteristics with user�s observable behaviour. The 

key to success with all Bayesian network models lies in accurately representing the 

probabilistic dependencies in the task domain [13]. Fuzzy logic techniques have also been 

used for this task effectively. When considering the use of such techniques in a user or student 

modelling system, the addressed arguments do not concern in principle the question of 

whether or not fuzzy logic provides accurate or useful results by rather the usability of fuzzy 

logic techniques in the design of the specific system, in terms of knowledge engineering 

requirements, programming effort, empirical model adjustment, computational complexity, 

human-likeness, interpretability and justifiability [26]. Fuzzy logic can claim advantages with 

respect to other alternatives in several of these issues [26], as for example in computational 

complexity. In addition reasoning of a fuzzy logic system is considered easy for designers and 

users to understand and/or to modify [26]. One of the factors for this consideration is human-

likeness. Although, the gap between human and Bayesian inference is not as wide as is 

commonly believed, human-likeness is much stronger associated with fuzzy logic since it can 

provide human-like descriptions of knowledge and imitate a �human� style of reasoning with 

vague concepts [26]. These are of particular interest when trying to design an interpretable 

student modelling system based on teacher�s reasoning and conceptualization of the learner, 
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as in our approach. In addition, the Bayesian approach requires the determination of 

probabilities from experts� judgments, whilst fuzzy logic provides a convenient method to 

elicit the necessary knowledge from domain experts, thus expert teachers in case of student 

modeling, to implement the system. It is easier and more reliable to extract knowledge form 

experts in linguistic form rather than in numbers representing this knowledge since experts 

feels most comfortable giving the original linguistic data [28]. 

One of the first attempts in using fuzzy student modelling has been made by Hawkes et al. 

[23]. In this context fuzzy logic has been proposed as a flexible and realistic method to easily 

capture the way human tutors might evaluate a student and handle tutoring decisions, which 

are not clear-cut ones. Clearly, the capability to deal with such imprecision is a definite 

enhancement to both ITSs and ILEs. This approach, which has been revised some years later 

[22], was used to evaluate students in a system called TAPS, and applied degrees of 

membership to linguistic labels that match student's solutions to �acceptable� solutions with 

the use of informal fuzzy reasoning.  

Towards this direction, several other attempts have been proposed in the literature. In 

Sherlock II [27] and in the MDF tutor [1] the uncertainty in student's performance was 

managed using fuzzy distributions and a set of rules for their formulation and update. Several 

other systems have been employed based on fuzzy logic concepts. In an ITS for the physics 

domain, the, so called, �Knowledge and Learning Student Model� [42] has been proposed to 

infer student's knowledge level and cognitive abilities through processing and aggregating 

membership functions that represent teacher's assessments. Fuzzy rules have been proposed in 

the BSS1 tutoring system [59] to implement a general fuzzy logic engine that can better 

manage student�s learning, and in SYPROS [24] to help determine student�s plans. A fuzzy 

algebraic structure has been proposed as a dynamic model of user's states during navigation to 

monitor cognitive variables of the user model in a multimedia tutoring system [30]. 
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The development of fuzzy logic in user or student modelling systems was motivated 

largely by the desire to make the arbitrary specification of precise numbers unnecessary [26]. 

However, the fuzzy approach translates and process knowledge in a numerical framework. In 

addition, although fuzzy logic allows knowledge engineers to acquire knowledge from experts 

in linguistic form, experts rarely can articulate the propositional or mathematical rules that 

describe their expert behaviour [28]. A complementary strategy is to employ machine learning 

techniques for implementing the system and acquiring the necessary numbers [26]. Neural 

networks can serve this purpose. Both neural networks and fuzzy systems are model-free 

estimators. Unlike statistical estimators, they estimate a function without a mathematical 

model/assumption of how outputs depend on inputs [28]. They can �learn from experience� 

expert�s knowledge with linguistic or numerical sample data by means of specialised learning 

procedures, and provide a robust approach to approximating real-valued, discrete-valued, and 

vector-valued target functions. For certain types of problems, such as learning to interpret 

complex real-world sensor data, neural networks are among the most effective learning 

methods currently known [38]. In the user or student modelling field, neural networks have 

been proposed in the literature mainly due to their ability to learn from noisy or incomplete 

patterns of users� or students� behaviour, generalize over similar cases, and then use this 

generalized knowledge to recognize unknown sequences [10] [61]. Particularly in student 

modelling, neural networks have been originally proposed to simulate student�s cognitive 

process of performing subtraction with the aim to predict student's responses and errors [36]. 

A problem, which comes up when trying to apply a neural network in modelling human 

behaviour, is knowledge representation [61]. The fact that student models need to be 

inspectable, [60], explains the small number neural network-based student models as opposed 

to symbolic approaches [51]. Neural networks and other numeric-based AI methods have 

been criticized as unable to support learning interactions because they only allow for implicit 
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understanding [49]. However, several attempts have been made to incorporate the powerful 

learning abilities of neural networks in existing student modelling systems taking advantage 

of synergies with other AI methods. A hybrid approach, where each node and connection has 

symbolic meaning, has been proposed in TAPS [46]. The back-propagation algorithm has 

been used to modify weights that represent importance measures of attributes associated with 

student's performance, in order to refine and expand incomplete expert knowledge. Another 

approach combining ideas from neuro-fuzzy systems has been proposed [19]. In [32], the 

model of [19] has been expanded to incorporate evaluation mechanisms that used multi-

attribute decision making for synthesizing various judgments to estimate student's knowledge 

levels and personal characteristics in order to plan the content of a Web based course. 

This paper makes use of neuro-fuzzy synergism in order to infer the learning 

characteristics of the student in an ILE, and to create and update the student model taking into 

consideration teacher's personal opinion/judgment. Fuzzy logic is used to handle uncertainty 

and to express teacher�s qualitative knowledge in a clearly interpretable way. The fuzzy 

model represents teacher�s knowledge in linguistic form and infers student's characteristics 

through a set of fuzzy systems, realizing in this way a human-like diagnostic process, i.e. a 

decision is made by combining fuzzy facts, each one contributing to some degree to a fuzzy 

relation and to the final decision. Neural networks are used to equip the fuzzy model with 

learning and generalization abilities, which are eminently useful when teacher�s reasoning 

process cannot be defined explicitly.  

The new approach aims to represent human teacher�s conceptualization of student during 

instruction by modelling their reasoning process in diagnosing unobservable student's 

characteristics. To this end, teacher's evaluation procedure is decomposed into three 

meaningful stages: gathering evidence during interaction; evaluating the student; reaching a 

decision. Information of student's observable behaviour is described and processed 
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qualitatively with the use of fuzzy logic variables and operators. Thus, a more accurate and 

more natural modelling of human's tutor diagnostic process is achieved. This form of 

modelling permits to determine the specific characteristics of the diagnostic process, such as 

the types of evidences that must be used to discriminate among students, the characteristics of 

students that lead to pedagogical decisions, and the rules underlying the inference process. 

Furthermore, it is able to cope with subjectivity incorporated in knowledge acquisition and 

reasoning; thus, it can be easily adapted to the lesson content according to teacher's subjective 

inferences and decisions.  

The proposed model allows exploiting and efficiently processing structured knowledge in 

the form of linguistic rules. Of course it is not always possible to elicit this knowledge from 

the teachers. Teachers, sometimes, although they can easily classify students by observing 

their actions, they cannot articulate rules that reproduce their decisions. In addition, teachers 

are able to classify students with respect to specific characteristics, whilst in the case of ILE-

supported learning students� behaviour cannot be defined accurately. To alleviate these 

problems, a neural network-based implementation of the diagnostic process is adopted. 

Specialized neural networks are trained through examples of existing students� profiles, or 

using examples that represent teacher's experience. Knowledge is represented by developing 

association of student's behaviour patterns with particular characteristics through neural 

network learning and is expressed, if necessary, with fuzzy if-then rules. Thus, it is possible to 

encode structured and non-structured knowledge.  

 

3.  Fuzzy modelling of the diagnostic process  

3.1.  Collecting and processing information 

Student's observable behaviour is considered important source of diagnostic evidence to 

both human tutors and ILEs. In the terminology of ILEs, student�s behaviour refers to a 
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student's observable response to a particular stimulus in a given domain. The response, 

together with the stimulus, serves as the primary input to the student modelling system [51]. 

The input can be an action or the result of that action, and can also include intermediate 

results [51]. However, it is not generally clear what type of information is available during 

interaction, and which features of student's behaviour should be selected as inputs to the 

diagnostic process. Human tutors obtain diagnostic information from observing what students 

would say and do, and how something is said and done, i.e. tone of voice, inflection, 

hesitancy, etc. [15]. Studies in human tutoring found that tutors use as diagnostic evidence 

for adapting their tutoring not only errors and student's responses to queries, but also features 

of interaction, e.g. the timing of student responses, the way of delivering a response and 

others [15]. ILEs are handicapped in this regard, since the communication channel between 

student and computer is very restricted (usually a keyboard and a mouse) [60]. However, 

some indirect information that approximates student's unobservable behaviour can be 

obtained [55][60]. In addition, an appropriately designed interface can facilitate the process 

of collecting the best available information about what the student is doing (e.g. timing each 

keystroke) to make diagnosis both computationally tractable and more accurate [60]. 

In order to alleviate the problem of limited information that is caused by the restricted 

communication channel between student and ILE, our system implements a close monitoring 

mechanism of student's actions over time, where each response such as keystroke, mouse 

move or drag can be timed and recorded. In this way various data can be extracted from 

student's records: (i) knowledge data, such as the number of correct, incorrect or almost 

correct answers in separate tests, and the number of student's conceptual errors; (ii) 

chronometric data, such as the time spent to read the theory, a page or a line, the time to find 

the correct answers in a test, the total time on task, the time of idle intervals; (iii) try data, 

such as the number of attempts to find the correct solution, the number of times needed to 



  

 11

review the theory; (iv) navigation data, such as the number of times a topic, activity, tool, or 

exercise has been selected, frequency that specific student selections occurred, the number of 

times the student moves to another topic without achieving a previously set goal. In this 

manner student's observable responses are summarized into k groups. Each group contains 

information about student's behaviour of a specific type of knowledge data, chronometric 

data, try data or navigation data. A teacher usually defines specific types of responses that 

enable him or her to discriminate among students with regards to a particular characteristic. 

The set B={B1,B2,�,Bi,�,Bk}, where Bi (i=1,2,�.,k) is a word or a sentence describing 

the i-th type of response that is observed, describes linguistically the k aspects of student's 

observable behaviour that will serve as inputs to the diagnostic process. The term observable, 

here, stands for measurable. The k measured responses constitute a set of numeric 

information that represents student's behaviour. Each type i (i= 1,2,�.,k) takes its values in a 

set of positive numbers Ui. The numerical input  },x,...,x,,{xX 1 kιK=  where    Ux ι∈ι and 

iU  is the universe of discourse of the i-th input; each +ℜ⊂  U ί  (i= 1,2,�.,k) represents the 

measured values of Bi and formulates an input to the diagnostic process. 

The output of the diagnostic process updates the student model regarding L different 

student learning characteristics C1, C2, �, CL, such as student�s abilities, motivation or 

learning style. Student�s evaluation regarding each characteristic Cj (j=1,2,�..L) is described 

qualitatively with the use of linguistic values. Depending on the j-th characteristic we use a 

different number mj of linguistic values that describe Cj (j=1,2,�..L). 

Student�s evaluation regarding each characteristic is assessed by processing the numerical 

input  },x,...,x,...,{xX 1 ki= of student�s behaviour. The process consists of three stages: 

fuzzification, inference, and defuzzification (see Figure 1). In the first stage a qualitative 

description of student behaviour is obtained by transforming the numeric input data into 
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linguistic terms. The i�th fuzzifier (i=1,2,�..k) transforms the numeric input xi into 

membership degrees of the linguistic values that describe Bi. In the second stage, the 

inference process provides a fuzzy assessment of student's characteristics, C1, C2, �, CL, by 

assessing membership degrees to the linguistic terms that describe each characteristic Cj. To 

this end, an ensemble of specialized fuzzy systems, where each system infers about a 

particular characteristic Cj is used to make a fuzzy assessment from a fuzzy precondition. A 

fuzzy system of this type combines linguistic values and realizes fuzzy relations operated 

with the max-min composition. These relations represent the estimation of a human tutor to 

the degree of association between an observed input  },x,...,x,...,{xX 1 ki=  and a fuzzy 

assessment of a particular student characteristic Cj (j=1,2,�..L). Finally, in the third stage, 

the fuzzy assessments are defuzzified to non-fuzzy values, i.e. evaluation decisions for the 

characteristics C1, �, CL by using a defuzzifier from the ensemble of the M defuzzifiers. 

Each defuzzifier has a different number of inputs. Therefore, depending on the number of 

linguistic values mj of each characteristic Cj (j=1,2,�..L) a different defuzzifier M is used in 

order to evaluate student�s characteristic. 

Fuzzifier 1 

Fuzzifier 2 

Fuzzifier k 

Fuzzy System 1 

Fuzzy System 2 

Fuzzy System L 

x1 

xk 

x2 

 
C1 

defuzzifier 1

defuzzifier M

C2 

CL 

defuzzification 
stage 

inference
stage 

fuzzification 
stage 

 

Figure 1. Schematic of the diagnostic model.  

 



  

 13

3.2.  A scheme for fuzzy knowledge representation 

3.2.1  Fuzzification stage 

This stage represents in linguistic form teacher's subjective description of student's responses 

when acting face-to-face communication during instruction (e.g. the time needed to solve the 

exercises was short; the student answered enough questions during instruction). The types of 

responses B1,�,Bi,�,Bk are treated as linguistic variables. Each variable Bi (i=1,2,�..k) can 

take a different number of linguistic values fi. The number fi of the linguistic values and their 

names V1,V2,�,Vfi are defined by the developer with the help of experts, and depend on each 

variable. The set T(Bi)={Vi1, Vi2, �, Vifi } is the term set of Bi. For example, let us consider 

the linguistic variable Bi = �time on task�. The corresponding term set could be T(Bi)=T(time 

on task)={Short, Normal, Long} including three (fi=3) linguistic values, or any classification 

such as T(Bi)=T(time on task)={Very Short, Short, Normal, Long, Very Long} including five 

(fi=5) linguistic values, depending on the required resolution. T={T(B1), �,T(Bi),�,T(Bk)} 

is the set of all term sets that represent the overall observable behaviour Β (for all Bi; 

i=1,2,�..k). Thus, the numeric input  },x,...,x,...,{xX 1 ki=  that represents the measured 

values of B1,�,Bi,�,Bk is fuzzified by means of linguistic values V11,V12�..,V1f1; 

Vi1,Vi2�..,Vifi; Vk1,Vk2�..,Vkfk. Thus, the student behaviour B is represented as a set of 

numeric values Y={(y11, y12,�y1f1),�, (yi1,yi2,�,yifi),�, (yk1,yk2,� ,ykfk)} in [0,1], which 

represent the degree of membership of each numeric value xi (i=1,..k) into the term set of Bi 

with linguistic values Vi1,Vi2�..,Vifi. 

 

3.2.2 Inference stage 

This stage represents teacher's reasoning in categorizing students qualitatively according to 

their abilities and personal characteristics, such as attentive, rather slow, good, etc. Teachers� 

can provide a series of IF-THEN rules that approximates their reasoning. For example, if the 
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time spent to read the theory is short and the number of correct answers is high, and few 

attempts to find the correct answers have been made then the student learning rate is fast.  

In our model, a qualitative description of student's characteristics C1,C2,...,CL is performed 

by treating student�s characteristics as linguistic variables. Each linguistic variable Cj can take 

a different number of linguistic values mj. T(Cj)={Cjl, Cj2, �, Cjmj} is the term set of Cj . The 

expert-teachers set the number mj of the linguistic values and their names Cjl, Cj2, �, Cjmj  for 

each characteristic Cj according to their personal judgement. For example, if we treat the 

linguistic variable Cj = �learning rate of the student� using five linguistic values (mj =5) then 

the term set could be: T(Cj )=T(learning rate)={ Slow, Rather Slow, Normal, Almost Fast, 

Fast}. In this way, a mode of qualitative reasoning, in which the preconditions and the 

consequents of the IF-THEN rules involve fuzzy variables [64], is used to provide an 

imprecise description of teacher's reasoning: 

�IF B1 is V1I1 AND B2 is V2I2 �AND Bk is VkIk  THEN C1 is C1J1  AND C2 is C2J2�AND CL is CLJL.� 

where  I1=1,2,�,f1 ;  I2=1,2,�,f2 ; Ik=1,2,�,fk ; J1=1,2,�,m1; J2=1,2,�,m2 ; JL=1,2,�,mL. 

All possible combinations in the preconditions, denoted as PCP below, are represented by 

the Cartesian product of the sets in T={T(B1),T(B2),�,T(Bk)}: PCP=T(B1)×T(B2)×...×T(Bk),  

and the number n= f1 × f2 ×...× fk of possible cases in the preconditions equals to the number n 

of elements of PCP. Each fuzzy system j (see Fig. 1) infers a fuzzy assessment of a different 

characteristic Cj (j=1,2,�.,L). Within each fuzzy system, the intersection (corresponding to 

the logical AND) between the membership functions associated with the linguistics values of 

each precondition is the min operation, and results in the numerical truth-value pn of the 

precondition. Thus, student's current behaviour is described by a vector P = (p1, p2, �, pn), 

where p1,p2,�,pn are in the interval [0,1], representing degrees of fulfilment of preconditions. 

By means of a fuzzy relation, [44] [45], as described below, P is translated into fuzzy 
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assessments by exploiting teacher�s subjective judgments (denoted by the symbol Rj in the 

relation right below) with respect to a characteristic Cj  

P ° Rj = Cj, 

where Cj is an m-dimensional vector Cj = [cjl,cj2,�,cjmj] with cjl, cj2, cjmj in [0,1] representing 

the fuzzy assessment of student�s characteristic Cj, i.e. an assessment with membership 

degrees cjl, cj2, �, cjmj on each linguistic value (Cjl, Cj2, �, Cjmj) of the linguistic variable for 

the characteristic Cj; Rj is a n×mj weight matrix representing teachers� estimations of the 

degree of association between precondition P and the linguistic values of student�s 

characteristic Cj; the symbol ° denotes the max-min composition operator. 

 

3.2.3  Defuzzification stage 

This stage represents teacher's final decision in classifying a student in one of the 

predefined linguistic values Cjl, Cj2, �, Cjmj of the characteristic Cj. This process is performed 

by weighting the fuzzy assessment. Depending on the number of linguistic values mj of each 

characteristic Cj, we use an appropriate defuzzifier from the ensemble, i.e. implementing a 

different defuzzification procedure that �imitates� a teacher's subjective decisions. Teacher�s 

decisions may be clear-cut or marginal. Decisions in marginal cases are highly subjective and, 

usually, teachers are reserving the best or the worst qualification of their students. Thus, we 

have used a neural network-based implementation, which allows the system to adapt the 

defuzzification procedure to individual user�s (teacher) opinion by training, as will be 

explained in the next section. 

 



  

 16

3.3. Neural-network based implementation of the fuzzy model 

3.3.1  Fuzzification  

Depending on the linguistic variable Bi and the linguistic value Vi1,Vi2�..,Vifi, we 

subjectively define different membership functions, which assign to each element xi of the 

universe of discourse Ui (i=1,..k)  a degree of membership yifi(xi) to the linguistic value Vifi of 

Bi. In this way they contribute to the semantic rule that associates each linguistic value Vifi of 

Bi with its meaning [63]. In general, the form of a membership function depends experts 

opinions [62]. In our case, we have adopted an approach that simplifies the implementation by 

approximating the membership functions using a library of regular shapes and implementing 

the fuzzifier stage as a group of fixed weight neural networks that calculate such regular 

shapes. Since membership functions are subjective and generally context-dependent, [63], a set 

}m,...,m,{mM 21 k=  of parameters that adjust the membership functions [53] is defined to 

allow a range of adaptations to teacher�s subjective judgments. Thus, for each one of the 

linguistic values of the set T={T(B1),T(B2),�, T(Bk)}, the fuzzifier stage calculates the output 

Y of numeric values in [0,1] based on the input vectors  },x,...,x,...,{xX 1 ki=  and 

}m,...,m,{mM 21 k= : 

{
}.)}m,(xy, ),m,(xy),m,(x{y,)},m,(xy,),m,(xy),m,(x{y

)},m,(xy),m,(xy),m,(x{yY
 2

1

2122222222221

11111121111

kkkfkkkkkkf

f

kKKK

K=
 

Thus, in our implementation, shown in Figure 2, we have used sigmoid functions as 

membership functions for the extreme linguistic values V1, Vfi, and the pseudotrapezoidal 

function (composed of two sigmoid functions) for the intermediate values, V2, �,Vfi-1; the 

adjusting parameter mi is the expected mean value of a measured value xi, as estimated by the 

teacher of the specific teaching subject.  

Each fuzzifier i (i=1,2,�.k) of Figure 1 is implemented with a network of the type shown 

in Figure 2. The network of Figure 2 is used to calculate the membership grades of the 
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linguistic values fi , when xi=x and mi=m (see Figure 3 for a sample of membership functions 

used in our system). 

+ αααα
m wc1 wg1 1 y1

wc3

wc2

+

+

wg2
αααα

-1
1

1 y2+
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wg3
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1+
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Figure 2. The implementation of a fuzzifier.  

 

The left and the right extreme fuzzy sets are given by  

m))w(xexp(-w1
1m)(x,y

11
1

cg ++
= , wg1<0; 

m))w(xexp(-w1
1m)(x,y

cigi
f ++

= , wgi>0; 

where i = 2(f-1). An intermediate set j is given by  

m))w(xexp(-w1
1

m))w(xexp(-w1
1m)(x,y

'' cigicigi
j ++

−
++

= , 

where j= 2,��,f-1, 0w >gi ,  0w >′ig (i = 2(j-1); i' = i+1). 

In the above relations, x indicates the current measurement of the observed response; wci 

and wgi, are defined in advance according to human teachers opinions; wci·m ( )1(2.,1 −= fi K ), 

is the central position of the sigmoid function; wgi, ( )1(2.,1 −= fi K ) is the gradient of the 

sigmoid function.  
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Figure 3. Sample of membership functions. 

3.3.2  Inference stage 

The preconditions P = [p1,p2,�,pn] are produced by a single layer of n, n= f1 × f2 ×...× fk, 

nodes. The network realizes the intersection by performing the min operation on the 

membership functions ending at each node. Thus, each node is activated to the degree of the 

numerical truth value pn of the precondition in [0,1].  

Each fuzzy system j (see Figure 1) contains a precondition layer and realizes a fuzzy 

relation P ° Rj = Cj which is implemented by a two layer network with n, n=f1×f2×…×fk, input 

nodes and mj output nodes as shown in Figure 4. The output nodes perform the max-min 

composition and the synaptic weights ),,1;,,1(r jil mlni KK == are the elements of the Rj 

matrix. 
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Figure 4: Network architecture for implementing the fuzzy relation. 
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3.3.3  Defuzzification  

We have used a neural network-based approach, which allows the system to adapt the 

defuzzification to individual teacher's opinion by training. A three-layer neural network with 

mj input and mj output nodes and a hidden layer was trained with a modified backpropagation 

algorithm that uses variable stepsize, called BPVS [33]. Training the network results in 

encoding teachers� unstructured knowledge, and during operation the network acts as a 

�generaliser� that defuzzifies in a way that imitates teachers� decision procedure. 

In our application, reported in the next section, the network used for defuzzification was 

trained using the population of 200 simulated student cases and desired outputs as specified 

by a group of five expert teachers, as described in [53]. This approach allows us to capture 

some �rules� in teachers� judgements that cannot easily be captured when using a standard 

defuzzification procedure, such as the Center-Of-Area (COA) that was used in [42]. For 

example, we have found that students were classified according to the best fuzzy assessment 

if this is a clear decision (a fuzzy value 30% larger than all others). If this is not the case, then 

the student is classified into an intermediate or into a more �conservative� category between 

two of �approximately equal� values (e.g. when the difference between two fuzzy values is 

less than 20% they could be considered approximately equal) for a particular student 

characteristic. 

 

3.4. Encoding teacher�s knowledge of evaluating student's characteristics  

Depending on the characteristic that is evaluated and the lesson content, teacher's 

subjective reasoning is encoded in the fuzzy relation network (Figure 4). The weights ril 

(i=1,2,�.n; l=1,2,�,mj) are adjusted in order to relate the precondition with the consequents 

of teacher's reasoning. This form of modelling allows us to simplify the determination of the 

set of n×mj linguistic rules that describe the fuzzy system [9] to the estimation of a matrix. A 



  

 20

weight ril can be considered as measure of possibility of a linguistic rule relating a fuzzy input 

with a fuzzy output [44], as a confidence measure of that rule [14], or as measure of 

contribution of that rule in the output [9]. We interpret these weights as the degree of 

confidence of teacher's rules. This connectionist implementation provides the ability to 

encode teacher's structured or unstructured knowledge, as will be explained below. 

 

3.4.1  Case 1: Teacher�s diagnostic knowledge is available in the form of rules  

In the simple case, where teacher's reasoning is well defined and available in the form of 

IF-THEN rules, these rules can be encoded in the network of Figure 4. If the rules are 

provided with certainty, denoting that the numerical truth-values of the preconditions and 

consequents are equal to 1, a weight ril associated with a rule takes the value of 1. If 

consequents are provided with some degree of confidence, then the weight ril. is replaced with 

this degree i.e. with the numerical truth values of the consequents. Connections, which are not 

associated with rules, can be pruned. 

 

3.4.2  Case 2: Teacher�s diagnostic knowledge is available by means of examples 

In case teacher�s reasoning cannot be exactly described but is available in the form of 

examples, or in case labelled patterns of students observable behaviour are available, weights 

are adjusted though learning by examples. The numeric data X of student's behaviour are 

fuzzified and combined in the precondition layer to produce the learning vectors. A variety of 

methods have been proposed to train networks that implement fuzzy relations [45][31][14], by 

replacing the product operation with the minimum operation and the addition operation with 

the maximum operation. In our implementation a Hebbian-style learning approach is adopted, 

as suggested in [14]. Thus, the weights update equation at the presentation of t example is 

)()()1()( tttt liilil cpρ-rr ⊗⊕ ⋅= , 
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where ρ is a positive stepsize, ⊕  represents a maximum operator and ⊗ represents a minimum 

operator. Thus, unknown rules are encoded and the weights ),,1;,,1(r jil mlni KK ==  are 

replaced with degrees of confidence of the rules that represent teacher�s inference. 

 

4.  Application Example 

4.1. The Learning Environment 

The Intelligent Learning Environment consists of the educational software �Vectors in 

Physics and Mathematics� [20], and the neuro-fuzzy model that we have already described in 

Section 3. The introductory menu of the educational software �Vectors in Physics and 

Mathematics� is shown in Figure 5. This is a discovery (exploratory) learning environment 

that has been designed and developed according to constructivist theory of learning [20]. 

Within this framework, the design is based on a series of principles, which emphasize the 

student�s active involvement in authentic activities, which correspond to real world processes 

(situated/anchored learning) [7][58]. Moreover, the software supports students� creative 

activities, allowing them to control their own learning procedure, and providing them with 

help and guidance when this is necessary [16].  

The educational software aims to help teachers to instruct, and students to construct the 

concepts of vectors in physics and mathematics in the secondary school. The difficulties 

students encounter with the conceptualisation of the various phenomena that correspond to 

physical entities, and which can cause misconceptions and inert knowledge, [1] [17] [52], 

have been taken into consideration during the design of the software. 
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Position and Displacement

Motion 

Forces and Equilibrium 

Forces and Motion 

Forces and Momentum 

Vectors in Physics and 
Mathematics 

 

Figure 5. Introductory screen of the learning environment �Vectors in Physics and 
Mathematics�. 

 

The thematic units of the software are: Position and Displacement; Motion; Forces and 

Equilibrium; Forces and Motion; Forces and Momentum. Each one of these units contains 

several scenarios, which refer to real-life situations. The students carry out selected activities 

within these scenarios Examples of such scenarios are: �Going fishing�, �planning a journey�, 

�which ship moves faster?�, �travelling in the islands�, �playing golf�, �bodies in 

equilibrium� (see Fig. 6), �imaginary climbing�, �falling objects�, �away from the earth�, etc. 

The environment also includes a short presentation of the theory and a dictionary of useful 

terms and concepts.  

The neural network-based fuzzy model was tested in the scenario �bodies in equilibrium� 

(see Fig. 6) of the unit �Forces and Equilibrium�. The environment resembles a simple 

mechanics-laboratory. A table appears on the screen and several objects such as boxes, cords, 

a spring and a pulley are available for use by the students. The students can drag and drop 

these objects and then use the available tools that manipulate vectors representing forces, 

carry out measurements, etc. to compose an equilibrium experiment. In this way, student is 



  

 23

allowed to give their own Newtonian model by drawing the vectors that compose this model, 

observe the behaviour of this model, and compare to the scientific model.  

 

Tool bar 

 

Figure 6. Scenario �Bodies in equilibrium�. 
 
 

Within this scenario the students have the opportunity to carry out a set of 16 different 

activities (equilibrium experiments) by selecting one or two from the available objects from 

the object box (see Fig. 6). For example he/she can place a single box of 20N weight or 40N 

weight on the table or he/she can select a box and the spring or a rope and hang the box from 

the ceiling through them, or s/he can place a box of 20N or 40N on the table and then place 

another box on top. S/he can also select different worktops for the table (i.e. with different 

static friction coefficients) in case of experiments with the pulley and a box. Then, he has to 

decide about the kind (gravitational/contact) and the properties (magnitude and direction) of 

the forces acting upon each object and draw them according to his/her conception.  

In Figure 7, an example activity with two boxes on the table is shown. The student draws 

the forces acting on the top box, according to his/her opinion. The student can then use the 

�Test� button to observe the behaviour of the model. For example, if the resultant force is not 
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equal to zero, the box will move towards the direction of this force. The student can also 

check the �Reality� radio button, in order to observe the scientific model in action, i.e. the 

effect of the correct forces acting on the box. Afterwards, either s/he can correct the forces 

acting on the box and maybe test again the effect, or s/he can clear the screen and conduct a 

new equilibrium experiment.  

 

�Test� button 
(Run my 
model) 

Reality 

 

Figure 7. Activity with two boxes on the table. 

 

Students� lack of knowledge and misconceptions associated with this scenario have been 

identified on the basis of findings from studies in physics problem solving related to 

Newton�s third Law [1][11][16][17]. For example, a student may believe that lack of motion 

implies no force is applied on the object; s/he may be unfamiliar with contact forces or 

unfamiliar with gravitational force; s/he may confusing gravitational force with contact force; 

s/he may ignore that action-reaction pairs are opposite in direction or equal in magnitude. 

Student�s actions during task execution help us to estimate student�s lack of knowledge or 
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misconceptions by comparing the number, the kind (gravitational/contact) and the direction of 

the forces acting upon an object the student chooses to draw with the respective parameters of 

the scientific model. For example, if the student tests a model without having drawn contact 

forces we can suppose that s/he is unfamiliar with contact forces.  

In our experiments, an aspect of the surface/deep approach [6] of student's learning style, 

[6], has been evaluated in order to provide an intelligent help to the student during learning 

interaction. Deep learners often prefer self-regulated learning; conversely, surface learners 

often prefer externally regulated learning [4]. In the learning environment �Vectors in Physics 

and Mathematics� diagnosing a student as deep or surface is used to sequencing the 

educational material.  

In order to acquire teachers� knowledge in evaluating student�s learning style, needed to 

implement our approach, a group of five experts in teaching the subject content has been 

used: three of them were experienced in teaching physics in secondary education, one of them 

was expert in didactics of physics, and the last one was an expert in the design of educational 

software. The group has been asked, taking into account their individual experiences in 

evaluating real students interacting with the learning environment, to reach consensus on the 

following aspects of student�s learning style relating to our approach: the parameter k; the 

names Bi (i=1,2,�,k); the universes of discourse Ui (for each i=1,2,..,k), and the association 

between the universes of discourse and the linguistic values of the linguistic variables of 

student�s observable behaviour B that will serve as input for the diagnosis. A detailed 

description of the group�s suggestion is given below. The group was also asked to agree on a 

set of IF-THEN rules (cf. with Section 3.4.1) describing their experiences of evaluating real 

students when they interact with the learning environment, as well as to agree on the labelling 

of a set of simulated students that were used for off line training of the networks (cf. with 
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Section 3.4.2) and for testing our approach. (The procedure to generate the simulated students, 

and the training and testing of the neuro-fuzzy system are described in the next subsections.)  

In addition, the Learning Environment stores on a log file all the available information on 

what a student is doing, recording each student action with a time stamp. Typical examples of 

student actions include: selection of objects for experimentation, selection of available tools, 

mouse moves, mouse drags or clicks on tools or objects or mouse drags when he/she is trying 

to draw a vector, details about the vectors (forces) that the user draws, i.e. magnitude direction 

and kind, as well as the time the action was performed. The coding of the neural network-

based fuzzy model and the pre-processing of the log files were developed in MATLAB 

software.  

 

4.2.The deep/surface approach to learning 

A lot of work has been done in defining student's deep or surface learning style [6] [18] 

[34] and constructing inventories [5] [57] to identify them. All these research efforts aim to 

identify the defining characteristics of these different approaches to learning, and to scale 

through questionnaires, which assess these characteristics, student's deep or surface learning 

style. The deep approach to learning is characterised by the following defining features: 

intention to understand vigorous interaction with content, relating new ideas to previous 

knowledge, relating concepts to everyday experience, relating evidence to conclusions, and 

examining the logic of the argument [18]. In contrast, the surface approach includes: intention 

to complete task requirements, memorising information needed for assessments, failure to 

distinguish principles from examples, treating task as an external imposition, focus on discrete 

elements without integrating, unreflectiveness about the purpose or strategies [18]. All the 

above features cannot be evaluated easily through tracking of student�s activities during 

instruction. Study strategies are more easily estimated from student's activities. Study 
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strategies are closely related to student's learning style, since student's learning style is defined 

as �a predisposition on the part of some students to adopt a particular learning strategy 

regardless of the specific demands of the learning task� [4]. Recently, study strategies of 

students with deep or surface learning style have been evaluated and compared with the aid of 

a computer assisted study environment for learning from text [4]. For the purpose of this 

research, students were classified using the Inventory of learning styles (ILS) as deep or 

surface and pre-tested before the learning task. The study environment recorded all users� 

actions, together with a time-stamp, as well as student�s reading speed, in order to identify 

study activities in relation to student's deep or surface learning style. According to the results 

of this research, deep learning students know more about the diagnostic study task and 

develop increased reading speed.  

Learning by discovery is quite different from learning by textbook; therefore, the work 

supported by the computer-assisted study environment cannot be easily transferred to a 

discovery learning environment. The educational software �Vectors in Physics and 

Mathematics� is designed on the basis of student�s active engagement during the learning 

process, allowing students to control and observe the evolution of real world phenomena, take 

measurements, change various parameters, examine �what if� scenarios etc. Within this 

framework, students� intention to understand and their vigorous interaction with the content 

(as opposed to their intention to complete task requirement and treating the task as an external 

imposition) were suggested by our group of experts, as fundamental characteristics of learning 

style to be evaluated. For the purpose of this experiment, the two characteristics were labelled 

as �student's tendency to learn by discovery in a deep or surface way� and assessed as one 

characteristic by the neuro-fuzzy model. The students were classified as shallow or deep with 

respect to their processing activities during learning by discovery.  



  

 28

Another important step is to decide what events of student's performance must be tracked 

and evaluated in order to assess this characteristic. The study activities that could help 

evaluating the learning style were suggested by the group of experts based on studies in 

cognitive psychology. Since the outcome of the deep approach to learning is a deep level of 

understanding of the subject matter, which is one of the evidences of expert-novice difference 

in physics, the group used information from research in expert-novice differences in physics 

in order to suggest the study activities. For example, experts tend to work forwards to a 

solution whereas novices tend to work backwards [29]. When experts have analyzed a 

problem, they apply the principles they have selected to the given quantities of the problem. 

In that sense, the number of times a student tested his/her ideas, or compared his/her ideas 

with the reality is taken into account in order to identify if the student is using trial and error 

strategies. Student's activities when trying to find the correct forces, or after testing a correct 

or incorrect idea were also taken into consideration. In addition, students� problem solving 

speed has also been taken into account. Research discovered that even though experts solve 

problems four times faster than novices, they spent more time than novices analyzing and 

understanding the problems [12]. 

 

4.3.Implementing the neural network-based fuzzy model 

4.3.1 Tailoring the model  

Following the discussion above, the group of experts suggested three linguistic variables 

B1, B2, B3 associated with student�s actions within the 16 different activities (equilibrium 

experiments) of the scenario �Bodies in equilibrium" that describe a subset of student's 

observable behaviour B to be used in the diagnosis of student's tendency to learn by discovery 

in a deep or surface way. In addition the group also suggested the number and the names of 

the linguistic values of each linguistic variable. Student�s actions before trying to solve the 
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problem or after making an incorrect attempt have been taken into account in B1=�the 

number of times a student tests their ideas or compared their ideas with the reality�, 

described by the term set T(B1)={Seldom, Sometimes, Frequently}. Student's study activities 

during problem solving, or after testing an incorrect idea have been taken into account in 

B2=�the number of times the student consults the dictionary or reviews the theory or 

temporarily stops to think�, expressed with the term set T(B2)={Sometimes, Frequently, 

Always}. The linguistic variable B3=�problem solving speed� was described by the term set 

T(B3)={Slow, Medium, Fast}. 

The experts took into consideration observations of students interacting with the learning 

environment and agreed on the ranges of the universe of discourses Uk (k=1,2,3) for each 

input x1, x2, x3 representing the measured values of B1, B2, B3, respectively, as well as on the 

associations between the linguistic values of each linguistic variable Bk and the universe of 

discourse Uk. For example, student�s action �temporarily stops in order to think�, which is 

used in the calculations of x2, is measured from the student's idle interval between tries. For 

the universe of discourse U2 of B2=�the number of times the student consults the dictionary 

or reviews the theory or temporarily stops in order to think�, a time percentage of this 

interval is used, since it depends on the total time the student used the learning environment. 

The linguistic variable B3=�problem solving speed� is determined by computing the average 

percentage of time needed to find the correct forces of each experiment [20]. The time needed 

to find the forces applied to an object was compared against the time the group of experts 

defined as the average time multiplied by two; thus the universe of discourse was set to [0, 

100]. In addition the group of experts also suggested to take into account student's prior 

experience with the interface of the educational environment, as from their observations of 

students interacting with the software it was realised that the time a student needs to find the 

correct forces may also include the time needed to use the available tools that manipulate 
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vectors and draw these forces. Thus, the ranges can be adjusted for students with more prior 

experience than ever expected. In the fuzzification stage, sigmoid functions for the extreme 

values and pseudo trapezoidal functions for the intermediate values have been used. Figure 8 

illustrates the membership functions (continuous lines) and the adjusted membership 

functions (dotted lines) for the linguistic variable �problem solving speed�. 

2 5 5 0 7 5 1 0 0
0

0 . 5

1
F a s t M e d iu m S lo w

U 3  

Figure 8. Membership functions for the three linguistic terms of the 

linguistic variable �problem solving speed�. 

 

The three linguistic variables provide 27 (i.e. 3×3×3) possible combinations of the 

linguistic values in the preconditions of the IF-THEN rules. The output of the diagnostic 

process was described with five linguistic values (mj =5) in the term set T(Cj)={Deep, Rather 

Deep, Average, Rather Shallow, Shallow}. The implemented neural network-based fuzzy 

model is shown in Figure 9. It associates student�s observable behaviour B with student�s 

�deep� or �shallow� tendency to learn by discovery by processing numerical input X (see 

Figure1) through a set of stages corresponding to fuzzification, inference and defuzzification, 

as described in the previous section. 
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Figure 9. Network implemented to assess student�s tendency to learn by discovery in a 
deep or surface way. 

 

4.3.2  Generating the simulated students 

A set of simulated student has been generated in order to test our approach in case rule-

based diagnostic knowledge is available (Case 1; Section 3.4.1), and to represent in the neural 

network teachers� diagnostic reasoning available by means of examples (Case 2; Section 

3.4.2).  

Simulated students have been used in several ITS studies (see for example [21] [54] [56]). 

Since formative evaluation with real students is expensive, simulated students can help 

teachers and instructional developers to practice and evaluate the proposed instruction and can 

provide an early feedback to developers in order to troubleshoot with their designs early in the 

design process [56].  

In the approach presented in this paper, we are interested to propose a convenient method 

to encode teacher�s reasoning in evaluating general student�s learning characteristics such as 

�student's tendency to learn by discovery in a deep or surface way�. The simulated students 
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can provide a convenient way to obtain the large number of labelled patterns of students 

behaviour needed to test the proposed approach in case of IF-THEN rules, or to train and test 

the networks of the proposed approach in case where teacher�s knowledge is available by 

means of examples, at an early stage of development.  

In order to construct simulated students� patterns of interaction with the learning 

environment that are �close� to real students� behaviour patterns, we modified the underlying 

elements of patterns of a small set of real students. The real students� interaction patterns have 

been provided during an experiment which was carried out with the assistance of the group of 

experts. In particular, the group identified 10 students to participate in the experiment; two 

from each of the five learning style categories considered in our model. During the 

experiment participants were asked to perform the 16 different activities (equilibrium 

experiments) of the scenario �bodies in equilibrium�, and their interactions were recorded in 

the log file.  

The interactions data are organised in the following way: student�s actions until s/he quits 

an activity are decomposed in terms of episodes. Each episode includes a series of actions 

which begins or ends when the student clears the screen in order to start a new attempt on the 

same activity, or a new equilibrium activity. Within each episode the student conducts, 

successfully or unsuccessfully, an equilibrium experiment.  

In the experiment, students of different learning style categories exhibited different 

interactive behaviour, giving different linguistic values for the linguistic variables B1, B2, B3 

of their observable behaviour B and the respective measured values of the inputs {x1, x2, x3}. 

For example, in case students patterns were classified as �deep�, B1={The number of times the 

student tests or compares ideas with the reality before trying to solve a problem, or after 

making an incorrect attempt} was described with the linguistic value seldom, B2 ={the 

number of times the student consults the dictionary or reviews the theory or temporarily stops 
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to think} with always, and B3={problem solving speed}with fast. In contrast, for student cases 

classified as �shallow�, B1 was described with frequently, B2 with sometimes, and B3 with 

slow.  

The simulated students� records have been produced by modifying the number of episodes 

and by inserting, deleting or changing, at the appropriate position within each episode or 

between episodes, actions that are used to calculate the values of the input X={ x1, x2, x3 } 

which represents the measured values of B1, B2, B3. For example, inserting an action, such as 

the use of the �Test� button after an incorrect attempt, will cause an increase to the value of 

x1, which gives the measured value of B1. Deleting idle intervals between attempts will cause 

a decrease to the value of x2, which gives the measured value of B2. Thus, starting with 10 

real students� records we can generate simulated students, altering the values of x1, x2, x3 in 

the students� patterns by giving appropriate values within their universes of discourse U1, U2, 

U3.   

The first episode, showing an unsuccessful equilibrium experiment, from a series of 

episodes of a �shallow� real-student record is presented in tabular form in Figure 10. Each 

entry of the record corresponds to an action of the student together with a time-stamp showing 

minutes and seconds elapsed from the start of the activity. Words in quotes refer to 

tools/buttons available, and pairs of unquoted numbers refer to mouse cursor positions. 

Entries in standard font refer to mouse moves or idle mouse states (e.g. the entry <�test� 

3min, 0sec> denotes that the user moves the mouse over the button �Test� but s/he does not 

click it). Entries in bold refer to particular mouse events, i.e. selecting/clicking buttons (e.g. 

the entry <“test” 3min, 0sec> denotes that the user clicks the button �Test�), dragging objects 

(as for example when the student moves an object or he/she draws a vector- a typical example 

of drawing action is shown in the third column of the table <“create vector” 1min, 10sec>. 

The process involves mouse drag, starting in row <7335 5010 1min, 16sec> and ending in 
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row <7440 6300 1min, 19sec>). Entries in bracket provide a short description of the actions 

of the real student (e.g. {Creates a gravitational force on box 40 magnitude 24 and     

direction -90 } is the result of the drawing action <“create vector” 1min, 10sec>). The record 

of the overall episode also reveals a misconception of the real student regarding the number of 

forces acting on the box of 40N. This is an indication of unfamiliarity with contact forces, as 

the student draws only one contact force acting on the box of 40N whilst two forces are 

actually needed.  

In this particular episode, the student frequently (x1=8) uses the �Test� or �Reality� button 

before trying to solve a problem or after an incorrect attempt. No idle intervals or dictionary 

consults (x2=0) where found on this record, regardless of student�s inability to achieve a 

successful equilibrium experiment. In addition the student at the end of the episode observes 

the effect of his/her choices on the Reality and decides to clear the screen, although the results 

obtained shown his/her actions went wrong.  

In order to generate simulated students, the episode can be altered in different ways: 

deleting some of the �Test� or �Reality� button selections, e.g. changing x1 values in the 

interval [0,8] results in changing B1 to a predefined membership degree of the linguistic 

values seldom and sometimes; adding idle intervals and/or �dictionary� selections before 

drawing forces, or after an incorrect �Test�, or at the end of the unsuccessful episode, e.g. 

changing x2 values and membership degrees of the values of B2. Adding idle intervals will 

also increase x2, i.e. the problem solving speed. In addition to the above alterations, we can 

also reduce the problem solving speed of the generated simulated students by reducing the 

number of episodes needed to find the correct forces of a successful equilibrium experiment. 

For example, the particular student needed 5 episodes and 18 minutes overall to produce a 

correct solution in this activity, i.e. the episode presented in Figure 10 lasts 5 minutes and is 

just one out of the 5 episodes needed for a successful equilibrium experiment (an overall time 
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of 18 minutes). As described in Subsection 4.3.1, B3=�problem solving speed� is defined as a 

percentage of time, and the value of x3 is calculated by comparing the time a student needs in 

order to find the correct forces in each activity with the group�s average time for finding the 

correct forces multiplied by two. For the particular activity that the student of Figure 2 is 

performing using the two boxes, the group�s estimated average time is 10 minutes. Thus, 

calculating the percentage that corresponds to 10 minutes multiplied by 2 (i.e. 20 minutes), for 

this student x3 = 90% which corresponds to the linguistic value �Slow� with membership 

degree very close to 1 (see Figure 8). By reducing the number of episodes of this activity to 4, 

the total time of the episodes needed to find the correct forces will be 15 minutes; this 

corresponds to a value of x3 = 75%, and the linguistic value for problem solving speed is now 

�slow� with a membership degree 0.5 and �Medium� with a membership degree 0.5 (see 

Figure 8).  

 

{Begin:} 
{May 21 2001 12:15:15 PM} 
2280 2685 0min, 0sec 
4410 3420 0min, 0sec 
6480 3840 0min, 0sec 
8535 3915 0min, 0sec 
10185 6000 0min, 3sec 
�attribute list� 0min, 3sec 
�select table� 0min, 3sec 
11790 8130 0min, 3sec 
�select table� 0min, 3sec 
�attribute list� 0min, 3sec 
�object list� 0min, 3sec 
11775 6090 0min, 3sec 
“object list” 0min, 4sec 
{opens the object list}  
11310 4065 0min, 5sec 
11445 2025 0min, 7sec 
11415 4035 0min, 17sec 
9180 3195 0min, 25sec 
7140 3060 0min, 26sec 
9255 2625 0min, 29sec 
11340 3375 0min, 29sec 
9285 3420 0min, 31sec 
11295 4275 0min, 32sec 
11190 2250 0min, 33sec 
“box 40 N” 0min, 36sec 
9795 2070 0min, 36sec  
7785 3435 0min, 36sec 
{Puts on table box 40 N} 
7395 5160 0min, 36sec 
9630 3570 0min, 36sec 
“box 20 N” 0min, 42sec 
8895 3585 0min, 42sec 
6795 4800 0min, 42sec 
{Puts on box 40 N box 20N} 

7455 4695 0min, 42sec 
9465 4725 0min, 43sec 
7305 3420 0min, 44sec 
5295 3255 0min, 45sec 
4005 1245 0min, 46sec 
�useful tools� 0min, 49sec 
“useful tools” 0min, 50sec 
{opens the useful tools} 
�goniometer� 0min, 51sec 
�assistant line� 0min, 51sec 
�spots� 0min, 51sec 
�axes� 0min, 52sec 
�spots� 0min, 52sec 
�clear screen� 0min, 52sec 
“useful tools” 0min, 53sec 
{closes the useful tools} 
�clear screen� 0min, 53sec 
�useful tools� 0min, 54sec 
�axes� 0min, 55sec 
6300 2025 0min, 57sec 
8460 2760 0min, 58sec 
10530 3435 0min, 58sec 
10800 5535 0min, 58sec 
�object list� 0min, 58sec 
�attribute list� 0min, 59sec 
“attribute list” 1min, 0sec 
{opens the attribute list} 
“box 1” 1min, 5sec 
“draw forces” 1min, 7sec 
�gravitational forces� 1min, 
8sec 
“gravitational forces” 1min, 
9sec 
�shift direction� 1min, 9sec 
�change length� 1min, 9sec 
�move vector� 1min, 10sec 

�create vector� 1min, 10sec 
“create vector” 1min, 10sec 
7335 5010 1min, 16sec 
7335 5070 1min, 16sec 
……………………….. 
            ( continued)       
……………………….. 
7470 6180 1min, 18sec 
7470 6240 1min, 19sec 
7440 6300 1min, 19sec 
{Creates a gravitational force 
on box 40 magnitude 24 and     
direction -90}  
8460 4140 1min, 24sec 
6420 3285 1min, 25sec 
……………………….. 
            (continued)        
………………………. 
7485 3060 2min, 39sec 
7425 3105 2min, 40sec 
{Creates a contact force on box 
20 magnitude 17 and direction 
90} 
�test� 2min, 42sec  
“test” 2min, 43sec  
5265 1950 2min, 46sec 
3210 1920 2min, 47sec 
1185 1785 2min, 48sec 
3585 1755 2min, 48sec 
5745 1830 2min, 48sec 
“gravitational forces” 2min, 
50sec 
�shift direction� 2min, 50sec 
�delete vector� 2min, 50sec 
�shift direction� 2min, 52sec 
�change length� 2min, 52sec 

�move vector� 2min, 52sec 
�create vector� 2min, 52sec 
“create vector” 2min, 52sec 
7410 4365 2min, 56sec 
7410 4425 2min, 56sec 
7410 4500 2min, 56sec 
7410 4560 2min, 56sec 
7410 4620 2min, 56sec 
7410 4680 2min, 56sec 
7410 4755 2min, 56sec 
7410 4815 2min, 56sec 
7410 4875 2min, 57sec 
7425 4935 2min, 57sec 
7440 4995 2min, 57sec 
7440 5055 2min, 57sec 
7425 4995 2min, 58sec 
{Creates a gravitational force 
on box 20 magnitude 15 and      
direction -88 } 
�test� 3min, 0sec 
“test” 3min, 0sec 
7815 2805 3min, 5sec 
5220 1140 3min, 5sec 
“attribute list” 3min, 9sec 
{closes the attribute list} 
���������� 
      (continued)                
���������� 
7365 3495 3min, 39sec 
7365 3435 3min, 40sec 
7380 3375 3min, 40sec 
{Creates a contact force on box 
40 magnitude 28 and direction 
91} 
�test� 3min, 41sec 
“test” 3min, 41sec 

9390 3930 3min, 48sec 
7830 1785 3min, 48sec 
�reality� 3min, 49sec 
“reality” 3min, 49sec 
5775 1515 3min, 50sec 
�delete vector� 3min, 50sec 
“attribute list” 3min, 51sec 
{closes the attribute list} 
8280-210 3min, 51sec 
�memo� 3min, 52sec 
8130 1890 3min, 52sec 
8130 4065 3min, 53sec 
���������. 
         (continued)          
���������. 
“box 2 4min, 7sec 
�test� 4min, 7sec 
“test” 4min, 8sec 
�reality� 4min, 15sec 
“reality” 4min, 16sec 
�sound� 4min, 21sec 
“attribute list” 4min, 23sec 
{closes the attribute list} 
8340 -195 4min, 23sec 
�memo� 4min, 23sec 
8100 2070 4min, 23sec 
8970 4365 4min, 24sec 
11010 2550 4min, 57sec 
�EXIT� 4min, 57sec 
11985 435 4min, 57sec 
�EXIT� 4min, 58sec 
“clear screen” 5min, 0sec 
{End:12:20:15} 
{Duration : 5 min and 0 sec} 
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Figure 10. An episode from a �shallow� real-student record. 

 

4.3.3  Encoding rule-based diagnostic knowledge (Case 1). 

The group of experts provided us with a series of IF-THEN rules that describe their 

reasoning in evaluating students� tendency to learn by discovery in a deep or surface way 

when working with the 16 different activities (equilibrium experiments) of the scenario 

�bodies in equilibrium�. The group�s experience has been acquired through observing real-

students interacting with the learning environment. Students� observable behaviour has been 

described linguistically using the universes of discourse Uk , k=1,2,3, as described in previous 

sections. In order to obtain the set of rules, the groups was asked to classify students� 

behaviour in one of the predefined linguistic values of the term set {Deep, Rather Deep, 

Average, Rather Shallow, Shallow}, using with a combination of linguistic values of the 

linguistic variables (this results in 27 different cases that correspond to preconditions of 27 

rules). This allows the group to agree on a linguistic representation of the experts� individual 

reasoning (e.g. [if] the student seldom tests or compares ideas with activities of the real world 

before trying to solve a problem, or after an incorrect attempt, and always consults the 

dictionary or reviews the theory or temporarily stops in order to think after testing an incorrect 

idea, and their problem solving speed is high [then] the student tends to learn in a deep way). 

In order to obtain the degree of confidence of each rule and implement the neural network that 

realizes the fuzzy relation, as has been described in Subsection 3.4.1, the group was also 

asked to rate the confidence of their judgments using the rating scale: absolutely clear, very 

strong, strong, rather strong, doubtful. We arbitrary adjusted the following values, dcl (l = 

1,2,�,5), to each judgment dcl ={1, 0.9, 0.8, 0.7, 0.6}. In the first case, i.e. where the rule was 

provided with the highest degree of confidence, a value of 1 was used. In all other cases, i.e. 
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l=2,�,5, the value (1-dcl) was heuristically split over the two closest judgments (represented 

by neighbouring nodes in the network). Thus, group�s diagnostic knowledge was encoded in 

the network that realize the fuzzy relation and the following weights rij (i=1,2,�.27, j=1,2,�,5) 

of the matrix Ra were adjusted in the network: 

    0.1000    0.8000    0.1000         0              0 
    0.0500    0.9000    0.0500         0              0 
    0.8000    0.1000    0.0500    0.0500          0 
    0.1000    0.8000    0.1000         0              0 
    0.0500    0.9000    0.0500         0              0 
    0.8000    0.1000    0.0500    0.0500          0 
    0.7000    0.1500    0.1000    0.0500          0 
    0.8000    0.1000    0.0500    0.0500          0 
    0.9000    0.0500    0.0500         0              0 
         0            0         0.0500    0.9000    0.0500 
         0            0         0.1000    0.8000    0.1000 
    0.0500    0.1000    0.7000    0.1000    0.0500 
         0            0         0.1000    0.8000    0.1000 
         0        0.0500    0.9000    0.0500         0 
    0.1000    0.7000    0.1000    0.1000          0 
         0        0.1000    0.8000    0.1000          0 
    0.0500    0.9000    0.0500         0              0 
    0.1000    0.8000    0.1000         0              0 
         0            0         0.0500     0.0500    0.9000 
         0        0.0500    0.0500     0.1000    0.8000 
    0.0500    0.0500    0.1000     0.7000    0.1000 
         0           0          0.1000     0.2000    0.7000 
         0           0          0.1000     0.8000    0.1000 
         0       0.1000     0.8000     0.1000         0 
         0           0          0.0500     0.9000    0.0500 
    0.0500    0.1000    0.7000     0.1000    0.0500 
         0        0.0500    0.9000     0.0500         0 

     Rα  = 

 

Each row of matrix Ra corresponds to one of the 27 preconditions. Each column represents 

one of the five learning style characterizations. Notice, for example that the last two rows of 

matrix Ra represent in the network two, but relatively close, cases identified by the group of 

teachers: student�s different learning style may be �classified� as Average using different 

degrees of confidence, i.e. 0.7 and 0.9 for the corresponding central nodes. Thus, four 

neighbouring nodes can be activated in the first case, and two nodes in the second. 

 

4.3.4 Encoding example-based diagnostic knowledge (Case 2) 

The group of expert teachers was asked to label patterns of simulated students performing the 

16 different activities (equilibrium experiments) of the scenario �bodies in equilibrium�, with 

respect to their �tendency to learn in a deep or surface way�. A set of 54 simulated students 

has been generated to this end. The set included two simulated student for each one of the 27 

combinations of linguistic values of the linguistic variables representing student�s behaviour, 

in accordance with the preconditions of the 27 rules. In addition almost clear-cut simulated 
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students cases were generated, i.e. simulated students with membership degrees to each 

linguistic value greater than 0.7. The group classified the set of 54 (27×2) simulated students 

in one of the linguistic values of the term set {Deep, Rather Deep, Average, Rather Shallow, 

Shallow}. The particular input values X={x1, x2, x3} of each simulated student pattern were 

processed through the fuzzifier stage and the preconditions layer, in order to form together 

with experts� classifications the input-output vectors to train the fuzzy relations network, as 

described in Subsection 3.4.2. A positive stepsize ρ=1 was used for training. The following 

matrix Rl was produced: 

          0       0.8800          0               0             0 
    0.0200    0.8800          0               0             0 
    0.8800         0              0               0             0 
    0.1200    0.8800          0               0             0 
    0.1200    1.0000          0               0             0 
    0.8800    0.0200          0               0             0 
    0.8300         0              0               0             0 
    0.9800         0              0               0             0 
    0.8800     0.0200         0               0             0 
         0         0.2300         0          0.9800     0.0200 
    0.0200     0.1200     0.0200     1.0000     0.1200 
    0.1200         0          1.0000     0.1200         0 
    0.0200     0.1200     0.1200     0.9800     0.1200 
    0.0200     0.1200     0.9800     0.1200     0.0200 
    0.1700     0.9800     0.1200     0.1200         0 
    0.1700         0          1.0000     0.1200         0 
    0.0200     0.9800     0.1200     0.1200         0 
    0.2300     0.8800     0.1200     0.1200         0 
         0            0                0              0          0.9800 
         0            0                0         0.1200     1.0000 
         0            0                0         0.8800     0.0200 
         0            0           0.0200     0.1200     0.9800 
         0         0.0200     0.1200     1.0000     0.1200 
         0         0.0200     1.0000     0.1700     0.0200 
         0           0            0.0200     0.8800     0.0200 
         0         0.0200     1.0000     0.1700     0.0200 
         0         0.0200     0.9800     0.1200         0 

    Rl  = 

 

The weights learned, i.e. the elements of matrix Rl, represent the degree of confidence of 

the rules. We can find similarities between matrix Rl and matrix Ra, since the same group of 

experts participated in both experiments. For example, the same network connections have 

weights greater than 0.8 in both matrices. In addition, connections of neighbouring nodes 

have weights less than 0.3; thus only slightly activating the neighbour nodes, but contributing 

to the final classification. The defuzzifier was trained to produce the final decision, as 

described in the previous section. 
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4.4.Evaluating the neuro-fuzzy diagnostic model 

4.4.1 Testing the rule-based diagnostic model (Case 1) 

In order to evaluate the performance of the rule-based neuro-fuzzy model, three test sets 

each one having 62 simulated students with predefined linguistic values in the linguistic 

variables of their observable behaviour, and predefined membership degrees to these values as 

well, have been generated. The first set contains patterns with clear-cut descriptions of 

students� observable behaviour, i.e. their membership degrees in the linguistic values of each 

linguistic variable are close to 1. The second set involves a lot of uncertainty; there are no 

clear-cut cases due to lack of well-defined boundaries in evaluating students� observable 

behaviour. This set includes marginal cases, i.e. patterns that contain membership degrees 

close to 0.5 in two linguistic values of one or more than one linguistic variables. This data set 

was used to test the capability of the model in the handling of uncertainty incorporated in the 

marginal cases of students� observable behaviour. This capability is usually not supported in a 

non-fuzzy rule-based environment. The third set consists of special marginal cases, which are 

possible to cause conflicting judgments if they processed by classic IF-THEN rules. A typical 

example is when two IF-THEN rules with close precondition categorize the student into two 

different non-adjoining categories, as will be described below.  

The patterns of these data sets formulate the input values X={x1, x2, x3} of the rule-based 

neuro-fuzzy model, and are classified in one out of the five categories {Deep, Rather Deep, 

Average, Rather Shallow, Shallow}. The three set of simulated student cases have been 

presented to the group of expert, in order to be labelled according to the term set {Deep, 

Rather Deep, Average, Rather Shallow, Shallow}. The classifications of the neuro-fuzzy 

model were compared with experts' classifications of the same simulated students. The 

average success in diagnosis for the first test set reached 100%. The model also provided an 

excellent average performance, 90%, in evaluating marginal cases (second test set), in 
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accordance to group�s judgements. In the third test set (special marginal cases) an average 

performance of 85% was achieved. The neuro-fuzzy model showed that it is indeed capable to 

handle these special marginal cases by fine-tuning the rules encoded in the fuzzy system 

through the neural network-based defuzzification procedure. 

At this point is useful to illustrate the behaviour of our model with some examples. Let us 

consider a student who �frequently tests or compares ideas with activities of the real world 

before trying to solve a problem, or after an incorrect attempt, who sometimes consults the 

dictionary or reviews the theory or temporarily stops after testing an incorrect idea in order to 

think, and has slow problem solving speed�, and another student who �sometimes tests or 

compares ideas with activities of the real world, and frequently consults or reviews or thinks, 

and has medium problem solving speed�. The first student�s learning style has been evaluated 

by the group as �Shallow�, and the second student�s style as �Average�; group�s confidence 

in their judgments is in both cases �Very strong�. In our model, when the membership 

degrees to the above linguistic values of student�s observable behaviour are equal to 1, these 

two evaluation decisions provide at the output of the inference stage the following fuzzy 

assessments vectors: [0, 0, 0.05, 0.05, 0.9] and [0, 0.05, 0.9, 0.05, 0], for the first and the 

second case respectively. Finally, after defuzzification, the students are classified into two 

quite different non-adjoining categories.  

Let us now consider a special marginal case where student's observable behaviour causes 

two rules to fire. This may be the case of a student who tests or compares ideas with activities 

of the real world frequently with a membership degree of 0.4 and sometimes with a 

membership degree of 0.59. The student also sometimes with a membership degree of 0.4 and 

frequently with a degree of 0.59 consults the dictionary or reviews the theory or temporality 

stops to think after testing an incorrect idea. The same student also has problem solving speed 

that is slow with a membership degree of 0.4 and medium with a degree of 0.59. This 
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complicate case will provide at the end of the inference stage the following fuzzy assessment 

vector: [0, 0.05, 0.59, 0.4, 0.4]. The final decision at the output of the defuzzifier is that this 

student�s learning style is �Rather Shallow� a decision between the two categories, which is 

indeed consistent with group�s judgments when classifying similar marginal cases of real or 

simulated students. 

One of the goals in our implementation is to propose a model that can be tailored to 

individual teacher�s experiences or judgment. The neuro-fuzzy implementation of the model 

can easily handle subjectivity of teachers' suggestions and reasoning, because it allows 

teacher�s rules to be encoded directly from teacher's linguistic description, creating that way a 

model tailored to the needs of a particular teacher in case of disagreement. That was indeed 

very useful in our case because one of the teachers in our group of experts wanted to use the 

learning environment in a primary school, i.e. with students of smaller age and different 

knowledge level and experience than the ones used so far. That gave us the opportunity to 

evaluate the adaptability of our model to teacher�s subjective judgements following his 

suggestions, and additional experiments have been performed.  

We used the same linguistic variables and the same linguistic values for student�s 

observable behaviour, as well as the same linguistic values that were suggested by our group 

of experts. To tailor the model to the teacher�s suggestions, adjustments have been made in 

the association between the linguistic values and the universes of discourse by changing the 

adjusting parameters m1, m2, m3 that represent the expected mean value of the numerical input 

X={x1, x2, x3 } (thus, slightly altering the shape of the membership functions, i.e. the degree 

of membership to each linguistic value), as well as in the IF-THEN rules by changing the 

weights in the fuzzy relations network that realizes the inference stage. Additional 

experiments with simulated students have been performed to test the tailored model. Students' 

classifications by the neuro-fuzzy model were compared with teacher's classifications for the 
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same simulated students. The model showed was successfully adapted, classifying the 

students according teacher's classifications with constant classification success for each case.  

 
4.4.2 Testing the example-based diagnostic model (Case 2) 

In order to test our approach when the diagnostic knowledge is available by means of 

examples, we used the same three test data sets. The input values X={x1, x2, x3} of each 

pattern of the three test data sets has been processed by the trained neuro-fuzzy model and 

classified in one of the linguistic values of the term set {Deep, Rather Deep, Average, Rather 

Shallow, Shallow}. In addition, the three set of simulated student were classified in one of the 

linguistic values of the term set {Deep, Rather Deep, Average, Rather Shallow, Shallow} by 

the group of experts, and groups' classifications were compared against the neuro-fuzzy 

model classifications. The overall average success in diagnosis reached 94%, i.e. 100%, 96%, 

86% for each of the three data sets respectively; practically the same levels as in case of IF-

THEN rules. 

We conducted additional experiments in order to compare the neural-network based fuzzy 

model proposed in this paper against two other approaches, namely a classic multilayer 

Neural Network (NN) with 3 input-10 hidden-5 output nodes trained with the 

backpropagation algorithm with variable stepsize [33], and a Fuzzified Neural Network 

(FNN) that is based on the ANFIS architecture, [40], with pseudotrapezoidal fuzzy sets, 27 

rules and outputs corresponding to the categories {Deep, Rather Deep, Average, Rather 

Shallow, Shallow}. All methods used the same simulated students for training and were tested 

on the same testing data sets (test set 1 contains clear-cut cases of simulated students; test set 

2 marginal cases; test set 3 special marginal cases)  

Figure 11 shows the best available performance in classification achieved by each model. 

The classic NN approach provides a diagnostic success of 84%, 82%, and 80% in the three 

data sets. The diagnostic success of the FNN was 100%, 98%, and 63%. When we compare 
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these results with the corresponding results of the neuro-fuzzy model, which represents 

knowledge with the use of fuzzy relations in addition to the fuzzified inputs and the 

precondition layer, it is clear that the neuro-fuzzy model provides improved performance in 

classifying the third test data set (special marginal cases).  

Test set NN FNN neuro-fuzzy 
No 1 84% 100% 100% 
No 2 82% 98% 96% 
No 3 80% 63% 86% 

 
Figure 11: Comparative results in the three test data. 

We have further analyzed the average behaviour of the three models as they all incorporate 

training networks. 30 instances of each model were trained and tested on the three test sets. 

The average classification success and standard deviation, for the three models are shown in 

Table 1.  

Test set NN FNN neuro-fuzzy 
No 1 78 ± 3 99.7 ± 0.6 99 ± 3.0 
No 2 76 ± 3 96 ± 2 93.0 ± 3 
No 3 74 ± 3.5 57 ± 2 84.4 ± 0.8 

 
Table 1. Average classification success and standard deviation for the three models. 

 

The performance results were checked for statistical significance using the t-test. All 

differences found to be statistically significant with t values greater than 10. As we can see in 

Table 1, the FNN shows a better performance than the neuro-fuzzy model in the test set 1 

(clear-cut cases) and the test set 2 (marginal cases). This performance of the neuro-fuzzy 

model is compensated from its performance in the test data 3 (special marginal cases). 

We have also analyzed the types of classification errors the three models can produce. This 

is particularly important as the outcome of the diagnosis has an impact on the pedagogical 

strategy adopted for each student. In our tests, we have identified three types of errors. The 

type 1 error happens when a student has been incorrectly classified in an adjoining category, 
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i.e. with rank difference of one. For example, this type of error occurs when a student is 

evaluated by the group of experts as rather shallow (regarding his tendency to learn by 

discovery in a deep or surface way), but a model classifies him/her in the category shallow or 

average. On the other hand, when the student is classified as rather deep (rank difference of 

two), a type 2 error occurs. When the student is classified as deep (rank difference of three), a 

type 3 error occurs. All misclassifications of the rule-based neuro-fuzzy model (Case 1), 

produced type 1 errors, i.e. students were classified into an adjoining category compared with 

the groups� classification. The same behaviour has been exhibited by the example-based 

neuro-fuzzy model (Case 2). This was also a significant improvement over previous work 

[53]. In contrast, as shown in Figure 12, the other models produce misclassifications of types 

2 and 3; the FNN exhibits a 4% of type 2 errors and 1% of type 3 errors; whilst the NN 

exhibits 6% of type 2 errors, and 1% of type 3 errors.  

 

Error type NN FNN neuro-fuzzy 
type 1 93% 95% 100% 
type 2 6% 4% 0% 
type 3 1% 1% 0% 

 
Figure 12. Percentage of type of errors for the three models. 

 
5. Conclusions 

In this paper a neuro-fuzzy model of the diagnostic process was proposed for inferring 

student characteristics. A main advantage of the new approach is that the neuro-fuzzy model 

allows creating an interpretable knowledge representation, which can be developed on the 

basis of rules when reasoning is well defined, as well as it can be trained when the reasoning 

strategy is purely intuitive and ill-defined. In addition the model can be easily tailored to a 

teacher's personal view. This approach can be used to implement an open student model, 

which will be interactively adjusted by the teacher.  
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Experimental results from testing the new model in a discovery learning environment were 

particularly encouraging, showing that this method is capable of handling uncertainty better 

than other soft computing methods. The experiment has shown the potential of neuro-fuzzy 

synergism, but it was only a small-scale study. Further work needs to be undertaken to fully 

explore the benefits and limitations of this approach. Our current work targets the extraction 

of knowledge from existing student profiles to drive model�s adaptation during operation with 

the aim to adapt the feedback and pedagogical strategy to students� learning style. 
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Figure 1: Schematic of the diagnostic model. 

Figure 2: The implementation of a fuzzifier  

Figure 3: Sample of membership functions. 

Figure 4: Network architecture for implementing the fuzzy relation. 

Figure 5:. Introductory screen of the learning environment "Vectors in Physics and 

                Mathematics" 

Figure 6: Scenario "Bodies in equilibrium" 

Figure 7: Activity with two boxes on the table. 

Figure 8: Membership functions for the three linguistic terms of the linguistic variable 

                �problem solving speed�. 

Figure 9: Network implemented to assess student�s tendency to learn by discovery  

                in a deep or surface way. 

Figure 10. An episode from a �shallow� real-student record 

Figure 11: Comparative results for the three test data. 

Figure 12. Percentage of type of errors for the three models. 

 

Table 1. Average classification success and standard deviation for the three models. 
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