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Abstract 

Within the framework of any bilevel decision problem, a leader’s decision is influenced by 

the reaction of his or her follower. When multiple followers who may have had a share in 

decision variables, objectives and constraints are involved in a bilevel decision problem, the 

leader’s decision will be affected, not only by the reactions of these followers, but also by 

the relationships among these followers. This paper firstly identifies nine different kinds of 

relationships (S1 to S9) amongst followers by establishing a framework for bilevel multi-

follower decision problems. For each of the nine a corresponding bilevel multi-follower 

decision model is then developed. Also, this paper particularly proposes related theories 

focusing on an uncooperative decision problem (i.e., S1 model), as this model is the most 

basic one for bilevel multi-follower decision problems over the nine kinds of relationships. 

Moreover, this paper extends the Kuhn-Tucker approach for driving an optimal solution 

from the uncooperative decision model. Finally, a real-case-study of a road-network 

problem illustrates the application of the uncooperative decision model and the proposed 

extended Kuhn-Tucker approach. 

 

Keywords: Linear bilevel programming, Bilevel multiple-follower programming, Decision-

making optimization, Kuhn-Tucker approach, Road network 
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1. Introduction 

Bilevel decision (also called bilevel programming or bilevel optimization) techniques are 

mainly developed for solving decentralized management problems with decision makers in 

an hierarchical organization. A decision maker at the upper level is known as the leader, 

and at the lower level, the follower [6, 7]. Each decision maker (leader or follower) tries to 

optimize his/her own objective function with or without considering the objective of the 

other level, but the decision of each level affects the objective optimization of the other 

level [4]. Therefore, the leader may be able to influence the behavior of the follower 

without completely controlling the follower’s action. At the same time the leader may be 

simultaneously affected by the follower’s behavior. An hierarchical optimization structure 

appears naturally in many aspects of resource planning, management and policy making, 

including water resource management, financial planning, land-use planning, production 

planning (coordination of multi-divisional firms, network facility location), and 

transportation planning (network design, trip demand estimation). Amouzegar and 

Moshirvaziri [1], Bard [4] and Labbe et al. [8] have already recognized the need to consider 

these planning problems from a bilevel or multi-level modeling point of view.  

 

In general, there are two fundamental issues in both bilevel decision theory and practice. 

One is how to model a real-world bilevel decision problem that may have various situations 

at the two decision levels, and the other is how to find an optimal solution for the decision 

problem. A number of researchers (e.g., [3, 7, 9]) have established original forms of 

optimality conditions for bilevel programming. A number of bilevel decision approaches 

and algorithms [2, 4, 5] have been proposed to find an optimal solution. This includes the 
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most successful Kuhn-Tucker approach [4]. Although much research has been carried out 

in this area, the existing bilevel technology has been mainly focused on a specific situation 

comprising one leader and one follower. However, in the case of a real-world bilevel 

decision problem, the lower level of a bilevel decision may involve multiple decision units. 

The leader’s decision is therefore affected by the objectives and strategies of the multiple 

followers. For each possible decision of the leader, those followers may have their own, 

different, reactions. The relationships between these multiple followers can be various. 

They may or may not share their decision variables. They may have individual objectives 

and constraints, but work with others cooperatively, or may have common objectives or 

common constraints. For example, as a leader, the Government’s objective in land-use 

planning is to maximize profiles by establishing some suitable agricultural development 

policies. Multiple agricultural groups, involving farmers, conservationists, Aboriginal 

groups, and regions will affect the Government’s policy-making in land-use. Each 

agricultural group, for example, a region, as a follower, has its own individual policies to 

optimize its objective towards different government policies in land-use. These followers 

may share the same decision variables, or may have the same objectives or constraints. In 

such a case, the decision of the Government (the leader) is partially dependent on the 

‘environment data’ put forward by all these agricultural groups (the followers). This is a 

typical BLMF decision problem. 

 

Following our previous work [10, 11], this research generalizes a framework for the BLMF 

decision problem, which describes nine different kinds of relationship (situations S1 to S9) 

amongst the followers. Under this framework, for each of the nine a corresponding BLMF 

decision model is developed. As already shown in this framework, the uncooperative (S1) 
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model is the most popular and the most basic situation for BLMF decision problems.  This 

paper thus presents a definition of an optimal solution and related theories for the S1 model. 

It further extends the Kuhn-Tucker approach for solving the S1 model with a real case-study 

of a road network problem. Related approaches for solving other eight situation models 

within this framework will be explored further in a separate research paper.  

 

This paper is organized as follows. In Section 2, the framework for BLMF decision 

problems is proposed. Related theories focusing on the uncooperative (S1) model of BLMF 

decision problems are given in Section 3. An extended Kuhn-Tuck approach for solving the 

S1 model is presented in Section 4. A real-case example of a road-network problem for the 

extended Kuhn-Tucker approach is illustrated in Section 5. Discussions, further remarks, 

and future research plans are concluded in Section 6. 

2. A Framework for Bilevel Multi-follower Decision Problems    

Different reactions could be generated at the lower level towards each possible action 

conducted at the upper level when multiple followers are involved in a bilevel decision-

making. Moreover, different relationships among these followers could cause multiple 

different processes for deriving an optimal solution for the upper level’s decision-making. 

Therefore, the leader’s decision will be affected, not only by the reactions of these 

followers, but also by the relationships among these followers. Basically, there are three 

different kinds of relationships among the followers determined by the form of a share in 

decision variables, the first relationship factor. The first kind of these relationships is the 

uncooperative situation where there is no sharing of decision variables among the 

followers. In such a situation, there are obviously neither shared objectives nor shared 
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constraints among the followers. The second case is the cooperative situation where the 

followers totally share the decision variables in their objectives and constraints. However, 

there are several different sub-cases within the cooperative situation which are determined 

by the relationships among the objectives (the second relationship factor) and constrains 

(the third relationship factors) of the followers. Each follower may have an individual 

objective whatever sharing their constraints with other followers. For example, one 

agricultural group has its objective to maximize its profile of agriculture, and another 

agricultural group’s objective is to maximize its land sustainability, towards the 

Government’s policy in land-use. The two followers share all other decision variables, but 

have different objectives. Another pair of sub-cases is that the followers have their common 

objectives whatever sharing their constraints. For example, for any governmental 

agricultural policy, the two agriculture groups have their common objective to maximize its 

profile of agriculture. But they may or may not share constraints in financial, environment 

protection, and cultural in the context of attempting to achieve an optimal solution. The last 

case is the partial cooperative situation where the followers partially share decision 

variables in their objectives or constraints or both. Similar to the second case, four sub-

cases are involved within this one as well. 

Based on the three cases and their various sub-cases determined by the three relationship 

factors, decision variables, objectives and constraints, totally nine different kinds of 

situations among the followers are identified, named S1, S2 ,…, S9. A framework is 

established to describe these situations in Table 1. For a bilevel decision problem, if some 

followers share their decision variables or some not, it will be dealt with as a variable 
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sharing situation. Similar, if some followers share their objective (or constraint) functions 

or some not, it will be dealt with as an objective (or constraint) sharing situation.   

Table 1: A framework for the bilevel multi-follower decision problem 

Relationship factors  
Relationships 

 
Kinds of 
relationship Decision 

variables
Objectives Constraints 

 
Situations  
(Si) 

Uncooperative Individual Individual  Individual  
1s  

Sharing  
2s  Sharing  

Individual  
3s  

Sharing  
4s  

 

Cooperative 

 

Sharing 

 
Individual  

Individual  
5s  

Sharing  
6s  Sharing  

Individual 
7s  

Sharing  
8s  

 

 

Among the 
followers 

 

 

Partial 
cooperative 

Partial 
individual 
and 
partial 
sharing  

Individual  

Individual  
9s  

 

Each situation shown in the framework will require a specific BLMF decision model for 

describing it, and a specific approach for deriving an optimal solution for the leader’s 

decision. Based on the basic linear bilevel decision problem model [6, 7], the decision 

model of the nine specific situations are established and described respectively as follows.  
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S1 Model for BLMF decision problems  

For

 and  a linear BLMF decision problem in which K  

followers are involved and there is no shared decision variable, objective function or 

constrain function among them is defined as follows (called an uncooperative decision 

model). 
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S2 Model for BLMF decision problems 

For

 and  a linear BLMF decision problem in which K  

followers are involved and there are shared decision variables, objective functions and 

constraint functions among them is defined as follows.   
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S3 Model for BLMF decision problems 

For

 and  a linear BLMF decision problem in which K  

followers are involved and there are shared decision variables and objective functions but 

separate constraint functions among them is defined as follows.  
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S4 Model for BLMF decision problems 

For

 and  a linear BLMF decision problem in which K  

followers are involved and there are shared decision variables and constraint functions but 

separate objective functions among them is defined as  follows.  
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S5 Model for BLMF decision problems 

For  

 and  a linear BLMF decision problem in which K  

followers are involved and there are shared decision variables but separate objective and 

constraint functions among them  is defined as follows.  
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S6 Model for BLMF decision problems 

For  
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objective functions, constraint functions and partial decision variables among them is 

defined as follows.  
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S7 Model for BLMF decision problems 

For  
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S8 Model for BLMF decision problems 
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S9 Model for BLMF decision problems 
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The nine BLMF decision models define respectively the nine kinds of relationships among 

the followers described in the framework of BLMF decision problem. Obviously, these 

models will require their individual definitions for an optimal solution. Therefore, different 

approaches to derive an optimal solution for these models need to be developed. In 

particular, there are obvious differences between the uncooperative decision model (S1) of 

which there are no shared decision variables and cooperative model (S2-S5) of which there 

are shared decision variables among the followers. In an uncooperative decision situation, 

the followers’ reactions for each possible action of the leader can be determined by 

considering multiple individual optimizations respectively. While in a cooperative situation, 

the followers’ reactions will be determined by dealing with a multi-objective optimization 

problem put forward by all the followers.  

 

However, for any of the nine models, it is assumed that the leader knows completely the 

objective functions and constraints of these followers and the relationships among these 

objective and constraint functions. The control for decision variables is partitioned between 

the leader and the followers. Both the leader and the followers seek to minimize their 

individual payoff objective functions. The leader must anticipate all possible responses of 

followers based on their relationships.  

 

3. An optimal Solution for the Uncooperative Bilevel Multi-follower Decision 

Problem 

 14



The uncooperative situation (S1) is the most basic form for BLMF decision problems over 

the nine kinds of decision models. This section, therefore, focuses on this model by giving 

the definition for an optimal solution and related theorems for solving the S1 decision model. 

 

Definition 1 A topological space is compact if every open cover of the entire space has a 

finite subcover. For example, [  is compact in ],ba R  (the Heine-Borel theorem) [12]. 

 

Definition 2 

(a) Constraint region of a linear BLMF programming problem: 
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The linear BLFMP problem constraint region refers to all possible combinations of 

choices that the leader and followers may make. 

 

(b) Projection of  onto the leader’s decision space: S
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Unlike the rules in an uncooperative game theory of which each player must choose 

a strategy simultaneously, the definition of the BLMF model requires that the leader 

move first by selecting an x  in attempt to minimize his/her objective subjecting to 

constraints of both upper and each lower level. 

 

(c) Feasible set for each follower :)(XSx∈∀  

 15



  },),,,(:{)( 1 SyyxYyxS Kiii ∈∈= K  i .,,2,1 KK=  

 The feasible region for the follower is affected by the leader’s choice of ,x  and  

  allowable choices of each follower are the elements of   .S

 

(d) Each follower’s rational reaction set for :)(XSx∈  

)]},(ˆ:)ˆ,(min[arg:{)( xSyyxfyYyxP iiiiiiii ∈∈∈=  i ,,,2,1 KK=  

where arg )}.(ˆ),ˆ,(),(:)({)](ˆ:)ˆ,(min[ xSyyxfyxfxSyxSyyxf iiiiiiiiiiii ∈≤∈=∈  

The followers observe the leader’s action and simultaneously react by selecting  

from his/her feasible set to minimize his/her objective function. 

iy

 

(e) Inducible region: 

}.,,2,1),(,),,,(:),,,{( 11 KixPySyyxyyxIR iiKK KKK =∈∈=   

 

 Thus in terms of the above notations, the linear BLMF problem can be written as 

 }.),,,(:),,,(min{ 11 IRyyxyyxF KK ∈KK                   (2) 

 

We present the following theorem to characterize the condition under which there is an 

optimal solution for a linear BLMF problem. 

Theorem 1 If  is nonempty and compact, there exists an optimal solution for a linear 

BLMF problem. 

S

Proof: Since  is nonempty, there exists a point . Then, we have S Syyx K ∈),,,( **
1

* K

  ,)(* φ≠∈ XSx
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by Definition 2b. Consequently, we have 

  i  , ,,,2,1 KK=)( * φ≠xSi

by Definition 2c. Because is compact and Definition 2d, we have S

)]}(ˆ:)ˆ,(min[arg:{)( *** xSyyxfyYyxP iiiiiiii ∈∈∈=  

          =  ,)}}(ˆ),ˆ,(),(:)({:{ **** φ≠∈≤∈∈∈ xSyyxfyxfxSyyYy iiiiiiiiiii

where i . Hence, there exists  iK,,2,1 K= ),( *0 xPy ii ∈ K,,2,1 K=  such that 

 .),, 00 SyK ∈K,( 1
* yx

Therefore, we have 

 ,},,2,1),(,),,,(:),,,{( 11 φ≠=∈∈= KixPySyyxyyxIR iiKK KKK  

by Definition 2e. Because we are minimizing a linear function 

over  which is nonempty and bounded, an optimal 

solution to the linear BLMF problem must exist. The proof is completed.  

∑
=

∈
+=

K

s
ssKXx

ydcxyyxF
1

1 ),,,(min K ,IR

 

4. An Extended Kuhn-Tucker Approach for the Uncooperative Bilevel Multi-

follower Decision Problem 

 

The fundamental idea to deal with the uncooperative BLMF decision problems is that it 

replaces each follower’s problem with its Kuhn-Tucker conditions and appends the 

resultant system to the leader’s problem. The reformulation of the linear BLMF problem is 

a standard mathematical program and relatively easy to solve because all but 

complementary constraints are linear. Omitting or relaxing the constraints leaves a standard 

linear program that can be solved by using a simplex method [4]. In an uncooperative 
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situation, the leader will be required to first select an  in attempting to minimize 

his/her objective subject to constraints of both the upper and each follower at the lower 

level. It then defines each follower’s rational reaction set simultaneously by selecting the 

individual variable  from his/her feasible set to minimize his/her objective 

function for the leader’s choice. The Kuhn-Tucker approach is the most popular one for 

solving one leader one follower bilevel decision problems. Based on the definition of an 

optimal solution [11], an extended Kuhn-Tucker approach for the uncooperative BLMF 

decision problem is proven and described as follows.  

nRXx ⊂∈

im
ii RYy ⊂∈

 

Let us first consider a linear programming (LP) written as: 

         cxxf =)(min

 Subject to bAx ≥        

             ,0≥x

where  is an n-dimensional row vector,  an m-dimensional column vector,  an c b A nm×  

matrix with  and  ,nm ≤ .nRx∈

 

Let  and  be the dual variables associated with constraints Ax  and 

 respectively. Bard (Bard 1998) gave the following proposition. 

mR∈λ

,0

nR∈µ b≥

≥x

 

Proposition 1 A necessary and sufficient condition that  solves the above-mentioned 

LP is that there exist (row) vectors ,  such that (  solves: 

)( *x

,, * µλ*λ *µ )**x

 cA −=− µλ         

          0≥− bAx
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 0)( =− bAxλ          

 0=xµ           

 0,0,0 ≥≥≥ µλx .       

Proof: See (Bard 1998, PP. 59-60) 

 

Let   and  ),p
i Ru ∈ iq

i Rv ∈ im
i Rw ∈ ,,1( Ki K= be the dual variables associated with 

constraints ),b ( xAi(
1

BAx
K

t
+∑

=

ytt ≤ ),,2,1 KK, ibyC iii =≤+  and   

respectively. We have the following theorem. 

0≥iy ),,,1( Ki K=

 

Theorem 2 A necessary and sufficient condition that (  solves the linear 

BLMF problem 1a is that there exist (row) vectors , and 

 such that (  solve: 

),,, **
1

*
Kyyx K

**
2

*
1 ,,, Kuuu K

),,, **
1

*
KK ww K

**
2

*
1 ,,, Kvvv K

**
2

*
1 ,,, Kwww K ,,,,,,,,, *

1
**

1
**

1
*

KK vvuuyyx KKK

∑
=

+=
K

s
ssK ydcxyyxF

1
1 ),,,(min K             (3a) 

 subject to                         (3b) byBAx
k

t
tt ≤+∑

=1

                                  (3c) iiii byCxA ≤+

             u iiiiii ewCvB −=−+                                  (3d) 

       u        (3e) 0)()(
1

=+−−+−− ∑
=

iiiiiii

K

t
tti ywyCxAbvyBAxb

                  ,,,2,1,0,0,0,0,0 Kiwvuyx iiii K=≥≥≥≥≥          (3f) 

where i  .,2,1 KK=
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Proof:  

1). Let us get an explicit expression of (2). 

Rewrite (2) as follows: 

  ),,,(min 1 KyyxF K

 subject to ( y  .),,, 1 IRyx K ∈K

We have 

  ),,,(min 1 KyyxF K

 subject to y(  Syx K ∈),,, 1 K

        ),(xPy ii =

 where i  by Definition 2e. Then, we have ,,,2,1 KK=

  ),,,(min 1 KyyxF K

 subject to y(  Syx K ∈),,, 1 K

                 )],(ˆ:)ˆ,(min[arg xSyyxfy iiiii ∈∈  

 where i  by Definition 2d. We rewrite it as: ,,,2,1 KK=

  ),,,(min 1 KyyxF K

 subject to y(  Syx K ∈),,, 1 K

                  min  ),( ii yxf

                  subject to  ),(xSy ii ∈

where i  We have .,,2,1 KK=

  ),,,(min 1 KyyxF K

 subject to y(  Syx K ∈),,, 1 K
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                  min  ),( iiYy
yxf

ii∈

                  subject to ,),,,( 1 Syyx K ∈K  

where i  by Definition 2c. Consequently, we can have ,,,2,1 KK=

             (4a) ∑
=

+=
K

s
ssK ydcxyyxF

1
1 ),,,(min K

  subject to                                              (4b) byBAx
K

t
tt ≤+∑

=1

    KjbyCxA jjjj ,,2,1, K=≤+                (4c) 

    iiiiiYy
yexcyxf

ii

+=
∈

),(min                 (4d) 

                 subject to           (4e) byBAx
K

t
tt ≤+∑

=1

           ,,,2,1, KjbyCxA jjjj K=≤+                            (4f) 

where i  by Definition 2a. ,,,2,1 KK=

This simple transformation has shown that to solve the linear BLMF programming (1a) is 

equivalent to solve the problem (4a-f). 

2). Necessity is obvious from (4a-f). 

3). Sufficiency. 

If  (  is an optimal solution of (1a), we need to show that there exist (row) 

vectors  and w  such that  

 solve (3a-f). Going one step further, we only need to prove that there 

exist (row) vectors u  v and  such that 

 satisfies the following conditions 

),,, **
1

*
Kyyx K

,,, *
2

*
1 uuu K

,,,,, *
1

*
K wwv KK

,,,,, *
1

**
1

*
K uyy K

,*
K

)*
K

*
1

,K

**
2

*
1 ,,, Kvvv K

,,,, **
2 Kuu K

,,,, **
1

*
KK vvu K

**
2

*
1 ,,, Kww K

**
2 ,, KvK *

1w

), *
KwK

,,,,,,,( **
1

**
1

*
KK uuyyx KK

*
K

*
1v

(x

*
1 ,v

,*
1w

*
2 ,,, ww K
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iiiiii ewCvBu −=−+

)(
1

−− ∑
=

K

t
tti yBAxbu

                                          (5a) 

                        (5b) 0=

0)( =−− iiiii yCxAbv                   (5c) 

,0=ii yw                                                (5d) 

where u     i,p
i R∈ , ,im

i Rw ∈iq
i Rv ∈ K,,2,1 K=  and they are not negative variables. 

Because (  is an optimal solution of (1a), we have ),, *
KyK, *

1
* yx

  ,

)

),,,( **
1

* IRyyx K ∈K

by (2). Thus we have 

  ),( ** xPy ii ∈

where i  by Definition 2e. Consequently,  is an optimal solution 

to the following problem: 

,,,2,1 KK= ),,,( **
2

*
1 Kyyy K

)),(:),(min( *xSyyxf iiii ∈                                            (6) 

where i  by Definition 2d. Rewrite (6) as follows ,,,2,1 KK=

  ,(min iyxf

 subject to Sy ∈  )(xii

         *xx =

        ),,,,2,1(* ijKjyy jj ≠== K

where i  From Definition 2c, we have .,,2,1 KK=

                           (7a) iiiii yexcyxf +=),(min

subject to                                   (7b) byBAx
K

t
tt ≤+∑

=1
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       KjbyCxA jjjj ,,2,1, K=≤+               (7c) 

                                                     (7d) *xx =

                                                     (7e) 0≥iy

                 (7f) ,,,,2,1,* ijKjyy jj ≠== K

where i  .,,2,1 KK=

To simplify (7a-f), we can have 

iiiii yexcyxf +=),(min                                   (8a) 

subject to                                   (8b) byBAx
K

t
tt ≤+∑

=1

                                   (8c) iiii byCxA ≤+

                                                     (8d) *xx =

                                                     (8e) 0≥iy

                  (8f) ,,,,2,1,* ijKjyy jj ≠== K

where i  Thus simplifying (8a-f), we can have .,,2,1 KK=

iiii yeyf =)(min









−

C
B

i

i

                             (9a) 

subject to             (9b)  
















−

−−
−≥

∑
≠=

*

,1

**

xAb

yBAxb
y

ii

K

ijj
jj

i

                                                    (9c)       ,0≥iy

where i  .,,2,1 KK=

Now we see that  is an optimal solution of (9a-c) which is a LP problem. By Proposition 

1, there exist vectors  i that satisfy the following system  

*
iy

,, **
ii µλ K,,2,1 K=
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            (10a) ii
i

i
i e

C
B

−=−







µλ

                    (10b)  0)(
*

,1

**

=
















−

−−
+








−

∑
≠=

xAb

yBAxb
y

C
B

ii

K

ijj
jj

i
i

i
iλ

 ,0=ii yµ                           (10c)  

where   i  ,iqp
i R +∈λ , .,,2,1 KK=im

i R∈µ

Let u  v  w  and define  ,p
i R∈ , im

i R∈iq
i R∈

( )iii vu ,=λ  

,iiw µ=  

where i  .,,2,1 KK=

Thus we have  that satisfy (5a-d). Our proof 

is completed. 

),,,,,,,,,,,,( **
1

**
1

**
1

**
1

*
KKKK wwvvuuyyx KKKK

       

Theorem 2 indicates that the most direct approach for solving (1a) is to solve the equivalent 

mathematical program given in (3a-f). One of its advantages is that it allows a more robust 

model to be solved without introducing any new computational difficulties. 

 

5. A Real Case Study of a Road-Network Problem 

In general, BLMF decision actions have the following three features: (1) there exists 

decision units within a predominantly hierarchical structure; (2) each unit at the lower level 

executes its policies after, and in view of, decisions made at the upper level; (3) each unit 

independently optimizes its objective but is affected by the actions of other units. When a 
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real-world BLMF decision model, which could be any kind of the specific situations shown 

in the proposed framework, is established, a suitable approach must be selected and used 

for solving the problem. This section shows an uncooperative BLMF decision problem of a 

road network with hypothetical problem parameters. The proposed extended Kuhn-Tucker 

approach is used for solving the problem. 

 

A road network problem involves the improvement of the road network through capacity 

expansion, traffic signals synchronization or vehicle guidance systems. The road 

management committee (the leader) is assumed to control these decision variables. The 

committee’s decision can influence directly or indirectly the travel choices of the road 

network users. There are two kinds of road network users (the followers), one is public 

traffic user group and another is private traffic users. Let x =(x1, x2) denote the decision 

vector of the road management committee, X the set of feasible decision variables, y, z the 

decision vector (one element) of the two followers respectively, and c  the 

travel delay along a link i. The road management committee’s main objective is to minimize, 

over the set X, the system travel cost 

),,,( 21 zyxxi

)z,,,(),,,( 2121 yxxFzyxxca
i ii =∑ . Both kinds of 

network users seek to minimize their travel delays min f1 (x1, x2, y) and min f2 (x1, x2, z) 

respectively. The committee also seeks its minimized travel delays. However, the committee 

is interested in minimizing total travel time for all kinds of users, while each user group only 

wants to optimize its own travel time. The committee has known the objectives and 

constraints of the two groups of road network users. The two groups of users have different 

objective functions and different constraints. This is a typical uncooperative BLMF decision 

problem.  
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In order to easily show the application for the proposed extended Kuhn-Tucker approach, a 

road-network decision problem model is established by simplifying it into the following 

linear BLMF decision model:  

 

 zyxxzyxxF
Xxx

11783),,,(min 2121, 21

+++=
∈

 

  subject to 5 4062 21 ≤+−+ zyxx  

       6  151321 ≤+− yxx

        10721 ≤−+ zxx

     7  204 ≤+ zy

        yxxyxxf
Yy

−+=
∈ 21211 2),,(min  

      subject to 5 1571 ≤+ yx  

           3254 2 ≤+−  yx

                     min zxxzxxf
Zz

8015),,( 21212 +−=
∈

 

      subject to .540 1 ≤+ zx  

where   ,, 1
21 Rxx ∈ , 11Ry∈ Rz∈ and },0,0{ 21 >>= xxX  },0{ >= yY   

According to the Kuhn-Tucker approach, let us write all the inequalities but x  for the 

model as follows: 

}.0{ >= zZ

0>

0)625(40),,,( 21211, ≥+−+−= zyxxzyxxgu  

0)136(15),,,( 21212, ≥+−−= yxxzyxxgu  

0)7(10),,,( 21213, ≥−+−= zxxzyxxgu  

0)47(20),,,( 214, ≥+−= zyzyxxgu  
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 0)75(15),,,( 1211,1 ≥+−= yxzyxxgv  

 0)254(3),,,( 2212,1 ≥+−−= yxzyxxgv  

  0),,,( 211,1 ≥= yzyxxgw

 0)40(5),,,( 1211,2 ≥+−= zxzyxxgv  

  .0),,,( 211,2 ≥= zzyxxgw

From (3a-f), we have 

)11783min( 21 zyxx +++           (11a) 

  subject to 5 4062 21 ≤+−+ zyxx          (11b) 

       6          (11c) 151321 ≤+− yxx

                  (11d) 10721 ≤−+ zxx

     7           (11e) 204 ≤+ zy

        5           (11f) 1571 ≤+ yx

      −           (11g) 3254 2 ≤+ yx

      40                                     (11h)  51 ≤+ zx

      1257713 111211131211 =−++++ wvvuuu−       (11i) 

      6 8047 2121232221 −=−++− wvuuu        (11j)     

       0111,1122,1111,1134,122,111, =+++++ wgvgvgugugug wvvuuu     (11k) 

       0211,2211,2234,223,211, =++++ wgvgugugug wvuuu        (11l) 

                 (11m) 0,0,0,0 21 >>>> zyxx

       u                  (11n) 0,0,0,0,0,0 111211131211 ≥≥≥≥≥≥ wvvuu

       u        (11o) .0,0,0,0,0 2121232221 ≥≥≥≥≥ wvuu
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From (11i), (11j), (11m), (11n) and (11o), we can have following four possibilities. 

Case 1: )0,0,0,7/8,0,0,0,0,0,13/1,0(),,,,,,,,,,( 2121232221111211131211 =wvuuuwvvuuu  

Case 2: )0,0,0,7/8,0,0,0,0,7/1,0,0(),,,,,,,,,,( 2121232221111211131211 =wvuuuwvvuuu  

Case 3: )0,0,0,7/8,0,0,0,7/1,0,0,0(),,,,,,,,,,( 2121232221111211131211 =wvuuuwvvuuu  

Case 4: )0,0,0,7/8,0,0,25/1,0,0,0,0(),,,,,,,,,,( 2121232221111211131211 =wvuuuwvvuuu  

 

From Case 1, (11k) and (11l) we have 

0)136(15),,,( 21212, =+−−= yxxzyxxgu  

.0)7(10),,,( 21213, =−+−= zxxzyxxgu  

Consequently, (11) can be rewritten as follows: 

)11783min( 21 zyxx +++            

  subject to 5 4062 21 ≤+−+ zyxx        

       6        151321 =+− yxx

                  10721 =−+ zxx

     7            204 ≤+ zy

        5            1571 ≤+ yx

      −         3254 2 ≤+ yx

      40                                      51 ≤+ zx

                0,0,0,0 21 >>>> zyxx

 

Using the simplex method, we found that a solution occurs at the point 

 with   and . )0.27,2.01,11.79,0.12(),,,( 111
2

1
1 =zyxx 111.69,1 =F 10.021

1 =f 11.611
2 =f
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By using the same way as that of Case 1, we found that it is infeasible for Cases 2 and 4, 

respectively; a solution occurs at the point (  

with ,  and  for Case 3. By examining the above 

procedure, we found that an optimal solution occurs at the point 

 with   and . 

)0.37,2.06,12.48,0.12(),,, 333
2

3
1 =zyxx

111.69, 10.02*
1 =f 11.61*

2 =f

118.663 =F

(),, ***
2 =zyx

10.663
1 =f

2.01,11.79,0.12

17.363
2 =f

) * =F0.27,,( *
1x

 

The result shows that an optimal solution for the road management committee is to take the 

two decision variables as 0.12 and 11.79 through anticipating all possible responses of 

followers. Each follower is assumed to execute simultaneously his/her individual policies 

after decisions of the leader for the two decision variables. That is, the two followers will 

take values of their travel decision variables 2.01 and 0.27 respectively as their reaction for 

the committee. The two followers can thus reach an objective 10.02 and 11.61 respectively 

and the committee will get an objective of travel cost 111.69.  

 

6. Conclusions and Further Study 

Many organizations such as universities, Governmental departments, are decentralized, and 

their decision units are within an hierarchical structure. The execution of their decisions is 

often sequential and the leader’s decision can be affected by the responses of his or her 

multiple followers. Therefore, BLMF decision-making is a common issue in organizational 

management. This paper has successfully established a framework for the BLMF decision 

problem which identifies nine kinds of relationships among the followers. These bilevel 

decision relationships may occur in different organizations’ decision actions or within 

different decision actions of one organization. For each of the nine relationships, a 
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corresponding BLMF decision model has been proposed.  In particular, this paper has 

proposed related theories focusing on the uncooperative BLMF decision model (S1). An 

extended Kuhn-Tucker approach for solving the specific kind of BLMF decision problems 

is then developed. Finally, a real-case study of a road-network problem illustrates the 

application of the proposed BLMF decision technique. Further study will involve the 

development of approaches for the other eight BLMF models (S2 to S9) as described in the 

proposed framework. A decision support system will then need to be developed to 

implement the proposed techniques for solving all the nine kinds of BLMF decision 

problems.  
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