
Incremental Assignment Problem

Ismail H. Toroslu and Göktürk Üçoluk

Department of Computer Engineering
Middle East Technical University, Ankara, Turkey

Abstract

In this paper we introduce the incremental assignment problem. In this problem, a
new pair of vertices and their incident edges are added to a weighted bipartite graph
whose maximum weighted matching is already known, and the maximum weighted
matching of the extended graph is sought. We propose an O(|V |2) algorithm for the
problem.

Key words: Assignment problem, weighted bipartite graph, Hungarian algorithm

1 Introduction

Matching is a well-studied algorithmic problem. There are several variations
of the matching problem, such as matching in general graphs, matching in bi-
partite graphs, and matching in weighted/unweighted graphs. In unweighted
graphs maximum cardinality matching is sought (see [9,17] for unweighted bi-
partite graphs and [8,22] for unweighted general graphs). On the other hand,
in weighted graphs maximum weighted matching is also explored (see [11,15]
for weighted bipartite graphs and [7,10,13,21] for weighted general graphs). In
this work we are interested in the maximum weighted matching problem in
bipartite graphs, also known as the assignment problem. Surveys on matching
problems and their algorithms can be found in [14,25]. New forms of the assign-
ment problem have been studied in recent works such as [1,5,16,18,20,26,27].
Also, [4] contains a survey of several other forms of assignment problems.

The most well-known algorithm for the assignment problem is the classical
Kuhn-Munkres algorithm [19,23], also known as the Hungarian algorithm.
This algorithm has O(|V |3) complexity 1 when it is implemented with proper
data structures [21]. There are some newer algorithms with different com-
plexities, but they utilize the maximum weights on the edges [2,12,24]. These

1 |V | is the size of a partition in a bipartite graph.

Preprint submitted to Elsevier Science 22 May 2006

newer algorithms are not suitable for an incremental version of the problem.
The goal of this paper is to present an algorithm for the incremental assign-
ment problem without imposing any restriction on the weights.

To the best of our knowledge there exists no reference work on the incremental
assignment problem, which can be described as follows:

Given a weighted bipartite graph and its maximum weighted matching,
determine the maximum weighted matching of the graph extended with a
new pair of vertices, one on each partition, and weighted edges connecting
these new vertices to all the vertices on their opposite partitions.

The incremental assignment problem can be solved with an algorithm of the
ordinary assignment problem. However, such an approach does not use al-
ready known information about the maximum weighted matching of the sub-
graph with only one less pair of vertices of the given bipartite graph (i.e.,
the maximum-weighted-matched part of the bipartite graph). In this paper,
we propose a novel algorithm, based on the Kuhn-Munkres algorithm, that
utilizes the given maximum weighted matching of the maximum-weighted-
matched part of the bipartite graph in order to determine the maximum
weighted matching of the whole (extended) bipartite graph with O(|V |2) com-
plexity. We will use the descriptions and terminology of [3] throughout the
paper.

2 Preliminaries

A bipartite graph G = (V , E) is an undirected graph whose vertices are divided
into two disjoint sets (partitions) X and Y (i.e. V = X∪Y and X∩Y = ∅) and
no edge connects vertices in the same partition (i.e. E ⊆ X × Y). A matching
M is a subset of the edges E (M ⊆ E), such that every vertex can be incident
to only one edge in the matching. A matching saturates a vertex a if some
edge of M is incident with a; otherwise vertex a is unsaturated. If every vertex
of G is saturated, then the matching is perfect.

In this paper, we are interested in matching in weighted bipartite graphs with
same-sized partitions (|X| = |Y |). Unless otherwise stated, we will use the
term bipartite graph to represent this kind of weighted bipartite graph. The
weight of the matching is the total weight of the edges in the matching. In
the assignment problem, maximum-weighted perfect matching is sought in
bipartite graphs.

An augmenting path A in a graph with matching is a path that starts and ends
with unmatched edges and alternates between matched and unmatched edges.

2

The matching edges form the set M(A). If a path starts with an unmatched
edge, but ends with a matched edge, then it is called an alternating path. All
alternating paths originating from the same unmatched vertex form a tree,
which is grown from its matched leaves by a pair of unmatched and matched
edges, respectively, when it is executed. Such trees are known as Hungarian
trees.

A weighted bipartite graph G = (X ∪ Y, X × Y) having partitions with size
V can be represented by a weight matrix W of size V × V . In the weight
matrix, rows correspond to the X partition and columns correspond to the Y
partition of vertices. Each entry Wij represents the weight of the edge between
the vertices Xi and Yj.

Feasible vertex labeling l is defined on the vertices of both partitions of the
bipartite graph as follows:

l(Xi) + l(Yj) ≥ Wij ∀Xi ∈ X, ∀Yj ∈ Y

The subgraph corresponding to the feasible vertex labeling l defined by the
edges satisfying the following equality is called the equality subgraph Gl:

l(Xi) + l(Yj) = Wij

This means that the edges whose weights are equal to the sum of the labels
of their end vertices and of their incident vertices form the equality subgraph
Gl.

3 The Algorithm

Our algorithm for the incremental assignment problem adds a new pair of ver-
tices to the maximum-weighted-matched bipartite graph whose feasible vertex
labeling is also given, together with the maximum weighted matching. Then,
it assigns any feasible labeling to the newly added pair of vertices and, by
using this labeling, determines the maximum weighted matching of the whole
extended bipartite graph. Our algorithm is adopted from the Kuhn-Munkres
algorithm, which produces the feasible vertex labeling of the vertices together
with the maximum weighted matching. Similarly, our algorithm also gener-
ates the new feasible vertex labeling of the extended graph while producing
the maximum weighted matching.

When the maximum-weighted-matched graph is extended with a new pair of
vertices, this extension is reflected in the form of a new weight matrix by
adding a new row and a new column to the previous weight matrix as the

3

(V + 1)st row and column corresponding to the edges incident to the new
vertices.

A detailed description of our algorithm is as follows:

Input: The extended bipartite graph G, its (V + 1)× (V + 1) weight-matrix
W , a feasible vertex labeling l of the first V vertices for both partitions such
that it corresponds to the equality subgraph that contains the maximum
weighted matching among the first V vertices, and this maximum weighted
matching M∗

V among the first V vertices of the partitions.

Output: Maximum weighted matching M∗
V +1 and the updated labels l of the

vertices of the extended bipartite graph.

Incremental Assignment Algorithm:

(1) Determine a feasible vertex labeling of the extended weight matrix by
using the feasible vertex labelings for the maximum-weighted-matched
subgraph, and by choosing labels for the new vertices, such that the
feasible vertex labeling constraints are satisfied for the new row and the
new column. This is done by using the following equations:

l(YV +1) = max
{

max
1 ≤ i ≤ V

{Wi(V +1) − l(Xi)},W(V +1)(V +1)

}

l(XV +1) = max
1 ≤ i ≤ (V + 1)

{
W(V +1)i − l(Yi)

}

The equality subgraph that corresponds to this labeling contains all
matching edges of the maximum weighted matching of the first V pair
of vertices. Thus, if an edge between the two new vertices is in the
equality subgraph, then add this edge to the current matching, and
stop. Otherwise, two new vertices, one on each partition, are the only
unsaturated vertices of the equality subgraph.

(2) On the equality subgraph Gl, using the matching M∗
V grow a Hungar-

ian tree rooted at the new (unsaturated) vertex, of the partition X
(called U). While growing the Hungarian tree, include all the vertices
encountered in X (including U) into S and all the vertices encountered
in partition Y into T .

(3) If an augmenting path A is found, interchange matched and unmatched
edges in the augmenting path. We call this interchanged path A′. Then
determine the new matching by increasing the cardinality by one as
follows:

M∗
V +1 = (M∗

V −M(A)) + M(A′)

M∗
V +1 represents the maximum weighted matching of the extended bi-

partite graph. The algorithm stops.

4

(4) If a Hungarian tree is obtained and no augmenting path is found, revise
the labeling l in order to preserve all the matching edges in Gl, while
adding new edges from S to Y −T . As in the Kuhn-Munkres algorithm,
labeling is revised by decreasing the total summation of the labels,
which is also equivalent to the maximum weight matching when perfect
matching exists in the graph. During the revision of the labels, the labels
of the nodes in S are decreased by the smallest possible amount which
will add at least one edge between S and Y −T . At the same time, the
labels of the nodes in T are increased by the same amount in order to
preserve all the current matchings between S and T . Adding such edges
will potentially increase the chance of producing an augmenting path.
This is achieved as follows:
(a) Determine the smallest possible change in labels:

λl = min
Xi ∈ S

Yj ∈ Y − T

{l(Xi) + l(Yj)−Wij}

Direct implementation of the calculation of λl requires O(|V |2)
time. However, this calculation can be done more efficiently if for
every vertex in Y − T , an edge with the smallest slack is kept as
follows:

slack[Yj] = min
Xi ∈ S

{l(Xi) + l(Yj)−Wij}

Then, λl can be calculated as:

λl = min
Yj ∈ Y − T

{slack[Yj]}

(b) Revise the feasible labelings using the change:

l′(v) =





l(v)− λl if v ∈ S

l(v) + λl if v ∈ T

l(v) otherwise

(5) Go to step 2 to search for an augmenting path with the new equality
subgraph defined by the new labelings.

Theorem 1 (Correctness of the algorithm) The Incremental Assignment
Algorithm determines the maximum weighted matching of the extended bipar-
tite graph with size (V + 1)× (V + 1).

Proof: When the maximum-weighted-matched bipartite graph is extended
with a new pair of vertices, a feasible vertex labeling for the extended bipartite
graph can be determined by using the labelings on the maximum-weighted-
matched part of the graph and by choosing labels for the new vertices such

5

that the feasible labeling constraints are satisfied. With these labelings all
the matched edges will be in the equality subgraph. Also, if there is no edge
between the new pair of vertices, then these two vertices will be the only
unmatched vertices in the equality subgraph. Since there is only a single un-
matched vertex pair, one on each partition respectively, it is possible to find
only a single augmenting path in the equality subgraph. Therefore, the car-
dinality of the matching must only be incremented by one by inverting the
matchings/unmatchings of the edges on the augmenting path when it is dis-
covered. As a result, finding and inverting the augmenting path yields a perfect
matching. If the equality subgraph has a perfect matching, then it is the max-
imum weighted matching (see the related theorem 2 in [3], which refers to
[6,19,23]). If the augmenting path is not discovered with the current feasible
vertex labelings, then labels must be modified in order to grow the Hungarian
tree (note that there is only a single Hungarian tree rooted at the unmatched
vertex of one partition). Since each time the labels are modified as described
in the algorithm, alternating paths of the Hungarian tree are extended at least
by one edge (see the description of Hungarian method in [3]) and eventually
an augmenting path that starts with the only unmatched vertex in one par-
tition and ends with the only unmatched vertex in the other partition will
be discovered. That equality subgraph will include the perfect matching and,
thus, it is the maximum weighted matching of the bipartite graph. ¤

Theorem 2 (Complexity of the algorithm) The Incremental Assignment
Algorithm has O(|V |2) complexity.

Proof: In the first step of the algorithm the feasible vertex labeling of the
new vertices are determined. As is seen in the algorithm, choosing the feasible
vertex labeling for the new row and the new column can be done simply
by performing a linear scan, so it has O(|V |) complexity. In the proof of the
theorem given above, it was shown that discovering only one augmenting path
is sufficient for completing the execution of the algorithm. Therefore, the main
iteration is the relabeling of the vertices in order to extend the Hungarian
tree to seek an augmenting path. The feasible vertex labeling modifications
always grow the Hungarian tree by at least one vertex from each partition.
Thus, in the worst case, after V iterations it will be possible to obtain the
augmenting path. In each iteration, finding the minimum slack and growing
the Hungarian tree with the newly introduced edges on the equality subgraph
requires O(|V |) operations by using the proper data structure described in
the algorithm (proposed by [21]). The computation of these slack values for
the first time requires O(|V |2) complexity. Whenever a vertex is added into
S, the slacks for the vertices in Y − T must be recomputed, requiring only
linear time. Since there are V vertices that can be added into S, the total

2 Theorem: Let l be a feasible vertex labeling of G. If Gl contains a perfect
matching M∗, then M∗ is an optimal matching of G.

6

time required for all the computations of the slack values is O(|V |2). Thus,
the total complexity of the algorithm is O(|V |2). ¤

4 Example

Consider the 4× 4 weighted bipartite graph described by its weight matrix as
follows:

xi

Y1 Y2 Y3 Y4 ⇓
X1 5 1 1 1 0

X2 4 3 1 3 −1

X3 5 4 3 4 0

X4 1 6 2 5 2

yi ⇒ 5 4 3 5

Assume that we are given the assignment among the first 3 vertices, which
corresponds to the diagonal elements of the weight matrix. The last row and
column correspond to the newly added vertex pairs. First, feasible labels are
assigned to X4 and Y4 as shown above. Then, an augmenting path will be
determined that yields an assignment on the weighted bipartite graph that
was extended by the vertex pair.

In Figure 1, the weight matrix, the feasible vertex labelings of its vertices,
the S and T sets, corresponding to the Hungarian tree rooted at vertex X4,
are shown. The equality subgraph obtained from the weight matrix and the
feasible vertex labeling is shown in Figure 2.

As seen in Figures 1 and 2, X4 and Y4 are the only unsaturated vertices and
there is no augmenting path in the equality subgraph. Figure 3 depicts the
new labelings on the weight matrix after labels are revised using λl which is
obtained from the previous labeling. Also, Figure 4 shows the equality sub-
graph corresponding to the new labeling, which includes an augmenting path.
The augmenting path is shown in bold. It is inverted to increase the cardinal-
ity of the matching by one and this produces a perfect matching, which also
corresponds to the maximum-weighted matching (i.e., the assignment) of the
extended bipartite graph.

7

xi

Y1 Y2 Y3 Y4 ⇓
X1 5 1 1 1 0 S (−1)

X2 4 3 1 3 −1 S (−1)

X3 5 4 3 4 0

X4 1 6 2 5 2 S (−1)

yi ⇒ 5 4 3 5

T T
(+1) (+1)

• Circled edges represent the equality
subgraph.

• Matching edges are marked in bold.
• S and T mark the corresponding set

of vertices.
• λl increment/decrement values are

indicated by (+1)/(−1)

Fig. 1. Situation before the first iteration of the algorithm: Weight Matrix

S︷ ︸︸ ︷
U︷︸︸︷

︸ ︷︷ ︸
T

X4 X1 X2 X3

Y1 Y2 Y3 Y4

Fig. 2. Situation before the first iteration of the algorithm: Equality Subgraph

xi

Y1 Y2 Y3 Y4 ⇓
X1 5 1 1 1 −1

X2 4 3 1 3 −2

X3 5 4 3 4 0

X4 1 6 2 5 1

yi ⇒ 6 5 3 5

Fig. 3. Situation after the first iteration of the algorithm: Weight Matrix

5 Conclusion

In this paper, we proposed an O(|V |2) algorithm for the incremental assign-
ment problem. By using the same technique, the decremental assignment
problem can also be solved. In the decremental assignment problem a pair
of vertices, not necessarily connected with a matching edge, and their incident
edges are removed from a weighted bipartite graph with a given assignment.
Also, when an already maximum-weighted-matched bipartite graph with size
V is extended with k new pairs of vertices, where k is much smaller than V

8

X4 X1 X2 X3

Y1 Y2 Y3 Y4

Fig. 4. Situation after the first iteration of the algorithm: Equality Subgraph

(k << V), the use of this incremental algorithm will be more efficient (which
will take O(k|V |2) time) compared with determining the full assignment from
scratch by using a standard assignment algorithm (which will take O(|V |3)
time).

References

[1] J. Aguilar and E. Gelenbe, Task assignment and transaction clustering
heuristics for distributed systems Information Sciences 97 1-2 (1997) 199–219

[2] R. K. Ahuja, J. B. Orlin and T. L. Magnanti, Survey of assignment algorithms
and network flows, in: G. L. Nemhauser, A. H. G. Rinnooy Kan and M. J.
Todd eds. Handbooks in Operations Research and Management Science. Vol. 1:
Optimization (North Holland, Amsterdam, 1989) 211–369.

[3] J.A. Bondy and U. S. R. Murty, Graph Theory with Applications (6th ed.,
North-Holland, Amsterdam, 1984).

[4] R. E. Burkard, Selected topics on assignment problems, Discrete Applied
Mathematics, 123 (2002) 257–302.

[5] W. Cook and A. Rohe, Computing minimum-weight perfect matchings, Informs
J. on Computing 11 (1999) 138–148.

[6] J. Edmonds, Paths, trees and flowers, Canadian J. Math. 17 (1965) 449–467.

[7] J. Edmonds, Maximum matching and polyhedron with 0,1-vertices, J. Res. Nat.
Bur. Standards 29B (1965) 125–130.

[8] S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in general
graphs, Proceedings of IEEE FOCS (1975) 100–112.

[9] S. Even and R.E. Tarjan, Network flow and testing graph connectivity, SIAM
J. Comput. 4 (1975) 507–518.

[10] H. N. Gabow, An efficient implementation of Edmond’s algorithm for maximum
matching on graphs, J. ACM 23 (1975) 221–234.

[11] H. N. Gabow, Z. Galil and T. H. Spencer, Efficient implementation of graph
algorithms using contraction, J. ACM 36 3 (1989) 540–572.

9

[12] H. N. Gabow and R.E. Tarjan, Faster scaling algorithms for general graph
matching problems, Tech. Report. CU-CS-432-89 (Dept. Comp. Sci., U.
Colorado- Boulder, 1989).

[13] H. N. Gabow, Data structures for weighted matching and nearest common
ancestors with linking, Proc. 1st ACM-SIAM Symp. Disc. Algs., SIAM , (San
Francisco 1990) 434–443.

[14] Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM
Computing Surveys 18 (1986) 23–38.

[15] D. Goldfarb, Efficient dual simplex algorithms for the assignment problem,
Math. Program. 33 (1985) 187–203

[16] A. Holland and B. O’Sullivan, Fast Vickrey-Pricing for the assignment problem,
Proc. of ERCIM/CologNet International Workshop on Constraint Solving and
Constraint Logic Programming (Budapest 2003)

[17] J. E. Hopcroft and R. M. Karp: An N5/2 algorithm for maximum matchings in
bipartite graphs, SIAM J. Comput. 2 (1973) 225–231.

[18] M. Y. Kao, T. W. Lam, W. K. Sung and H.F. Ting, A decomposition theorem
for maximum weight bipartite matchings, SIAM J. Comput. 31 (2001) 18–26.

[19] H. W. Kuhn, The Hungarian method for the assignment problem, Naval
Res. Logist. Quart. 2 (1955) 83–97.

[20] J. D. Lamb, A note on the weighted matching with penalty problem, Pat. Recog.
Let. 19 (1998) 261–263

[21] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, (Holt,
Rinehart, Winston, Newyork, 1976).

[22] S. Micali and V. V. Vazirani, An O(
√
|V | · |E|) Algorithm for finding maximum

matching in general graphs, Proceedings of IEEE FOCS (1980) 17–27.

[23] J. Munkres, Algorithms for the assignment and transportation problems,
J. Soc. Indust. Appl. Math. 5 (1957) 32–38.

[24] J. B. Orlin and R. K. Ahuja, New scaling algorithm for the assignment and
minimum cycle mean problems, Mathematical Programming 54 (1992) 41–56.

[25] W. R. Pulleyblank, Matching and Extensions in Handbook of Combinatorics,
ed. R. Graham, M. Grötschel, L. Lovasz, (Elsevier, 1995) 179–232.

[26] I. H. Toroslu, Personnel assignment problem with hierarchical ordering
constraints, Computers and Industrial Engineering, 45, (2003) 493-510.

[27] W. C. K. Yen and C. Y. Tang, An optimal algorithm for solving the searchlight
guarding problem on weighted interval graphs, Information Sciences 100 1-4
(1997) 1–25

10

