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Unlike classical information, quantum knowledge is restricted to the outcome of measure-
ments of maximal observables corresponding to single contexts.
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1. Introduction

The violation of classical bounds [1,2] on joint quantum probabilities enumerated by Bell [3,4], Clauser–Horn–Shimony–
Holt (CHSH) [5,6] and others [7–10], the Kochen–Specker (KS) [11–19] as well as the Greenberger–Horn–Zeilinger (GHZ)
[20–22] theorems provide constructive, finite proofs that observables outside of a single quantum context cannot consis-
tently co-exist. Here, the term context refers to a maximal collection of co-measurable observables associated with commut-
ing operators. Every context can also be characterized by a single (but nonunique) maximal operator. All operators within a
context are functions thereof (see Refs. [23, Section II.10, p. 90, English translation p. 173,24, Section 84]). In quantum logic
[25–28], contexts are represented by Boolean subalgebras or blocks pasted together to form the Hilbert lattice. (For the sake
of nontriviality, Hilbert spaces of dimension higher than two are considered.) In an algebraic sense, a context represents a
‘‘classical mini-universe,” which is distributive and allows for as many two-valued states – interpretable as classical truth
assignments – as there are atoms.

By definition, no direct measurement of observables ‘‘outside” of a single context is possible. Therefore, any assumption
about the physical existence of such observables results in the invocation of counterfactuals. For example, Einstein, Podolsky
and Rosen (EPR) [29] suggested to measure and counterfactually infer two contexts simultaneously by considering elements
of physical reality which cannot be measured simultaneously on the same quantum. In this respect, quantum physics relates
to scholastic philosophy. Indeed, in an informal paper [11] announcing KS, Specker explicitly referred to the ‘‘infuturabilities”
of scholastic philosophy.

Related to counterfactuals is the idea of a (divine) omniscience ‘‘knowing” all the factuals and counterfactuals in the naive
sense that ‘‘if a proposition is true, then an omniscient agent (such as God) knows that it is true.” Already Thomas Aquinas
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considered questions such as whether God has knowledge of non-existing things (Ref. [30, Part 1, Question 14, Article 9]) or
things that are not yet (Ref. [30, Part 1, Question 14, Article 13]).

In classical physics, there is just one global context which is trivially constituted by all conceivable observables. Hence,
there is no conceptual or principal reason to assume counterfactuals; sometimes they are just considered for convenience
(saving the experimenter from measuring redundant observables). The empirical sciences implement classical omniscience
by assuming that in principle all observables of classical physics are (co-)-measurable without any restrictions. No distinc-
tion is made between an observable obtained by an ‘‘actual” and a ‘‘potential” measurement. Precision and (co-)-measurabil-
ity are limited only by the technical capacities of the experimenter. The principle of empirical classical omniscience has given
rise to the realistic believe that all observables ‘‘exist,” regardless of the state preparations and observations. Physical (co-)-
existence is thereby related to the realistic assumption [31] (sometimes referred to as the ‘‘ontic” [32] viewpoint) that such
physical entities exist even without being experienced by any finite mind.

Formally, counterfactuals and classical omniscience are supported by the following two properties.

(i) Boolean logics and absence of complementarity: historically, the discovery of the uncertainty principle and quantum
complementarity marked a first departure from classical omniscience. A formal expression of complementarity is the
nondistributive algebra of quantum observables. Alas, nondistributivity of the empirical logical structure is no suffi-
cient condition for the impossibility of omniscience. For example, both generalized urn models [33,34] as well as
equivalent [35] finite automata [36–39] exhibit complementarity, yet they possess two-valued states interpretable
as omniscience; i.e., as global truth assignments with a consistent value ‘‘0” (false) or ‘‘1” (true) for every observable.

(ii) ‘‘Abundance” of two-valued states interpretable as omniscience: Thereby, any such ‘‘dispersionless” two-valued state
– associated with a classical ‘‘truth table” – can be defined on all observables, regardless of whether they have been
actually observed or not.

In contrast, quantum propositions neither satisfy distributivity, nor do they support two-valued states. Recall Schröding-
er’s interpretation of the quantum wave function (in Section 7 of Ref. [40]) in terms of a ‘‘catalogue of expectations.” Every
page of this catalogue of expectations is represented by a single context. In quantum mechanics, (as well as in quasi-classical
models [35]), due to complementarity, contexts are not global, and the structure of contexts as well as the probability mea-
sures on them [41,42] pose many challenging questions.

2. ‘‘Scarcity of two-valued states

Gleason’s theorem [41,42] states that the quantum probabilities can be derived from the assumption that classical prob-
ability theory holds within contexts. Yet, unlike classical systems, they are no convex combination of global two-valued
states. Formally, this is due to the fact that the quantum propositions do not support globally defined two-valued states.

What happens if one insist in the use of two-valued states outside of a single context by considering quantum proposi-
tional structures still allowing ‘‘a few” two-valued states? In this case, the invocation of counterfactuals and the ‘‘scarcity” of
two-valued states accounts for some consequences which, depending on the disposition of the recipient, appear ‘‘mindbog-
gling” to absurd.

By bundling together propositional structures giving rise to such ‘‘mindboggling” properties, one arrives at the KS conclu-
sion. For such finite compositions of observables, the mere assumption of a globally defined truth table results in a complete
contradiction. Alas, by contemplating the situation not bottom-up as usually, but top-down; i.e., from the point of view of KS,
it is not too difficult to derive ‘‘mindboggling” statements from absurdities. Indeed, the principle of explosion (stating that ex
falso quodlibet, or contradictione sequitur quodlibet) which, due to the pasting construction of Hilbert lattices, holds also in
quantum logic, implies that ‘‘anything follows from a contradiction.”

2.1. Dual Greechie and Tkadlec diagrams

For a proof of the ‘‘scarcity” of two-valued states, Greechie diagrams symbolizing one-dimensional projectors by points
and contexts by maximal smooth unbroken curves are considered. The ‘‘dual” Tkadlec diagrams [43] symbolize entire con-
texts by points, and links between contexts by lines joining them.

Tkadlec diagrams suggest the most compact representation of a context in terms of a single maximal operator. Note that,
for the n-dimensional Hilbert space, an n-star configuration represents n different contexts joined in n different atoms of the
center context; see Fig. 1.

2.2. The ‘‘one–zero” rule

For the sake of presentation of such properties, consider the proof that, for the observables depicted in Fig. 2, the occur-
rence of an outcome corresponding to K (abbreviated by ‘‘K occurs”) implies that E cannot occur. This property, which has
been already exploited by KS [[12], C1] will be called the ‘‘one–zero rule.”
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2.3. The ‘‘one–one/zero–zero” rule

For another example, consider two collections of observables as above, which are combined by ‘‘gluing” them together in
two contexts. The geometry based upon the C3-configuration in KS [12] is depicted in Fig. 3. In this case one obtains the
‘‘one–one” and ‘‘zero–zero rules,” stating that K occurs if and only if K 0 occurs.

For a quantum falsification of the one–zero and the one–one/zero–zero rules it suffices to record a single pair of outcomes
which does not obey these classical predictions. This can for instance been demonstrated in an EPR-type setup of two spin
one particles in a singlet state

1
ffiffiffi

3
p ð�j0;0i þ j � 1;1i þ j1;�1iÞ

and observables corresponding to E and K, or to K and K 0. Generalized beam splitters are possible realizations [44–46]. This
adds to the evidence accumulated already by Bell, KS and GHZ, that we are not living in a classical world.

2.4. The absence of two-valued states

The simplest known proof [19,47] of KS is in four-dimensional real Hilbert space and requires nine intricately interwoven
contexts – every observable is in exactly two different contexts – drawn in Fig. 4. In order to appreciate the proofs (by con-
tradiction), note that

(i) The proofs require the assumption of counterfactuals; i.e., of ‘‘potential” observables which, due to quantum comple-
mentarity, are incompatible with the ‘‘actual” measurement context; yet could have been measured if the measure-
ment apparatus were different. These counterfactuals are organized into groups of interconnected contexts which, due
to quantum complementarity, are incompatible and therefore cannot be measured simultaneously; not even in Ein-
stein–Podolsky–Rosen (EPR) [29] type setups [48].

(ii) The proofs by contradiction have no direct experimental realizations. As has already been pointedly stated by Clifton
[49], ‘‘how can you measure a contradiction?”

Fig. 1. Four-star configuration in four-dimensional Hilbert space (a) Greechie diagram representing atoms by points, and contexts by maximal smooth,
unbroken curves. (b) Dual Tkadlec diagram representing contexts by filled points, and interconnected contexts by lines.

Fig. 2. Configuration of observables in three-dimensional Hilbert space implying that whenever K is true, E must be false. The seven interconnected
contexts a ¼ fA;B; Cg, b ¼ fC;D; Eg, c ¼ fE; F;Gg, d ¼ fG;H; Ig, e ¼ fI; J;Kg, f ¼ fK; L;Ag, g ¼ fB;H;Mg, consist of the 13 projectors associated with the one-
dimensional subspaces spanned by [18] A ¼ ð1;

ffiffiffi

2
p

;�1Þ, B ¼ ð1;0;1Þ, C ¼ ð�1;
ffiffiffi

2
p

;1Þ, D ¼ ð�1;
ffiffiffi

2
p

;�3Þ, E ¼ ð
ffiffiffi

2
p

;1; 0Þ, F ¼ ð1;�
ffiffiffi

2
p

;�3Þ, G ¼ ð�1;
ffiffiffi

2
p

;�1Þ,
H ¼ ð1; 0;�1Þ, I ¼ ð1;

ffiffiffi

2
p

;1Þ, J ¼ ð1;
ffiffiffi

2
p

;�3Þ, K ¼ ð
ffiffiffi

2
p

;�1;0Þ, L ¼ ð1;
ffiffiffi

2
p

;3Þ, M ¼ ð0;1;0Þ. (a) Greechie diagram representing atoms by points, and contexts by
maximal smooth, unbroken curves. Only a single observable per context can be true. Noncontextuality requests that link observables in different contexts
are either true or false in all of these context. Then, whenever K is true, E cannot be true, since then at least one of the two contexts a and d would contain
only outcomes which do not occur. (b) Dual Tkadlec diagram representing contexts by filled points, and interconnected contexts by lines.
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(iii) So-called ‘‘experimental tests” inspired by Bell-type inequalities [50–52], KS [53,54] as well as GHZ [55] measure the
incompatible contexts which are considered in the proofs one after another; i.e., temporally sequentially, and not
simultaneously, as different contexts can only be measured on different particles.

3. Alternatives

The following alternatives present some ways to cope with these findings:

(i) Abandonment of classical omniscience: in this view, it is wrong to assume that all observables which could in prin-
ciple (‘‘potentially”) have been measured also co-exist, irrespective of whether or not they have or even could have
been actually measured. Realism might still be assumed for a single context, in particular the one in which the system
was prepared.

(ii) Abandonment of realism: in this view, it is wrong to assume that physical entities exist even without being experi-
enced by any finite mind. Quite literary, with this assumption, the proofs of KS and similar decay into thin air because
there are no counterfactuals or unobserved physical observables or inferred (rather than measured) elements of phys-
ical reality.

(iii) Contextuality; i.e., the abandonment of context independence of measurement outcomes [56–58]: it is wrong to
assume (cf. Ref. [56, Section 5]) that the result of an observation is independent not only of the state of the system
but also of the complete disposition of the apparatus. Compare also Bohr’s remarks [59] about ‘‘the impossibility of
any sharp separation between the behavior of atomic objects and the interaction with the measuring instruments which
serve to define the conditions under which the phenomena appear”.

Fig. 3. Configuration of observables implying that the occurrences of K and K 0 coincide. (a) Greechie diagram representing atoms by points, and contexts by
maximal smooth, unbroken curves. The coordinates of the ‘‘primed” points A0–M0 are obtained by interchanging the first and the second components of the
unprimed coordinates A–M enumerated in Fig. 2; and N ¼ ð0;0;1Þ. The two contexts h and i linking the primed with the unprimed observables allow the
following argument: Whenever K occurs, then by the one-zero rule E cannot occur; moreover N cannot occur, hence K 0 must occur. Conversely, by symmetry
whenever K 0 occurs, K must occur. (b) Dual Tkadlec diagram representing contexts by filled points, and interconnected contexts by lines.
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It should come as no surprise that realists such as Bell favor contextuality rather than giving up realism or classical omni-
science. Nonetheless, to this date there does not exist a single experimental finding to support contextuality, and, as pointed
out above, contextuality is only one of at least three possibilities to interpret quantum probability theory.

The simplest configuration testing contextuality corresponds to an arrangement of five observables A; B;C;D;K with two
co-measurable, mutually commuting, contexts fA;B;Cg and fA;D;Kg interconnected at A. This propositional structure L12 can
be represented in three-dimensional Hilbert space by two tripods with a single common leg. Indeed, if contextuality is a
physically meaningful principle for the finite systems of observables employed in proofs of KS, then contextuality should
already be detectable in this simple system of observables. It would be a challenging task to realize the L12 quantum logical
structure experimentally in an EPR-type setup, and falsify contextuality there.

Furthermore, in extension of the two context configuration, also systems of three interlinked contexts such as fA;B;Cg,
fA;D;Kg and fK; L;Mg interconnected at A and K could be considered. Note that too tightly interconnected systems such
as fA;B;Cg, fA;D;Kg and fK; L;Cg have no representation in a three-dimensional Hilbert space. However, for a greater dimen-
sion than three, we can take, e.g., A ¼ ð1;0;0;0Þ, B ¼ ð0;1;0; 0Þ, C ¼ ð0;0;1; 0Þ, D ¼ ð0;1;1;0Þ, K ¼ ð0;0;0;1Þ, L ¼ ð1;1;0;0Þ.

4. Summary

If one believes in the physical existence of counterfactuals, a lot of puzzling and mindboggling properties can be derived,
bordering to mystery, if not to absurdity. Take, for example the one–zero rule discussed above: a noncontextual argument
shows that certain outcomes are correlated.

Formally, this is due to the ‘‘scarcity” of two-valued states on the linear subspaces of Hilbert states. Worse yet, by con-
sidering a larger, finite group of observables, it can be shown that, with the assumption of noncontextuality, no such state
exists.

Alas, it is not too difficult to derive ‘‘mindboggling” statements from absurdities. Indeed, the principle of explosion suggests
that ‘‘anything follows from a contradiction.”

It is not unreasonable to doubt the usefulness of contextuality as a resolution of the imminent inconsistencies and com-
plete contradictions originating in the assumption of the physical (co-)existence of observables in different contexts. Contex-
tuality might not even be measurable in the simplest cases where it could be falsified by simultaneous EPR-type
measurements of two interlinked contexts. A detailed discussion on realism versus empiricism and the issues related to con-
textuality in EPR-type configurations can also be found in Refs. [60,61]; see also Khrennikov’s findings about couterfactuals
in EPR-type setups [62].

It appears most natural to abandon the notion that not all classical observables are quantum observables; that quantum
omniscience is limited to a single context; that a quantized system has only observable physical properties in the context in
which it was prepared; and that one should accept the obvious fact that one cannot squeeze information from an ignorant
system or agent. If one tries nevertheless, then all one obtains are random, erratic outcomes. Indeed, it is not totally

Fig. 4. Proof of the Kochen–Specker theorem [19,47] in four-dimensional real vector space. The nine tightly interconnected contexts a ¼ fA;B; C;Dg,
b ¼ fD; E; F;Gg, c ¼ fG;H; I; Jg, d ¼ fJ;K; L;Mg, e ¼ fM;N;O; Pg, f ¼ fP;Q ;R;Ag, g ¼ fB; I;K;Rg, h ¼ fC; E; L;Ng, i ¼ fF;H;O;Qg consist of the 18 projectors
associated with the one-dimensional subspaces spanned by A ¼ ð0; 0;1;�1Þ, B ¼ ð1;�1; 0; 0Þ, C ¼ ð1;1;�1;�1Þ, D ¼ ð1;1;1;1Þ, E ¼ ð1;�1;1;�1Þ,
F ¼ ð1;0;�1; 0Þ, G ¼ ð0;1; 0;�1Þ, H ¼ ð1; 0;1;0Þ, I ¼ ð1;1;�1;1Þ, J ¼ ð�1;1;1;1Þ, K ¼ ð1;1;1;�1Þ, L ¼ ð1;0; 0;1Þ, M ¼ ð0;1;�1; 0Þ, N ¼ ð0;1;1;0Þ,
O ¼ ð0;0;0;1Þ, P ¼ ð1;0; 0;0Þ, Q ¼ ð0;1;0; 0Þ, R ¼ ð0; 0;1;1Þ. (a) Greechie diagram representing atoms by points, and contexts by maximal smooth,
unbroken curves. (b) Dual Tkadlec diagram representing contexts by filled points, and interconnected contexts are connected by lines. (Duality means that
points represent blocks and maximal smooth curves represent atoms.) The nine contexts in four-dimensional Hilbert space are interlinked in a four-star
form; hence every observable proposition occurs in exactly two contexts. Thus, in an enumeration of the four observable propositions of each of the nine
contexts, there appears to be an even number of true propositions. Yet, as there is an odd number of contexts, there should be an odd number (actually nine)
of true propositions.
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unreasonable to speculate that contextuality is a ‘‘red herring;” that it appears to be one of the biggest and most popular
delusions in the foundations of the quantum (which is rich in mindboggling speculations), devised by Bell and other realist
to retain some form of classical realistic nonsensical omniscience.
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