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Abstract

In order to discover interesting patterns and dependencies in data, an approach
based on rough set theory can be used. In particular, Dominance-based Rough Set Ap-
proach (DRSA) has been introduced to deal with the problem of ordinal classification
with monotonicity constraints (also referred to as multicriteria classification in decision
analysis). However, in real-life problems, in the presence of noise, the notions of rough
approximations were found to be excessively restrictive. In this paper, we introduce
a probabilistic model for ordinal classification problems with monotonicity constraints.
Then, we generalize the notion of lower approximations to the stochastic case. We esti-
mate the probabilities with the maximum likelihood method which leads to the isotonic
regression problem for a two-class (binary) case. The approach is easily generalized to a
multi-class case. Finally, we show the equivalence of the variable consistency rough sets
to the specific empirical risk-minimizing decision rule in the statistical decision theory.

1 Introduction

We consider an ordinal classification problem that consists in assignment of objects to K
ordered classes Clk, k ∈ Y = {1, . . . ,K}, such that if k > k′ then class Clk is higher
than class Clk′ . Objects are evaluated on a set of m attributes with ordered value sets. Here,
without loss of generality, we assume that the value set of each attribute is a subset of R (even
if the scale is purely ordinal, evaluation on attributes can be numbercoded) and the order
relation is a linear order ≥, so that each object xi is an m-dimensional vector (xi1, . . . , xim).
It is assumed that monotonicity constraints are present in the data: a higher evaluation of an
object on an attribute, with other evaluations being fixed, should not decrease its assignment
to the class. One can induce a data model from a training set U = {(x1, y1), . . . , (xn, yn)},
consisting of n objects (denoted with x) already assigned to their classes (class indices denoted
with y ∈ Y ). We also denote X = {x1, . . . , xn}, and by class Clk we mean the subset of X
consisting of objects xi having class indices yi = k, Clk = {xi ∈ X : yi = k}.

Thus, ordinal classification problem with monotonicity constraints resembles a typical
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classification problem considered in machine learning [10, 17], but requires two additional
constraints. The first one is the assumption of the ordinal scale on each attribute and
on class indices. The second constraint is the monotonicity property: the expected class
index increases with increasing evaluations on attributes. Such properties are commonly
encountered in real-life applications, yet rarely taken into account. In decision theory, a
multicriteria classification problem is considered [13], which has exactly the form of ordinal
classification problem with monotonicity constraints. Moreover, in many different domains
monotone properties follow from the domain knowledge about the problem and should not be
neglected. They have been recognized in applications such as bankruptcy risk prediction[11],
breast cancer diagnosis [25], house pricing [23], credit rating [9], liver disorder diagnosis [26]
and many others.

As an example, consider the customer satisfaction analysis [15], which aims at determin-
ing customer preferences in order to optimize decisions about strategies for launching new
products, or about improving the image of existing products. The monotonicity constraints
are of fundamental importance here. Indeed, consider two customers, A and B, and suppose
that the evaluations of a product by customer A on a set of attributes are better than the
evaluations by customer B. In this case, it is reasonable to expect that also the compre-
hensive evaluation of this product (i.e. class, to which the product is assigned) by customer
A is better (or at least not worse) than the comprehensive evaluation made by customer
B. As another example, consider the problem of credit rating. One of the attributes could
be the degree of regularity in paying previous debts by a consumer (with ordered value set,
e.g. “unstable”, “acceptable”, “very stable”); on the other hand, the class attribute could
be the evaluation of potential risk of lending money to a consumer, also with ordered value
set (e.g. “high-risk”, “medium-risk”, “low-risk”); moreover, there exists a natural monotone
relationship between the two attributes: the more stable the payment of the debt, the less
risky the new credit is.

Despite the monotone nature of the data, it still may happen that in the training set
U , there exists an object xi not worse than another object xj on all attributes, however,
xi is assigned to a class worse than xj ; such situation violates the monotone properties of
the data, so we shall call objects xi and xj inconsistent. Rough set theory [19, 20, 22] has
been adapted to deal with this kind of inconsistency and the resulting methodology has been
called Dominance-based Rough Set Approach (DRSA) [12, 13]. In DRSA, the classical indis-
cernibility relation has been replaced by a dominance relation. Using the rough set approach
to the analysis of multicriteria classification problem, we obtain lower and upper (rough)
approximations of unions of classes. The difference between upper and lower approximations
shows inconsistent objects with respect to the dominance principle. It can happen that due
to the presence of noise, the data is so inconsistent, that too much information is lost, thus
making the DRSA inference model not accurate. To cope with the problem of excessive
inconsistency, a variable consistency model within DRSA has been proposed (VC-DRSA)
[14].

In this paper, we look at DRSA from a different point of view, identifying its connections
with statistics and statistical decision theory. We start with the overview of the classical
rough set theory and show that the variable-precision model [31, 32] comes from the maximum
likelihood estimation method. Then we briefly present main concepts of DRSA. Afterwards,
the main part of the paper follows: we introduce the probabilistic model for a general class
of ordinal classification problems with monotonicity constraints, and we generalize lower
approximations to the stochastic case. Using the maximum likelihood method we show how
the probabilities can be estimated in a nonparametric way. It leads to the statistical problem
of isotonic regression, which is then solved by the optimal objects reassignment problem.
Finally, we explain the approach as being a solution to the problem of finding a decision
function minimizing the empirical risk [2].

We stress that the theory presented in this paper is related to the training set only. In
order to properly classify objects outside the training set, a generalizing classification function
must be constructed. We do not consider this problem here. The aim of this paper is the
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analysis of inconsistencies in the dataset, handling and correcting them according to the
probabilistic model assumption, which comes from exploring the monotonicity constraints.
This analysis can be seen as a stochastic extension of DRSA. Therefore, the methodology
presented here can be treated as a form of preprocessing and improving the data.

2 Maximum Likelihood Estimation in the Classical Vari-
able Precision Rough Set Approach

We start with the classical rough set approach [19], which neither takes into account mono-
tonicity constraints nor are the classes and attribute values ordered. It is based on the
assumption that objects having the same description are indiscernible (similar) with respect
to the available information. The indiscernibility relation induces a partition of the universe
into blocks of indiscernible objects, called granules [19, 13]. The indiscernibility relation I is
defined as:

I = {(xi, xj) ∈ X ×X : xit = xjt ∀ t = 1, . . . ,m} (1)

where xit is the evaluation of object xi on attribute t, as defined in previous section. The
equivalence classes of I are called granules. The equivalence class for an object x ∈ X is
denoted I(x). Any subset S of the universe may be expressed in terms of the granules either
precisely (as a union of granules) or approximately only. In the latter case, the subset S
may be characterized by two ordinary sets, called lower and upper approximations. Here,
we always assume, that the approximated set S is a class Clk, k ∈ Y . The lower and upper
approximations of class Clk are defined, respectively, by:

Clk = {xi ∈ X : I(xi) ⊆ Clk} (2)

Clk = {x ∈ X : I(x) ∩ Clk 6= ∅} (3)

It follows from the definition, that Clk is the largest union of the granules included in
Clk, while Clk is the smallest union of the granules containing Clk [19]. It holds, that
Clk ⊆ Clk ⊆ Clk. Therefore, if an object x ∈ X belongs to Clk, it is also certainly an
element of Clk, while if x belongs to Clk, it may belong to class Clk.

For application to the real-life data, some less restrictive definitions were introduced
under the name variable consistency rough sets (VPRS) [31, 32, 27]. The new definitions of
approximations (where lower approximation is usually replaced by the term positive region,
which, however, will not be used here) are expressed in the probabilistic terms in the following
way. Let Pr(y = k|I(x)) be a probability that an object xi from granule I(x) belongs to the
class Clk. The probabilities are unknown, but are estimated by frequencies Pr(y = k|I(x)) =
|Clk∩I(x)|
|I(x)| . Then, the lower approximation of class Clk is defined as:

Clk = {x ∈ X : Pr(y = k|I(x)) ≥ u} (4)

so it is the sum of all granules, for which the probability of class Clk is at least equal to some
threshold u. Similarly, the upper approximation of class Clk is defined as:

Clk = {x ∈ X : Pr(y = k|I(x)) ≥ l} (5)

where l is usually set to 1− u for the complementarity reasons. An example of VPRS lower
approximations for a binary-class problem is shown in Figure 1.

It can be shown that frequencies used for estimating probabilities are the maximum
likelihood (ML) estimators under the assumption of common class probability distribution
for every object within each granule. The sketch of the derivation is the following. Let us
choose a granule G = I(x). Let nG be the number of objects in G, and for each class Clk, let
nk

G be the number of objects from this class in G. Then the class index y has a multinomial
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Figure 1: Example of a two-class problem. Black points are objects from class 1, light points
— from class 2. The value sets of two attributes q1, q2 are {1, 2, 3}. At granule G5, n1

G5
= 2,

n2
G5

= 4, so that p1
G5

= 1/3, p2
G5

= 2/3. We see, that for precision threshold u = 2/3 or
lower, G5 belongs to Cl2

distribution when conditioned on granule G. Let us denote those probabilities Pr(y = k|G)
by pk

G.
Then the conditional probability of observing the n1

G, . . . n
K
G objects inG, given p1

G, . . . , p
K
G

(conditional likelihood) is the following:

L(p;nG|G) =
K∏

k=1

(pk
G)nk

G (6)

so that the log-likelihood is:

L(p;nG|G) = lnL(n; p,G) =
K∑

k=1

nk
G ln pk

G (7)

The maximization of L(p;nG|G) with additional constraint
∑K

k=1 p
k
G = 1 leads to the well-

known formula for ML estimators p̂k
G in multinomial distribution:

p̂k
G =

nk
G

nG
(8)

which are exactly the frequencies used in VPRS. This observation will lead us in Section 4
to the stochastic generalization of Dominance-based Rough Set Approach.

3 Dominance-based Rough Set Approach (DRSA)

Within DRSA [12, 13, 14, 6, 28], we define the dominance relation � as a binary relation
on X in the following way: for any xi, xj ∈ X we say that xi dominates xj , xi � xj , if xi

has evaluation not worse than xj on every attribute, xit ≥ xjt, for all t = 1, . . . ,m. The
dominance relation � is a partial pre-order on X, i.e. it is reflexive and transitive. The
dominance principle can be expressed as follows. For all xi, xj ∈ X it holds:

xi � xj =⇒ yi ≥ yj (9)

The dominance principle follows from the monotone relationship between class indices and
attributes. However, in many real-life applications the dominance principle is not satisfied,
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i.e. there exists at least one pair of objects violating (9). We say, that an object xi is
inconsistent if there exist another object xj , such that xi, xj violates (9). Otherwise, we say
that object xi is consistent. We will also use the following expression: object xi is consistent
with xj , if a pair xi, xj satisfies (9).

The rough approximations concern granules resulting from information carried out by
class indices and by attributes. These granules are called decision and condition granules,
respectively1. The decision granules can be expressed by unions of classes:

Cl≥k = {xi ∈ X : yi ≥ k} (10)

Cl≤k = {xi ∈ X : yi ≤ k} (11)

The condition granules are dominating and dominated sets defined, respectively, as:

D+(x) = {xi ∈ X : xi � x} (12)

D−(x) = {xi ∈ X : x � xi} (13)

Let us remark that both decision and condition granules are cones in decision (Y ) and con-
dition (X) spaces, respectively. Using class unions instead of single classes, and dominating
(dominated) sets instead of single objects, is a general property of most of the methodologies
dealing with ordinal classification problem with monotonicity constraints and follows directly
from the monotone nature of the data.

Lower dominance-based approximations of Cl≥k and Cl≤k are defined as follows:

Cl≥k = {xi ∈ X : D+(xi) ⊆ Cl≥k } (14)

Cl≤k = {xi ∈ X : D−(xi) ⊆ Cl≤k } (15)

They reflect the objects which certainly belong to class union Cl≥k (or Cl≤k ). This certainty
comes from the fact, that object xi belongs to the lower approximation of class union Cl≥k
(respectively Cl≤k ) if no other object in the dataset X contradicts it, i.e. xi is consistent with
every other object outside of Cl≥k (respectively Cl≤k ). Otherwise, if there exists an object
outside of Cl≥k , which dominates xi, then due to the dominance principle (following from the
monotonicity constraints) we cannot say that xi should belong to Cl≥k with certainty.

Notice, that for any k ∈ Y , we have Cl≥k ∪ Cl
≤
k−1 = X. It is not the case with the lower

approximations. Therefore we define the boundary (doubtful) region [13] for class unions Cl≥k
and Cl≤k−1 as:

Bk = X\(Cl≥k ∪ Cl
≤
k−1) (16)

This region reflects the area which does not belong to lower approximations of class unions
Cl≥k and Cl≤k−1. Notice, that DRSA handles the analysis of inconsistencies by decomposition
into K − 1 separate binary problems: for each k = 2, . . . ,K we have lower approximations
Cl≥k , Cl≤k−1 and boundary Bk, which together form the whole set X. Such a decomposition
will also be used in the stochastic extension of DRSA.

For the purpose of this paper, we will focus our attention on another concept from DRSA
(as we shall shortly see, equivalent to the notion of approximations), the generalized decision
[6]. Consider an object xi ∈ Cl≥k ; since the lower approximation of class union Cl≥k is a
region, in which objects certainly belong to Cl≥k , we can state that the class index of xi

should be at least k. Choosing the greatest k for which xi ∈ Cl≥k holds (denoted by l(xi)),
we know that the class index of xi must be at least l(xi); moreover, we cannot give more
precise statement, since we are not certain that the class index of xi is at least l(xi) + 1

1Those names come from the fact, that in rough set theory the class index for a given object is called a
decision value and the attributes are called condition attributes.
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Figure 2: Example of a two-class problem. Black points are objects from class 0, light points
— from class 1 (indexing classes from 0 will be used throughout this paper in binary case).
We have Cl≥0 = Cl≤1 = X, Cl≤0 = {x1, x5}, Cl≥1 = {x6, x9, x6}. The generalized decisions for
objects x1, . . . , x10 were shown in brackets on the chart.

(because xi /∈ Cl≥k ). On the other hand, if xi ∈ Cl≤k , we known that the class index of xi

must be at most k. By similarly choosing the lowest k for which xi ∈ Cl≤t (denoted by u(xi)),
we end up with the interval of classes [l(xi), u(xi)], for which we know that object xi must
belong to. This interval is often denoted by δ(xi), and is called a generalized decision2:

δ(xi) = [l(xi), u(xi)] (17)

where:

l(xi) = max
{
k : xi ∈ Cl≥k

}
(18)

u(xi) = min
{
k : xi ∈ Cl≤k

}
(19)

The generalized decision reflects an interval of decision classes to which an object may belong
due to the inconsistencies with the dominance principle. Investigating the definitions of lower
approximations (14)-(15) one can show, that generalized decision can be easily computed
without reference to the lower approximation:

l(xi) = min{yj : xj � xi, xj ∈ X} (20)

u(xi) = max{yj : xi � xj , xj ∈ X} (21)

Thus, l(xi) is the lowest class, to which objects dominating xi belong; u(xi) is the highest
class, to which objects dominated by xi belong. Obviously, l(xi) ≤ yi ≤ u(xi) for every
xi ∈ X and if l(xi) = u(xi), then object xi is consistent with respect to the dominance
principle with every other object xj ∈ X. Notice, that the wider the generalized decision,
the less precise knowledge about the object we have. The generalized decision, along with
lower approximations for a binary-class problem, are shown in Figure 2.

Let us remark that the description with generalized decision is fully equivalent to the
description with rough approximations. Namely, dominance-based lower approximations
may be expressed using the generalized decision:

Cl≥k = {xi ∈ X : l(xi) ≥ k} (22)

Cl≤k = {xi ∈ X : u(xi) ≤ k} (23)

2We remind that the class assignments are called decision values in rough set theory.
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Finally, notice that the definitions of lower approximations and generalized decisions for
DRSA are very restrictive. Suppose, there exists one object dominating many other objects
from a dataset, but its class index is the lowest one (e.g. due to a mistake). Then, many
of the objects will be included into boundary regions and their generalized decision will
be broadened. Therefore, relaxed definitions of lower approximations have been introduced
under the name of variable consistency DRSA (VC-DRSA) [14, 3], which allow object xi to
be incorporated into lower approximations, if a high fraction of objects dominating xi (or
being dominated by xi) is consistent with xi. The stochastic model introduced in the next
section has similar properties, therefore it can be regarded as a sort of VC-DRSA model.

4 Stochastic Model of DRSA

In this section, we introduce new definitions of lower approximations for DRSA. The defini-
tions will be based on the probabilistic model for the ordinal classification problems.

In Section 2, we have made the assumption that in a single granule I(x), each object
x ∈ G has the same conditional probability distribution, Pr(y|I(x)). This is due to the
property of indiscrenibility of objects within a granule. In case of DRSA, indiscernibility is
replaced by a dominance relation, so that a different relation between the probabilities must
hold. Namely, we conclude from the dominance principle that:

xi � xj =⇒ Pr(y ≥ k|xi) ≥ Pr(y ≥ k|xj) ∀k ∈ Y, ∀xi, xj ∈ X (24)

where Pr(y ≥ k|xi) is a probability (conditioned on xi) of class index at least k. In other
words, if object xi dominates object xj , the probability distribution conditioned at point xi

stochastically dominates the probability distribution conditioned at xj . Equation (24) will
be called stochastic dominance principle. It reflects the general property of a probability dis-
tribution in the problems with monotonicity constraints. Moreover, reversing our reasoning,
we can give a statistical definition of the ordinal classification problem with monotonicity
constraints: it is every classification problem with ordered value sets of attributes and classes
with the probabilistic model for which (24) holds.

Having stated the probabilistic model, we introduce the stochastic DRSA by relaxing the
definitions of lower approximation of classes:

Cl≥k = {xi ∈ X : Pr(y ≥ k|xi) ≥ α}, (25)

Cl≤k = {xi ∈ X : Pr(y ≤ k|xi) ≥ α} =
= {xi ∈ X : Pr(y ≥ k + 1|xi) ≤ 1− α} (26)

where α is a fixed threshold. Thus, lower approximation of class union Cl≥k is a region in
which objects are assigned to Cl≥k with high probability (at least α). The boundary region
Bk = X\(Cl≥k ∪Cl

≤
k−1) is the region in which objects belong to any of unions Cl≥k and Cl≤k−1

with probability in the range (1 − α, α). Two special cases are important. When α = 1,
lower approximation reflects the certain region for a given class union (contains only those
objects, which surely belong to this class union) and, as we shall shortly see, the stochastic
definition boils down to the classical definition of dominance-based lower approximations.
When α becomes close to 1

2 , only objects for which Pr(y ≤ k − 1|xi) = Pr(y ≥ k|xi) = 1
2 are

in the boundary Bk, which corresponds to the Bayes boundary between classes [10].
Assume for a while that the probabilities are known so that we can obtain lower approxi-

mations for each class union. It may happen for an object xi, that although it does not belong
to the class Cl≥k , it belongs to Cl≥k (because its class probability satisfies Pr(y ≥ k|xi) ≥ α).
The interpretation of this fact is the following: although the class index of xi observed in the
dataset is less than k, i.e. yi < k, such event is less likely than the event yi ≥ k; hence we
should change its class union to the more probable one. Therefore stochastic approximations
lead to reassigning the objects.
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To determine, what the range of classes to which an object xi belongs with high probability
should be, we must take the greatest class index k for which xi ∈ Cl≥k and the smallest class
index k for which xi ∈ Cl≤k . This is exactly the generalized decision defined in (18)-(19), but
using the stochastic lower approximations (25)-(26) in the definition (so that equations (20)-
(21) do not hold any longer). To distinguish between the classical and stochastic definitions of
the generalized decision we will refer to the latter one as a stochastic decision. Concluding,
stochastic decision reflects the classes, to which an object belongs with high probability,
therefore it can be regarded as a sort of confidence interval. In a special case α = 1 those class
intervals boil down to the generalized decisions and cover the whole probability distribution
conditioned at a given object xi – the real class of xi is inside the interval with certainty.
On the other hand, such intervals may be too wide, so that we loose information about the
objects. Therefore, in real-life data, lower values of α are more appropriate.

However, the real probabilities are unknown in almost every case. Therefore, next few
sections will be devoted to the nonparametric estimation of probabilities under stochastic
dominance assumption, which is a much harder task than in the VPRS case with indiscerni-
bility relation. Since for each k = 2, . . . ,K we need to obtain two lower approximations
Cl≥k and Cl≤k−1, we must solve K − 1 binary problems, where in each problem the “positive”
class corresponds to the class union Cl≥k and the “negative” class – to the class union Cl≤k−1.
Therefore one needs to estimate the probabilities only for the binary-class problems. This
will be considered in Sections 5, 6 and 7. In Sections 8 and 9 we show, that for a given α,
one can directly obtain stochastic lower approximations without estimating the probabilities.
Finally, in Section 10 we justify the splitting into K − 1 binary problems, showing that it
does not lead to inconsistent results.

5 Binary-class Probability Estimation

In this section, we will restrict the analysis to the binary classification problem, so we assume
Y = {0, 1} (0 denotes “negative” class, while 1 – “positive”). Notice, that Cl≥0 and Cl≤1 are
trivial (they are equal to X), so that only Cl≥1 and Cl≤0 are used and will be denoted
simply by Cl1 and Cl0, respectively. Finally notice, that in case of generalized decision,
l(xi) = u(xi) = 0 for xi ∈ Cl0, l(xi) = u(xi) = 1 for xi ∈ Cl1, and l(xi) = 0, u(xi) = 1 for
xi ∈ B, where B denotes the boundary region.

We denote p1
i = Pr(y ≥ 1|xi) = Pr(y = 1|xi) and p0

i = Pr(y ≤ 0|xi) = Pr(y = 0|xi). The
stochastic approximations (25)-(26) have the following form:

Clk = {xi ∈ X : pk
i ≥ α}, (27)

for k ∈ {0, 1}, where α is a chosen threshold value. Notice, that for (27) to make sense, it
must hold α ∈ (0.5, 1], since for any xi, p0

i +p1
i = 1. Since we do not know probabilities pk

i , we
will use their ML estimators p̂k

i instead, and the nonparametric procedure of ML estimation
will be used, based only on the stochastic dominance principle. The conditional likelihood
function (probability of classes with X being fixed) is a product of binomial distributions
and is given by:

L(p; y|X) =
n∏

i=1

(p1
i )yi(p0

i )1−yi (28)

By using pi := p1
i (since p0

i = 1− pi), the likelihood can be written as:

L(p; y|X) =
n∏

i=1

(pi)yi(1− pi)1−yi (29)

8



The log-likelihood is then:

L(p; y|X) =
n∑

i=1

(yi ln(pi) + (1− yi) ln(1− pi)) (30)

The stochastic dominance principle (24) in binary-class case simplifies to:

xi � xj =⇒ pi ≥ pj ∀xi, xj ∈ X (31)

To obtain probability estimators p̂i, we need to maximize (30) subject to constraints (31).
This is exactly the problem of statistical inference under the order restriction [24].

At the moment, we can prove the following theorem, which strongly reduces the size of
the problem:

Theorem 1. Object xi ∈ X is consistent with respect to the dominance principle if and only
if p̂i = yi.

Proof. We consider the case yi = 1 (the case yi = 0 is analogous). If xi is consistent, then
there is no other object xj , such that xj � xi and yj = 0 (otherwise, it would violate
dominance principle and consistency of xi as well). Thus, for every xj , such that xj � xi,
yj = 1 and yj is also consistent (otherwise, due to transitivity of dominance, xi would not
be consistent). Hence, we can set p̂j = 1 for xj and p̂i = 1 for xi, and these are the values
that maximize the log-likelihood (30) for those objects, while satisfying the constraints (31).

Now, suppose p̂i = 1 and assume the contrary, that xi is not consistent, i.e. there exists
xj , xj � xi, but yj = 0. Then, due to the monotonicity constraints (31), p̂j ≥ p̂i = 1, so
p̂j = 1, and the log-likelihood (30) equals to minus infinity, which is surely not the optimal
solution to the maximization problem (since at least one feasible solution p̂ ≡ 1

2 with a finite
objective value exists).

We see, that only consistent objects have probability estimates equal to 1. Therefore,
stochastic approximations with α = 1 boil down to the classical DRSA lower approximations.

Using Theorem 1 we can set p̂i = yi for each consistent object xi ∈ X and optimize
(30) only for inconsistent objects, which usually gives a large reduction of the problem size
(number of variables). In the next section, we show that solving (30) boils down to the
isotonic regression problem.

6 Isotonic Regression

The problem of isotonic regression [24] appears naturally during the analysis of statistical
inference when the order constraints are present. For the purpose of this paper we consider the
simplified version of the problem. It is defined in the following way [24]. Let X = {x1, . . . , xn}
be a finite set with some pre-order (reflexive and transitive) relation � ⊆ X ×X. Suppose
also that y : X → R is some function on X, where y(xi) is shortly denoted by yi. Any
function p : X → R is called isotonic, if pi ≥ pj whenever xi � xj (where we again used the
shorter notation pi instead of p(xi)). A function y∗ : X → R is an isotonic regression of y if
it is the optimal solution to the problem:

minimize
n∑

i=1

(yi − pi)2

subject to xi � xj =⇒ pi ≥ pj ∀ 1 ≤ i, j ≤ n, (32)

so that it minimizes the squared error in the class of all isotonic functions p. In our case, the
ordering relation � is the dominance relation, the set X and values of function y on X, i.e.
{y1, . . . , yn} will have the same meaning as before.
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Figure 3: Function Φ(u) = u lnu+ (1− u) ln(1− u).

Although squared error seems to be arbitrarily chosen, it can be shown that minimizing
many other error functions yields to the same function y∗ as in the case of (32). Clearly, we
sketch below the assumptions and the content of the theorem, which leads to the so called
generalized isotonic regression. Details can be found in [24].

Suppose that Φ is a convex function finite on an interval I containing the range of function
y on X, i.e. y(X) ⊆ I and Φ has value +∞ elsewhere. Let φ be a nondecreasing function on
I such that, for each u ∈ I, φ(u) is a subgradient of Φ, i.e. φ(u) is a number between the left
derivative of Φ at u and the right derivative of Φ at u. For each u, v ∈ I define the function
∆Φ(u, v) by:

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v) (33)

Then the following theorem holds:

Theorem 2. [24] Let y∗ be an isotonic regression of y on X, i.e. y∗ solves (32). Then it
holds: ∑

xi∈X

∆Φ(yi, f(xi)) ≥
∑

xi∈X

∆Φ(yi, y
∗(xi)) +

∑
xi∈X

∆Φ(y∗(xi), f(xi)) (34)

for any isotonic function f with the range in I, so that y∗ minimizes∑
xi∈X

∆Φ(yi, f(xi)) (35)

in the class of all isotonic functions f with range in I. The minimizing function is unique if
Φ is strictly convex.

Theorem 2 states, that for any convex function Φ satisfying the assumptions, the isotonic
regression function minimizes also the function ∆Φ. Thus, Theorem 2 can be used to show
that the isotonic regression provides a solution for a wide variety of restricted estimation
problems in which the objective function does not look like least squares at all [24]. Here,
this property will be used to solve the problem (30) under the order restrictions (31).

Let I = [0, 1] and define Φ to be [24]:

Φ(u) =
{
u lnu+ (1− u) ln(1− u) for u ∈ (0, 1)
0 for u ∈ {0, 1} (36)

(see Fig. 3). One can show that Φ is indeed convex on I. Then, the first derivative φ is given
by:
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Figure 4: Example of an isotonic regression problem. Black points are objects from class
0, light points — from class 1. For every xi, the values of probabilities p̂i, where p̂ is the
optimal solution to the isotonic regression problem (32), are shown on the chart.

φ(u) =

 −∞ for u = 0
lnu− ln(1− u) for u ∈ (0, 1)
+∞ for u = 1

(37)

Then ∆Φ(u, v) for u, v ∈ (0, 1) is given by:

∆Φ(u, v) = u lnu+ (1− u) ln(1− u)− u ln v − (1− u) ln(1− v) (38)

It is easy to check, that ∆Φ(u, v) = 0 if u = v = 1 or u = v = 0, and that ∆Φ(u, v) = +∞
for u = 0, v = 1 or u = 1, v = 0. Now suppose that we want to minimize the function∑n

i=1 ∆Φ(yi, f(xi)) between all isotonic functions f in the range I = [0, 1]. Then the first
two terms in (38) depend only on yi, so they can be removed from the objective function,
thus leading to the problem of minimizing:

−
n∑

i=1

(yi ln f(xi) + (1− yi) ln(1− f(xi))) (39)

between all isotonic functions f in the range I. By denoting pi := f(xi) and multiplying by
−1 (for maximization) we end up with the problem of maximizing (30) subject to constraints
(31).

To summarize, we can find solution to the problem (30) subject to (31) by solving the
problem of isotonic regression (32). An example of isotonic regression can be found in Figure
4.

Suppose A is a subset of X and f : X → R is any function. We define Av(f,A) =
1
|A|
∑

xi∈A f(xi) to be the average value of f on the set A. Now suppose y∗ is the isotonic
regression of y. By a level set of y∗, denoted [y∗ = a], we mean the subset of X on which y∗

has constant value a, i.e. [y∗ = a] = {x ∈ X : y∗(x) = a}. The following theorem holds:

Theorem 3. [24] Suppose y∗ is the isotonic regression of y. If a is any real number such
that the level set [y∗ = a] is not empty, then a = Av(y, [y∗ = a]).

Theorem 3 states, that for a given x, y∗(x) equals to the average of y over all the objects
having the same value y∗(x). In other words, if we divide X into disjoint subsets such that
for any subset all of the objects have the same value of y∗(x) (so that those subsets are level
sets), then y∗(x) must be equal to the average value of y within this subset. Since there is a
finite number of divisions of X into level sets, we conclude there is a finite number of values
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that y∗ can possibly take. In our case, since yi ∈ {0, 1}, all values of y∗ must be of the form
r

r+s , where r is the number of objects from class Cl1 in the level set, while s is the number
of objects from Cl0.

7 Minimal Reassignment Problem

In this section we briefly describe the problem of minimal reassignment, introduced in [8].
We focus only on the binary problem. Comparing to [8], the notation for decision variables
was unified with the notation used in this paper.

We define the reassignment of an object xi ∈ X as changing its class index yi. Moreover,
by minimal reassignment we mean reassigning the smallest possible number of objects to
make the set X consistent (with respect to the dominance principle). One can see, that such
a reassignment of objects corresponds to indicating and correcting possible inconsistencies
in the dataset. We denote the minimal number of reassigned objects from X by R. To
compute R, one can formulate a linear programming problem. Such problems were already
considered in [5] (under the name isotonic separation, in the context of binary and multi-
class classification) and also in [4] (in the context of boolean regression). In [8] the similar
problem was formulated, but with a different aim. An example of minimal reassignment for
an illustrative binary problem is shown in Figure 5.

Assume yi ∈ {0, 1}. For each object xi ∈ X we introduce a binary variable di which is
to be a new class index for xi. The demand that the class indices must be consistent with
respect to the dominance principle implies:

xi � xj =⇒ di ≥ dj ∀1 ≤ i, j ≤ n (40)

Notice, that (40) has the form of the stochastic dominance principle (31). The reassignment
of an object xi takes place if yi 6= di. Therefore, the number of reassigned objects (which is
also the objective function for minimal reassignment problem) is given by:

R =
n∑

i=1

|yi − di| =
n∑

i=1

(yi(1− di) + (1− yi)di) (41)

where the last equality is due to the fact, that both yi, di ∈ {0, 1} for each i. Finally notice,
that the matrix of constraints (40) is totally unimodular [5, 18, 8], so we can relax the integer
condition for di reformulating it as 0 ≤ di ≤ 1, and get a linear programming problem:

minimize
n∑

i=1

(yi(1− di) + (1− yi)di)

subject to xi � xj =⇒ di ≥ dj ∀1 ≤ i, j ≤ n (42)

0 ≤ di ≤ 1 ∀1 ≤ i ≤ n

We will rewrite the problem (42) in a slightly different form:

minimize
n∑

i=1

|yi − di|

subject to xi � xj =⇒ di ≥ dj ∀1 ≤ i, j ≤ n (43)

where the last constraint 0 ≤ di ≤ 1 has been dropped, because if there were any di ≥ 1 (or
di ≤ 0) in any feasible solution, we could decrease their values down to 1 (or increase up to
0), obtaining a new feasible solution with smaller value of the objective function of (43).

Comparing (43) with (32), we notice that, although both problems emerged in different
context, they look very similar and the only difference is in the objective function. In (32)

12
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Figure 5: Example of a minimal reassignment problem. Black points are objects from class
0, light points — from class 1. For every xi, a new label d̂i (where d̂ = {d̂1, . . . , d̂n} is one
of the optimal solutions to the minimal reassignment problem (43)) is shown on the chart.
There is one more optimal solution d̂′, which differs from d̂ only for objects x7, x8, namely
d̂′7 = 1, d̂′8 = 1.
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Figure 6: Functions l(x) and u(x) defined in (45)-(46), for value α = 1
2 .

we minimize L2-norm (sum of squares) between vectors y and p, while in (43) we minimize
L1-norm (sum of absolute values). In fact, both problems are closely connected, which will
be shown in the next section.

8 Relationship Between Isotonic Regression and Mini-
mal Reassignment

To show the relationship between isotonic regression and minimal reassignment problems we
consider the latter to be in a more general form, allowing the cost of reassignment to be
different for different classes. The weighted minimal reassignment problem is given by

minimize
n∑

i=1

wyi
|yi − di|

subject to xi � xj =⇒ di ≥ dj ∀1 ≤ i, j ≤ n (44)

where wyi
are arbitrary, positive weights associated with classes. The following results hold:
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Theorem 4. Suppose p̂ = {p̂1, . . . , p̂n} is an optimal solution to the problem of isotonic
regression (32). Choose some value α ∈ [0, 1] and define two functions:

l(x) =
{

0 if x ≤ α
1 if x > α

(45)

and

u(x) =
{

0 if x < α
1 if x ≥ α (46)

where x ∈ R (see Fig. 6). Then the solution d̂l = {d̂l
1, . . . , d̂

l
n} given by d̂l

i = l(p̂i) for each
i ∈ {1, . . . , n} and the solution d̂u = {d̂u

1 , . . . , d̂
u
n} given by d̂u

i = u(p̂i) for each i ∈ {1, . . . , n}
are the optimal solutions to the problem of weighted minimal reassignment (44) with weights:

w0 = α

w1 = 1− α (47)

Moreover, if d̂ = {d̂1, . . . , d̂n} is an optimal integer solution to the problem of weighted
minimal reassignment with weights (47), it must hold d̂l

i ≤ d̂i ≤ d̂u
i , for all i ∈ {1, . . . , n}.

In particular, if d̂l ≡ d̂u, then the solution of the weighted minimal reassignment problem is
unique.

Proof. Let us define a function Φ(u) on the interval I = [0, 1] in the following way:

Φ(u) =
{
α(u− α) for x ≥ α
(1− α)(α− u) for x < α

(48)

It is easy to check, that Φ(u) is a convex function, but not a strictly convex function. Φ has
derivative φ(u) = α − 1 for u ∈ [0, α) and φ(u) = α for u ∈ (α, 1]. At point u = α, Φ(u) is
not differentiable, but each value in the range [α− 1, α] is a subgradient of Φ(u).

First, suppose we set φ(α) = α− 1. We remind, that:

∆Φ(u, v) = Φ(u)− Φ(v)− (u− v)φ(v) (49)

Now, assume u ∈ {0, 1}. To calculate ∆Φ(u, v), we need to consider four cases, depending
on what the values of u and v are:

1. u = 0, v > α; then Φ(u) = α(1− α), Φ(v) = α(v− α), φ(v) = α, so that ∆Φ(u, v) = α.

2. u = 0, v ≤ α; then Φ(u) = α(1 − α), Φ(v) = (1 − α)(α − v), φ(v) = α − 1, so that
∆Φ(u, v) = 0.

3. u = 1, v > α; then Φ(u) = α(1− α), Φ(v) = α(v − α), φ(v) = α, so that ∆Φ(u, v) = 0.

4. u = 1, v ≤ α; then Φ(u) = α(1 − α), Φ(v) = (1 − α)(α − v), φ(v) = α − 1 so that
∆Φ(u, v) = 1− α.

Using the definition (45) of function l, we can comprehensively write those results as:

∆Φ(u, v) = wu|l(v)− u|, (50)

for u ∈ {0, 1}, where wu are given by (47). Thus, according to Theorem 2, p̂ is the optimal
solution to the problem:

minimize
n∑

i=1

wyi
|l(pi)− yi| (51)

subject to xi � xj =⇒ pi ≥ pj ∀1 ≤ i, j ≤ n (52)

14



Notice, that d̂l = l(p̂) is also the optimal solution to the problem (51)-(52), because l
is a nondecreasing function, so if p̂ satisfies constraints (52), then so does d̂l. Moreover,
l(l(x)) = l(x), so the value of the objective function (51) is the same for both p̂ and d̂l. But
d̂l is integer, and for integer solutions problems (51)-(52) and (44) are the same, so d̂l is a
solution to the problem (44) with the lowest objective value among all the integer solutions
to this problem. But, from the analysis of the unimodularity of constraints matrix of (44)
we know that if d̂l is the solution to (44) with the lowest objective value among the integer
solutions, it is also the optimal solution, since there exists an optimal solution to (44), which
is integer.

Now, setting φ(α) = α, we repeat the above analysis, which leads to the function u instead
of l and shows, that also d̂u is the optimal solution to the problem (44).

We now prove the second part of the theorem. Assume v ∈ {0, 1} and fix again φ(α) =
α− 1. To calculate ∆Φ(u, v), we consider again four cases, depending on what the values of
u and v are:

1. u > α, v = 0; then Φ(u) = α(u − α), Φ(v) = α(1 − α), φ(v) = α − 1, so that
∆Φ(u, v) = u− α > 0.

2. u ≥ α, v = 1; then Φ(u) = α(u− α), Φ(v) = α(1− α), φ(v) = α, so that ∆Φ(u, v) = 0.

3. u ≤ α, v = 0; then Φ(u) = (1 − α)(α − u), Φ(v) = α(1 − α), φ(v) = α − 1, so that
∆Φ(u, v) = 0.

4. u < α, v = 1; then Φ(u) = (1 − α)(α − u), Φ(v) = α(1 − α), φ(v) = α, so that
∆Φ(u, v) = α− u > 0.

From Theorem 2 it follows that:

n∑
i=1

∆Φ(yi, f(xi)) ≥
n∑

i=1

∆Φ(yi, p̂i) +
n∑

i=1

∆Φ(p̂i, f(xi)) (53)

for any isotonic function f in the range [0, 1]. Notice that if the last term in (53) is nonzero,
then f cannot be optimal to the problem (51)-(52) (since then p̂ has strictly lower cost than
f).

Suppose now that d̂ is an optimal integer solution to the minimal reassignment problem
(44). But then it is also the solution to the problem (51)-(52) with the lowest objective
value between all the integer solutions (since both problems are exactly the same for integer
solutions). Since d̂l is the optimal solution to the problem (51)-(52) and it is integer (so
that there exists an integer solution which is optimal), d̂ is also the optimal solution to this
problem. Then, however, the last term in (53) must be zero, so for each i ∈ {1, . . . , n} it must
hold ∆Φ(p̂i, d̂i) = 0 (since all those terms are nonnegative). As d̂ is integer, it is clear from
the above analysis of ∆Φ(u, v) for v being integer, that it may only happen, if the following
conditions hold:

p̂i > α =⇒ d̂i = 1 (54)

p̂i < α =⇒ d̂i = 0 (55)

for all i ∈ {1, . . . , n}. From the definitions of d̂l and d̂u it follows, that for p̂i = α it holds
that d̂l

i = 0 and d̂u
i = 1, for p̂i > α it holds d̂l

i = d̂u
i = 1 and for p̂i < α it holds d̂l

i = d̂u
i = 0.

From this and from (54)-(55) we conclude that:

d̂l
i ≤ d̂i ≤ d̂u

i (56)

for all i ∈ {1, . . . , n}, for any optimal integer solution d̂ to the problem (44).
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Theorem 4 clearly states, that if the optimal value for a variable p̂i in the isotonic regres-
sion problem (32) is greater (or smaller) than α, then the optimal value for the corresponding
variable d̂i in the weighted minimal reassignment problem (44) with weights (47) is 1 (or 0).
In particular, for α = 1

2 we have w0 = w1 = 1, so we obtain the reassignment problem
(43). Comparing Figure 4 and Figure 5, one can see this correspondence (notice, that for
objects x7, x8 we have p̂7 = p̂8 = 1

2 and thus there are two optimal solutions for minimal
reassignment problem — see description under the Figure 5).

It also follows from Theorem 4, that if α cannot be taken by any p̂i in the optimal
solution p̂ to the isotonic regression problem (32), the optimal solution to the weighted
minimal reassignment problem (44) is unique. It follows from the Theorem 3, that p̂ can
take only finite number of values,which must be of the form r

r+s , where r < n1 and s < n0

are integers (n0 and n1 are numbers of objects from class 0 and 1, respectively). Since it is
preferred to have a unique solution to the reassignment problem, from now on, we always
assume that α was chosen not to be of the form r

r+s (in practice it can easily be done by
choosing α to be a simple ratio, e.g. 2/3 and adding some small number ε). We call such
value of α to be proper.

It is worth noticing that the weighted minimal reassignment problem is easier to solve
than the isotonic regression. It is linear, so that one can use linear programming, it can also
be transformed to the network flow problem [5] and solved in O(n3). In the next section,
we show, that to obtain stochastic lower approximations, one does not need to solve isotonic
regression problem but only two reassignment problems instead. In other words, one does
not need to estimate probabilities and can directly estimate stochastic lower approximations.

9 Summary of Stochastic DRSA for Binary-class Prob-
lem

We begin with reminding the definitions of lower approximations of classes (for a two-class
problem) with threshold α:

Clk = {xi ∈ X : pk
i ≥ α} (57)

for k ∈ {0, 1}. The probabilities pk are estimated using the ML approach and from the
previous analysis it follows that the set of estimators p̂ is the optimal solution to the isotonic
regression problem.

As it was stated in the previous section we choose α to be proper, so that the definition
(57) can be equivalently stated as:

Cl1 = {xi ∈ X : p̂i > α}
Cl0 = {xi ∈ X : 1− p̂i > α} = {xi ∈ X : p̂i < 1− α} (58)

where we replace the probabilities by their maximum likelihood estimators and we use “>”
instead of “≥”, since proper values of α cannot be taken by any p̂i. It follows from Theorem
4, that to obtain Cl0 and Cl1, we do not need to solve isotonic regression. Instead we solve
two weighted minimal reassignment problems (44), the first one with weights w0 = α and
w1 = 1 − α, the second one with w0 = 1 − α and w1 = α. Then, objects with new class
indices (optimal assignments) d̂i = 1 in the first problem form Cl1, while objects with new
class indices d̂i = 0 in the second problem form Cl0. It is easy to show that the boundary
between classes is composed of objects for which new class indices are different in these two
problems (see Figure 7).

10 Extension to the Multi-class Case

Till now, we focused only on the binary problems in case of DRSA. However, the theory
should also be valid for more general problems, when the number of classes equals to an
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Figure 7: Black points are objects from class 0, light points — from class 1. Lower ap-
proximations for threshold α = 0.6 were shown on the chart (dashed regions): Cl0 =
{x1, x2, x3, x4, x5}, Cl1 = {x6, x9, x10}. Notice, that x7, x8 do not belong to any lower
approximation, so they are at the boundary between classes.

arbitrary number K.
The first idea is to use the multinomial probability distribution for each point xi, {p1

i , . . . , p
K
i }.

Then, using the maximum likelihood method, we obtain the problem of the following form.
We maximize:

L(p; y|X) = lnL(p; y|X) =
n∑

i=1

ln(pyi

i ) (59)

which is the extension of (30), subject to the constraints:

xi � xj =⇒ pk
i ≥ pk

j ∀k ∈ Y, ∀xi, xj ∈ X (60)

Unfortunately, there is a serious problem with (59) – it has an objective function, which is
not strictly convex, so that the problem may not have a unique solution. It is usually the
case, that at a certain point xi there is only one object, i.e. it is not a common situation, that
xi = xj for some i, j ∈ {1, . . . , n}. Then, usually we have only one value yi to estimate the
full probability distribution {p1

i , . . . , p
K
i } at point xi, from which the lack of strict convexity

follows.
Here we propose a different approach, which always gives a unique solution and is based

on the sequence of two-class (binary) problems, as was already noted in Section 4. By using
the unions of classes, DRSA is naturally incorporated to this procedure.

Suppose we have a K-class problem. Suppose, we want to calculate the lower approxima-
tions of upward union for class k, Cl≥k , and the lower approximation of downward union for
class k − 1, Cl≤k−1. Then we set the “negative” class to be Cl0 = Cl≤k−1, and the “positive”
class to be Cl1 = Cl≥k . Having obtained the binary problem, we can solve it and get the
lower approximations Cl≤k−1 and Cl≥k . Repeating the process K − 1 times for k = 2, . . . ,K,
we obtain the whole set of lower approximations for upward and downward unions.

Thus, we divide the problem into K − 1 binary problems. This procedure gives a unique
solution, since each binary subprocedure gives a unique solution. Notice, that for the pro-
cedure to be consistent, it must follow that for any k′ > k, Cl≥k′ ⊆ Cl≥k and Cl≤k ⊆ Cl≤k′ .
In other words, the solution has to satisfy the property of inclusion that is one of the fun-
damental properties considered in rough set theory. Fortunately, the relation always holds.
First we need to prove the following lemma:
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Figure 8: Example of a three-class case. Black points are from class 1, green — from class 2,
while light — from class 3. The threshold α = 0.6. On the upper chart, the solution to the
binary problem Cl≤1 vs. Cl≥2 is shown (in brackets there are shown the assignments of new
labels in two weighted minimal reassignment problems, as described in Section 9). We see,
that Cl≤1 = {x1, x5}, Cl≥2 = {x4, x6, x7, x8, x9, x10}. On the lower chart, the solution to the
problem Cl≤2 vs. Cl≥3 is shown. Notice, that Cl≤2 = {x1, x2, x3, x4, x5, x6}, Cl≥3 = {x9, x10}.

Lemma 1. Let p̂ be the optimal solution to the isotonic regression problem (32) for class
indices y. Suppose, we introduce a new vector of class indices y′, such that y′i ≥ yi for all
i ∈ {1, . . . , n}. Then, p̂′, the isotonic regression of y′ (the optimal solution to the isotonic
regression problem for values y′), has the following property: p̂′i ≥ p̂i, for all i ∈ {1, . . . , n}.

Proof. Assume the contrary: let p̂′ be the isotonic regression of y′, and let i be such that
p̂′i < p̂i. Define two other solutions, p̂+ and p̂− in the following way:

p̂+
i = max{p̂i, p̂

′
i} (61)

p̂−i = min{p̂i, p̂
′
i} (62)

Notice that p̂+ 6= p̂′ and p̂− 6= p̂, since for some i, p̂′i < p̂i. We show that p̂+, p̂− are feasible
solutions, i.e. they satisfy constraints of (32). Suppose xi � xj . Then, since p̂, p̂′ are feasible,
it follows that p̂i ≥ p̂j and p̂′i ≥ p̂′j . But from definition of p̂+

i we have, that p̂+
i ≥ p̂i and

p̂+
i ≥ p̂′i, so it also holds that p̂+

i ≥ p̂j and p̂+
i ≥ p̂′j . Then, p̂+

i ≥ max{p̂j , p̂
′
j} = p̂+

j .
Similarly, from the definition of p̂−j we have, that p̂−j ≤ p̂j and p̂−j ≤ p̂′j , so it also holds

that p̂−j ≤ p̂i and p̂−j ≤ p̂′i. But then p̂−j ≤ min{p̂i, p̂
′
i} = p̂−i . Thus, both p̂+, p̂− are feasible.
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Let us denote the objective function of (32) as F (y, p) =
∑n

i=1(yi − pi)2. Then, we have:

F (y′, p̂+)− F (y′, p̂′) =
n∑

i=1

(
p̂+2

i − p̂
′2
i − 2y′ip̂

+
i − 2y′ip̂

′
i

)
=

=
n∑

i=1

(
(p̂+

i − p̂
′
i)(p̂

+
i + p̂′i)− 2y′i(p̂

+
i − p̂

′
i)
)

(63)

Since from the definition (61) it holds that p̂+
i − p̂′i ≥ 0 and from the assumption of the

theorem it holds that y′i ≥ yi, we have:

n∑
i=1

2y′i(p̂
+
i − p̂

′
i) ≥

n∑
i=1

2yi(p̂+
i − p̂

′
i) (64)

so that:

F (y′, p̂+)− F (y′, p̂′) ≤
n∑

i=1

(
(p̂+

i − p̂
′
i)(p̂

+
i + p̂′i)− 2yi(p̂+

i − p̂
′
i)
)

(65)

Moreover, from (61)-(62) it holds that p̂+
i + p̂−i = p̂′i + p̂i, so that:

p̂+
i − p̂

′
i = p̂i − p̂−i (66)

and by adding 2p̂′i to both sides of (66):

p̂+
i + p̂′i = 2(p̂′i − p̂−i ) + (p̂i + p̂−i ). (67)

Putting (66)-(67) into (65), we finally obtain:

F (y′, p̂+)− F (y′, p̂′) ≤
n∑

i=1

(
(2(p̂′i − p̂−i ) + (p̂i + p̂−i ))(p̂i − p̂−i )− 2yi(p̂i − p̂−i )

)
=

n∑
i=1

(
2(p̂i − p̂−i )(p̂′i − p̂−i ) + (p̂i − p̂−i )(p̂i + p̂−i )− 2yi(p̂i − p̂−i )

)
=

n∑
i=1

(
2(p̂i − p̂−i )(p̂′i − p̂−i ) + p̂2

i − 2yip̂i − p̂−2
i + 2yip̂

−
i

)
=

n∑
i=1

2(p̂i − p̂−i )(p̂′i − p̂−i ) + F (y, p̂)− F (y, p̂−)

<

n∑
i=1

2(p̂i − p̂−i )(p̂′i − p̂−i ) (68)

where the last inequality is from the assumption that p̂ is the isotonic regression of y (so it
is the unique optimal solution for class indices y), and p̂ 6= p̂−. In the last sum, however, for
each i, either p̂i = p̂−i or p̂′i = p̂−i , so the sum vanishes. Thus, we have:

F (y′, p̂+)− F (y′, p̂′) < 0 (69)

which is a contradiction, since p̂′ is the isotonic regression of y′.

Now, we may state the following theorem:
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Theorem 5. For each k = 2, . . . ,K, let Cl≤k−1 and Cl≥k be the sets obtained from solving
a two-class isotonic regression problem with threshold α for binary classes Cl0 = Cl≤k−1 and
Cl1 = Cl≥k . Then, we have:

k′ ≥ k =⇒ Cl≤k−1 ⊆ Cl
≤
k′−1 (70)

k′ ≥ k =⇒ Cl≥k′ ⊆ Cl≥k (71)

Proof. Suppose we have solved the problem for some k. Denote yi = 1 if xi ∈ Cl≥k and yi = 0
if xi ∈ Cl≤k−1. Suppose we have also solved the problem for some k′ ≥ k. Denote y′i = 1 if
xi ∈ Cl≥k′ and y′i = 0 if xi ∈ Cl≤k′−1. Clearly, from the definition of Cl≤k−1, Cl

≥
k it follows that

yi ≥ y′i for each i ∈ {1, . . . , n}. Then, according to Lemma 1, if xi ∈ Cl≤k−1 (so that p̂i < α),
then also xi ∈ Cl≤k′−1 (since then p̂′i ≤ p̂i < α). Analogously, if xi ∈ Cl≥k′ , then also xi ∈ Cl≥k .
This proves the theorem.

To summarize, in the previous sections we focused on estimating the stochastic lower
approximations. Since the probabilities in the definitions (25)-(26) are unknown, we use
their maximum likelihood estimates instead. We showed that we do not need to estimate
those probabilities (which is hard), rather we directly calculate lower approximations for a
given threshold α (which is easier). Now, having obtained stochastic approximations, we can
assign to each object a stochastic decision, as it was described in Section 4. In the next section
we show, that the stochastic decision intervals have interesting decision-theoretic properties.

Notice that the probability estimation is done by minimizing the squared error in the class
of all monotone functions. Such a class of functions can be too broad, especially when m
(dimension of the attribute space) grows. Then, the dominance relation becomes sparse; this,
in turn, makes the dataset more and more consistent because only few objects are comparable
by dominance relation. This may deteriorate the estimation of probability and, in the extreme
case, when the dataset is completely consistent, for each object xi the probability distribution
becomes concentrated on a single class yi. This is one of the symptoms of the famous curse
of dimensionality [1].

Generally, the quality of probability estimates depends on the number of objects which
can be compared by dominance relation. If this number is high, the estimates are reliable,
however, it is low in a high-dimensional space. In such cases, one should decrease the dimen-
sion of the space by removing some of the attributes. Since we are dealing with the problems
in which the domain knowledge (in the form of monotonicity constraints) is present, the ideal
process of attribute selection would be supervised by a domain expert. If such supervision is
impossible, the attribute selection can be done by searching for reducts with respect to the
quality of approximation. A measure of the quality of approximation, particularly useful for
this purpose, was proposed in [7]. Here, however, we will not consider these issues in greater
detail.

11 Decision-theoretical View of Rough Sets

In this section we will look at the problem of variable precision classical rough sets and
stochastic DRSA from the point of view of statistical decision theory [2, 17]. A decision-
theoretic approach has already been proposed for VPRS [29, 30, 21] and for DRSA [16]. The
theory presented here for VPRS is slightly different than in [29], while the decision-theoretic
view for DRSA proposed in this section is completely novel.

Suppose, we seek for a function (classifier) f(x) which, for a given input vector x, pre-
dicts value y as well as possible. To assess the goodness of prediction, the loss function
L(y, f(x)) is introduced for penalizing the prediction error. The simplest loss function for
binary classification problem, when y, f(x) ∈ {0, 1}, is 0-1 loss, given by:
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L0−1(y, f(x)) =
{

0 if f(x) = y
1 if f(x) 6= y

(72)

However, more complicated loss functions are intensively used in machine learning [17].
Since x and y are the observed values of some random variables, the overall measure of the
classifier f(x) is the expected loss or risk, which is defined as a functional:

R(f) = E[L(y, f(x))] =
∫
L(y, f(x))dP (y, x) (73)

for some probability measure P (y, x). Since P (y, x) is unknown in almost all cases, one
usually minimizes the empirical risk, which is the value of risk taken for the points from a
training sample U :

Re(f) =
n∑

i=1

L(yi, f(xi)) (74)

Function f is usually chosen from some restricted family of functions. We now show that
the rough set theory leads to the classification procedures, which are naturally suited for
dealing with problems when the classifiers are allowed to abstain from giving an answer in
some cases.

Let us start with the classical theory of variable precision rough sets. We consider the
multi-class problem and allow the classification function to give no answer, which is denoted
as f(x) =?. The loss function suitable for the problem is the following:

Lc(y, f(x)) =

 0 if f(x) = y
1 if f(x) 6= y
β if f(x) =?

(75)

As we see, there is a penalty β for giving no answer. To be consistent with the classical
rough set theory, we assume, that any function must be constant within each granule, i.e.
for each G = I(x) for some x ∈ X, we have:

xi, xj ∈ G =⇒ f(xi) = f(xj) ∀xi, xj ∈ X (76)

which is in fact the principle of indiscernibility. We now state:

Theorem 6. The function f∗ minimizing the empirical risk (74) with loss function (75)
between all functions satisfying (76) is equivalent to the VPRS in the sense, that f∗(G) = k
if and only if granule G belongs to the lower approximation of class k with the precision
threshold u = 1− β, otherwise f∗(G) =?.

Proof. Since apart from (76), there are no other restrictions for possible functions f , we can
analyze the value of f in each granule independently. Let us choose then a granule G = I(x)
for some x ∈ X. Let us also denote the number of objects in G as nG, and for each class
index k ∈ Y , let us denote nk

G as the number of objects from class k in G. It is clear that
the total loss of a function f in the granule G is the following:

L(f(G)) =
{
nG − nk

G if f(G) = k
β · nG if f(G) =? (77)

This follows from the fact that if f(G) = k, then for each xi ∈ G such that yi 6= k, function
f suffers loss 1. On the other hand, if f(G) =?, for each xi ∈ G, function f suffers loss β. It
is obvious that the best strategy is to choose the majority class in G or abstain from answer,
depending on which loss is lower. The preferred strategy is to choose the majority class, if
for a given k it holds nG − nk

G ≤ βnG or:

β ≥ 1− nk
G

nG
. (78)
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Otherwise, if no k satisfies this relation, the preferred strategy is to choose f∗(G) =?. Com-
paring this result with Section 2, one can see that the decision f∗(G) = k is chosen if granule
G belongs to the lower approximation of class k with the precision threshold u = 1 − β.
Clearly, from (4) with probabilities estimated by (8), the above inequality follows (we as-
sume that u > 1

2 , so granule G may belong to the lower approximation of one class only). If
there is no class for which G is in its lower approximation, the optimal function f∗ abstains
from answer.

Concluding, the variable precision rough sets can be derived by considering the class
of functions constant in each granule and choosing the function f∗, which minimizes the
empirical risk (74) for loss function (77) with parameter β = 1 − u. For each granule G, if
G ⊆ Clk for a given k ∈ Y , then f∗(x) = k for each x ∈ G. Otherwise f∗(x) =? (abstaining
from answer). As we see, the classical rough set theory suits well for considering the problems,
when the classification procedure is allowed to abstain from predictions for an x.

We now turn back to DRSA. The problem here is different, since now we assume, that to
each point x, classification function f assigns the interval of classes, denoted as [l(x), u(x)].
The lower and upper ends of each interval are supposed to be consistent with the dominance
principle:

xi � xj =⇒ l(xi) ≥ l(xj) ∀xi, xj ∈ X
xi � xj =⇒ u(xi) ≥ u(xj) ∀xi, xj ∈ X (79)

The loss function L(y, f(x)) is composed of two terms. The first term is a penalty for the
size of the interval (degree of imprecision) and equals to β(u(x) − l(x)). The second term
measures the accuracy of the classification and is zero, if y ∈ [l(x), u(x)], otherwise f(x)
suffers additional loss equal to the distance of y from the closer interval end:

L(y, f(x)) = β(u(x)− l(x)) + I(y /∈ [l(x), u(x)]) min{|y − l(x)|, |y − u(x)|} (80)

where I(·) is an indicator function. We now state the following theorem:

Theorem 7. The function f∗ minimizing the empirical risk (74) with loss function (80) be-
tween all interval functions satisfying (79) is equivalent to the stochastic DRSA with threshold
α = 1 − β in the sense, that for each x ∈ X, f∗(x) = [l∗(x), u∗(x)] is a stochastic decision
defined by (18)-(19).

Proof. First we show, how to find the function minimizing the empirical risk using the linear
programming approach. Let lik, uik ∈ {0, 1}, be binary decision variables for each i ∈
{1, . . . , n}, k ∈ {2, . . . ,K}. We code the lower and upper ends of interval f(xi) as l(xi) =
1 +

∑K
k=2 lik and u(xi) = 1 +

∑K
k=2 uik. In order to provide the unique coding for each value

of l(xi) and u(xi) and to ensure that u(xi) ≥ l(xi), the following properties are sufficient:

uik ≥ lik ∀i ∈ {1, . . . , n}, k ∈ {2, . . . ,K} (81)

lik ≥ lik′ ∀i ∈ {1, . . . , n}, k < k′ (82)

uik ≥ uik′ ∀i ∈ {1, . . . , n}, k < k′ (83)

Moreover, for dominance principle (79) to hold, we must also have:

xi � xj =⇒ lik ≥ lik ∀i ∈ {1, . . . , n}, k ∈ {2, . . . ,K} (84)

xi � xj =⇒ uik ≥ uik ∀i ∈ {1, . . . , n}, k ∈ {2, . . . ,K} (85)

It is not hard to verify, that the loss function (80) for object xi can be written as:

Li = L(f(xi), yi) = β

K∑
k=2

(uik − lik) +
K∑

k=yi+1

lik +
yi∑

k=2

(1− uik) (86)
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Denoting yik = I(yi ≥ k), where I(·) is the indicator function, we have:

Li = (1− β)
K∑

k=2

lik(1− yik)− β
K∑

k=2

likyik +

β

K∑
k=2

uik(1− yik)− (1− β)
K∑

k=2

uikyik +
K∑

k=2

yik

=
K∑

k=2

wII
yik
|lik − yik|+

K∑
k=2

wI
yik
|uik − yik|+ C (87)

where C is a constant term (which does not depend on lik and uik), and wI
0 = β,wI

1 =
1 − β,wII

0 = 1 − β,wII
1 = β. But it follows from (87), that minimizing empirical risk Re =∑n

i=1 Li is equivalent to solving the sequence of K−1 pairs of weighted minimal reassignment,
as described in Section 10 (solving the multi-class case as K − 1 binary problems) and in
Section 9 (obtaining lower approximations by solving a pair of weighted minimal reassignment
problems) with the penalty β equal to 1− α, but with additional constraints (81)-(83). We
now show that those constraints are in fact not needed.

Suppose now, we remove constraints (81)-(83). Then we obtain 2(K − 1) separate prob-
lems, since variables {li2}ni=1, {ui2}ni=1, . . . , {liK}ni=1, {uiK}ni=1 are now independent sets and
their optimal values can be obtained separately. This is exactly the construction of stochastic
lower approximations in the multi-class case as described before. But it follows from Theo-
rem 5, that constraints (82) and (83) are satisfied at optimality. Moreover, from Theorem 4
and analysis in Section 10 it follows that also the constraints (81) are satisfied at optimality.
Thus, the optimal solution to the problem without constraints (81)-(83) is also the solution
to the problem with constraints (81)-(83).

Since constraints are not needed (they are satisfied at optimality), the empirical risk
minimization of loss function (80) corresponds to obtaining stochastic lower approximations
(25)-(26). One can check, that the function minimizing the risk, f∗(x) = [l∗(x), u∗(x)] is a
stochastic decision defined by (18)-(19).

Concluding, the stochastic DRSA can be derived by considering the class of interval
functions, for which the lower and upper ends of intervals are isotonic (consistent with the
dominance principle) and choosing the function f∗, which minimizes the empirical risk (74),
with loss function (80) and with parameter a = 1− α. For each x ∈ X, f∗(x) is a stochastic
decision.

12 Conclusions

The paper introduced a new stochastic approach to dominance-based rough sets. Application
of the approach results in estimating the class intervals for each object (so called stochastic
decision). For a given object xi, such class interval [l(xi), u(xi)] has the property that k ≤
l(xi) ⇐⇒ Pr(y ≥ k|xi) ≥ α and k ≥ u(xi) ⇐⇒ Pr(y ≤ k|xi) ≥ α. In other words, it
reflects an interval of classes, to which class index yi probably belongs. On the other hand,
such a class interval has the form of a confidence interval and follows from the empirical risk
minimization of the specific loss function.

In order to obtain stochastic lower approximation we had to consider a problem of prob-
ability estimation. Starting from general remarks about the estimation of probabilities in
the classical rough set approach (which appears to be the maximum likelihood estimation),
we used the same statistical procedure for DRSA, which led us to the isotonic regression
problem. The connection between isotonic regression and minimal reassignment solutions
was considered and it was shown that in the case of the stochastic lower approximations, it
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is enough to solve the minimal reassignment problem (which is linear), instead of the iso-
tonic regression problem (quadratic), and obtain stochastic lower approximations directly,
without estimating the probabilities. The approach has also been extended to the multi-class
case by solving K − 1 binary subproblems for the class unions. The proposed theory has
the advantage of basing on the well investigated maximum likelihood estimation method –
its formulation is clear and simple, it unites seemingly different approaches for classical and
dominance-based cases.

Finally, notice that a connection was established between the statistical decision theory
and the rough set approach. It follows from the analysis that rough set theory can serve as
a tool for constructing classifiers, which can abstain from assigning a new object to a class
in case of doubt (in classical case) or give imprecise prediction in the form of an interval of
classes (in DRSA case). However, rough set theory itself has a rather small generalization
capacity, due to its nonparametric character, which was shown in Section 11. Therefore,
the methodology can only be regarded as the analysis of inconsistencies (following from
the monotonicity constraints) on the training error. For classification of unseen objects, a
generalizing classification function must be constructed.
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