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Abstract: We investigate weighted finite automata over strings and
strong bimonoids. Such algebraic structures satisfy the same laws as
semirings except that no distributivity laws need to hold. We define
two different behaviors and prove precise characterizations for them
if the underlying strong bimonoid satisfies local finiteness conditions.
Moreover, we show that in this case the given weighted automata
can be determinized.

1 Introduction

In the seminal paper [30], Schiitzenberger extended Kleene’s classical result
on the coincidence between recognizable and rational languages to the realm of
weighted automata, their behaviors, and rational formal power series. Weighted
finite automata are classical nondeterministic automata in which the transitions
carry weights. These weights may model, e.g., the amount of recources needed
for the execution of a transition, or the probability of its successful execution.
The weights can be taken from any semiring, therefore weighted automata have
both a rich structure theory [5,10,20,28,29,33] as well as practical applications
in digital image compression [1,8,11,14,16], natural language processing [7,18,
25,27], and probabilistic model checking [2]. In semirings, by definition, the
multiplication operation is distributive over addition and this was crucial for
almost all of the theory developed so far.

It is the goal of this paper to investigate automata with weights in strong
bimonoids; these can be viewed as semirings where the distributivity assumption
is dropped. Trivially, all semirings are bimonoids, but there are also many
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natural examples of bimonoids which are not semirings like, e.g., the tropical
bimonoid and near-semirings (see Example 1), the interval [0, 1] with t-conorm
and t-norm from multi-valued logic [17], the “string semiring” of all words over
an alphabet arising in natural language processing [26], or the algebraic cost
structure from algebraic path problems [21].

The main results of this paper are as follows. First, we define for every
weighted finite automaton M over some bimonoid A two different kinds of be-
haviors, called the run semantics and the initial algebra semantics. Both of
them are functions assigning to each word w an element of A as value, the
weight obtained when executing M on w. We show that these two semantics
coincides if and only if A is right-distributive (cf. Lemma 6).

Secondly, if the addition and multiplication operation of A are each locally
finite (meaning that finitely generated submonoids are finite), every weighted
finite automaton over A assumes only finitely many weights as values; moreover,
each value is assumed on a recognizable language of words (cf. Theorem 13).

A fundamental result in classical automata theory states that each nondeter-
ministic finite automaton can be transformed into an equivalent deterministic
one. Here we investigate weighted versions of this result. We show that, for
each weighted finite automaton, its run semantics can be recognized by a crisp-
deterministic weighted automaton if and only if A is additively and multiplica-
tively locally finite (cf. Theorem 16). A corresponding result holds also with
respect to the initial algebra semantics provided that A is right-distributive (cf.
Theorem 23).

These results generalize several theorems from the literature [3, 15,23, 24]
derived for automata over lattice-ordered monoids or semiring-reducts of resid-
uated lattices which are particular semirings. They also apply, for instance, to
all bounded lattices, even without distributivity assumption, since these lattices
are additively and multiplicatively locally finite.

2 Algebraic notions

2.1 Strong bimonoids and semirings

A bimonoid is a structure (A, +,-,0, 1) consisting of a set A, two binary opera-
tions 4+ and - on A and two constants 0,1 € A such that (A,+,0) and (A4, -, 1)
are monoids. As usual, we identify the structure (A, +,-,0,1) with its carrier
set A. We call A a strong bimonoid if the operation + is commutative and 0
acts as multiplicative zero, i.e., a-0 =0 = 0-a for every a € A. We say that
a strong bimonoid A is right distributive, if it satisfies (a +b)-c=a-c+b-¢
for every a,b,c € A; we call A left distributive, if a- (b+¢) =a-b+a-c for
every a,b,c € A. Then a semiring is a strong bimonoid which is left and right
distributive.

Example 1.

1. The tropical bimonoid is the strong bimonoid (N, +,min,0,0c0) with
Ny = NU {0} and the usual extensions of + and min from N to N.
We note that it is not a semiring, because there are a,b,c € Ny, with
min{a, b+ ¢} # min{a, b} + min{a, ¢} (e.g., take a =b=c #0).

2. The tropical semiring is the semiring (N, min, +, 00, 0).



3. The algebra ([0,1],V, -,0,1) with the usual multiplication - of real num-
bers is a strong bimonoid for, e.g., each of the following two definitions of
V for every a,b € [0, 1]:

e aVb=a+b—a-b (called algebraic sum in [17]) and
e aVb=min{a+b,1} (called bounded sum in [17]).

In neither of the two cases ([0,1],V, -,0,1) is a semiring.

4. Let (C,+,0) be a commutative monoid and let A be the set of all map-
pings from C into itself with pointwise addition, composition of mappings,
constant mapping zero, and the identity mapping. Then A constitutes a
strong bimonoid satisfying only one distributivity law (which depends on
the order used for defining the composition). Such structures are also
called near semirings [19, 32].

5. Let X be an alphabet. Consider the strong bimonoid (X*U{oo}, A, -, 00, &)
where A is the longest common prefix operation, - is the usual concatena-
tion of words, and oo is a new element such that w Aoco = co Aw = w
and w00 = 00 - w = oo for every w € ¥* U {oo}. This bimonoid occurs
in investigations for natural language processing, see [26]. It is clear that
(E* U {oo}, A, -, 00,¢) is left distributive but not right distributive.

6. The Boolean semiring is the semiring (B, V,A,0,1) with B consisting of
the truth values 0 and 1, and V and A are disjunction and conjunction,
respectively.

7. We note that there are only two strong bimonoids with exactly two ele-
ments: the field with two elements and the Boolean semiring (since addi-
tion is determined by whether 14+ 1 =0 or 1 + 1 = 1). However, there
are strong bimonoids with 3 elements which are not semirings, take, e.g.,
({0,1, 2}, max,*,0,1) where a*b = (a - b) mod 3 for every a,b € {0,1,2}.

8. Bounded lattices (lattices containing a greatest element 1 and a smallest
element 0) are strong bimonoids. As is well known, there are large classes
of lattices that are not distributive [13].

9. Moreover, bounded distributive lattices, semiring-reducts of semi-lattice
ordered monoids and of complete residuated lattices, and Brouwerian lat-
tices are semirings.

From now on and in the rest of the paper, we assume that X is
an arbitrary alphabet, i.e., a finite non-empty set, and (A, +, -,0,1)
denotes an arbitrary strong bimonoid unless specified otherwise.

2.2 Formal power series

A formal power series, for short, series, (over ¥ and A) is a mapping ¢ : * —
A. Instead of ¢(w) we write (¢, w) for every w € ¥*. The set of all series over
¥ and A is denoted by A((X*)). The image of ¢ is the set im(¢) = {(¢,w) € A |
w € X*}. For every a € A, we define p_, = ¢~ 1(a) = {w € * | (p,w) = a}.

Let a € A and ¢ € A(X*)). The scalar multiplication of a and ¢ is the series
a- @€ A(X*) defined by (a-p,w) =a- (p,w) for every w € X*.



Let ¢1,p2 € A(Z*)). The sum of ¢1 and @5 is the series p1 + w2 € A(E*))
defined by (@142, w) = (@1, w)+ (@2, w) for every w € £*. The commutativity
and associativity of the addition of A carry over to the sum of series.

Let L C ¥*. The characteristic function x € A{(E*)) of L is for every
w € ¥* defined as (xr,w) =1if w € L and (x1,w) = 0 otherwise.

2.3 Matrices

Let P and @Q besets. If f: P — @ and g : @ — R are functions, we denote
their composition by f;g (i.e., apply first f, then g). We let Q¥ denote the set
of all functions from P to Q.

Let @ be a finite non-empty set. A mapping M : Q x Q — A is called a
Q x Q-matriz over A, and a mapping v : Q — A is called a Q-vector over A. For
every M € A?*Q v € A9 and q1,q2 € Q we write M,, ,, instead of M(q1, g2),
and v, instead of v(g1). If A is a particular ordered set (e.g., the interval [0, 1]),
then matrices are called fuzzy relations, and vectors are called fuzzy subsets in
the literature.

Now let My, My € A9*? and vy, vy € AQ. Then we define the matriz product
M, - My € AC*Q the matriz-vector products vi - M; € A9 and M - v, € A%,
and the scalar product vy - v € A as follows for every ¢1,q2 € Q:

Recall that the addition of A is commutative and that @ is non-empty; thus,
the sums on the right-hand sides are well defined. We define the Q-unit matriz
I € A®X@ as follows for every g1, g € Q:

1, ifqgr=gq;
I =
(1Q) 1,42 {O , otherwise.

The following result is of fundamental importance in the theory of weighted
automata over semirings; it is straightforward by elementary calculations.

Lemma 2. If A is a semiring, then the matrix product and matriz-vector
products (whenever defined) are associative, and (A9*?, -, 1g) is a monoid.

Note that Lemma 2 fails in general, if A is not left or not right distributive.

3 Weighted finite automata

In this section, we introduce weighted finite automata over bimonoids and dif-
ferent definitions of their behaviors (semantics). Then we investigate conditions
under which these notions of behaviors coincide. Recall that (A, +, -,0,1) is an
arbitrary strong bimonoid.



Definition 3. A pointed ¥-algebra is a triple (P, 6,q) such that P is a set,
0 :% — PP is a mapping, and ¢ € P. We define a mapping hy : ©* — P, called
the successive evaluation of 0, by letting hg(e) = ¢ and hg(wo) = 0(0)(ho(w))
for every w € ¥* and 0 € X. We call (P, 6, q) finite if P is finite.

In other words, if w = o1 - - - o, then hg(w) = (0(01);...;0(0,))(q).

Definition 4. A weighted finite automaton (for short: wfa) over ¥ and A is
a quadruple M = (Q, I, 7, F) such that @ is a finite non-empty set (of states),
I € A% (initial weight vector), 7 : ¥ — A9X@ (transition mapping), and
F € A9 (final weight vector).

We define three different semantics for a wfa M.

Initial algebra semantics: We define the pointed ¥-algebra (A9, 6, I) by letting
0.(0)(v) = v-7(0) for every o € ¥ and v € A?. The i-behavior of M,
denoted by [M];, is the series in A{(X*)) defined as follows for every w €
*:

([M]s,w) = hg, (w) - F.

S?’ if)w =01---0p, then hg_(w) = (... ((I-7(01)) -7(02)) - ... - T(On=1)) -

Run semantics: The r-behavior of M, denoted by [M],, is the series in A{(X*))
defined for every w = oy - - -0, € X* by letting

(IM],w) =Y weighty (Pw),
pPeQntt

where for every P = (qo,...,q,) € Q"1 the weight weight,,;(P,w) of P
in M for w is defined as Iy, - 7(01)gouqr - -+ " T(On)gn_1.qn - Fan-

Free monoid semantics: Let A be a semiring. Moreover, let hy; be the unique
monoid-morphism from the free monoid (X%, ¢) to (A9*?, -, I) extend-
ing 7 (cf. Lemma 2). Then the f-behavior of M, denoted by [M]y, is the
series in A((X*)) defined as follows for every w € ¥*:

([M]y,w) =1-hs(w)-F.

Let x € {i,r, f}. A series ¢ € A{X*)) is z-recognizable if there is a wfa M over
Y and A such that [M], = ¢. We say that two wfa M and M’ over ¥ and A
are z-equivalent, if [M], = [M']..

We note that we will use the free monoid semantics only in Lemma 7 and
Corollary 22.

Example 5. Let ¥ = {o}. We consider the wfa M = (Q,I,7, F) over ¥ and
the tropical bimonoid (N, +,min, 0,00) with Q@ = {¢g,p}, 7(0)pp = T(0)pq =
T(0)gp = o0 and 7(0)g,q = 0. Moreover, we define I, = 1, F, = oo and
1, = F, = 0. If we neglect those transitions that have weight 0, then we can
illustrate M as in Figure 1. Then, ([M];,o™) = ([M],, c™) is the nth Fibonacci-
number, for every n > 0. We note that in [10] a similar automaton over the
semiring of natural numbers has been used to define the Fibonacci-numbers.



Figure 1: A wfa over the tropical bimonoid.

We will see later that, in general, the initial algebra semantics and the run
semantics differ (cf. Examples 27 and 28).

Next we obtain a simple characterization when for every wfa M, its initial
algebra semantics and its run semantics coincide.

Lemma 6. The following two statements are equivalent:
1. A is right distributive.
2. [M]; = [M], for every wfa M over ¥ and A.

PrROOF. 1. = 2.: Let A be right distributive and let M = (Q,I, 7, F) and
w =010, €3* We show that ([M];,w) = ([M],,w). To this end we show
by induction on the length n of w that for every ¢, € @ we have

ho, (w)g, = Z Loy 7(01)g0,01 -+ T(On)gn1,qm - (1)

Indeed, if n = 0, then w = £ and he, (€)q, = Igy = D2_()eqo Lgo- Now let n.>0
and w = w'o,, for some w’ € ¥* with |w’'| =n — 1. Then

ho, (W'on)q, = 0r(0n)(he, (w'))g,
= (ho, (') - T(04))q, = Z ho (W )g 1 T(0n)gn 1.4

qn—1 EQ

= Z Z T4, 'T(al)qoﬂl T 'T(U'ﬂ_l)Qn—Zﬂlnfl 'T(an)anlasz
4n-1€Q (qo,-.,qn—2)€EQ" 1
(by induction hypothesis and right distributivity)

= § : IQO 'T(Ul)qmth et T(O.n)QN—MQH .
(905--,Gn—1)EQ™
Now we have

([M]s,w) = ho, (w) - F = > hy(w)g, - Fy,
n€Q

Z Z Ioo - T(01)goqr -+ T(On)gn 1,00 Fan

(IneQ (qo »--,qn—1)€Q”

(by Equation (1) and right distributivity)
= ([M];,w) .

2. = 1.: Let a,b,c € A. Let 0 € . We construct the wfa M = (Q, I, 7, F)
over ¥ and A by Q = {p,q}, I, = a, I, = b, F, = ¢, and F;, can be chosen



arbitrarily. Moreover, 7(0)p, = 7(0)gp = 1 and 7(0)p,qg = 7(0)4.¢ = 0. Then
([M]i,0) = (a+b) - cand ([M],,0) = ac+ be. Hence (a+b)-c=ac+bc. n

For semirings A, we obtain as consequence the following well-known fact.

Lemma 7. If A is a semiring, then [M];, = [M], = [M]y for every wfa M
over X and A.

PRrROOF. Lemma 6 yields [M]; = [M],. Moreover, [M]; = [M]; follows from
(IM]s,w)=I-hx(o1---0n) - F=I1-7(01)-...-7(0y) - F and Lemma 2. g

Next we introduce deterministic and crisp automata.
Definition 8. Let M = (Q, I, 7, F) be a wfa over ¥ and A.

o We call M deterministic if there is at most one ¢ € @) with I, # 0, and
for every o € ¥ and g € @ there is at most one ¢’ € Q with 7(0),,4 # 0.

e We call M crisp if I, € {0,1} and 7(0),,4 € {0,1} for every o € ¥ and
PqcQ.

e M is crisp-deterministic, if M is crisp and deterministic.
The following is easy to check.

Remark 9. For every deterministic wfa M we have [M]; = [M],, and if M
is crisp-deterministic, then im([M];) is finite.

Finally, we note that we obtain the classical concept of an automaton in our
context as follows. A finite automaton (for short: fsa) over ¥ is a wfa M
over ¥ and the Boolean semiring B. Clearly, then [M]; = [M], = [M]; by
Lemma 7. The language recognized by M is the set L(M) C X* defined by
L(M) = {w € * | ([M];,w) = 1}. A language L C X* is recognizable if
there is an fsa M over ¥ such that L = L(M). As is well-known, for every
recognizable language there is a crisp-deterministic fsa M such that L = L(M).
Moreover, M = (Q, I, 7, F) can be chosen to be total, i.e. there is a state ¢ € Q
with I, = 1, and for every ¢ € ¥ and ¢ € @ there exists (a unique) ¢’ € Q with
7(0)q,¢ = 1. Furthermore, M can be assumed to be co-accessible, i.e. for every
q € F thereis w € ¥* with hg,(w), = 1 (otherwise, reduce F correspondingly).

Next we characterize series that are i-recognizable and r-recognizable by
crisp-deterministic wfa, in terms of recognizable step functions. A series ¢ €
A{X*) over ¥ and A is a recognizable step function if there are n € N, recogniz-
able languages L1, ..., L, C ¥*, and ay,...,a, € Asuch that p =Y  a; X1,

Lemma 10. Let ¢ € A(¥*)). Then ¢ is a recognizable step function iff there
exists a crisp-deterministic wfa M over ¥ and A such that ¢ = [M]; = [M],.
In particular, if @ is a recognizable step function, then ¢ is i-recognizable and
r-recognizable.

ProOOF. “=": Let n € N, Ly,..., L, C ¥* and a1,...,a, € A such that
Li,...,L, are recognizable and ¢ = >_"" , a; - xz,. For every i € {1,...,n},
let M; = (Q;,I;, 7, F;) be a deterministic, total and co-accessible fsa over ¥



such that L(M;) = L;. We define the wfa M = (Q,I, 7, F) as follows: Q =
Q1 X -+ X Qp and for every o € ¥ and (q1,...,qn), (¢} -.-,4,) € Q:

)1, if (L), = 1foreveryi€ {1,...,n};
)~ 0, otherwise,

0, otherwise,

Fa,..., m) = Z @i -

{1 , if 75(0)g,q =1 for every i € {1,...,n};
) = '

Clearly, M is crisp-deterministic. Let w € ¥* and (¢1,...,¢,) be the unique
state in @ with hg_(w)(q,,....q,) = 1. Then w € L; iff (F}),, = 1 for every i €
{1,...,n}. Let I, = {i € {1,...,n} | w € L;}. We obtain (p,w) =>,c; a; =
F....qn) = ([M]i, w), proving ¢ = [M];. Remark 9 yields [M]; = [M],.
“<”: Let M = (Q,I,7,F) be a crisp-deterministic wfa over ¥ and A such
that [M]; = [M], = ¢. By Remark 9, im(¢y) is finite. Let a € im(p). We show
that p—, is recognizable. We define an fsa M/ = (Q, I’, 7', F) over 3 by letting
for every p,q € Q and 0 € X2 [[ = 1iff I, = 1; 7'(0), 4 = 1 iff 7(0), 4 = 1; and
(Fa)q = 1iff Fy = a. Then L(M;) = ¢—q. Hence ¢ = 3 i1, 0" Xe, is @
recognizable step function. ]

We finish this section with an easy characterization of recognizable step
functions.

Proposition 11. Let ¢ € A{(X*)). Then ¢ is a recognizable step function iff
im(p) is finite and p—, is recognizable for every a € A.

PrOOF. Let ¢ = Y.»'  a; - xz, for some n € N, recognizable languages
Ly,...,L, C ¥* and a1,...,a, € A. Clearly, im(y) is finite. For every
I C{1,...,n} we define a language L’ as:

i€l ie{1,...,n}\I

It follows from the closure properties of the class of recognizable languages that
every L} is recognizable. Choosea € Aandlet Z, = {I C {1,...,n} | > ;c;a; =
a}. Then L = {J;cz, L} is a recognizable language. Now let w € ¥* and put
IL,={ie{l,...,n} | w € L;}. Then w € ¢_, iff I,, € Z, iff w € L Hence,
Y=o = L.

For the converse, note that ¢ = Zaeim(w a - Xp_, which is a recognizable
step function by assumption. -

4 Recognizable series and determinizability

In this section, we will investigate the relationships between i-recognizable se-
ries, r-recognizable series, and recognizable step functions. We also consider
conditions under which for every wfa an i-equivalent crisp-deterministic one
exists.

We let N = (N, +, -,0,1) be the semiring of natural numbers with the usual
addition and multiplication. We will use the following lemma.



Lemma 12 ( [5], Cor. I11.2.4,2.5). Let p : ¥* — N be an r-recognizable se-
ries over ¥ and N'. Then for all c,t € N, the languages p~1(t) and p~1(t +cN)
are recognizable.

We call A additively locally finite (multiplicatively locally finite, respectively)
if for every finite B C A, the smallest sub-monoid of (A,+,0) (of (4, -,1),
respectively) containing B is finite. Now we will show:

Theorem 13. Let A be additively and multiplicatively locally finite, and let
p € A(X*) be r-recognizable. Then @ is a recognizable step function.

ProoF. Let M = (Q,I,7,F) be a wfa with [M], = ¢. We define B =
{I4,7(0)p,q, Fyg | p,q € Q,0 € X}. Let Y comprise all finite products of el-
ements from B, and let K consist of all finite sums of elements from Y. By
assumption, K is finite. Hence im(y) is also finite. It only remains to show that
(p—, is a recognizable language, for each z € K.

Note that weight,,(P,w) € Y for every w = 01+ 0, € ¥* and P € Q"
For each a € Y we define a crisp wfa M, = (Q',I’, 7', F.) over ¥ and N as
follows: @' = Q x Y and for every o € ¥ and (q,y), (¢',y') € @', let

L, ify' =y -7(0)gq;
T’(U)(q,y)’(q”y') - {0 otherwise

1, ify=1,; 1, ify-F,=a;
I/ _ 5 q d F/ _ 9 q I
(a:y) {0 , otherwise, and (Fo) ) {0 , otherwise.

Let w = 01---0, € ¥* and a € Y. We observe that for every path P =
(q0s---,qn) € Q" with weight,,;(P,w) = a there is a unique path P’ =
((q0,Y0), - - -+ (@n>yn)) € (Q)" ! with weight , (P, w) = 1. Conversely, each
path P” € (Q')"*! with non-zero weight in M/ for w arises in this form. It
follows that ([M!],,w) € N is precisely the number of all paths P in Q"*! with
weight (P, w) = a. Consequently, in A we have

(pw) = ([M]rw) = ) weighty (Pw) = Y ([Milr,w)a, (%)

Pe@ntt ac€Y

where, for every m € N, we write ma as a shorthand for a + a4+ --- 4+ a (m
summands). Next we use an argument similar to one used in [9], proof of
Prop. 6.3. For each a € Y, the cyclic submonoid (a) of (A4,+,0) is finite.
Choose a minimal m, € N such that msa = (m, + y)a for some y > 0, and
let ¢, be the smallest such y > 0. We put d, = my + ¢, — 1; note that then
dp = 0. Then (a) = {0,a,2a,...,d,a}. So for each s € N there is a uniquely
determined ¢ € {0,...,d,} such that sa = ta. Note that if 0 < t < m,, then
sa = ta iff s = t, and if m, <t < d,, then sa = ta iff s € t + ¢,N. Now let
Loy ={weX | ([M)],, w)a=ta}, for each t € N with 0 < ¢ < d,; note that
Lo = ¥*. We claim that L, ; is recognizable. We have

o Loy ={weX*|([M],w)=t}if 0<t<mg, and

o Ly ={weX*|([M],,w) €t+cN}if mg <t <d,.



In each case, L, is recognizable by Lemma 12.

Now let x € K. We wish to show that ¢—, is recognizable. Let w € X*.
By the above, for every a € Y there is a unique number t, € {0,...,d,}
with ([M!],,w)a = tea, and so w € Lgy,. Let Y be the set of all mappings
F:Y — Nsuch that z =3 ., F(a)a and F(a) € {0,...,d,} for every a € Y.
Hence, by (x), we have w € o—, iff x =} .y ([M/],,w)a iff there is an FF € Y
with w € L, p(q) for every a € Y, thus:

Oy = U ﬂ Lo ra) >

FeY acY

which is a recognizable language because both Y and ) are finite. ]

Conversely, assuming that the image of every recognizable series over A is
finite, we can deduce that A is additively and multiplicatively locally finite.
Note that here our alphabet X is fixed.

Lemma 14. Let |X| > 2. If for every wfa M over ¥ and A, im([M];) or
im([M],) is finite, then A is additively and multiplicatively locally finite.

PROOF. We show that the additive monoid (A,+,0) and the multiplicative
monoid (A4, -, 1) are locally finite.

For the additive monoid it suffices to show that for every a € A the cyclic
submonoid of (A, +,0) generated by a is finite because + is commutative and
associative. Let a € A and construct the wfa M = ({p, ¢}, I, 7, F) with I, = 1,
I, = F, =0, and F;, = a. Moreover, for every 0 € ¥ we define 7(0),, =
T(0)pg = T(0)gq = 1, and 7(0)yp = 0. Then for every 0 € ¥ and n € N
we have ([M];,0") = ([M]r,0™) = a+---+ a (n times). Thus, the finite set
im([M];) Nim([M]), contains the cyclic submonoid of (A, +,0) generated by a.

Next we show that the multiplicative monoid is locally finite. Let n € N
and aq,...,a, € A. We show that the set A’ = {all cea | keEN I,k €
{1,... 7n}} is finite. Let 01,09 € ¥ be distinct symbols. We construct a wfa
M =(Q'", I',7", F") over ¥ and A with Q" = {qo,q1,---,qn}, I, = F;, = 1 and
I, = F; =0 for every ¢ € Q" \ {qo}, and 7’ is defined as follows (see Figure 2):

o 7'(01)g_1.q; =1 forevery i € {1,...,n},
o 7'(02)g;.q0 = @i for every i € {1,...,n}, and
e 7'(0)4,y =0 for every other combination of 0 € ¥ and ¢,¢’ € @Q'.
Then ([M'];, 0 000205 -+ 0tk ay) = ([M']y, 00 000205 -0tk as) = ay, - ay,

for every k € N and Iy,...,l; € {1,...,n}. Thus, A’ Cim([M'];) Nim([M'],),
and therefore A’ is finite. -

In fact, Lemma 14 generalizes the following results of [15,23].

Corollary 15. If for every wfa over A there is an i-equivalent crisp-
deterministic wfa over A, then A is locally finite provided that one of the fol-
lowing conditions hold.

1. A is a lattice-ordered monoid (cf. only-if part of Theorem 3.4 of [23]).

10
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Figure 2: wfa M’ from the proof of Lemma 14.

2. A is the semiring-reduct of a residuated lattice (cf. only-if part of Theorem
4.2 of [15]).

PRrROOF. Since both, lattice-ordered monoids and semiring-reducts of residuated
lattices are particular strong bimonoids, the two statements follow from Remark
9 and Lemma 14. -

The following summarizes our results.
Theorem 16. Let |X| > 2. Then the following two statements are equivalent:

1. For every wfa M over ¥ and A there is an r-equivalent crisp-deterministic
wfa M’ over ¥ and A.

2. A is additively and multiplicatively locally finite.

PRrROOF. (1) = (2): This follows from Remark 9 and Lemma 14.
(2) = (1): Immediate by Theorem 13 and Lemma 10. n

Next we will investigate properties of i-recognizable series. The idea of the
following lemma is similar to Lemma 3.10 of [12]. It will be a useful tool for
constructing weighted automata from finite pointed X-algebras.

Lemma 17. Let (P,0,q) be a finite pointed X-algebra.

1. For every mapping f : P — A there is a crisp-deterministic wfa M over
Y and A such that [M]; = hg; f.

2. For every F C P the language h;l(F) C X* is recognizable.

PROOF. First we prove Statement 1. We define M = (P, I, 7, F) as follows for
every o € ¥ and p,p’ € P:

1, ifp=gq; 1, ifp = ;
Ip _ { , 1I'p q; T(U)p,p’ _ { , 1I'p 9(0)(p) )

0, otherwise, 0, otherwise,
F, = f(p).

Observe that M is crisp-deterministic. It is easy to check that for every w € ¥*
and p € P we have hg_(w), = 1 if hg(w) = p and hy_(w), = 0 otherwise.
Thus, for every w € X* we have ([M];,w) = ho, (w) - F =3 cpho (W), Fp =
Fhy(wy = f(ho(w)) = (ho; [)(w).

Next we prove Statement 2. Let f : P — B be defined for every p € P by
f(p) =1iff p € F. By Statement 1 there is an fsa M over ¥ with [M]; = hg; f.
This yields L(M) = {w € ¥* | f(ho(w)) = 1} = hy '(F). -
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For our subsequent results, we will need particular finiteness conditions on
the strong bimonoid A (which may be infinite), which we introduce next.

Definition 18. For every B C A the weak closure of B, denoted by cl(B), is
the smallest subset C C A such that BC C and ¢+ ¢ € C and ¢- b € C for all
be B and ¢, € C. We say that A is weakly locally finite if c1(B) is finite for
every finite subset B C A. Moreover, we say that A is locally finite if, for every
finite B C A, the smallest sub-bimonoid of A containing B is finite.

Trivially, if A is locally finite, then A is weakly locally finite, and if A is
weakly locally finite, then A is additively and multiplicatively locally finite. For
example, if A is a bounded lattice, then A is a stong bimonoid which is additively
and multiplicatively locally finite, but need not be locally finite. The following
is easy to check.

Remark 19. If A is right distributive, then A is additively and multiplicatively
locally finite iff A is weakly locally finite. If A is left distributive, then A is
weakly locally finite iff A is locally finite. In particular, if A is a semiring, then
A is additively and multiplicatively locally finite iff A is locally finite.

The idea of the following lemma is based on Lemma 3.14 of [12].

Lemma 20. Let ¢ € A{(X*)) be i-recognizable. If A is weakly locally finite, then
there is a finite pointed X-algebra (P,0,q) and a mapping f : P — A such that

@ =hg; f.

PROOF. Choose a wfa M = (Q,I,7, F) over ¥ and A such that ¢ = [M];. Let
B ={1,,7(0)pq | p,q € Q,0 € £}. By assumption, the weak closure cl(B) is
finite. Then P = {hg_(w) | w € £*} C cl(B)? is also finite, and (P,0,,I) is a
pointed Y-algebra. Moreover, we define the mapping f by f(v) = v- F for every
v € P. Then ([M];,w) = ho_(w) - F = f(hg, (w)) = (hg.; f)(w). n

The following result summarizes three important properties of i-recognizable
series if A is weakly locally finite.

Theorem 21. Let A be weakly locally finite and ¢ € A{(X*)) be i-recognizable.

1. For any E C A the language ¢~ (E) is recognizable. In particular, ¢ is a
recognizable step function.

2. For any mapping g : A — A, the series v; g is again i-recognizable.

3. (Determinization) There exists a crisp-deterministic wfa M over ¥ and
A such that ¢ = [M];.

PROOF. By Lemma 20 there are a finite pointed X-algebra (P, 6, ¢) and a map-
ping f : P — A such that ¢ = hy;f. First we show Statment 1. Since
¢~ YE) = hy'(f~Y(F)) and f~'(E) C P, it follows from Lemma 17(2) that
¢~ Y(E) is recognizable. In particular, for every a € A, the language p—, is
recognizable. Moreover, im(¢) C f(P) is finite. Hence, ¢ = Zaeim(tp) a- Xe_,
is a recognizable step function.

Next we show Statements 2 and 3. Let g : A — A. We have ¢;9 =
(ho; f);9 = he;(f;9). Then by Lemma 17(1) there is a crisp-deterministic
wifa M over ¥ and A with ;g = [M];. This proves Statement 2 and also
Statement 3 (let g be the identity mapping). -
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We note that part 3 of Theorem 21 would also follow from part 1 and Lemma 10,
but the present argument is simpler and leads to automata with smaller state
sets.

Theorem 21(3) generalizes the following results of [3,24].

Corollary 22. For every x-recognizable series ¢ € A{X*)) there is a crisp-
deterministic wfa M such that [M], = ¢ assuming that one of the following
conditions holds.

1. A is a bounded, complete, distibutive lattice and x = f (cf. Theorem 2.1

of [3])-
2. Ais a bounded, distributive lattice and x =r (cf. Theorem 2.1 of [24]).

Proor. 1. In [3] Bélohldvek defined recognizable series by means of wfa over
bounded, complete, locally finite lattices with the free monoid semantics; in fact,
he also needed that the lattices are distributive [4]; then locally finiteness follows
from boundedness and distributivity. Now let ¢ € A{(X*)) be recognizable in
this sense. Since every bounded, complete, distibutive lattice is a locally finite
semiring, it follows from Lemma 7 that ¢ is i-recognizable. Since every locally
finite semiring is a weakly locally finite strong bimonoid, Theorem 21(3) shows
Statement 1.

Proof of 2: In [24] Li and Pedrycz defined recognizable series by means of
wfa over bounded, distributive lattices with the run semantics. The proof of
Statement 2 uses the same arguments as the proof of Statement 1. ™

Now we can give an analogue of Theorem 16 for the i-behavior of wfa.

Theorem 23. Let |X| > 2 and let A be right distributive. Then the following
two statements are equivalent:

1. For every wfa M over ¥ and A there is an i-equivalent crisp-deterministic

wfa M’ over ¥ and A.
2. A is additively and multiplicatively locally finite.

PrOOF. This theorem is an immediate consequence of Remark 9, Lemma 14,
Remark 19, and Theorem 21(3). n

The following summarizes our results.

Theorem 24. Let A be additively and multiplicatively locally finite, and let
p € A(X*). Then the following are equivalent:

1. ¢ is r-recognizable.
2. v is a recognizable step function.

Moreover, if A is weakly locally finite, these conditions are equivalent to
3. @ is i-recognizable.

PRrOOF. This is an immediate consequence of Lemma 10 and Theorems 13
and 21(1). n
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Let < be a partial order on A. Moreover, let ¢ € A{(X*)) be a series and
a € A. Then the a-cut of ¢ is the set ¢, = {w € ¥* | (¢,w) > a}. Several
authors [6,17,31] have investigated these cuts of ¢. The following is straight-
forward, but together with Theorem 24 it provides the connection to the work
cited.

Lemma 25. Let < be a partial order on A, and let p € A{(X*)). The following
statements are equivalent.

1. ¢ is a recognizable step function.

2. im(yp) is finite and @>q is recognizable for every a € im(yp).
PROOF. First we prove (1) = (2). Clearly, im(yp) is finite. By Proposition 11
we have that ¢ is recognizable for every b € im(yp). Let a € im(¢). Then

P>a = Ubeim(gp) P=b
b>a

which is a finite union of recognizable languages and, hence, recognizable.
(2) = (1). Since ¢ = 3 cin(p) @ Xe—,. it suffices to show that ¢—, is
recognizable for every a € im(yp). But

P=a = P>a \ Ubgim(¢) ©>b
b>a

which implies our claim. n
Now we can show that we have generalized a result of [22,24].
Corollary 26. For every ¢ € A(X*)) the following conditions are equivalent
(i) ¢ is x-recognizable.
(i) im(p) is finite and =, € X* is recognizable for every a € A.
(#3) im(p) is finite and p>q € L* is recognizable for every a € A.
provided that one of the following properties holds.

1. A is a muliplicatively locally finite, commutative, strong bimonoid of the
form ([0, 1], max, x,0,1) where * is a t-norm, and x =i (cf. Theorem 2.6

(2)-(4) of [22])-
2. A is a bounded, distributive lattice, and x = (cf. Theorem 2.2 of [24]).

PROOF. 1. It is easy to prove that a t-norm [17] distributes from left and right
over max. Since A = ([0,1], max, %,0,1) is distributive, additively locally finite
and, by assumption, also multiplicatively locally finite, it follows from Remark
19, that A is a locally finite. Hence, in Theorem 2.6 of [24], Li and Pedrycz
considered particular locally finite, commutative semirings. Then the stated
equivalence under Property 1 follows from Theorem 24 and Lemma 25.

2. Since every bounded, distributive lattice is a locally finite semiring, the
statement follows from Lemma 7, Theorem 24, and Lemma 25. n
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Finally we show that for arbitrary strong bimonoids A, the concepts of i-
recognizability and r-recognizability differ. Clearly, by Lemma 6 and Theo-
rem 24, A should neither be right distributive nor weakly locally finite. We will
give two examples. In the first example we construct an i-recognizable series
that is not r-recognizable. In the second example we consider an r-recognizable
series that is not i-recognizable.

Example 27. We consider the set N of natural numbers and we define two new
commutative operations ® and ® on N as follows. First, let 0®a = a, 00a =0,
and 1 ® a = a for every a € N. If a,b € N\ {0} with a < b, we put (with +
being the usual addition on N)

b, if b is even;
a®b=
b+1, ifbisodd.

If a,b € N\ {0,1} with a < b, let

b+1, ifbiseven;
a®b= e
b, if b is odd.

Then A = (N,;®,©,0,1) is a strong bimonoid. Note that A is neither right
distributive (e.g., 5= (3®3)©2 # (30 2)® (3® 2) = 4) nor weakly locally
finite (e.g., a+1 € {a ® a,a ® a}, and hence a € (1) for every a € N). Now
consider the wfa M = (Q,I, 7, F) with two states and I, = 7(0)p,q = F; = 2
for every 0 € ¥ and p,q € Q. Then ([M];,0™) = 2n + 4 for every o € ¥ and
n € N, hence, im([M];) is infinite.

On the other hand we claim that for each wfa M’ = (Q',I', 7', F') over
¥ and A, the set im([M],) is finite. Indeed, let m = max{[l,,7'(0),q, Fy |
p,q € Q',0 € ¥} € N. Then the definition of the r-behavior of M shows that
([M']r,w) < m+ 2 for each w € ¥*, which yields our claim. Hence, the series
[M]; is not r-recognizable.

Example 28. We define two binary commutative operations @& and ® on the
set N2 of pairs of natural numbers as follows. First, let (0,0) @ (a,b) = (a,b),
(0,0) ® (a,b) = (0,0), and (1,0) ® (a,b) = (a,b) for every (a,b) € N2. If
(a,b),(a’,b') € N2\ {(0,0)}, we put

b+v), ifa=d;
B (@) =@ ’ ’
(a ) S (a ) {(1’ b+ b’) , otherwise.

If (a,b), (a’, 1) € N2\ {(0,0), (1,0)}, let

. (a-a',1), ifb=b =1;
(a,0) @ (@, b) = {(1, 2), otherwise.
Then A = (N?,&,©,(0,0), (1,0)) is a strong bimonoid. Now consider the wfa
M = (Q, 1,7, F) with two states and I, = 7(0)pq = Fq = (2,1) for every 0 € £
and p,q € Q. Then ([M],,o™) = (272, 2""1) for every o € ¥ and n € N.
We claim that [M], is not i-recognizable. Let M’ = (Q',I', 7', F') be a wfa
over ¥ and A. For each (a,a’) € N? we let 71(a,a’) = a and m3(a,a’) = a’. If
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|Q[ = 1, then mo([M'];, w) < max{2,mo(1,), 72(7'(0)pq), m2(Fy) | P,q € Q' 0 €
¥} for every w € ¥*, which proves that [M], # [M'];. Now assume that |Q| >
L. Let m = max{m([,) | p € Q"} and m' = m-max{m(7'(0),,4) | p,q € Q',0 €
¥}. It is easy to show by induction on the length of w that for every w € £*
and p € Q' we have that 7 (he_, (w),) > m implies both 71 (hg_, (w),) < m’ and
ma(hg_, (w)p) > 1. This implies 71 ([M'];,w) < m' - max{m(Fy) | ¢ € Q'} for
every w € ¥*. Hence, [M], # [M'];.
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