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Abstract 

Fuzzy regression (FR) been demonstrated as a promising technique for modeling 

manufacturing processes where availability of data is limited. FR can only yield linear 

type FR models which have a higher degree of fuzziness, but FR ignores higher order or 

interaction terms and the influence of outliers, all of which usually exist in the 

manufacturing process data. Genetic programming (GP), on the other hand, can be used 

to generate models with higher order and interaction terms but it cannot address the 

fuzziness of the manufacturing process data. In this paper, genetic programming-based 

fuzzy regression (GP-FR), which combines the advantages of the two approaches to 

overcome the deficiencies of the commonly used existing modeling methods, is proposed 

in order to model manufacturing processes. GP-FR uses GP to generate model structures 

based on tree representation which can represent interaction and higher order terms of 

models, and it uses an FR generator based on fuzzy regression to determine outliers in 
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experimental data sets. It determines the contribution and fuzziness of each term in the 

model by using experimental data excluding the outliers. To evaluate the effectiveness of 

GP-FR in modeling manufacturing processes, it was used to model a non-linear system 

and an epoxy dispensing process. The results were compared with those based on two 

commonly used FR methods, Tanka’s FR and Peters’ FR. The prediction accuracy of the 

models developed based on GP-FR was shown to be better than that of models based on 

the other two FR methods. 

 

Keywords: genetic programming, fuzzy regression, outlier detection, epoxy dispensing 

process 

1 Introduction 

In today’s competitive market, manufacturers need to control variability at each of the 

many processing steps in a manufacturing line, and all variables controlling the desired 

output in a process need to be understood and optimized to maintain tight control. This 

can be achieved by developing appropriate physical models to represent the 

manufacturing process. Physical models [5, 9, 12 and 29] are based on a physical 

understanding of the process, and they typically consist of a set of governing partial 

differential equations. They are attractive because they provide a fundamental 

understanding of the relationships between the input and output parameters. However, 

physical models are usually too complex to be generated accurately for many 

manufacturing processes. 

Statistical regression is a common approach to develop empirical process models 

[39], but the resulting models are accurate only within the ranges of data from which they 



are developed. Statistical regression models can be applied only if the given data is 

distributed according to a statistical model, and the relationship between dependent and 

independent variables is crisp. However, in many manufacturing processes, it is difficult 

to find probability distributions for dependent variables. Artificial neural networks [4, 15, 

20, 30, 40 and 45] and fuzzy logic modeling techniques [1, 10, 18, 19, 33 and 47] have 

been used to develop process models in various manufacturing processes. These 

approaches normally require a large amount of experimental data to develop models, 

which are sometimes not available in manufacturing processes. Genetic programming 

(GP) has been commonly used to develop polynomial models with interaction terms or 

higher order terms [11, 14, 24, 25, 26, 27, 31, 32, 44 and 46], but quite a number of 

manufacturing processes involve uncertainty due to fuzziness that cannot be addressed by 

GP. 

In contrast, a fuzzy linear regression approach in modeling manufacturing 

processes, which have a high degree of fuzziness, has the distinct advantage of being able 

to generate models using only a small number of experimental data sets [2, 6, 21, 41-43]. 

An attempt was made by Schaiable and Lee [38] to model the vertical CVD process using 

the fuzzy linear regression method. Lai and Chang [28] applied fuzzy linear regression to 

model the die casting process. Ip et al. [16] used fuzzy linear regression to develop a 

process model for epoxy dispensing. Modeling of transfer molding using fuzzy linear 

regression was also reported by Ip et al. [17]. Kwong and Bai [22] performed process 

modeling and optimization using both fuzzy linear regression and fuzzy linear 

programming approaches. Three different approaches of fuzzy linear regression were 

summarized in Chang and Ayyub [3]. However, existing fuzzy regression (FR) 



approaches cannot be used to develop models that contain interaction terms or higher 

order terms. In fact, behavior of many manufacturing processes is non-linear. If 

interaction terms or higher order terms could be considered in FR, models which provide 

more accurate prediction of manufacturing processes would be developed. Furthermore, 

it is widely recognized that the quality of model development declines when outliers in 

experimental data exist, but very few studies have attempted to detect outliers when 

developing FR models. Chen [8] proposed a method to detect outliers involving crisp 

inputs and fuzzy outputs. The method detects the difference in width between the spread 

of fuzzy data and the spread of fuzzy output. However, experimental data and the results 

of manufacturing processes involve crisp values of experimental settings and crisp values 

of experimental responses. Therefore, the method cannot be applied to manufacturing 

processes. 

These modeling methods ignore both the interaction terms (or higher order terms) 

in manufacturing processes as well as the fuzzy nature of data. Moreover, they produce 

black-box models not usually recommended by process engineers, and they include 

outliers in model development or require a large amount of data to produce models, that 

are usually not available in real situations. These modeling methods cannot address the 

entire range of characteristics of the manufacturing process. To overcome these 

deficiencies, we propose genetic programming-based fuzzy regression (GP-FR), which 

can be used to generate models with interaction or higher order terms. GP-FR uses the 

general outcomes of GP to construct models based on a tree structure representation in 

which both the interaction and higher order terms can be considered. The FR generator is 

also proposed to detect the outliers from experimental data sets based on an indicator of 



outliers. The FR generator then estimates the contribution of each branch of the tree in 

order to determine the fuzzy coefficient of each term of the model by using the 

experimental data sets excluding the outliers. As interaction and higher order terms can 

be generated and represented in the branches of the tree based on the GP-FR approach, 

FR models in fuzzy polynomial form with interaction and higher order terms can be 

generated as explicit models. Furthermore, as the FR generator is used to determine fuzzy 

coefficients of the model, only a small amount of data is required to generate the process 

models, which is practical in the manufacturing process.  

The effectiveness of the proposed GP-FR approach  is evaluated by modeling 

simple non-linear systems and the epoxy dispensing process for electronic packages, 

which is used in various electronic packaging processes such as integrated circuit (IC) 

encapsulation, die-bonding, and placement of surface mount components [30]. In today’s 

competitive market, the process parameters of the epoxy dispensing process, which 

directly affects the quality of electronic packaging products, need to be understood and 

optimized. However, epoxy dispensing is a highly non-linear process that involves 

extremely complex inter-relationships among the epoxy properties, process conditions 

and overall encapsulation quality [13]. GP-FR is used to develop models for this 

manufacturing process. Modeling results based on GP-FR is compared with those based 

on the fuzzy linear regression methods of Tanaka [17] and Peters [16], which have been 

employed to model the epoxy dispensing processes. 

 

2  Fuzzy regression  

The FR model can be developed based on M  experimental data 



sets ( ) ( ) ( ) ( ){ }1 1 2 2, , , , , , , , ,i i M My y y y x x x x . ix  is the thi experimental data set of the 

explanatory variable, ( )0 1, , , , ,i i i ij iNx x x x=  x , where ixi  allfor  10 = , and ijx is the 

observed value of the j-th variable in the i-th experimental data set and is always crisp. iy  

is the i-th observation of the explained variable, 1, 2, ,i M=  , and it is a crisp value. In 

particular, the fuzzy linear regression model can be represented as follows: 
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where y is the estimated observation after adjusting 0 1, , , NA A A   . In FR models, the 

disturbance is not introduced as a random addend in the linear relation, but it is 

incorporated into the fuzzy coefficients jA ( 0,1, ,j N=  ). The FR problem is to 

determine the fuzzy coefficients ( )s
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where Z is the total fuzziness of the system, and [ )0,1h∈ is referred to as the degree to 

which the fuzzy linear model fits with the given data, and is subjectively chosen by 

decision makers. Notice that the constraints (2b) and (2c) are the consequences of the 

requirements ( )y y hµ ⊆ ≥ , while the last constraint (2d) ensures that S
ja j∀  are non-

negative. 

Although the approach is widely used, in this paper we intend to overcome two of 

its limitations. First, it has been mentioned by several investigators that the approach is 

sensitive to outliers [35, 37] that could affect the results of FR analysis. As a result, 

because of the existence of the outliers, the model has more unnecessary uncertainties 

than the system should have. Second, the approach cannot yield models that contain 

interaction terms or even higher order terms. Interaction among process parameters and 

the nonlinear behavior of manufacturing processes commonly exists.  If interaction terms 

or higher order terms can be generated in FR models, prediction accuracy of the models 

could be improved. 

To overcome these two limitations of the FR, a genetic programming-based fuzzy 

regression (GP-FR) is proposed in Section 3. It has two main components: a FR generator, 

discussed in Section 3.1 and a genetic programming algorithm, discussed in Section 3.2. 

First, the genetic programming is used to generate the structure of the FR model that 

includes both higher order terms and interaction terms. The FR generator is then used to 

detect from experimental data sets. After that, it is used to determine the fuzzy 

coefficients of the GP-FR models using experimental data sets which exclude the outliers.  

 

 



3 Genetic programming-based fuzzy regression 

The general form of the FR models, which involves interactions terms between variables 

and higher order terms, can be represented as follows: 
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where 0
~f  is a fuzzy bias term and ( )ii xf~ , ( )jiij xxf ,~ , … represent univariate fuzzy 

components and bivariate fuzzy components respectively. A higher order high-

dimensional Kolmogorov-Gabor polynomial is one of the forms of (3), which can be 

written as follows: 
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 The FR model (4) can be rewritten as follows: 
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the transformed variables respectively, where i=0,1,2,…NNR. 

 The vectors of the fuzzy coefficients are defined as follows: 
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 The vector of the transformed variables is defined as follows: 
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 Using the vectors of the fuzzy coefficients and the vector of the transformed 

variables, (5) can be rewritten as follows: 

 TxAy ''~~ ⋅=          (11) 

 

3.1  Fuzzy regression generator  

The FR generator is proposed to determine the fuzzy coefficients of FR models which are 

structured in the form of (4). In the FR generator, the dependent data is no longer inside 

or outside the interval as is one of Tanaka’s FR, but belongs to a certain range based on 

the mechanism of Peters’ FR [36]. Outliers are compensated for by data that lies within 

the interval, and the estimated interval is determined by using all of the data rather than 

using only the “worst” data. Therefore, a new variable is introduced to represent the 

degree to which the solution belongs to the set of “good solutions” (i.e. degree of 

membership). Based on Peters’ FR, the fuzzy coefficients of the FR model are determined 

by solving the linear programming (LP) problem formulated as (12a) to (12f): 
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where 0d  represents the desired value of the objective function, 0p is the tolerance of the 

desired lower bound and ip  is the width of the tolerance interval of iy . λ  is the 

arithmetic mean of all iλ .  

The parameters 0p  and ip  are determined in a context-dependent way according 

to the decision maker’s experience and knowledge. A very low value of the special iλ  in 

a Peters’ fuzzy linear regression model indicates that the corresponding data set yi is far 

outside the interval and can be treated as an outlier. Therefore iλ ( 1, 2, ,i M=  ) can be 

employed to determine whether or not the ith data set is an outlier [23]. 

With a threshold value of 0λ , the iy  is defined as an outlier if 0iλ λ≤  for 

1, 2, ,i M=  , and the outliers are removed one by one from the training data sets during 

the process of developing FR models. The pseudocode of the FR generator is shown 

below: 

 

 

 

 



 

Determine the values of  d0, p0 and  pi; 

Select an appropriate threshold value 0λ ; 

Solve the LP problem (14a)-( 14f) using the 1-st to the M-th data sets; 

While ( 01,...,
min ii M

λ λ
=

< ) do { 

 Solve the LP problem (12a)-( 12f) using the 1-st to the M-th data sets  

   excluding the k–th data set; 

 // where kλ  is the small one among all the iλ  with i=1, 2, …M; 

 Remove the k-th data set from the M data sets 

 M=M-1; 

 } 

Return the final fuzzy coefficients 

               In the FR generator, the first step is to determine the values of d0, p0 and pi  [36], 

which can be used to control the spread of the interval of the FR model. A threshold 

value 0λ  is then defined as follows: 

( )0 1, ,1, ,

1 max min
2 i ii Mi M

λ λ λ
==

= +


                                                  (13) 
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λ
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1, ,
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λ
= 

 are calculated using all the data sets. In the while-loop of the 

FR generator, all λi with i = 1,2, …M, are found by solving the LP problem (12a)-(12f). 

If all λi are larger than λ0, the fuzzy coefficients are returned as the final solution, and the 

FR generator is terminated. Otherwise, the LP problem (12a)-(12f) is solved by excluding 

the k-th data set, where λk are the smallest among all the λi with i=1,…M. The k-th data 



set is then removed from the M data sets, and the number of data sets becomes M-1. The 

operations in the while-loop continues until all λi with i=1,…M are larger than λ0. 

3.2 Genetic Programming 

GP is proposed to determine the structures of process models, and its pseudocode is 

shown as follows. 

t=0 

Initialize Ω(t)=[θ1(t), θ2(t),… θPOP(t)] 

Assign fuzzy coefficients to all θi(t) 

// Ω(t) is the population of the t-th generation. 

// θi(t) is the i-th individual of Ω(t). 

Evaluate all θi(t) according to a fitness function 

while (termination condition not fulfilled) do { 

             Parent Selection Ω(t+1) 

             Crossover Ω(t+1) 

             Mutation Ω(t+1) 

             Determine fuzzy coefficients in all θi(t+1) by using  

 FR generator discussed in Section 3.1 

             Evaluate all θi(t+1) 

             Ω(t)= Ω(t+1) 

             t=t+1 

} 

 The GP-FR begins by creating a random initial population Ω(t) with POP 

individuals θi(t), while t=0. Each individual θi(t) is in the form of a tree structure [24, 25], 



which can be used to represent the structure of the FR model as defined in (4). 

Hierarchical trees are composed of functions F and terminals T [24, 25]. The FR model 

(4) contains only the three arithmetic operations, +, - and *, thus F is represented as F = 

{+, -, *}. The set of terminals is defined as T = { x1, x2, … xN}. In the tree, operations 

from the function set F are used as internal nodes, and arguments from the terminal set T 

are used as terminal nodes. For example, a hierarchical tree can be expressed as: 

(x1*x1) - (x2*x2) + (x1*x2*x4) 

which is equivalent to: 

 x1
2 – x2

2 + x1 x2 x4 

 The FR-generator as described in Section 3.1 is used to assign the fuzzy 

coefficients to each individual θi(t). All individuals are evaluated according to a defined 

fitness function, which is aimed at evaluating the goodness-of-fitness of the FR model. 

The mean absolute error (MAE) of the j-th individual can be calculated based on (14). 
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where Fj is the FR model represented by the j-th individual, 

( )kx,ky = ( )( )kNkkk xxxy ,...,, 21  is the k-th training data set which excludes the outliers 

detected by the FR generator, and M is the number of training data sets excluding the 

outliers used to develop the FR model. 

(14) is commonly known as an indicator of training error in a model. It reflects 

how well the model fits the training data sets. However, a model may contain many 

unnecessary and complex terms. A complex over-parameterized model with a large 

number of parametrical terms reduces the transparency and interpretation of the model. 



To prevent the GP-FR from generating models that are too complex, a fitness function is 

designed to balance the trade-off between the reduction of complexity and the model 

accuracy. In this research, penalty terms are introduced into the fitness function of the 

GP-FR [32]. The fitness of the j-th individual is denoted as follows: 

 ( )( )( )21exp1
1

cLc
MAE

fitness
j

j
j −+

−
=       (15) 

where fitnessj is the fitness value, Lj is the number of nodes of the j-th individual, and c1 

and c2 are both penalty terms. 

 The parent selection process then uses the goodness-of-fitness of each individual 

to determine the selection of potential individuals to perform crossover or mutation. 

Finally, the new individuals with the determined fuzzy coefficients are evaluated using 

the fitness function to create a new population Ω(t+1). The process continues until the 

pre-defined termination condition has been fulfilled. 

 

4. Evaluation of the genetic programming based fuzzy regression 

In this section, the evaluation of the performance of the proposed GP-FR is illustrated by 

modeling a simple non-linear input-output model and by modeling a fluid dispensing 

process [34] for the encapsulation of IC chips for electronic packages. The modeling 

results are compared with those based on Tanaka and Watada’s fuzzy regression (FR-

Tanaka) [43] and Peters’ fuzzy regression (FR-Peters) [36]. All the algorithms, GP-FR, 

FR-Tanaka and FR-Peters were implemented using Matlab. The GP parameters in GP-FR 

are set as shown in Table 1 with reference to [31]. 

 

 



Table 1 The GP parameters implemented in GP-FR 

Population size 50 

Maximum number of evaluated individuals 5000 

Generation gap 0.9 

Probability of crossover 0.5 

Probability of mutation 0.5 

 

4.1 Non-linear input-output model 

The following simple but non-linear input-output model in which interaction exists 

between input variables is considered. 

    2
1 2 3 3 4 510 5 2y x x x x x x= ⋅ ⋅ + ⋅ + ⋅ ⋅ +  

Here, x1, x2, x3, x4 and x5 are the input variables and y is the output variable of the 

model. The aim of the experiment is to identify the model from a set of training data in 

which outliers are introduced. The training data consists of 90 data sets simulated by the 

model, and 10 data sets generated randomly by  

 ( ) ( )( )2
1 2 3 3 4 510 5 2 1 1,1y x x x x x x rand= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ + −  

The latter are considered outliers of the training data sets. Another 10 independent 

data sets simulated by the model are employed as the testing data sets for the validation 

of the developed model. Both the training data sets and testing data sets are shown in 

Table 2 in the Appendix. In the GP-FR, the function set F contains the basic arithmetic 

operations F = {+,-,*}, and the terminal set T contains the following arguments T = {x1, 

x2, x3, x4, x5}. 

The FR model developed by FR-Tanaka with the 90 training data sets is as 



follows: 

 y=(-7.1502, 43.612) + (8.6767, 0.0000) x1 + (7.0221, 0.0000) x2 +  (16) 

  (4.448, 0.0000) x3 + (1.3817, 0.0000) x4 + (5.6052, 0.0000) x5  

 Using the same experimental data sets shown in Table 2, the following FR model 

was determined by FR-Peters: 

 y=(-4.3449,1.1) + (5.4541, 0.0000) x1 + (6.0718, 0.0000) x2 +  (17) 

  (7.1213, 0.0000) x3+ (0.85327, 0.0000) x4+ (1.0780, 0.0000) x5 

 The following FR model was also determined by the proposed GP-FR: 

y=(10.651, 0.94951) · x1 · x2 + (5.907, 1.1373) · x3 +    (18) 

(0.85714, 0.037744) · x3· x4 + (1.1701, 0.53891) · x5
2    

 From the (16) and (17), it can be observed that only the linear terms could be 

generated by the FR-Tanaka and FR-Peters. As GP is a stochastic optimization algorithm, 

30 independent runs were executed on the GP-FR. It has been found that the correct 

structure of the non-linear input-output model exists in 25 out of the 30 independent runs. 

Therefore, the interaction and higher order terms can be found by the GP-FR. To evaluate 

the effectiveness of the three FR methods, 10 validation tests were conducted. Table 3 

shows the validation tests yielded by the developed models for the nonlinear system. 

From the table, it can be found that the mean error and the variance of errors obtained by 

the GP-FR are the smallest.   

 

 

 

 



Table 3 Validation tests for the simple non-linear models 
Data set Actual 

value 
FR-Tanaka FR-Peters GP-FR 

  Predicted 
value 

Relative 
error 
(%) 

Predicted 
value 

Relative 
error 
(%) 

Predicted 
value 

Relative 
error 
(%) 

1st 5.1463 9.3383 81.457 5.1383 0.15545 5.558 8.0017 
5th 1.7484 0.62196 64.427 1.5243 12.817 1.8557 6.1384 
26th 1.3915 2.1465 54.258 0.77609 44.226 1.5011 7.8777 
32nd 1.1886 1.5744 32.458 -0.64909 154.61 1.3638 14.738 
33rd 2.896 6.269 116.47 4.5491 57.082 3.1009 7.0784 
34th 2.7117 2.4022 11.414 2.1251 21.632 2.8964 6.8105 
41st 1.4327 1.7072 19.16 0.068717 95.204 1.6051 12.033 
67th 4.0561 3.0201 25.542 3.7277 8.0964 4.3602 7.4954 
91st 2.2748 4.6265 103.38 2.3564 3.5871 2.4373 7.1423 
93rd 2.3165 3.6047 55.61 1.7203 25.737 2.5158 8.6052 
Mean relative 

error 
(%) 

56.418 42.315 8.5921 

Variance of 
relative errors 

(%) 

1272.1 2405.6 0.072518 

 
 
3.2 Epoxy dispensing process 

Epoxy dispensing is a common process for performing the encapsulation of IC chips for 

electronic packages [29]. Modeling the epoxy dispensing process is critical to 

understanding the behavior of the process and to achieving optimization of the process. 

However, the epoxy dispensing process is difficult to characterize due to the complex 

behavior of the epoxy encapsulant and the existence of uncertainties inherent to epoxy 

dispensing systems [5, 7, 13]. In the following, the modeling of epoxy dispensing for IC 

chip encapsulation is described. 

 In the epoxy dispensing machines for IC chip encapsulation, normally, silicon 

chips are covered using an X-Y numerically controlled dispensing system that delivers 

epoxy encapsulant through a needle by a pump. The material is commonly dispensed in a 



pattern, working from the center out. An epoxy dam around the die site and the second 

wire bond points can be made to contain the flow of material and produce a uniform-

looking part as shown in Figure 1. 

 

 

 

 

 

 

 

Figures 2 and 3 show the set-up of the epoxy dispensing process which consists of 

the essential parts, the syringe with epoxy, the time-pressure dispensing machine and the 

nozzle’s head. The epoxy was injected from the syringe vertically by the time-pressure 

dispensing machine. The dropped epoxy paste was collected horizontally on the grinded 

plastic block. To minimize the discrepancies of the experiments, the vertical distance 

between the syringe and glass slides was kept identically at 1.5cm in all the experiments. 

Two quality characteristics, encapsulation weight (mg) and encapsulation area (cm2),  

were investigated. The weights of the epoxy pastes were measured by a precise electronic 

weighing instrument. The images of the epoxy pastes were first captured by an image 

scanner and the areas of the images were then measured by an NI vision builder. 
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Figure 1  Encapsulation of COB packages 
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Figure 2 Experimental set-up 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Experimental set-up 

With the assistance of the company supporting this research, three process 
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area z, were identified as follows:  

• the dispensing time (5s to 9s), 1x , which is the duration of the air pressure 

controlled by the time-pressure dispensing machine; 

• the compressed air pressure (0.4Mpa to 0.6Mpa), 2x  which is the amount of 

pressurized air compressed by the time-pressure dispensing machine; and 

• the diameters of the nozzle head (0.61mm , 0.84 mm or 0.137 mm), 3x . 

 Fifty-four experiments were carried out based on a 3k full factorial design with 2 

replicates. In the factorial design, 3 levels of dispensing time ( 1x ), 3 levels of compressed 

air pressure ( 2x ) and 3 levels of nozzle head diameters of ( 3x ) were adopted. Forty-eight 

out of the fifty-four experimental data sets and results were used to develop the process 

models of the epoxy dispensing process while the remaining seven were used to test the 

developed models. The outliers were included in all the training data sets. Table 3 

Validation tests for the simple non-linear models The 1st, 18th, 28th and 45th data sets were 

considered outliers in modeling the encapsulation weight. The 8th, 15th, 35th and 42nd were 

considered outliers in modeling the encapsulation thickness. Both the training and testing 

data sets of the epoxy dispensing process are shown in Table 4 in the appendix. 

 Using the 47 training data sets for the encapsulation weight as shown in Table 4, 

the FR model for encapsulation weight as determined by FR-Tanaka is as follows: 

 y = (-0.6976,-0.0000) + (0.2422,-0.0000) ⋅ x1 +     (19) 

(0.0298,0.1645) ⋅ x2 + (0.6284,0) ⋅ x3 

and the one for the encapsulation area is as follows: 

 z = (-5.5299,0) + (2.0632,0) ⋅ x1 +       (20) 

(0.2563,1.2301) ⋅ x2 + (4.9311,0) ⋅ x3 



 The FR model for encapsulation weight found by FR-Peters is as follows: 

 y = (-0.5350, 0.1480) + (0.1952, 0.8712) ⋅ x1     (21) 

 + (0.0145,0.1388) ⋅ x2 + (0.5513,0.5607) ⋅ x3 

and the one for the encapsulation area is as follows: 

 z = (-4.7642,0.1603) + (1.8815,0.8845) ⋅ x1      (22) 

 + (0.1432,0.1348) ⋅ x2 + (4.8573,0.5801) ⋅ x3 

 Using the same experimental data sets shown in Table 4, the model for the 

encapsulation weight found by the GP-FR is shown as follows: 

 y = (-0.026814,1.4243) +  (0.058158, 0.0060) ⋅ x1·x2·x3
4   (23) 

and the one for encapsulation area is as follows: 

 z = (-0.314508, 1.2115) + (1.097104, 0.0098) ⋅ x1
2 x2 x3

3     (24) 

It can be found that only linear terms can be generated by the FR-Tanaka and FR-

Peters, and the higher order and interaction terms of the process models can be generated 

by the proposed GP-FR. To evaluate the effectiveness of the three FR methods, 6 

validation tests were conducted. Tables 5 and 6 show the results of the validation tests 

yielded by the developed models for the epoxy dispensing process. From the tables, it can 

be found that the smallest errors can be obtained by the proposed GP-FR rather than the 

other two methods in all the validation tests of both models of the encapsulation weight 

and encapsulation thickness. In addition, the mean errors and variances of errors obtained 

by the GP-FR are the smallest. 

 

 

 



Table 5:  Validation tests of the models of the encapsulation weight 
 
Data set Actual 

value 
FR-Tanaka FR-Peters GP-FR 
Predicted 
value 

Abs 
error (%) 

Predicted 
value 

Abs error 
(%) 

Predicted 
value 

Abs 
error 
(%) 

9 0.6020 0.4640 22.9284 0.3685 38.7896 0.6030 0.1610 
13 0.4660 0.4043 13.2358 0.3395 27.1378 0.4630 0.6400 
21 0.0510 0.1359 166.5602 0.1075 110.8657 0.0543 6.3933 
32 0.0660 0.1602 142.6699 0.1271 92.5155 0.0745 12.9230 
42 0.3830 0.4155 8.4957 0.3294 13.9819 0.3930 2.6218 
52 0.4970 0.4398 11.5181 0.3490 29.7851 0.4980 0.2023 
Mean relative 
error 
(%) 

60.9014 52.1793 3.8236 

Variance of 
relative errors (%) 

5.3498×103 1.5676×103 25.5021 

 
Table 6 Validation tests of the models of the encapsulation area 
 
Data set Actual 

value 
FR-Tanaka FR-Peters GP-FR 
Predicted 
value 

Abs 
error 

Predicted 
value 

Abs error Predicted 
value 

Abs 
error 

9 5.7200 3.8829 32.1163 3.4339 39.9664 5.6756 0.7765 
13 4.3100 3.3703 21.8026 3.1475 26.9725 4.3445 0.7994 
21 0.6400 1.2318 92.4644 1.0711 67.3617 0.4138 35.3467 
32 0.7400 1.4381 94.3367 1.2593 70.1710 0.8234 11.2761 
42 2.3700 3.4703 46.4265 3.0576 29.0136 2.3478 0.9386 
52 4.2600 3.6766 13.6942 3.2458 23.8081 3.8453 9.7352 
Mean relative 
error 
(%) 

50.1401 42.8822 9.8121 

Variance of 
relative errors 
(%) 

1.2429e×103 432.3409 179.1550 

 
 
4 Conclusion 
 
In this paper, a GP-FR approach is proposed for modeling manufacturing processes 

whereby models can be developed with proper interaction and higher-order terms in 

polynomial forms. Besides, this approach can also be used to detect outliers from data 

sets such that models with better capability of prediction can be developed. Since FR is 



involved in the proposed GP-FR, only a small amount of data is required to generate an 

explicit model in fuzzy polynomial form. The proposed GP-FR uses the general 

outcomes of GP to construct the structure of a model based on a tree representation. An 

FR generator is then used to estimate the contributions and fuzziness of each branch of 

the tree by using the data excluding the outliers. The proposed GP-FR can overcome the 

deficiencies of the commonly used modeling methods, which ignore the fuzzy nature of 

data, produce black-box models, include outliers in model development, or require a 

large amount of data to produce models. To validate the proposed GP-FR approach, the 

GP-FR, FR-Tanaka and FR-Peters were all applied to model the simple non-linear system 

and the epoxy-dispensing process in which outliers exist in the data sets. Modeling results 

based on the three approaches were compared. The results indicate that the smallest 

prediction errors and errors in variance can be achieved by GP-FR than by the commonly 

used FR methods, FR-Peters, and FR-Tanaka. The achievement of better results can be 

explained by the introduction of interaction terms and higher-order terms in the models 

developed based on GP-FR, and the exclusion of outliers.  

In the future, we will investigate the effectiveness of GP-FR in modeling multi-

objective quality characteristics with constraints. GP-FR will be used to generate a model 

of the epoxy-dispensing process to reflect two quality characteristics (i.e., encapsulation 

weight and encapsulation area) and the process parameters. The constraints, which can be 

determined by the fuzziness of the quality characteristics, will be set by restricting the 

robustness of both the encapsulation weight and encapsulation area. 
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Appendix 
 
Table 2 Data sets for the simple non-linear system 
 
Number Data type x1 x2 x3 x4 x5 y 

 1 Testing 0.36031 0.28594 0.014864 0.8952 0.51015 1.3915 
     2 Training 0.54851 0.39413 0.28819 0.94239 0.71396 4.6557 
     3 Training 0.26177 0.50301 0.81673 0.33508 0.51521 6.2132 
     4 Outlier 0.59734 0.72198 0.98548 0.43736 0.60587 10.469 
     5 Testing 0.049278 0.30621 0.017363 0.47116 0.9667 1.1886 
     6 Training 0.57106 0.11216 0.81939 0.14931 0.82212 5.658 
     7 Training 0.70086 0.44329 0.62114 0.13586 0.31775 6.4823 
     8 Training 0.96229 0.46676 0.56022 0.5325 0.5877 8.2347 
     9 Training 0.75052 0.014669 0.24403 0.72579 0.1302 1.7014 
    10 Training 0.73999 0.66405 0.82201 0.3987 0.25435 9.7441 
    11 Outlier 0.43187 0.72406 0.26321 0.35842 0.80303 5.2766 
    12 Training 0.63427 0.28163 0.75363 0.28528 0.66785 6.4305 
    13 Training 0.80303 0.26182 0.65964 0.86864 0.013626 6.5469 
    14 Training 0.083881 0.70847 0.21406 0.62641 0.56158 2.2481 
    15 Training 0.94546 0.78386 0.60212 0.24117 0.45456 10.919 
    16 Training 0.91594 0.98616 0.60494 0.97808 0.90495 14.06 
    17 Training 0.60199 0.47334 0.6595 0.6405 0.28216 7.0714 
    18 Training 0.25356 0.90282 0.18336 0.22985 0.065034 3.2945 
    19 Training 0.87345 0.45106 0.63655 0.68134 0.47659 8.2171 
    20 Training 0.5134 0.80452 0.17031 0.66582 0.98371 6.1764 
    21 Training 0.73265 0.82886 0.5396 0.13472 0.92235 9.7668 
    22 Training 0.42223 0.16627 0.62339 0.022493 0.5612 4.162 
    23 Outlier 0.96137 0.39391 0.68589 0.2622 0.65232 8.0016 
    24 Training 0.072059 0.52076 0.67735 0.11652 0.77268 4.5169 
    25 Training 0.55341 0.71812 0.87683 0.069318 0.10618 8.4911 
    26 Testing 0.29198 0.56919 0.012891 0.85293 0.0010734 1.7484 
    27 Training 0.85796 0.46081 0.3104 0.18033 0.54176 5.911 
    28 Training 0.33576 0.44531 0.77908 0.032419 0.0068578 5.4411 
    29 Training 0.6802 0.087745 0.3073 0.73393 0.45134 2.7881 
    30 Training 0.053444 0.44348 0.92668 0.53652 0.19566 5.9031 
    31 Training 0.35666 0.3663 0.67872 0.27603 0.78714 5.6943 
    32 Testing 0.4983 0.30253 0.074321 0.36846 0.61856 2.3165 
    33 Testing 0.43444 0.85184 0.070669 0.012886 0.015521 4.0561 
    34 Testing 0.56246 0.75948 0.01193 0.88921 0.89085 5.1463 
    35 Training 0.61662 0.94976 0.22715 0.86602 0.7617 7.9658 
    36 Outlier 0.11334 0.55794 0.51625 0.25425 0.90704 4.2989 
    37 Training 0.89825 0.014233 0.4582 0.56948 0.75857 3.5161 
    38 Training 0.75455 0.59618 0.7032 0.15926 0.38073 8.3834 
    39 Training 0.79112 0.81621 0.58248 0.59436 0.33111 10.172 
    40 Training 0.81495 0.97709 0.50921 0.3311 0.50408 11.1 
    41 Testing 0.67 0.22191 0.07429 0.65861 0.56457 2.2748 
    42 Training 0.20088 0.70368 0.19324 0.86363 0.7672 3.3021 
    43 Training 0.27309 0.52206 0.3796 0.56762 0.77987 4.3628 
    44 Training 0.62623 0.9329 0.27643 0.98048 0.4841 8.0007 
    45 Training 0.53685 0.71335 0.77088 0.79183 0.80221 9.5484 
    46 Training 0.059504 0.22804 0.31393 0.15259 0.47101 2.023 
    47 Outlier 0.088962 0.44964 0.63819 0.83303 0.20276 4.6953 
    48 Training 0.27131 0.1722 0.98657 0.19186 0.57961 6.1146 
    49 Training 0.40907 0.96882 0.50288 0.63899 0.6665 7.5644 
    50 Training 0.47404 0.35572 0.9477 0.669 0.67677 8.1508 
 
 
 
 
 
 
 
 
 
 



 
Number Data type x1 x2 x3 x4 x5 y 
    51 Training 0.90899 0.049047 0.82803 0.77209 0.94251 6.7529 
    52 Training       0.59625       0.75534       0.91756       0.37982       0.77015        10.382 
    53 Training       0.32896       0.89481       0.11308       0.44159        0.7374        4.1526 
    54 Training       0.47819       0.28615       0.81213       0.48306       0.86626         6.964 
    55 Training       0.59717        0.2512       0.90826       0.60811       0.99095         8.128 
    56 Outlier       0.16145       0.93274       0.15638         0.176       0.50393        2.5968 
    57 Training       0.82947       0.13098       0.12212     0.002026       0.62909        2.0933 
    58 Outlier       0.95612       0.94082       0.76267       0.79022       0.79261        14.642 
    59 Training       0.59555       0.70185        0.7218       0.51361       0.44865        8.7316 
    60 Training      0.028748       0.84768       0.65164       0.21323       0.52436        4.0547 
    61 Training       0.81212       0.20927       0.75402       0.10345       0.17147         5.655 
    62 Training       0.61011       0.45509       0.66316       0.15734       0.13067        6.3181 
    63 Training       0.70149      0.081074       0.88349       0.40751       0.21878        5.7541 
    64 Outlier      0.092196       0.85112       0.27216       0.40776       0.10548        2.3786 
    65 Outlier       0.42489       0.56205       0.41943      0.052693       0.14143        4.5494 
    66 Training       0.37558        0.3193       0.21299       0.94182       0.45697        2.8742 
    67 Testing       0.16615        0.3749        0.0356       0.14997       0.78813        1.4327 
    68 Training       0.83315        0.8678      0.081164       0.38437       0.28106        7.7773 
    69 Training       0.83864       0.37218       0.85057       0.31106       0.22479        7.9538 
    70 Training       0.45161       0.07369        0.3402       0.16853       0.90887        2.9745 
    71 Training        0.9566       0.19984       0.46615       0.89665     0.007329        5.0784 
    72 Training       0.14715      0.049493       0.91376       0.32272       0.58874         5.578 
    73 Training       0.86993       0.56671       0.22858         0.734       0.54212        6.7023 
    74 Training       0.76944       0.12192       0.86204        0.4109       0.65352        6.3838 
    75 Training       0.44416       0.52211       0.65662       0.39979       0.31343        6.2254 
    76 Training       0.62062       0.11706       0.89118       0.50552       0.23116        6.1369 
    77 Training       0.95169       0.76992       0.48814       0.16931       0.41606        10.106 
    78 Training       0.64001       0.37506       0.99265       0.52475        0.2988        8.4947 
    79 Training       0.24733       0.82339       0.37333        0.6412       0.67244        4.8341 
    80 Training        0.3527      0.046636       0.53138      0.016197       0.93826        3.7189 
    81 Training       0.18786       0.59791       0.18132       0.83685       0.34315        2.4511 
    82 Training       0.49064       0.94915       0.50194       0.80346       0.56296        8.2901 
    83 Outlier       0.40927        0.2888       0.42219       0.69778       0.11889        3.8962 
    84 Training       0.46353       0.88883       0.66043       0.46189       0.16902        8.0608 
    85 Training       0.61094       0.10159       0.67365      0.082613        0.2789         4.178 
    86 Training      0.071168      0.065315       0.95733       0.82072       0.55681        6.7146 
    87 Training       0.31428        0.2343       0.19187       0.19302       0.48559        2.0056 
    88 Training       0.60838        0.9331       0.11122       0.44535       0.95222        7.2387 
    89 Training       0.17502      0.063128       0.56505      0.012958       0.23192        3.0042 
    90 Training       0.62103       0.26422       0.96917       0.30874       0.47866        7.3143 
    91 Testing       0.24596       0.99953      0.023744       0.87535       0.52652         2.896 
    92 Training       0.58736       0.21199       0.87022       0.83526       0.79272        7.6784 
    93 Testing       0.50605       0.49841      0.026877        0.3331       0.19301        2.7117 
    94 Training       0.46478       0.29049       0.51953       0.88071        0.9096        5.6903 
    95 Training       0.54142       0.67275       0.19229       0.47969        0.9222        5.6388 
    96 Training       0.94233       0.95799       0.71569       0.56082      0.013266        13.409 
    97 Training       0.34176       0.76655       0.25067       0.61591       0.76755         4.771 
    98 Training        0.4018       0.66612       0.93386        0.6619       0.94734        9.4795 
    99 Training       0.30769       0.13094       0.13719       0.61663       0.81331        1.9195 
   100 Training       0.41157      0.095413       0.52162       0.68514       0.92383         4.569 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4 Data sets for the epoxy dispensing system 
 

Data set  Pressure (Mpa) 
Dispensing time 

(sec) 
Diameter of 
nozzle ( mm) 

Weight of epoxy 
(g) Area (cm2) 

1 0.4 5 0.61 0.0075 0.19 
2 0.5 7 0.61 0.022 0.29 
3 0.6 9 0.61 0.027 0.34 
4 0.4 5 0.84 0.038 0.49 
5 0.5 7 0.84 0.064 0.75 
6 0.6 9 0.84 0.1 1.1 
7 0.4 5 1.19 0.214 2.06 
8 0.5 7 1.19 0.381 3.52 
9 0.6 9 1.19 0.602 5.72 

10 0.6 7 0.84 0.078 0.87 
11 0.5 5 0.84 0.042 0.57 
12 0.4 9 0.84 0.062 0.71 
13 0.6 7 1.19 0.466 4.31 
14 0.5 5 1.19 0.274 2.76 
15 0.4 9 1.19 0.381 3.52 
16 0.6 7 0.61 0.022 0.33 
17 0.5 5 0.61 0.017 0.23 
18 0.4 9 0.61 0.017 0.29 
19 0.5 9 0.84 0.083 0.91 
20 0.6 5 0.84 0.059 0.72 
21 0.4 7 0.84 0.051 0.64 
22 0.5 9 0.61 0.029 0.39 
23 0.6 5 0.61 0.021 0.29 
24 0.4 7 0.61 0.02 0.25 
25 0.5 9 1.19 0.492 4.5 
26 0.6 5 1.19 0.341 3.26 
27 0.4 7 1.19 0.31 3.19 
28 0.4 5 0.61 0.014 0.2 
29 0.5 7 0.61 0.018 0.3 
30 0.6 9 0.61 0.027 0.42 
31 0.4 5 0.84 0.033 0.48 
32 0.5 7 0.84 0.066 0.74 
33 0.6 9 0.84 0.096 1.05 
34 0.4 5 1.19 0.215 1.83 
35 0.5 7 1.19 0.405 2.37 
36 0.6 9 1.19 0.612 4.99 
37 0.6 7 0.84 0.075 0.89 
38 0.5 5 0.84 0.046 0.59 
39 0.4 9 0.84 0.06 0.76 
40 0.6 7 1.19 0.4845 4.16 
41 0.5 5 1.19 0.278 2.57 
42 0.4 9 1.19 0.383 2.37 
43 0.6 7 0.61 0.025 0.37 
44 0.5 5 0.61 0.015 0.24 
45 0.4 9 0.61 0.023 0.32 
46 0.5 9 0.84 0.075 0.91 
47 0.6 5 0.84 0.045 0.57 
48 0.4 7 0.84 0.05 0.66 
49 0.5 9 0.61 0.022 0.36 
50 0.6 5 0.61 0.019 0.27 
51 0.4 7 0.61 0.018 0.26 
52 0.5 9 1.19 0.497 4.26 
53 0.6 5 1.19 0.337 2.99 
54 0.4 7 1.19 0.298 2.9 

 


