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In privacy-preserving data mining (PPDM), a widely used method for achieving data min-
ing goals while preserving privacy is based on k-anonymity. This method, which protects
subject-specific sensitive data by anonymizing it before it is released for data mining,
demands that every tuple in the released table should be indistinguishable from no fewer
than k subjects. The most common approach for achieving compliance with k-anonymity is
to replace certain values with less specific but semantically consistent values. In this paper
we propose a different approach for achieving k-anonymity by partitioning the original
dataset into several projections such that each one of them adheres to k-anonymity.
Moreover, any attempt to rejoin the projections, results in a table that still complies with
k-anonymity. A classifier is trained on each projection and subsequently, an unlabelled
instance is classified by combining the classifications of all classifiers.

Guided by classification accuracy and k-anonymity constraints, the proposed data min-
ing privacy by decomposition (DMPD) algorithm uses a genetic algorithm to search for
optimal feature set partitioning. Ten separate datasets were evaluated with DMPD in order
to compare its classification performance with other k-anonymity-based methods. The
results suggest that DMPD performs better than existing k-anonymity-based algorithms
and there is no necessity for applying domain dependent knowledge. Using multiobjective
optimization methods, we also examine the tradeoff between the two conflicting objec-
tives in PPDM: privacy and predictive performance.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Knowledge discovery in databases (KDD) is the ‘‘process of identifying valid, novel and potentially useful and ultimately
understandable patterns in data” [15]. Data mining, which lies at the core of the KDD process, is based on algorithms that
explore data and extract valuable information from the patterns that emerge. Data mining has emerged as a key tool for
a wide variety of applications in such fields as diverse as astronomy and marketing [63].

Some applications involve mining sensitive data about individuals or corporations and this has led to a growing concern
that data mining can violate individual privacy and attempts to limits its implementation [30,9]. For example, in 2003 the
Data-Mining Moratorium Act [16] imposed a freeze on data mining by the Department of Defense and the Department of
Homeland Security until Congress had thoroughly reviewed the Terrorism Information Awareness Program.

Commercial concerns are also concerned with the privacy issue. Most organizations collect information about individuals
for their own specific needs. Very frequently, however, different units within an organization or even different organizations
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themselves may find it necessary to share information. In such cases, each organization or unit must be sure that the privacy
of the individual is not violated or that sensitive business information is not revealed [7].

Consider, for example, a government, or more appropriately, one of its security branches interested in developing a sys-
tem for determining, from passengers whose baggage has been checked, those who must be subjected to additional security
measures. The data indicating the necessity for further examination derives from a wide variety of sources such as police
records; airports; banks; general government statistics; and passenger information records that generally include personal
information (such as name and passport number); demographic data (such as age and gender); flight information (such as
departure, destination, and duration); and expenditure data (such as transfers, purchasing and bank transactions). In most
countries, this information is regarded as private and to avoid intentionally or unintentionally exposing confidential infor-
mation about an individual, it is against the law to make such information freely available.

While various means of preserving individual information have been developed, there are ways for circumventing these
methods. In our example, in order to preserve privacy, passenger information records can be de-identified before the records
are shared with anyone who is not permitted directly to access the relevant data. This can be accomplished by deleting from
the dataset unique identity fields, such as name and passport number. However, even if this information is deleted, there are
still other kinds of information, personal or behavioral (e.g. date of birth, zip code, gender, number of children, number of
calls, number of accounts) that, when linked with other available datasets, could potentially identify subjects.

To avoid these types of violations, various countries have sought to introduce privacy laws. The OECD (Organization for
Economic Co-operation and Development) Privacy Guidelines, established in 1980 include general principles regarding the
use of personal data. EU member countries subsequently adopted the Data Protection Directive 95/46/EC [13], based on pre-
vious OECD Guidelines [50]. This directive, which was implemented in the form of national data protection legislation, im-
poses obligations on the data controller and data processor.

‘‘The Healthcare Information Portability and Accountability Act” (HIPAA) enacted by the US Congress in 1996 is another
legislative attempt to regulate data mining. This act seeks to create national standards for protecting medical records and
other personal health information [60].

These two bodies of laws, HIPAA and the OECD Privacy Guidelines, have had a significant impact on PPDM essentially
because of their definitions of privacy. These two sets of regulations consider individual privacy to be protected as long
as any information cannot be traced to a specific individual. For example, within the OECD, Data Protection Directive 95/
46/EC regulates using personal data which is defined as ‘‘any information relating to an identified or identifiable natural per-
son (‘data subject’); an identifiable person is one who can be identified, directly or indirectly, in particular by reference to an
identification number or to one or more factors specific to his physical, physiological, mental, economic, cultural or social
identity”. The US’s HIPAA is directed to protecting ‘‘individually identifiable health information”, which means the informa-
tion ‘‘that identifies an individual and with respect to which there is no reasonable basis to believe that the information can
be used to identify an individual” [60].

Individual data privacy definitions involve addressing complex individual privacy issues. For example, inferences based
on different types of individual data and aimed at achieving sensitive information about an individual can lead to serious
privacy violations. In other words, the individual must be protected not only against exposure of sensitive information
but also against attempts to evaluate this data more accurately [30].

In an effort to analyze the implications of these principles in data mining, Meints and Moller [43] propose establishing
absolute principles in privacy-preserving data mining, including standardizing the definitions of data mining, privacy, pri-
vacy violation, and policies. The standardization would enforce privacy safeguards and control how personal data is shared
and used.

Several researchers have proposed methods for incorporating privacy-preserving requirements in various data mining
tasks, such as classification [58]; frequent itemsets [69]; and sequential patterns [31]. In this paper we focus on classifi-
cation tasks and the k-anonymity model as proposed by Sweeny [62]. A dataset complies with k-anonymity constraints if
for each individual, the data stored in the released dataset cannot be distinguished from at least k � 1 individuals whose
data also appears in the dataset. Or more generally, each original individual record can only be reconstructed based on
released data with a probability that does not exceed 1/k, given knowledge based on information available from external
sources.

Suppression is one of the earlier techniques for creating a k-anonymous dataset [56]. With suppression, the most common
approach is to entirely replace a certain attribute value with a missing value that can take any other attribute’s domain value.
A major problem with suppression is that the technique can drastically reduce the quality of the data if it is not properly used
[61]. On the other hand suppression does not require any knowledge regarding the attributes’ domain values. Thus, this tech-
nique is still frequently used [8,70,32].

A more qualitative approach than suppression in creating a k-anonymous dataset is to generalize attributes which may be
used to violate individual privacy. During generalization, original attribute values are substituted for the semantically con-
sistent but less precise values. For example, the zip code of an individual can be replaced by its two first figures. This is en-
ough to provide sufficient geographical information for data mining. Due to the substitution, the value can be related to more
individuals than the zip code in the original dataset.

Appropriate generalization maintains the mean of the data at the record level but an anonymized dataset can contain less
information and this can affect the performance of data mining algorithms applied to the dataset. Different algorithms use
various methods for selecting the attributes and records for generalization as well as the generalization technique [8].
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The main difficulty of existing generalization algorithms is the need for domain hierarchy trees for every quasi-identifier
attribute [28,65,22,37,38,19,21]. These attribute hierarchies are created manually and the process requires prior knowledge
regarding the problem domain.

We propose a new method for achieving k-anonymity, – data mining privacy by decomposition (DMPD). The basic idea is
to divide the original dataset into several disjoint projections such that each one of them adheres to k-anonymity. It is easier
to make a projection comply with k-anonymity if the projection does not contain all quasi identifier features. Moreover, our
procedure ensures that even if the attacker attempts to rejoin the projections, the k-anonymity is still preserved. A classifier
is trained on each projection and subsequently, an unlabelled instance is classified by combining the classifications of all
classifiers. Because DMPD preserves the original values and only partitions the dataset, we assume that it has a minimal im-
pact on classification accuracy. DMPD does not require domain trees for every attribute nor does it fall into the difficulties
encountered by existing algorithms which reduce the validity of the dataset (such as suppression). DMPD supports classifi-
cation, but can be extended to support other data mining tasks by incorporating various types of decomposition [10].

DMPD employs a genetic algorithm for searching for optimal feature set partitioning. The search is guided by k-anonym-
ity level constraint and classification accuracy. Both are incorporated into the fitness function. We show that our new ap-
proach significantly outperforms existing suppression-based and generalization-based methods that require manually
defined generalization trees. In addition, DMPD can assist the data owner in choosing the appropriate anonymity level. Using
the Pareto efficiency principle, we offer a better way to understand the tradeoff between classification accuracy and privacy
level [49].

The rest of the paper is organized as follows: in Section 2 we present an overview of related work and methodologies. In
Section 3 we describe the goals of our study and present appropriate definitions while in Section 4 we outline the DMPD
method. In Section 5 we evaluate and discuss different aspects of the new method for providing k-anonymity. Conclusions
and future research issues are presented in Section 6.
2. Related work

In this section we briefly review some of the topics that were mentioned in the previous section. These issues fall into four
categories:

� Privacy-preserving data mining
� The feature set partitioning approach
� Genetic algorithm-based search
� Genetic algorithms for multiobjective optimization

2.1. Privacy-preserving data mining

Privacy-preserving data mining (PPDM), a relatively new research area, is focused on preventing privacy violations that
might arise during data mining operations [64,30,2]. In implementing this goal, PPDM algorithms modify original datasets in
order to preserve privacy even after the mining process is activated. The aim is to ensure minimal data loss and to obtain
qualitative data mining results.

Verykios et al. [64] describe PPDM approaches based on five dimensions: (1) data distribution – whether the data is cen-
tralized or distributed; (2) data modification – where the modification technique is used to transform the data values; (3)
data mining algorithm – the data mining task to which the approach is applied; (4) data or rule hiding – refers to whether
raw data or aggregated data should be hidden; (5) privacy preservation – the type of selective modification performed on the
data as a part of the PPDM technique: heuristic-based, cryptography-based or reconstructing-based.

The approach presented in this paper displays all these five features: DMPD works on a centralized dataset (dimension 1);
DMPD transforms the original input feature set to subsets (dimension 2); DMPD considers classification algorithms (dimen-
sion 3); DMPD hides the raw data (dimension 4); since we are using the k-anonymity framework for data mining privacy,
DMPD performs as a heuristic-based technique (dimension 5).

There are other data mining privacy issues that may arise in relation to various PPDM approaches. For instance, Oliveira
and Zaïane [49] argue that it is meaningful to define the type of violation to be avoided when applying the PPDM algorithm.
Most state-of-art PPDM approaches consider linking an attack on the dataset or data mining results (e.g. classification rules).
For example, in cases where an algorithm provides a k-anonymous dataset, Friedman et al. [20] discuss the possibility of
building k-anonymous data mining models using k-anonymous datasets. These types of models protect individual privacy
when using the model, e.g. classification tree. Another PPDM issue is the definition of privacy used in the algorithm. For
example, for perturbation (reconstructing-based) techniques using adding noise [2], privacy is defined by a range of values
that can contain the original value. A wider range assumes more privacy.

The most popular PPDM techniques use the k-anonymity concept for data mining privacy. k-anonymity, as proposed by
Sweeny [62], requires that no individuals can be linked with fewer than k rows in a dataset. This is achieved by ensuring that
in a dataset the owner releases there are at least k rows with the same combination of values in the attributes that poten-
tially can be used for individual privacy violation. This statement guarantees that the probability of identifying an individual
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based on the released data does not exceed 1/k. The model provides clear privacy definition and primarily considers linking
attacks on the dataset. Despite simplicity and understandability, the k-anonymity model rests on two main assumptions: the
data owner knows the set of attributes which can be used to identify the individual (quasi-identifier constraint) and that the
k-level is high enough to protect the data for all possible misuse of the dataset.

The most common approach for achieving compliance with k-anonymity is to replace certain values with less specific but
semantically consistent values (generalization). Alternatively there is the possibility of not releasing some of the values at all
(suppression). The problem of finding optimal j-anonymous datasets using generalization or suppression has been proved to
be NP-hard [46,57]. Therefore, heuristic algorithms are needed. One group of generalization and suppression approaches is
guided by various heuristic measures based on minimizing data loss [60,6,37,38]. In such cases, data quality depends on how
far away each attribute value is from the original one after applying the anonymization process. Optimizing an aggregated
value over all features and records leads to minimum data loss. Li and Li [39] present a general taxonomy and a comparative
study of different generalization schemes.

In the context of KDD, the k-anonymization process is designed to retain useful information for data mining. In other
words, the goal is to comply with k-anonymity while providing the best data mining results (for example, classification
accuracy).

Iyengar [28] uses a genetic framework to search for the best set of generalizations to satisfy k-anonymity constraints. For
this purpose, each generalization is presented as a chromosome and genetic operators produce a new type of valid
generalization.

Wang et al. [65] presented a practical and effective bottom-up generalization for preserving classification information
while ensuring privacy. In this work the authors defined the metric for incorporating the privacy level and the information
gain for choosing the appropriate generalization. The bottom-up generalization technique, however, can only generalize cat-
egorical attributes.

Fung et al. [22] presented another practical generalization method for classification using k-anonymity: the top-down
specialization (TDS) algorithm. This algorithm handles both categorical and continuous attributes and has some practical
advantages over the earlier bottom-up approach. TDS starts from the most general state of the dataset and tries to specialize
it by assigning specific values to attributes until a violation of the anonymity occurs. More recently Fung et al. [21] presented
an improved version of TDS which is called top-down refinement (TDR). In addition to the capabilities of TDS, TDR is capable
of suppressing categorical attribute values to treat attributes without any taxonomy tree.

One common disadvantage of current generalization algorithms is the need to perform manual pre-processing, i.e., gen-
erating domain generalization taxonomy to define the hierarchy of the categorical attributes values, a process that involves
prior knowledge about the domain. In addition to the necessity of separately preparing a domain hierarchy for every attri-
bute, domain experts are also faced with differences among themselves about the correct structure of the taxonomy tree.
This may lead to differences in results [28,22]. In an effort to automatically build the domain taxonomy, Nergiz and Clifton
[48] proposed clustering techniques for generating domain hierarchies. The generated hierarchies are not restricted to trees.
To the best of our knowledge, the TDR algorithm is the only algorithm that efficiently relaxes the need for a taxonomy tree
for categorical attributes by using a single-dimension suppression operator for attributes for which a domain taxonomy does
not exist.

While generalization using domain knowledge can provide more visible patterns [4], it also can result in overly shallow
knowledge which may be uninteresting (or even useless) in a specific domain. For example, in predicting the likelihood of
disease, we can discover the pattern ‘‘USA } Disease”. Here the ‘‘USA” value was obtained by generalizing a patient’s geog-
raphy attribute. Such a pattern in an international study is not worthwhile for acquiring new knowledge, but a model built
on a generalized dataset still able provide high classification accuracy. Some reference to the generalization problem can be
found in [28]. The author presents two generalization techniques for satisfying k-anonymity constraints driven by two dif-
ferent metrics. The first technique tries to minimize the data loss metric (LM). The metric must be used to meet the possi-
bility of multiple data usage by various users and for different purposes that cannot be known at the time the data is
disseminated. Obviously, the approach can preserve more interesting patterns, that is, a higher quality of data mining results.
The second metric tries to maximize the classification metric (CM) that incorporates class distribution. Generalizations based
on this metric are more oriented to preserving information for classification. The results presented by Iyengar indicate that
the classification metric (CM) provides more accurate results than the data loss metric (LM). On the basis of Iyengar’s results,
we maintain that to achieve high classification accuracy, it does not always to preserve data, but preserve useful information
for classification.

Another approach is to embed the anonymization process into the learning algorithm. Friedman et al. [19] proposed a
method for embedding anonymization procedures into decision tree construction from an original dataset. The proposed
algorithm is basically an improvement of the classical decision tree-building algorithm, combining mining and anonymiza-
tion in a single process. The algorithm produces models that protect individual privacy when using the model, e.g. the clas-
sification tree.

Still another important issue in k-anonymity approaches is the treatment of numeric attributes. Discretization is the most
direct way of dealing with numeric attributes for PPDM. This technique was mentioned in [2,21] as one of several possible
ways of modifying numeric value in data mining privacy. During the procedure, each numeric value of an attribute in the
data is mapped to an appropriate interval. The bound of the interval can be found by learning the relation between the attri-
bute and target feature (supervised discretization) or by bounding based on some information about the attribute values
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(unsupervised discretization). After the discretization, the numeric attribute is treated as a categorical attribute with the do-
main values as the intervals created during the discretization. DMPD treats numeric features by supervised discretization
performed at initialization step of the algorithm. Supervised discretization uses the class information of the training in-
stances to select discretization cut points. Since DMPD performs k-anonymization for classification tasks, the choice of
supervised discretization for exploiting additional possibilities for achieving better classification performance is obvious
[14]. In general, discretization is performed for attributes defined as a part of k-anonymity constraint for quasi-identifiers.
2.2. Feature set partitioning for data mining

The DMPD algorithm presented in this work considers anonymization for classification through feature set partitioning.
The concept of feature set partitioning, initially presented by Rokach and Maimon [55], was proposed for improving super-
vised learning tasks. In feature set partitioning, the goal is to decompose the original set of features into several subsets in
order to create a classification model for each subset. Subsequently, an unlabelled instance is classified by combining the
classifications of all classifiers.

Maimon and Rokach [42] present the following example of feature set partitioning based on a training dataset derived
from health insurance policyholders. Each policyholder is characterized by four features: Asset Ownership, Education
(years), Car Engine Volume (in cubic centimeters) and Employment Status. The target feature describes whether a specific
policyholder was willing to purchase complementary insurance and, if so, what type. A possible partitioning for resolving
the question includes two decision trees. The first decision tree uses the features Asset Ownership and Volume, while the
second utilizes Employment Status and Education.

Feature set partitioning generalizes the task of feature selection which is extensively used in data mining. Feature selec-
tion provides a representative set of features from which a classifier is constructed. Moreover, feature set partitioning is re-
garded as specific case of ensemble methodology [44] in which disjoint feature subsets are used, i.e. every classifier in the
ensemble is trained on a different projection of the original training set.

Rokach and Maimon’s [55] empirical results point towards the superiority of feature set partitioning in learning tasks that
contain a high number of features and a comparatively moderate number of tuples. One of the reasons for this superiority is
the ability of feature set partitioning to deal with the ‘‘curse of dimensionality” associated with large feature spaces. The
problem also arises in the context of data mining privacy [1].

The framework for feature set partitioning that Rokach [52] provided includes a range of techniques for applying the ap-
proach to classification tasks. The framework’s components are described in more detail in relation to DMPD properties in
Section 4.

To summarize, the feature set partitioning approach offers improved classification performance due to its ability to
[41,54,53]:

� avoid the ‘‘curse of dimensionality” for large input feature spaces
� act as a feature selection procedure
� act as a ensemble approach

2.3. Genetic algorithm-based search

Genetic algorithms (GA), a type of evolutionary algorithm (EA), are computational abstractions, derived from biological
evolution, for solving optimization problems through a series of genetic operations [24].

A GA requires a fitness function that assigns a score (fitness) to each candidate in the current population sample (gener-
ation). The fitness of a candidate depends on how well that candidate solves the problem at hand. Selection of candidates is
performed randomly with a bias towards those with the highest fitness value. To avoid locally optimal solutions, crossover
and mutation operators are introduced to produce new solutions along the whole search space. Thanks to this capability in
developing solutions, the GA is recognized today as a highly reliable global search procedure. Other issues involved in using
genetic algorithms are the number of details to define in run settings, such as the size of the population and the probabilities
of crossover and mutation, and the stop (convergence) criteria of the algorithm. Specific values often depend greatly on the
GA’s application.

GAs have found to be useful in many data mining tasks in general and in feature selection in particular [18,23,68]. Empir-
ical comparisons between GAs and other kinds of feature selection methods can be found in [59] as well as in [36]. In general,
these empirical comparisons show that GAs, with their associated global search in the solution space, usually obtain better
results than local search-based feature selection methods. Inspired by these positive results, Rokach [53] presented a GA-
based framework for solving feature set partitioning tasks. As in feature selection, GAs demonstrate a clear superiority over
all other search methods when searching for accurate feature set partitions.

Mitchell [47] indicates the circumstances in which GAs are particularly useful: ‘‘the space to be searched is large; is
known not to be perfectly smooth and unimodal; or it is not well understood or if the fitness function is noisy.” The search
space in feature set partitioning is known to be large [53] and in our case, the goal function is not well understood due to the
tradeoff between k-anonymity constraints and classification performance.
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The main drawback of the GA approach is that it is computationally expensive compared to greedy search methods. The
computational cost of GA might be controlled by appropriately choosing population size and stopping criterion. Fortunately,
the DMPD algorithm presented in this paper shows relatively quick convergence to accurate solutions (see Section 5.7).
Additionally, a relatively long anonymization time might be acceptable, if the anonymization can be performed offline. Fi-
nally even if GA cannot be always used for online scenarios, it provides a tight lower bound for the performance of the opti-
mal partition. Thus, from the research point of view, GA can be faithfully served to evaluate the suitability of feature set
partitioning in solving PPDM tasks.

Generalized accuracy can possibly operate as an appropriate fitness function for GAs. To evaluate the generalized accu-
racy, we can use the wrapper approach, initially presented by Kohavi and John [34]. The main advantage of this approach is
that it generates reliable evaluations and can be utilized for any induction algorithm. A major drawback, however, is that this
procedure repeatedly executes the inducer. For this reason, wrappers may not scale well to large datasets containing many
features or instances.

Other state-of-art k-anonymity approaches consider optimizing data mining performance given the k-anonymity level
constraint as an input. Based on a clear understanding that classification performance and k-anonymity level are conflicting
objectives, real-world decisions are based on a tradeoff between these two performance measures rather than determining
that one is better or more preferable than the other.

2.4. Genetic algorithms for multiobjective optimization

The DMPD algorithm presented in this work was extended in a natural way to perform a multiobjective optimization to
assist data owners in deciding about an appropriate anonymity level in released datasets.

The multiobjective genetic algorithm (MOGA) was designed to solve multiobjective problems where the objectives are gen-
erally conflicting thus preventing simultaneous optimization of each objective. The final choice of the solution depends on the
user characterizing a subjective approach. User participation in this process is important for obtaining useful results [15].

Optimizing competing objective functions is different from single function optimization in that it seldom accepts one per-
fect solution, especially for real-world applications [35]. The most successful approach for multiobjective optimization is to
determine an entire Pareto optimal solution set or its representative subset [24,17]. A Pareto optimal set is a set of solutions
that are non-dominated with respect to each other. While moving from one Pareto solution to another, there is always a cer-
tain amount of sacrifice in one objective(s) vs. a certain amount of gain in the other (s). In [29], the authors reported that 90%
of the approaches to multiobjective optimization aimed to approximate the true Pareto front for the underlying problem.

The ultimate goal of a multiobjective optimization algorithm is to identify solutions in the Pareto optimal set. However,
identifying the entire Pareto optimal set is practically impossible for many multiobjective problems due to the set’s size. In
addition, for many problems, especially for combinatorial optimization problems, proof of solution optimality is computa-
tionally infeasible. Therefore, a practical approach to multiobjective optimization is to investigate a set of solutions (the
best-known Pareto set) that represent the Pareto optimal set as best as possible.

With these concerns in mind, a multiobjective optimization approach should achieve the following three, often conflict-
ing, goals [35]:

1. The best-known Pareto front should be as close as possible to the true Pareto front. Ideally, the best-known Pareto set
should be a subset of the Pareto optimal set.

2. Solutions in the best-known Pareto set should be uniformly distributed and diverse over the Pareto front in order to pro-
vide the decision-maker a true picture of the tradeoffs.

3. The best-known Pareto front should capture the whole spectrum of the Pareto front through investigating solutions at the
extreme ends of the objective function space.

Being a population-based approach, genetic algorithms are well suited to solve multiobjective optimization problems. A
generic single-objective GA can be modified to find a set of multiple, non-dominated solutions in a single run. The ability of
the GA to simultaneously search different regions of a solution space makes it possible to find a diverse set of solutions for
difficult problems.

One state-of-art multiobjective genetic algorithm is the strength Pareto evolutionary algorithm (SPEA). An earlier version
of SPEA was among the first techniques that were extensively compared to several existing evolution-based methods
[73,71]. Improved versions of the algorithm (SPEA2) have been subsequently proposed [72]. One of the main concepts of
the algorithm is that an archive set implements the elitism concept where some best solutions are introduced as is, without
any modification, into the next generation. The algorithm uses Pareto ranking for fitness value calculation. In cases where
there are many different solutions, the algorithm performs density estimation using a cluster-based technique. Density
information has to be used in order to guide the search more effectively in achieving goals 2 and 3 described above. In
the final phase, the archive set contains the solutions that form the Pareto frontier. SPEA2 provides an improved ability in
searching for a better solution in the solution space and in achieving a uniform and complete Pareto front. This algorithm
in relation to DMPD approach is described in more detail in Section 4.4.

To sum up this section, we propose a privacy-preserving data mining algorithm that does not require any application do-
main knowledge for the anonymization process. Instead, the DMPD effectively partitions the original feature to comply with
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k-anonymity constraints and to preserve maximum information for classification. As a result, the DMPD algorithm provides a
better classification performance compared to other state-of-art generalization and suppression-based approaches. In addi-
tion, the algorithm has been extended to provide information about the tradeoff of k-anonymity level and classification
accuracy.

3. Problem formulation

In this section we formulate the problem and introduce several basic definitions that are used in the course of this paper.

Definition 1 (Classification problem). In a typical classification problem, a train dataset of labeled examples is given. The
train dataset can be described in a variety of ways, most commonly as a collection of records that may contain duplicates. A
vector of feature values (sometimes referred to as attributes) describes each record. The notation A denotes the set of input
features containing n features: A = {a1, . . . ,ai, . . . ,an} and y represent the target feature (or class attribute). Features are
typically one of two types: categorical and numeric. Categorical features provide qualitative information about the subject of
the data and its domain values can be placed in a finite number of categories. Numeric features provide quantitative
information about the data’s subject. Numeric features can be attained by counting or measuring and can receive any value
in a predefined range.

When the feature ai is categorical, it is useful to denote its domain values by dom(ai). In a similar way,
dom(y) = {c1, . . . ,c|dom(y)|} represents the domain of the target feature. Numeric features have infinite cardinalities and their
domain can be presented by a range of possible values. For discretized numeric features, any numeric value can be related to
one of intervals and further treated as a categorical value. The instance space X presents the set of all possible examples and
is defined as a Cartesian product of all the input feature domains: X = dom(a1) � dom(a2) � � � � � dom(an). The labeled instance
space U is defined as a Cartesian product of all input feature domains and the target feature domain, i.e., U = X � dom(y). The
training dataset, consisting of a set of m instances/tuples, is denoted as S ¼ ðhx1; y1i; . . . ; hxm; ymiÞ where xq 2 X, yq 2 dom(y)
and xqi denotes the value of feature i of instance q. Usually, it is assumed that the train dataset instances are distributed
randomly and independently according to some fixed and unknown joint probability distribution D over U.

It is assumed that a given inducer I is used to build a classifier (also known as a classification model) by learning from S.
The classifier can then be used for classifying unlabelled instances. The notation I(S) represents a classifier which was
induced by activating the induction method I onto dataset S. The classifier also provides estimates to the conditional
probability of the target feature given the input features.

We next consider the common notation of bag algebra to present projection and selection of instances [25] where S
denotes a relation. The following relation S (Fig. 1) represents the sample drawn from the adult dataset of the UC Irvine
Machine Learning Repository [45]. This dataset contains census data and has become a commonly used benchmark for
age workclass fnlwgt education education-

num

marital-

status

occupation relationship race sex capital-

gain

capital-

loss

hours-
per-
week

native-

country

income

27 Local-gov 54826 Assoc-voc 10 Widowed Prof-specialty Not-in-family White Female 0 0 20 US <=50K.

47 Local-gov 181344 Some-college 10 Married Prof-specialty Husband Black Male 0 0 55 US >50K.

41 Local-gov 523910 Bachelors 13 Married Prof-specialty Husband Black Male 0 0 40 US <=50K.

42 Local-gov 254817 Some-college 10 Married Prof-specialty Not-in-family White Female 0 1340 40 US <=50K.

27 Private 213921 HS-grad 9 Divorced Other-service Not-in-family White Male 0 0 40 US <=50K.

46 Private 51618 HS-grad 9 Married Other-service Not-in-family White Female 0 0 40 US <=50K.

59 Private 159937 HS-grad 9 Married Sales Husband White Male 0 0 48 US >50K.

49 Private 343591 HS-grad 9 Divorced Prof-specialty Not-in-family Black Female 14344 0 40 US >50K.

53 Private 346253 HS-grad 9 Married Sales Husband White Male 0 0 35 US <=50K.

55 Private 198282 Bachelors 13 Married Sales Husband White Male 15024 0 60 Germany >50K.

40 Private 118853 Bachelors 13 Widowed Sales Unmarried White Male 0 0 60 Germany <=50K.

49 Private 77143 Bachelors 13 Married Sales Husband White Male 0 0 40 Germany >50K.

47 Private 253814 HS-grad 9 Divorced Prof-specialty Unmarried White Female 0 0 25 US <=50K.

21 Private 312956 HS-grad 9 Married Prof-specialty Not-in-family Black Male 0 0 40 US >50K.

43 Private 114580 Some-college 10 Married Prof-specialty Not-in-family White Female 0 0 40 US <=50K.

61 State-gov 267989 Bachelors 13 Married Prof-specialty Husband White Male 0 0 50 US >50K.

46 State-gov 102628 Masters 9 Widowed Prof-specialty Unmarried White Male 0 0 40 US <=50K.

28 State-gov 175325 HS-grad 9 Widowed Prof-specialty Unmarried White Male 0 0 40 US <=50K.

28 State-gov 149624 Bachelors 13 Divorced Prof-specialty Unmarried White Male 0 0 70 US >50K.

56 State-gov 149624 Bachelors 13 Divorced Other-service Unmarried White Male 0 0 25 US >50K.

Fig. 1. Adult dataset sample.
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k-anonymity-based algorithms. We also use the sample data from the adult dataset to provide further explanation of
Definitions 2–9. The adult dataset has six numeric and eight categorical features. The target feature is income level with two
possible values ‘‘6 50 K” or ‘‘>50 K”.
Definition 2 (Projection). The projection operator p with the form pB (S) is used to project relation S onto a subset of features
B # A. For example, page,relationship,native-country(S) results in the relation presented in Fig. 2 (note that duplicates are not
removed):
Definition 3 (Aggregation). The result of an aggregation operator with the form BGhðCÞðSÞ is produced by grouping S according
to all grouping features (B # A). At the next step, within each group we compute h(C), where h is an aggregation operator and
C is set of aggregated features (C � A and B \ C = /). For example, sexGCOUNTð�ÞðSÞ results in the relation presented in Fig. 3.
Definition 4 (Quasi-identifier). The quasi-identifier definition presented here is adopted from [62].
Given a population of entities E, an entity-specific dataset S 2 U with input feature set A, f1:E ? S and f2:S ? E0 where E #

E0. Q is quasi-identifier of S, if Q # A and $e 2 E; such that f2(pQf1(e)) = e.
The formulation defines quasi-identifiers as a set of features whose associated values may be useful for linking in order

re-identify the entity that is the subject of the data. For example, in the ‘‘Adult” dataset sample (Fig. 1), Q = {marital-status,
occupation} is a quasi-identifier since the values of these features can be linked to identify an individual who is the subject of
the 6th tuple in the dataset with values {Married, Other-service}.
Definition 5 (Feature categories in k-anonymity model). We now provide several basic definitions related to the k-anonymity
model in regard to privacy-preserving data mining methods. These definitions are based on previous research of the model
[62,30,5,48,20].

Each of the input features can be considered as an attribute related to one of three categories. The first category QI = {Q1,
Q2, . . . ,Qm} is a subset of public features. Each of these attributes is to be found in a public data source or can be discovered
age relationship native-

country
27 Not-in-family US

47 Husband US

41 Husband US

42 Not-in-family US

27 Not-in-family US

46 Not-in-family US

59 Husband US

49 Not-in-family US

53 Husband US

55 Husband Germany

40 Unmarried Germany

49 Husband Germany

47 Unmarried US

21 Not-in-family US

43 Not-in-family US

61 Husband US

46 Unmarried US

28 Unmarried US

28 Unmarried US

56 Unmarried US

Fig. 2. Adult sample after projection.

sex count
Female 6
Male 14

Fig. 3. Aggregated Adult sample dataset.
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from other sources in order to perform individual identification. This list of attributes is created by the data owner. If the
assumption about how input features can be used or the relation between them is too strict, we can use a scenario where all
features act as potential quasi-identifiers. However, this forceful way is often impractical in real-world applications.

The second category P = {P1, P2, . . . ,Pk} presents a set of unknown features that cannot be used for individual identification.
Features in the category are treated as non-quasi-identifiers features.

The third category S = {S1, S2, . . . ,Sl} presents a set of sensitive features that must be protected from individual disclosure.
Typically, in classification problems there is a target feature.
Definition 6 (Quasi-identifier constraint). A quasi-identifier constraint QI of S is a subset of an input feature set:
QI ¼ fQ 1;Q2; . . . ;Qmg; QI # A
Set QIS = {QI1, QI2, . . . ,QIr} includes all the quasi-identifier constraints considered in the problem. As in previous studies (such
as [32]), we assume that the user provides the quasi-identifier constraint and that there is only one feature set in the quasi-
identifier constraint.
Definition 7 (k-Anonymity). The dataset’s anonymity level with respect to QI, denoted as DALQI(S), is equal to the minimum
number of tuples that have the same combination of values on QI in pQI(S), or:
DALQIðSÞ ¼ QIGminðcountÞðQIGCOUNTð�ÞðpQIðSÞÞÞ
where count denotes the result column of the first aggregation operation.
A dataset is said to satisfy k-anonymity with respect to QI if and only if DAL(QI) P k.
In other words, a dataset S complies with k-anonymity constraints if no individual can be distinguished on QI from at least

k � 1 other individuals whose data also appears in the dataset.
For example, for the data presented in Fig. 1, if QI = {workclass, native-country}, the dataset’s anonymity level is 3 because

the sequence of values {Private, Germany} is related to three tuples, the minimum number. Therefore, in regard to the
question of whether the dataset adheres to three-anonymity, the answer is positive but negative for higher values of k. If we
define QI = {workclass, native-country, marital-status}, the k-anonymity level of the dataset is 1. In other words, this feature
set is a quasi-identifier for this dataset and individual privacy is violated.

Specifying higher values for k (k-anonymity level constraint) and more features in quasi-identifier QI (quasi-identifier
constraint) results in stricter privacy constraints.
Definition 8 (k-Anonymous feature set partitioning). A disjoint partitioning Z = {G1, . . . ,Gr, . . . ,Gx}, has a partial anonymity
level defined as:
PALQIðZÞ ¼minrDALQIðpGr ðSÞÞ
A partitioning satisfies partial k-anonymity (or partially valid) with respect to QI if and only if PALQI(Z) P k. Partial k-anonym-
ity guarantees that each projection complies with k-anonymity and that individual privacy is protected according to the clas-
sic k-anonymity model (Definition 7).

Set k-anonymity guarantees k-anonymity protection for a pair of projections without selection conditions and having one
join path [67]. A pair of projections V1, V2 complies with k-anonymity if:
DALQI[yðV1j � jV2ÞP k
A set of projections corresponding to given partitioning Z has a set anonymity level defined as:
SALQIðZÞ ¼ min8Gp ;Gr2ZDALQI[yðPDSpðSÞj � jPDSrðSÞÞ
where PDSrðSÞ ¼ pGr[yðSÞ and |Z| P 2. Due to the fact that the natural join is an associative operation, we can choose any or-
der of projections for validating the partitioning. A partitioning satisfies set k-anonymity with respect to QI if and only if
SALQI(Z) P k.

The partitioning anonymity level is defined in general way as:
PartALQIðZÞ ¼ minfPALQIðZÞ; SALQIðZÞg
If |Z| = 1, then PartALQI(Z) = PALQI(Z).
A partitioning satisfies k-anonymity with respect to QI if and only if:
PartALQIðZÞP k
In this case, the partitioning Z is defined as a valid partitioning. Since such a partitioning complies with partial and set ano-
nymity, then, under reasonable assumptions, no operation on projections allows the attacker to violate privacy provided by a
k-anonymity model. Clearly, an empty partitioning complies with k-anonymity. We use these definitions as building blocks
for proof of DMPD correctness in Section 4.3.
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To demonstrate the idea how feature set partitioning effectively meet k-anonymity requirements, we follow the example
presented in Definition 7. For QI = {workclass, native-country, marital-status}, the k-anonymity level of the entire dataset is
k = 1. However, by partitioning the input feature set and distributing the QI features among two partitions, the k-anonymity
constraint is partially relaxed. For example the partitioning that contains the two feature subsets:
G1 ¼ fage;workclass; fnlwgt; education; education-num; occupation; native-countryg and
G2 ¼ fmarital-status; relationship; race; sex; capital-gain; capital-loss;hours-per-weekg
The partial anonymity level equal to three, since this is the minimum number of rows that share the same values combination
({Private, Germany} for first feature subset). In addition we check the set anonymity level and realize that the value combina-
tion ({Private, Divorced, Germany, 6 50 K .} appears twice in the join result. Consequently, we conclude that partitioning ano-
nymity level is k = 2. Namely, by releasing the two partitions G1 and G2 instead of releasing the entire dataset, we succeeded
to increase the anonymity level from k = 1 to k = 2.

The main goal of this study is to introduce a new k-anonymity-based algorithm which is capable of finding a feature set
partitioning that appeals to k-anonymity constraints and achieves a classifier that will perform as similarly as possible to a
classifier trained on the original dataset. Consequently, the problem can be formally phrased as follows:
Definition 9 (Problem formulation: preserving k-anonymity via feature set partitioning). Given an inducer I, a combination
method C, and training set S with input feature set A = {a1, . . . ,ai, . . . ,an} and target class y from a distribution D over the
labeled instance space. The goal is to find an optimal and valid partitioning Zoptvalid = {G1, . . . ,Gr, . . . ,Gw} of the input feature
set A into w mutually exclusive subsets when Gr # A. Optimality is defined in terms of minimization of the generalization
error of the induced classifiers IðpGr[ySÞ combined using method C over the distribution D.
4. Methods

In this section we describe our new method for k-anonymity based on a feature set partitioning framework using the
algorithm framework that Rokach [52] developed for feature set partitioning. In this framework, each method that captures
feature set partitioning must define its various basic properties. We now provide an overview of the properties and DMPD
settings for these properties:

1. Structure acquisition method – the way the partitioning structures is obtained. In our case, the structure is acquired with a
GA search procedure with an appropriate fitness value assignment for the partitioning, crossover and mutation operators.

2. Mutually exclusive property – determines if the algorithm uses mutually exclusive or partially overlapping partitioning.
Our method is implemented with mutually exclusive partitioning of subsets.

3. Inducer usage – indicates the relation between the decomposer and the inducer used. In this context our method uses an
‘‘inducer-independent” type of partitioning method. The algorithm works with any given inducer and the same inducer is
used in all subsets. More specifically, the method uses a fitness value based estimating the generalization classification
accuracy using a wrapper approach for any given inducer.

4. Exhaustiveness – indicates whether all features should be used in the partitioning structure. Our method, using non-
exhaustive feature set partitioning, takes into account the possibility that some features will not participate in the par-
titioning structure.

5. Combiner usage – specifies the relation between the decomposer and the combiner. Out method is combiner-dependent.
More specifically, our method uses a naïve Bayes combination for classifying unlabeled instances.

6. Sequentially or concurrently – indicates whether the various sub-classifiers are built sequentially or concurrently. We use
a concurrent framework where the classifiers are built independently and their results combined.

We now define in more detail the framework’s three main procedures – the search for optimal partitioning, partitioning
evaluation and combining partial classifiers. Previous work into feature set partitioning includes different procedures for
searching for the optimal partitioning. Among these methods are serial search with incremental oblivious trees, multi-search
[54], and genetic algorithm-based search [53]. In [53], genetic-based algorithms demonstrate a clear superiority over all
other search methods. Partitioning evaluation methods include the VC-dimension [42] and the wrapper approach [54]. Com-
bining methods include voting and naïve Bayes [52].

We refer to our new method as data mining privacy by decomposition (DMPD). In Section 4.1 we describe the method. In
Section 4.2 we demonstrate the method with an example. In Section 4.3 we analyze the correctness and complexity of the
proposed method.

4.1. Privacy-preserving classification by feature set partitioning

As noted previously, DMPD consists of three main procedures. In the first procedure, a search for an optimal and valid
partitioning based on genetic search is carried out. The second involves evaluating a given partitioning while the third
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procedure combines multiple classifiers to obtain unlabeled instance classifications. Procedure dependency is described as
follows: the genetic algorithm uses a wrapper approach to assign a partitioning fitness value while the wrapper uses com-
bined multiple classifiers to obtain test instance prediction. In the final phase, given the optimal partitioning, we anonymize
the original dataset.

4.1.1. Procedure 1: Genetic algorithm-based search
A genetic algorithm for feature set partitioning was presented in [53]. We use this work’s partition presentation, cross-

over and mutation operator.
Given the partitioning Z = {G1, . . . ,Gk, . . . ,Gw}, elements of the matrix B with dimension n � n are assigned as follows:
aij ¼

1; if i ¼ j and 9k : ai 2 Gk

1; if i – j and 9k : ai 2 Gk and aj 2 Gk

�1; if 8k : ai R Gk and aj R Gk

0; otherwise

8>>><
>>>:
For example, matrix presentation can be used to present a dataset containing four non-target features in the following par-
titioning {{a1}{a2,a3}} (see Fig. 4).

After the initial population has been produced, the genetic algorithm provides a procedure for choosing the individuals in
the population in order to create the offspring that will form the next generation. More particularly, in this stage two parents
are chosen and two output offsprings become a combination of these parents using crossover and mutation operator.

In consideration of a special encoding scheme for partitioning, there is a crossover operator. The operator, ‘‘group-wise
crossover” (GWC), works with probability Pcrossover on two selected partitions. The operator, together with the proposed
encoding, does not slow the convergence of the GA [53]. From two of these parents, two ancestor sets are chosen. An ancestor
set can be a filtered out, representing a set of features that have not participated in parent partitioning. Fig. 5 presents an
example of two offspring from two possible parent partitions from the presented feature set.

As Fig. 5b indicates, the bright gray in the columns and rows denotes ancestor sets from the first parent. The dark grey
presents cells copied from another parent. A similar operation is performed on the second parent.

The mutation operator is defined as follows: with probability Pmut, each feature can pass from one subset (source subset)
to another (target subset). The feature and subset to which it passes are chosen randomly. If there is only one subset in a
partitioning, the source feature will create its own subset. Fig. 6 demonstrates the idea. In this case, the second feature
was randomly chosen and passed to a subset containing a third feature.

As an inner procedure, the GA uses a wrapper approach to evaluate a partitioning fitness value.

4.1.2. Procedure 2: Wrapper-based fitness evaluation
We use a wrapper procedure for evaluating the partitioning fitness value. The fitness value was the average accuracy over

n runs, where each time n � 1 folds were used for training classifiers and one-fold for estimating the generalized accuracy of
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 - 1

Fig. 4. Encoding of example partitioning.

Fig. 5. Example of GWC operator.

Fig. 6. Example of mutation operator.
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a validation dataset after combining predictions from different classifiers and obtaining final instance predictions. To obtain
appropriate classifications, the wrapper uses Procedure 3 for instance classification.

4.1.3. Procedure 3: Instance classification
In the naive Byes combination, a classification of a new instance is based on the product of the conditional probability of

the target feature given the values of the input features in each subset. Mathematically it can be formulated as follows:
vMAPðxqÞ ¼ arg max
cj2domðyÞ

Qw
k¼1
bPIðpGk[ySÞðy ¼ cjjai ¼ pGk

xqÞ
bPIðSÞðy ¼ cjÞw�1

ð1Þ
where bPIðpGk[ySÞðy ¼ cjjai ¼ pGk
xqÞ is estimated by using the appropriate frequencies in the relevant decision tree leaves and

then adjusting them by performing a Laplace correction.
Our algorithm is described in Algorithm 1.

Algorithm 1. [DMPD Algorithm]

DMPD (S,I,QI,k,nGen,nPop,Pcrossover,Pmutation,nFolds)
Input:
S (Original dataset); I (Inducer); QI (The quasi-identifier); k (anonymity level); nGen (Maximum

number of generations); nPop (Number of candidates in a population); Pcrossover (Probability of

crossover); Pmutation (Probability of mutation); nFolds (Number of folds for wrapper procedure)

Output:
S0 Set of anonymized projections

1: InitializeAlgorithm ()

2: Repeat
3: Generation  PerformSelection (Population,nPop)

4: Generation  CreateNewGeneration (Population,Pcrossover,Pmutation)

5: Do 8Z 2 Generation
6: Evaluation (Z) = EvaluatePartitioning (Z)

End Do
7: Population  UpdatePopulation (Population[Generation)
8: Until Performed nGen generations

9: BestValidPartitioning  SelectBestValidPartitioning (Population)

10: S0 = PrepareAnonymisedData (BestValidPartitioning)

11: Return S0

EvaluatePartitioning (Z)
Input: Z Partitioning

Output: fv Partitioning fitness value

12: If PALQI(Z) < k Then fv=0
13: Else fv = PerformWrapperCrossValidation(Z,S,I,nFolds)

End If
14: Return fv

SelectBestValidPartitioning (Population)
Input: Population Population in descending order of fitness values

Output: Z Best partitioning satisfying set k-anonymity

15: Repeat
16: Z  Get next best partition in the population

17: If SALQI (Z) P k Return Z

18: Until no partitions are left

19: Return Z = £.

PrepareAnonymisedData (Z)
Input: Z Optimal partitioning

Output: S0 Set of projections

20: For each Gr 2 Z Do
21: PDSr  pGr[yðSÞ
22: Randomize (PDSr)
23: End For
25: Return PDS1, . . . ,PDS|z |
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4.2. Illustration

In this section we use the dataset of Fig. 1 to illustrate the proposed algorithm. We assume QI = {capital-gain, age, marital-
status, relationship} and that k-anonymity level constraint is 2 (k = 2). Assume that the genetic algorithm selects (Line 3) two
parent partitioning structures on the basis of fitness values (Line 6), calculated previously to produce offsprings for the next
generation (Line 4): Gi and Gj, as follows: Gi = {{relationship}, {education-num}}, Gj = {{hours-per-week, age}}.

After applying a GWC operator (with probability Pcrossover on two random ancestor subsets), we get two offsprings as
follows: G0i ¼ ffrelationshipg; fhours-per-week; agegg;G0j ¼ ffrelationshipg; feducation-numg; fhours-per-week; agegg. After
applying the mutation operator on G0j (with probability Pmutation), a feature ‘‘education-num” joins the set {relationship}
to produce G00j ¼ ffrelationship; education-numg; fhours-per-week; agegg.

Continuing with G00j , we check that the partitioning appeals to partial k-anonymity: the anonymity of the first subset is 6
while that of the second is 7; the anonymity level of the partitioning is 6 (Definition 7). This level is more than k so G00j sat-
isfies the first condition for valid partitioning. If otherwise, the fitness would be set to 0. Note that ‘‘age” is a feature in the
quasi-identifier constraint that has been discretized.

The next step is to build partial classifiers on the adult dataset according to a given partitioning structure and then com-
bining them to get a final instance classification from the validation dataset. In partitioning G00j for first subset {relationship,
education-num} the following classification tree is constructed:
relationship = Not-in-family: 650 K (7.0/2.0)
relationship = Husband: >50 K (7.0/2.0)

relationship = Unmarried

| education-num 610: 650 K (3.0)

| education-num > 10: >50 K (3.0/1.0)
For the second subset {hours-per-week, age} the following classification tree is built:
age = ‘(-inf-48]’
| hours-per-week 640: 650 K (10.0/1.0)

| tt hours-per-week >40: >50 K (3.0/1.0)

age = ‘(48-inf)’: >50 K (7.0/1.0)
The a priori distribution of the target feature values is 0.55 (‘‘650 K”)/0.45 (‘‘>50 K”). Assume the combiner receives the
following instance from the validation dataset with the values of the relevant features as follows: {education-num, relation-
ship, hours-per-week, age} = {13, ‘‘Unmarried”, 30, 25}. The first partial classifier assigns the instance’s target value to ‘‘ >50 K”.
The second partial classifier classifies the instance as ‘‘6 50 K”. After calculating vMAP(xq) using the distribution on leafs, we
conclude that the target feature value of the instance must be assigned to ‘‘650 K”.

Given all the predictions, DMPD calculates classification accuracy and the average accuracy, evaluated on n train folds, is
returned to the GA search procedure as a fitness value of the partitioning (Line 14). The algorithm’s GA search procedure
stops after the maximum allowed number of generations is achieved (Line 8).

Before constructing a set of anonymized projections, we check that the second condition is met (Lines 15–19). In this
example, we first check that the best partition (i.e. with the highest fitness value): G00j ¼ ffrelationship; education-numg;
fhours-per-week; ageg complies with the second condition. Since SALðG00j Þ ¼ 2;G00j is returned as the selected solution. Other-
wise, we should continue by checking the second best partition.

After we select the best valid partition, we construct the projections (Lines 20–24). First, we add the target feature to each
of the subsets (Lines 20–21). Then each projection is randomized to get a final anonymization. In our example, the set of
anonymized projections appears as in Fig. 7.

4.3. Correctness analysis

Proposition 1. The DMPD algorithm is correct.
Proof. First we prove in Theorem 1 that the DMPD algorithm terminates then we prove in Theorem 2 that the algorithm’s
result complies with k-anonymity. h
Theorem 1. DMPD algorithm terminates.
Proof of Theorem 1. In the first step, the DMPD algorithm performs an initialization that contains a finite number of the
algorithm’s parameters. This creates an initial population bounded by number of features from the original dataset (Line 1).
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num

relationship income1

10 Not-in-family <=50K.

10 Husband >50K.

13 Husband <=50K.

10 Not-in-family <=50K.

9 Not-in-family <=50K.

9 Not-in-family <=50K.

9 Husband >50K.

9 Not-in-family >50K.

9 Husband <=50K.

13 Husband >50K.

13 Unmarried <=50K.

13 Husband >50K.

9 Unmarried <=50K.

9 Not-in-family >50K.

10 Not-in-family <=50K.

13 Husband >50K.

9 Unmarried <=50K.

9 Unmarried <=50K.

13 Unmarried >50K.

13 Unmarried >50K.

age hours-per-week income2

.K05=<02]84-fni-(

.K05>55]84-fni-(

.K05=<04]84-fni-(

.K05=<04]84-fni-(

.K05=<04]84-fni-(

.K05=<04]84-fni-(

.K05>84)fni-84(

.K05>04)fni-84(

.K05=<53)fni-84(

.K05>06)fni-84(

.K05=<06]84-fni-(

.K05>04)fni-84(

.K05=<52]84-fni-(

.K05>04]84-fni-(

.K05=<04]84-fni-(

.K05>05)fni-84(
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.K05=<04]84-fni-(

.K05>07]84-fni-(

.K05>52)fni-84(

Fig. 7. Sample set of anonymized projections.
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In the next step DMPD performs a constant number (nGen) of iterations in the main function (Lines 2–8). In each iteration
of the main function, the algorithm chooses nPop/2 candidates from a current population of candidates (Line 3) that is per-
formed in a finite number of steps. To create a new generation (Line 4), we perform a constant number of operations on a
matrix of n � n size that also can be accomplished in a finite number of steps.

Given a finite set of partitionings, we evaluate them (Line 6). Each partitioning can impose a limited number of projec-
tions (w 6 n). As the first step in the partitioning evaluation (Line 12), we check that the given partitioning appeals to partial
k-anonymity. This procedure counts the occurrences of each combination of values over QI features in the specific projection
ðpGr ðSÞÞ; searches for the minimum number over all combinations and projections; and compares this value to k. The pro-
cedure can be done in a finite number of steps. For each projection corresponding to a partitioning, we build nFolds classifiers
and perform nFolds evaluations on the validation dataset (Line 13). Assuming that the training of a classifier terminates, we
just need to prove that the evaluation of partitioning accuracy terminates. During partitioning evaluation, we simply review
a finite number of instances and obtain from each classifier the classification of the instance. Assuming that the classification
of each instance always terminates, then partitioning accuracy evaluation also terminates.

Searching for the best valid partitioning (Line 9) includes reviewing an ordered list of partitionings whose fitness value
appeals to partial k-anonymity and searching for partitionings (Lines 15–19) that also appeal to set k-anonymity. Assuming
that an examination of whether a partitioning appeals to set k-anonymity can be accomplished in a finite number of steps
and that the number of partitionings is bounded by nGen*nPop, we conclude that this step terminates.

Preparing a set of anonymized projections consist of two steps (Lines 20–24). As a first step, DMPD selects a finite number
of instances in each projection. In the second step, the target feature column is appended to a finite number of earlier gen-
erated projections (w 6 n) and then randomized. After passing over all instances in each projection, this step also terminates.

Since a simple loop in the main program and out-of-loop procedures have terminated, we conclude that DMPD algorithm
also terminates.

Theorem 2. DMPD outputs a set of projections that complies with k-anonymity.
Proof of Theorem 2. We consider three cases:

1. The partition is empty. In this case, in releasing an empty dataset we comply with k-anonymity because no private data
was released.

2. There is only one subset in the selected partition (|Zoptvalid| = 1). In this case the released dataset complies with k-anonym-
ity based on Lemma 1.

3. There are at least two subsets (|Zoptvalid| P 2). In this case we assume that each subset separately complies with k-ano-
nymity (Case 2). Thus we need to show that any set of two or more projections cannot be used to violate the k-anonymity
(see Lemma 2).
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Proof of Lemma 1. We must show that partitioning used for constructing projections (Line 9) appeals to partial k-anonym-
ity (see Definition 8), i.e., each projection pGr ðSÞ imposed by best partitioning appeals to k-anonymity to protect individual
identification.

The initial population includes an empty partitioning (all features are filtered out) that enters the initial population dur-
ing initialization step (Line 1). Its fitness value is greater than 0 since a classification is performed according to the majority
class. Releasing an empty partitioning corresponds to a decision to release S0 = £. In Fig. 8 we present a sample of original
data. When there is no valid partitioning for any non-empty, quasi-identifier constraint and k P 2, DMPD explicitly releases
an empty set of anonymized projections.

At each nGen generation of a genetic algorithm, if a better partitioning is found it must comply with partial k-anonymity.
A better partitioning is one that has the highest fitness value found so far. Partitionings that do not appeal to partial k-ano-
nymity (Definition 8) are set as fitness values that are equal to 0 (Line 12) and therefore cannot provide better partitioning
for the population (Line 7).

After nGen generations of GA, the best valid partitioning is selected from an ordered list of all partitionings that appeal to
partial k-anonymity as ordered by their fitness values in descending order. In the worst case, we release an empty dataset
that also appeals to partial k-anonymity (Lines 15–19) by Definition 8.

Lemma 2. DMPD outputs a set of projections that complies with k-anonymity.
Proof of Lemma 2. The following lemma is formulated on the assumption that the functional dependencies, other than the
quasi-identifier, are not known to the attacker. For a projection-only sub-case, we use a verification procedure presented in
[67] where a set of projections is k-anonymous. We must consider that each subset of projections corresponds to partitioning
since each such subset provides a join path on class attributes and can be used for violating privacy.

According to the post-processing (Line 9) procedure, the best valid partitioning appeals to set k-anonymity (Lines 15–19).
From Definition 8, each subset of two projections is k-anonymous. We show that according to this assumption, partitioning
complies with set k-anonymity according to a verification procedure presented by Yao et al. [67]. Or mathematically,
8z 2 2jZoptvalid j the following requirement is fulfilled:
DALQI[yðPDS1ðSÞj � jPDS2ðSÞj � j � � � j � jPDSjzjðSÞÞP k ð2Þ
Since the natural join operation is associative, the order of projections and feature subsets is not important.
We prove by induction that a number of projections corresponding to optimal and valid partitioning also comply with set

k-anonymity (see Definition 8 and Line 17 of Algorithm 1).
Base step. |Zoptvalid| = 2. Each pair of subsets in partitioning complies with set k-anonymity and thus complies with k-

anonymity.
Assumption step. We assume that it is true that |Zoptvalid| = n.
Induction step. We prove for jZ00optvalidj ¼ nþ 1 . Or we must prove that the requirement of Eq. (2) is fulfilled when each join

result J on subsets in 2jZoptvalid jðjZoptvalidj ¼ nÞ is joined with one additional subset PDSjzjþ1 with feature subset Gjzjþ1ðZ0optvalid ¼
Zoptvalid [ Gjzjþ1Þ.

The result of natural join Jj � jPDS|z| + 1 described by relational bag consists of each pair ht;CountQI\GZoptvalid
[yi, where

GZoptvalid
¼
SjZoptvalid j

w¼1 Gw. If t agrees on QI \ GZoptvalid
[ y in J and on QI \ G|z| + 1 [ y in PDS|z| + 1 then:
CountQI\GZ0
optvalid

[yðtÞ ¼ CountQI\GZoptvalid
[yðtÞ � CountQI\Gjzjþ1[yðtÞ:
Dayal et al. [11] proved the validity this expression for any number of conjunctive expressions where each an expression can
be a result of natural join operator.

In other words, in the final join result, each combination of values on QI \ Z0optvalid [ y will appear a number of times as a
multiplication of number of appearances in J and PDS|r | + 1. Since the induction assumption of J contains at least k such rows,
it is true also for J| � |PDS|r | + 1. Therefore, we can argue that a natural join of an arbitrary number of projections complies
with k-anonymity.

Proposition 2. The computational complexity of the DMPD algorithm above is
OðnGen � nPopðnPopþ n � nFolds � Fðm;nÞ þ n3m2ÞÞ
where m is number of instances, n is a number of features, nFolds is a number of folds is used for wrapper procedure, nGen is the
number of generations and nPop is the population size.
a1 a2 a3 y
a b c y1

d e f y2

g h i y3

j k l y4

Fig. 8. Sample of original data causes empty data to be released.
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Proof. As a first step DMPD performs a supervised discretization. This step is bounded by m log m operations. At each iter-
ation of the GA’s outer loop, we perform nGen generations where each implements the steps that follow. The selection of best
candidates (Line 3) is bounded by nPop2). During new generation creation, each candidate follows a crossover and mutation
procedure (Line 4). Since crossover and mutation operators perform a constant number of operations on a matrix of n � n
size, their complexity is linear with respect to n. Given the candidate partitioning (Line 6) and train dataset, we calculate
a partial anonymity level and use it in fitness value assignment (Line 12). This step can be implemented by using a hash
table. Given the constant complexity for searching and retrieving an object, the complexity of this step in the worst case
is O (nm), when the anonymity level calculated for n feature subsets and each instance forms a unique combination of values
in the quasi-identifier. To describe the worst case, we assume that each partitioning complies with partial k-anonymity. For
each partially valid partitioning, we perform nFolds cross-validation for partitioning evaluation (Line 13). At each iteration of
the cross-validation procedure, we run at most n inducers on the nFolds-1 data and evaluate the partitioning on the remain-
der of the data. The overall complexity of the partial induction classification models is bounded by n*F(m,n), where F(�)
denotes the complexity of given inducer I. For all feature subsets, the overall complexity for obtaining the conditional prob-
ability vector of a certain instance as well as its prediction for partitioning evaluation is bounded by the complexity of the
induction classification models. Therefore, the complexity of the wrapper-based partitioning evaluation is dominated by
n*F(m,n). h

Searching for the best valid partitioning (Line 9) includes searching for a partitioning that appeals to set k-anonymity
(Lines 15–18). In the worst case we should review the whole history of partially valid partitions that were created during
the GA search and there are nGen*nPop such partitionings. For each partitioning we should calculate its set anonymity level
as stated in Definition 8. Each partitioning contains n subsets. Therefore, the number of natural joins to be evaluated is
bounded by n2. First, each natural join is performed in O(m logm) operations by using the sort-merge join algorithm. Then,
given the result of the natural join, we calculate the anonymity level which takes O(nm2) operations. Thus, in total, calculat-
ing the set anonymity level has a complexity of O(nGen*nPop*n3m2).

Projection size during final anonymization is bounded by n. Each anonymized projection prepared by performing O(m)
operations on the original dataset. Therefore, this step has a complexity of O(mn) and computationally dominated by previ-
ous steps.

Summarizing all the steps we obtain the overall complexity as formulated in Proposition 2.
Practically, the computational complexity is affected by k-anonymity constraints: the size of the quasi-identifier and that

of the required k-anonymity level. For large k and quasi-identifiers, more candidate partitioning structures are not partially
valid and the step of cross-validation is not performed. A more precise conclusion about the influence of k-anonymity con-
straints on complexity proposes making several assumptions on train data distribution (how the constraints are strict in the
presence of knowledge about the underlying data).
4.4. DMPD for multiobjective optimization

The DMPD extension for multiobjective optimization uses a basic genetic algorithm extension to provide Pareto frontiers
with two objectives: maximizing classification performance and maximizing the individual privacy level. In DMPD the first
objective presented by generalization accuracy and the second – by anonymity level of partitioning.

Similar to SPEA2 [72], which is a state-of-art multiobjective GA (MOGA), DMPD uses a regular population and an ar-
chive (external set). Starting with an initial population and an empty archive, the following steps are performed per iter-
ation. First, all non-dominated population members are copied to the archive; any dominated individuals or duplicates
(with the same objective values) are removed from the archive during this update operation. If the size of the updated
archive exceeds a predefined limit, further archive members are deleted by a clustering technique which preserves the
characteristics of the non-dominated front. Existing archives provide an elitist concept brought from a classic genetic algo-
rithm. A non-dominated member is one that has some objective value better than all others partitioning structures in a
population. If the first partitioning’s two objectives are better than those of another, we conclude that the first partitioning
dominates.

To illustrate the process, consider a population of three partitioning structures with accuracy and anonymity levels:
{{80.5, 200}, {90, 500}, {88, 700}}. The first partitioning is dominated by the second and third partitioning while the second
partitioning has better accuracy but lower k-anonymity compared to third partitioning. Consequently, these two partitioning
structures are on Pareto frontier and present us with an interesting tradeoff.

As discussed earlier, the main difference of MOGA from regular genetic algorithms lies in its fitness value assignment.
Fitness values are assigned to both archives and new population members. First, each individual i is assigned a strength value
S(i) which represents the number of solutions it dominates. These Svalues are calculated for all individuals in the population
and archive sets. In the next step, for each individual j, the raw fitness value R(j) is calculated as a sum of the strengths of
individuals that dominate j. As a result, better solutions are assigned the lower raw fitness values.

The second component of fitness value is the density metric D(i) defined as the distance between two objectives. D(i) is
calculated between i and its k-nearest neighbor. The density metric has values between 0 and 1 since its purpose is to dis-
criminate between two non-dominated candidates to provide a uniform distribution of non-dominated candidates along the
Pareto frontier. The sum of the two metrics provides a fitness value for the MOGA.
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As a mating method, we use rank-based weighting instead of binary tournament selection proposed as a part of SPEA2.
After a stop condition (in DMPD it is the maximum number of generations) for the GA is achieved, the archive set contains a
set of non-dominated solutions that form the Pareto frontier.
5. Experimental evaluation

The proposed method was evaluated in the presence of k-anonymity constraints for classifications tasks. The comparative
experiment was conducted on 10 benchmark datasets containing individual information about various objects. Specifically,
the experimental study had the following goals:

1. to examine whether the proposed algorithm succeeded in satisfying the broad range of k-anonymity constraints without
sacrificing data mining performance (i.e. the original classification accuracy vs. increasing k-anonymity constraints)

2. to investigate the sensitivity of the proposed method to different classification methods
3. to compare the proposed method to existing k-anonymity-based methods in terms of classification accuracy
4. to examine the sensitivity of runtime cost to different k-anonymity constraints and the scalability of the proposed method.
5. to investigate the sensitivity of the proposed method to different GA settings
6. to investigate the multiobjective DMPD method in providing Pareto frontiers of classification accuracy vs. partitioning

anonymity level.

The following subsections describe the experimental set-up and the results obtained.

5.1. Experimental process

Fig. 9 graphically represents the experimental process that was conducted. The main aim of this process was to estimate
the generalized accuracy (i.e. the probability that an instance was classified correctly). First, the dataset (box 1) was divided
into a train dataset (box 3) and test dataset (Step 4) using five iterations of a two-fold cross validation (Step 2 – known as the
5 � 2 CV procedure). The 5 � 2 CV is known to be better than the commonly used 10-fold cross-validation because of the
acceptable Type-1 error [3]. At each iteration, the dataset is randomly partitioned into two equal-sized sets, S1 and S2, such
that the algorithm is evaluated twice. During the first evaluation S1 is the train dataset and S2 the test dataset, and vice versa
during the second evaluation. We apply (Step 5) the k-anonymity method on the train dataset and obtain a new anonymous
train dataset (Step 6). Additionally, we obtain a set of anonymity rules (Step 7) that is used to transform the test dataset into
a new anonymous test dataset (Step 8). In the case of DMPD, the rule of partitioning must be applied on an original feature
set. For generalization and suppression-based techniques, generalization or suppression rules are applied to different origi-
nal values in the dataset.

An inducer is trained (Step 9) over the anonymous train dataset to generate a classifier (Step 10). Finally the classifier is
used to estimate the performance of the algorithm over the anonymous test dataset (Step 11).

The same cross-validation folds were implemented for all the algorithms in the pairwise comparison that we conducted.
In each such comparison we used the combined 5 � 2 CV F-test to accept or reject the hypothesis that the two methods
(DMPD vs. TDS, DMPD vs. TDR) have the same error rate with a 0.95 confidence level.

It should be noted that the above experimental process is different from the process used by Fung et al. [21]. According to
his experimental design, the generalization of the original dataset takes place in the first step. Afterwards, the train and test
datasets are split. Thus, the estimated variance of the cross-validation solely measures the inducer’s variance and not the
variance due to applying k-anonymity constraints on the underlying dataset.

5.2. Datasets

Privacy-preserving classification algorithms are usually evaluated only on the Adult dataset which has become a com-
monly used benchmark for k-anonymity [65,22,20]. Recently Fung et al. [21] used a German credit dataset to evaluate
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the TDR algorithm. In our experimental study we used an additional seven datasets that were also selected from the UCI
Machine Learning Repository [45] and which are widely used by the machine-learning community for evaluating learning
algorithms. An additional dataset, drawn from a real-world case study performed on commercial banks, is described below.
The datasets vary across such dimensions as the number of target feature classes, instances, input features and their type
(nominal, numeric).

5.3. Real-world case study dataset

The set of datasets that we used also includes a real-world dataset named ‘‘Portfolio” that contains various data from the
investment department of a bank. The dataset was designed to predict the prospect of customers buying a new type of
investment product. Initial operational data included the history of proposals that were made to customers and their re-
sponses measured in terms of product purchases within half a year from the date of the proposal. The initial dataset contains
various groups of input features:

� Customer demographic and geographic data – age, sex, zip code, number of children, level of income, etc.
� Customer activity in different banking fields – number of loans and deposits, liquid account balance, etc.
� Customer’s current investment position – ownership of other investment products at the bank, etc. These features were

extracted within a time frame of one year prior to this study.
� Behavioral measures – volume of financial transitions, response to marketing campaigns, etc.

The initial dataset included 35 features. After data preparation and exploration, we took the 28 most suitable features: 11
continuous and 17 nominal. The dataset contains about 5000 instances with approximately equal distribution of target fea-
ture values.

5.4. Algorithms used

For the anonymity phase (Step 5 in Fig. 9), we compared the DMPD algorithm to TDS [22] and TDR [21] in terms of clas-
sification accuracy. In addition, we considered performing a comparison with a GA-based algorithm [28]. However, since we
could not access the algorithm’s implementation, we were unable to meaningfully compare Iyengar’s algorithm with ours. It
is important to note that the TDS algorithm we compared to the DMPD algorithm provided no worse results than the GA
algorithm, at least from the partial comparison performed earlier [22].

It should also be noted that the TDS and TDR experiments were based on using the original software obtained from the
algorithms’ inventors. Because TDS requires the user to provide generalization taxonomy, we could use it only on datasets for
which generalization taxonomy was previously provided by the algorithm’s inventor. Specifically, we compared DMPD to
TDS on the Adult dataset using the earlier generalization taxonomy that had been proposed. Because our algorithm works
with no such taxonomy, for other datasets we used the two-level taxonomy where the lower level contains feature domain
values and the higher level contains ‘‘Any” value. In other words, if the TDS algorithm considers such a feature generalization,
it only results in suppressing all feature values. DMPD is compared to TDR by choosing the suppress option of the TDR algo-
rithm in the absence of a generalization taxonomy.

K-anonymity quasi-identifiers constraints were formed as proposed by the TDS inventors [22]. In this work, to ensure that
the anonymization algorithm is operating on features that impact classification, the quasi-identifiers subsets contain the top
N features ranked by the C4.5 classifier. Accordingly, the structure of the decision tree’s most important feature is the feature
at the top of the tree. The next important feature can be evaluated by the C4.5 classifier in the absence of a previous top
feature. Following this procedure recursively, the top nine features were defined. Three quasi-identifier constraints were de-
fined by selecting the top 5, 7 and 9 features. A 10-CV procedure was used to evaluate the tree. All remaining features are
included in the training set but are treated as non-quasi identifiers.

For the induction phase (Step 9 in Fig. 9), we examined the following base induction algorithms: naïve Byes and C4.5 [51].
The C4.5 algorithm was selected because it is considered a state-of-the-art decision tree algorithm that is widely used in
many other comparative studies. Naïve Byes was selected due to its simplicity and the fact that it uses a quite different learn-
ing scheme.

For DMPD, TDS and TDR, 12 experiments were performed for each dataset and induction algorithm; each of three quasi-
identifier constraints was tried with four different k-anonymity levels.

DMPD implementation and all experiments were performed in WEKA, a Java-based environment [66]. The experiments
with C4.5 and naïve Byes took place using WEKA implementation of the algorithms along with their default settings.

5.5. Effect of k-anonymity constraints on classification accuracy

In this section we analyze the effect of the value of k (anonymity level) on classification accuracy. Table 1 shows the accu-
racy results obtained by the proposed algorithm for four different values of k for various datasets using different inducers. In
this section we take the top nine features as quasi-identifiers (top eight for nursery and pima datasets). Note that the column
with k = 1 represents the DMPD algorithm result (i.e. when no k-anonymity constraints were implied) enabling us to exam-



Table 1
Accuracy vs. anonymity for DMPD algorithm.

Dataset Inducer k-Anonymity level

Adult k Baseline 1 50 100 200 500

C4.5 85.58 ± 0.51 86.59 ± 0.22 83.03 ± 0.10* 83.00 ± 0.10* 82.63 ± 1.15* 82.99 ± 0.08*

Naïve Bayes 82.68 ± 0.27 84.87 ± 0.20 81.81 ± 0.13* 81.41 ± 0.79* 81.47 ± 0.77* 81.19 ± 1.11*

k Baseline 1 10 20 30 50

Credit C4.5 85.53 ± 2.45 85.82 ± 1.54 86.71 ± 1.15 85.08 ± 1.75 85.29 ± 1.99 85.66 ± 2.19
Naïve Bayes 76.82 ± 1.87 85.66 ± 1.89 85.94 ± 1.42 86.46 ± 1.46 85.66 ± 2.45 85.45 ± 2.98

Vote C4.5 96.23 ± 2.41 96.35 ± 1.95 96.26 ± 2.09 96.35 ± 2.38 95.04 ± 4.06 96.70 ± 1.91
Naïve Bayes 90.78 ± 1.98 96.26 ± 2.05 96.43 ± 1.85 96.52 ± 2.09 96.61 ± 1.85 96.52 ± 1.97

Wisconsine C4.5 93.28 ± 1.83 97.00 ± 0.90 95.97 ± 1.40* 94.88 ± 1.00* 95.09 ± 1.71 95.23 ± 1.77
Naïve Bayes 93.28 ± 1.78 96.11 ± 1.01 95.27 ± 1.57 94.77 ± 2.09 93.89 ± 2.03 93.04 ± 1.09*

German C4.5 69.88 ± 2.12 73.23 ± 7.44 71.86 ± 2.35 70.78 ± 2.22 71.12 ± 2.51 63.01 ± 16.49
Naïve Bayes 73.81 ± 1.13 75.03 ± 2.03 73.79 ± 2.37 73.71 ± 2.30 71.26 ± 2.59 69.84 ± 1.87*

Heart C4.5 74.89 ± 2.97 84.03 ± 6.71 79.18 ± 4.14 78.96 ± 3.53 77.31 ± 3.76 74.78 ± 3.83
Naïve Bayes 84.89 ± 3.44 82.61 ± 4.37 79.93 ± 4.43 77.69 ± 4.84 78.06 ± 4.75 74.93 ± 3.38*

Portfolio C4.5 74.82 ± 0.98 76.41 ± 0.56 72.04 ± 1.34* 71.61 ± 2.37* 72.07 ± 1.13* 71.76 ± 1.57*

Naïve Bayes 58.96 ± 1.81 75.46 ± 0.71 68.74 ± 2.67 69.11 ± 1.84* 68.58 ± 2.72* 68.46 ± 2.47*

Cmc C4.5 50.90 ± 1.61 56.59 ± 2.73 52.53 ± 4.64 51.51 ± 4.53 51.02 ± 4.19 48.30 ± 2.30
Naïve Bayes 48.78 ± 1.37 54.04 ± 2.57 54.04 ± 3.33 52.73 ± 4.69 52.12 ± 3.49 48.07 ± 2.00*

Pima diabetes C4.5 72.09 ± 2.20 78.20 ± 2.05 77.75 ± 1.53 77.62 ± 2.66 76.79 ± 3.01 75.85 ± 1.87
Naïve Bayes 75.20 ± 2.67 77.75 ± 1.93 77.75 ± 2.27 78.02 ± 2.34 78.41 ± 2.45 78.30 ± 2.26

k Baseline 1 50 100 150 200

Nursery C4.5 96.16 ± 0.31 97.13 ± 0.52 92.64 ± 1.15* 91.15 ± 0.81* 90.86 ± 1.27* 88.91 ± 4.79
Naïve Bayes 90.08 ± 0.40 90.25 ± 0.51 90.24 ± 0.57 90.27 ± 0.67 90.00 ± 0.77 89.46 ± 0.94
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ine the effect of anonymity on the accuracy of the results. The superscript ‘‘*” indicates that the degree of accuracy of the
original dataset was significantly higher than the corresponding result with a confidence level of 95%.

As expected, the results indicate that there is a tradeoff between accuracy performance and the anonymity level for most
datasets. Usually, increasing the anonymity level decreases accuracy. For some datasets, the feature set partitioning ap-
proach improves baseline accuracy, even despite applying k-anonymity constraints such as for vote, cmc, pima, wisconsine
or nursery. Supervised discretization, as a part of DMPD, also contributes to classification accuracy, for example, in the heart
dataset. These above results are marked out for both inducer types.
5.6. Scalability analysis

The aim of this section is to examine the DMPD’s ability to handle expanding datasets in an elegant manner. We tested for
scalability using the procedure that Fung et al. [21] proposed to measure the runtime costs of algorithms on large datasets.
We based our scalability test on a German dataset. For this purpose, the original dataset containing 1000 records was ex-
panded as follows: for every original instance q, we added r � 1 variations where r is a scale factor. Together with all ori-
ginal instances, the enlarged dataset has r � 1000 instances. Each instance variation was generated by randomly drawing
appropriate feature values (xqi,yq) from the feature domain (dom(ai),dom(y)).

We conducted all experiments on a hardware configuration that included a desktop computer implementing a Windows
XP operating system with Intel Pentium 4–2.8 GHz, and 1 GB of physical memory.

Table 2 presents the average time (in minutes) measured on 10 runs for various values of r, a quasi-identifier that in-
cludes top 5 features and a k-anonymity level = 10. The time, including model generation time, reflects the runtime cost
of a J4.8 inducer in a WEKA package and is beyond our control.

Fig. 10 shows that the execution time is almost linear in the number of records. This confirms the DMPD’s ability to han-
dle a growing search space since an increase in train dataset size leads to more partitions that the algorithm must consider.
5.7. GA settings for DMPD

A major problem with genetic algorithms is their sensitivity to the selection of various parameters such as population
size, maximum number of generations, crossover and mutation probabilities. This sensitivity is due to a degree of random-
ness in searching for an optimal solution. We set crossover and mutation values to probabilities that are similar to those
found in the GA literature [24,27]. In this section we try to estimate if better results can be obtained from a larger population



Table 2
Scalability analysis for DMPD.

Scalability factor Algorithm runtime (min) Dataset size

1 1.41 1000
5 6.55 5000
10 13.90 10,000
15 24.48 15,000
20 32.76 20,000
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Fig. 10. Scalability trend in the extended German dataset.

N. Matatov et al. / Information Sciences 180 (2010) 2696–2720 2715
size or a larger number of generations. Obviously, we have here a probable tradeoff between, better partitioning structure
and computational costs of the algorithm due to our increasing the GA settings.

Our default settings for DMPD were 100 generations and 50 individuals in a population. Here we present some experi-
ments from the german and cmc datasets. We present two of 12 experiments that were performed on the dataset with a
C4.5 inducer with a minimum of k-anonymity constraints (top5 and k = 10). The number of generations considered is 50,
100, 150 and 200. Test runs were carried out on two populations numbering 50 and 100 individuals, respectively.

As Fig. 11 shows, increasing GA settings beyond 100 generations and 50 partitionings does not significantly improve clas-
sification accuracy. Similar behavior is true for other datasets used in the experimental study. The evidence points to the
DMPD’s ability to achieve good feature set partitioning with a relatively low number of generations and population size.
5.8. Multiobjective DMPD evaluation

In this section we introduce experimental results of the DMPD for multiobjective decision-making in privacy-preserving
data mining. We follow a method presented by Grunert da Fonseca et al. [26] for experimentally evaluating multiobjective
GA. Such an evaluation is performed on the basis of multiple, independent optimization runs and by building attainment
functions. The concept of empirical attainment function is used in Pareto frontier estimation by building a specific type of
summary attainment surface [33] on objective space. In our case, there are two objectives: partitioning anonymity level
and classification accuracy. The worst attainment surface describes the region that was attained by all optimization runs
and provides a pessimistic estimation for the true Pareto frontier. The region, attained by only one optimization run, presents
us with the best attainment surface and this is an optimistic estimation for a true Pareto frontier. Median attainment surface,
attained by 50% of optimization runs, provides a reasonable estimation for the true Pareto frontier [17,33].

In Fig. 12 we present three types of empirical surfaces for true Pareto frontier estimation created by an algorithm for an
Adult dataset with top5 and top9 quasi-identifier constraints and a C4.5 inducer.
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Fig. 11. GA settings vs. accuracy for german and cmc datasets.



Fig. 12. Accuracy vs. k-anonymity level tradeoff.
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From the graphs we conclude that there is a clear tradeoff between the two objectives (Fig. 12a). The graphs provide an
important tool for a data owner. If he can agree to a k-level between 1 and 3, the classification accuracy that can be achieved
is nearly 86%. A further key decision point arises near a k-level of 660. Classification performance from k = 3 to k = 655 is
essentially the same excluding some negligible decreases in accuracy in the range between k = 4 and k = 35. If these k-ano-
nymity levels are insufficient for the data owner, he can advance along the frontier to an additional k level. Increasing k up to
1000, results in a decrease of 5% in the classification accuracy.

As shown in Fig. 12b, the DMPD forms a Pareto frontier with almost a similar degree of accuracy for the given k-anonym-
ity levels (denoted by cross) presented in Section 5.5.

5.9. DMPD compared to other k-anonymity algorithms

In this section we compare the proposed algorithm to other existing k-anonymity algorithms. Firstly, we present the re-
sults from comparing DMPD to two other algorithms based on datasets used in a previous work [22,21].

We compare the performance for three different constraints of quasi identifiers (as described in Section 5.4) and with four
different levels of k. Table 3 presents the results obtained on the Adult dataset when comparing DMPD with TDS. Table 4
compares DMPD and TDR. The superscript ‘‘*” indicates that the accuracy of the corresponding algorithm was significantly
higher (with the same k, the same base inducer and the same dataset) with a confidence level of 95%. The results of the
experimental study are encouraging. They indicate that there are only two cases where either TDS or TDR is more accurate
than DMPD. In seven experiments DMPD is significantly better than TDS. There is no case where TDR is significantly more
accurate than DMPD, but DMPD is better in most experiments. As expected, on the dataset, DMPD outperforms TDR or TDS,
mainly, for relatively high levels for quasi-identifiers or k-anonymity. This can be explained by the fact that DMPD is avail-
able ‘‘to relax” k-anonymity restrictions by feature set partitioning.

Tables 5 and 6 present the results obtained on the German dataset when comparing DMPD with TDS and TDR, respec-
tively. The results indicate that TDS and DMPD perform similarly. DMPD was slightly better than TDR, and 2 of 24 experi-
ments show significant DMPD superiority.



Table 4
Adult dataset – comparing DMPD To TDR.

Dataset –
Adult

k-
Level

C45 NB

50 100 200 500 50 100 200 500

DMPD top5 83.82 ± 0.54 83.56 ± 0.33 83.57 ± 0.50* 83.35 ± 0.68 81.83 ± 0.23 81.74 ± 0.19* 81.27 ± 0.86 81.54 ± 0.62
TDR 82.70 ± 0.31 81.26 ± 1.01 80.56 ± 1.01 80.95 ± 1.53 79.85 ± 0.84 79.25 ± 0.70 79.41 ± 1.10 79.27 ± 1.21
DMPD top7 83.77 ± 0.30* 83.30 ± 0.93* 83.15 ± 0.98 83.19 ± 0.76* 81.76 ± 0.25* 80.88 ± 1.05* 81.73 ± 0.13* 81.69 ± 0.21*

TDR 82.16 ± 0.27 80.06 ± 1.31 79.09 ± 0.47 78.81 ± 0.67 78.81 ± 1.10 78.14 ± 0.86 77.08 ± 0.49 77.17 ± 0.56
DMPD top9 83.03 ± 0.10* 83.00 ± 0.10* 83.00 ± 0.13* 83.01 ± 0.08* 81.81 ± 0.13* 81.41 ± 0.79* 81.47 ± 0.77* 81.19 ± 1.11*

TDR 79.48 ± 0.89 79.26 ± 0.51 79.03 ± 0.20 79.06 ± 0.31 76.66 ± 1.04 76.23 ± 0.22 76.70 ± 0.42 76.01 ± 0.18

Table 5
German credit dataset – comparing DMPD to TDS.

Dataset –
German

k-
Level

C45 NB

10 20 30 50 10 20 30 50

DMPD top5 74.13 ± 2.45 71.30 ± 2.87 67.56 ± 13.12 70.50 ± 1.85 74.55 ± 1.63 74.15 ± 1.96 74.41 ± 0.87 70.24 ± 2.31
TDS 70.88 ± 1.64 70.50 ± 1.15 69.54 ± 2.51 66.71 ± 2.71 73.07 ± 1.04 72.91 ± 1.22 73.03 ± 1.43 72.83 ± 1.55
DMPD top7 70.64 ± 3.37 70.06 ± 1.66 71.72 ± 2.63 70.28 ± 1.82 73.95 ± 2.90 73.71 ± 2.00 71.22 ± 2.59 70.02 ± 2.37
TDS 70.74 ± 1.88 71.30 ± 1.95 71.14 ± 1.95 70.42 ± 1.91 72.61 ± 1.56 72.67 ± 1.33 72.55 ± 1.62 71.92 ± 1.67
DMPD top9 71.86 ± 2.35 70.78 ± 2.22 71.12 ± 2.51 63.01 ± 16.49 73.79 ± 2.37 73.71 ± 2.30 71.26 ± 2.59 69.84 ± 1.87
TDS 71.02 ± 2.30 71.44 ± 2.00 71.40 ± 2.13 71.42 ± 1.78 72.38 ± 1.35 72.46 ± 1.22 72.40 ± 1.47 72.34 ± 1.37

Table 6
German credit dataset – comparing DMPD to TDR.

Dataset –
German

k-
Level

C45 NB

10 20 30 50 10 20 30 50

DMPD top5 74.13 ± 2.45 71.30 ± 2.87 67.56 ± 13.12 70.50 ± 1.85 74.55 ± 1.63 74.15 ± 1.96 74.41 ± 0.87* 70.24 ± 2.31
TDR 68.20 ± 1.94 67.68 ± 2.68 67.37 ± 2.08 67.01 ± 1.89 70.78 ± 2.00 70.16 ± 1.54 70.16 ± 1.62 69.82 ± 1.35
DMPD top7 70.64 ± 3.37 70.06 ± 1.66 71.72 ± 2.63 70.28 ± 1.82 73.95 ± 2.90 73.71 ± 2.00 71.22 ± 2.59 70.02 ± 2.37
TDR 68.14 ± 2.15 67.41 ± 2.74 67.68 ± 2.02 66.97 ± 2.39 70.84 ± 1.73 69.90 ± 1.65 69.78 ± 0.91 69.38 ± 1.04
DMPD top9 71.86 ± 2.35 70.78 ± 2.22 71.12 ± 2.51 63.01 ± 16.49 73.79 ± 2.37 73.71 ± 2.30* 71.26 ± 2.59 69.84 ± 1.87
TDR 69.46 ± 1.69 68.52 ± 2.73 68.96 ± 1.83 68.22 ± 2.81 70.38 ± 1.93 69.58 ± 1.87 69.20 ± 1.97 69.12 ± 1.52

Table 3
Adult dataset – comparing DMPD to TDS.

Dataset – Adult k-Level C45 NB

50 100 200 500 50 100 200 500

DMPD top5 83.82 ± 0.54 83.56 ± 0.33 83.57 ± 0.50* 83.35 ± 0.68 81.83 ± 0.23 81.74 ± 0.19 81.27 ± 0.86 81.54 ± 0.62
TDS 84.79 ± 0.12 83.88 ± 1.19 82.35 ± 0.39 82.57 ± 0.51 82.99 ± 0.30* 82.25 ± 1.12 80.85 ± 0.16 81.03 ± 0.22
DMPD top7 83.77 ± 0.30 83.30 ± 0.93 83.15 ± 0.98 83.19 ± 0.76 81.76 ± 0.25 80.88 ± 1.05 81.73 ± 0.13* 81.69 ± 0.21*

TDS 84.72 ± 0.13* 83.92 ± 1.02 81.89 ± 1.50 82.48 ± 0.38 82.88 ± 0.27* 81.88 ± 1.15 80.45 ± 0.30 80.56 ± 0.38
DMPD top9 83.03 ± 0.10* 83.00 ± 0.10 83.00 ± 0.13* 83.01 ± 0.08 81.81 ± 0.13* 81.41 ± 0.79 81.47 ± 0.77 81.19 ± 1.11
TDS 82.03 ± 0.15 81.77 ± 0.75 80.60 ± 0.66 81.56 ± 1.15 79.07 ± 0.32 79.32 ± 0.73 79.65 ± 0.85 79.01 ± 1.05
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In order to conclude which algorithm performs best over multiple cases, we followed the procedure proposed in [12]. In
the case of multiple classifiers, we first used the adjusted Friedman test in order to reject the null hypothesis and then the
Bonferroni–Dunn test to examine whether the new algorithm performs significantly better than existing algorithms. The
null-hypothesis, that all algorithms perform the same and the observed differences are merely random, was rejected with
a confidence level of 95% using the adjusted Friedman test (with a statistic value of F = 56.79 distributed as F-distribution
with 2 and 478 degrees of freedom). We proceeded with the Bonferroni–Dunn test and found that DMPD statistically out-
performs TDS and TDR with a 95% confidence level (statistic values of �6.53 and�15.84 correspondingly which are normally
distributed).

5.10. Discussions

The advantages of the new DMPD algorithm, based on observations from the experimental study, can be summarized as
follows:



(a) (b) 

relationship native-
country

workclass

Own-child US State-gov

Wife US Private

Husband US Private

Own-child US State-gov

relationship native-
country

workclass

Own-child US State-gov

? US Private

? US Private

Own-child US State-gov

Fig. 13. Increasing flexibility for DMPD.
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1. DMPD uses a general framework of feature set partitioning that can be applied prior to transforming feature values. In
other words, DMPD can wrap any existing approach for anonymizing datasets and capture it for anonymizing projections
following evaluation of partitioning fitness.

2. The DMPD is capable of dealing with different k-anonymity constraints and inducers without any significant effect on
classification accuracy.

3. When compared to the state-of-the-art k-anonymity methods, DMPD classifiers provide an equivalent or slightly higher
degree of accuracy.

4. DMPD, unlike other methods, does not use any prior knowledge. In TDS, TDR, Incognito and GA-based algorithms, the user
is required to provide a taxonomy tree for categorical features. This makes these methods difficult to implement.

5. DMPD provide results without using any generalization of categorical feature values. Very possibly this feature results in
deeper knowledge than the state-of-art generalization approaches.

6. DMPD can provide useful information regarding the tradeoff between k-anonymity constraints and classification perfor-
mance by means of a Pareto frontier between these two conflicting goals.

The DMPD algorithm also has several drawbacks:

1. Over-anonymity – there are two reasons leading to this drawback:
1.1. When a certain partitioning does not comply with the k-anonymity restriction, DMPD excludes it entirely from pro-

ducing offspring. This might be too aggressive and might result in over-anonymity of the anonymized dataset.
1.2. Another over-anonymity issue is due to the global method of treating numeric features where the dataset is discret-

ized at the initial phase.
2. Non-flexibility – DMPD depends entirely on the original distribution of data since it does not try to transform

categorical values. DMPD tends to produce structures with a relatively small number of features in each subset. This
can cause deficient data mining results. Here the solution may lay in applying generalization or suppression tech-
niques. To demonstrate this idea we considered some subsets of the Adult dataset (Fig. 13a). If the required k-level
is 2 and all three attributes are in the quasi-identifier set, the ‘‘relationship” feature will be excluded from any can-
didate solution produced during the GA search. After suppressing some values (Fig. 13b), the ‘‘relationship” feature
can enter some subsets under the k-anonymity constraints. In this case we get a classifier with higher classification
accuracy.

3. High computational cost – scalability analysis shows the algorithm’s ability to work linearly on dataset size. Decreasing in
runtime since k-anonymity constraints were grown was expected and was seen as well in regard to the TDR or TDS algo-
rithms. But DMPD’s absolute execution time is higher than with TDR and TDS. This is due to two main procedures that
were proven earlier to be slow: genetic search and wrapper-based evaluation of partitionings.

These drawbacks are not so very difficult to deal with. In regard to the first drawback, a possible solution would be to use
a more sophisticated fitness function, in which a partitioning anonymity level is combined in some way with classification
accuracy (see Paragraph 1.1). Regarding treating numeric features (see Paragraph 1.2), a more accurate method could be ap-
plied, combining a supervised discretization principle and an anonymity level of partitioning. In regard to the second draw-
back we can try to incorporate existing approach for anonymizing datasets (for example, the simplest one – tuple
suppression) to obtain more algorithm’s flexibility. Third drawback can be alleviated by examining different search and eval-
uation procedures.
6. Summary and conclusions

In this paper we presented a new method for preserving privacy in classification tasks using a k-anonymity framework.
The proposed method was designed to work with no prior knowledge and with any inducer. Compared to existing state-of-
the-art methods, the new method also shows a higher predictive performance on a wide range of datasets from different
domains.
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Additional issues to be further studied include:

� Examining DMPD with other classification algorithms
� Revising DMPD to overcome its existing drawbacks as noted above
� Examining the possibility of using DMPD along with known generalization/suppression-based methods that could result

in improved data mining results in terms of classification accuracy and discovered patterns. Here the simple tuple sup-
pression (TS) can be evaluated. The technique has not yet been applied in any state-of-art algorithm [8].
� Extending the proposed method for treating k-anonymity model leaks and proposed solutions for them. One solution is

based on the l-diversity framework [40].
� Examining DMPD with overlapping partitioning structures. This evaluation can be valuable in increasing the algorithm’s

flexibility.
� Extending DMPD to handle multiobjective optimization with different quasi-identifier sets. The main idea is to eliminate

the k-anonymity model assumption; the quasi-identifier set is determined prior to performing data anonymization. One
of the solutions can include assigning a probability to each feature to be used for individual information discloser. Higher
probabilities assume a higher degree of privacy. These probabilities can be used to produce an aggregated measure of
overall privacy that must be maximized against data mining performance to form an appropriate Pareto frontier. Such
a study may, for example, contribute to evaluating a tradeoff between a feature as a part of a quasi-identifier and clas-
sification accuracy.
� Extending the proposed method to other data mining tasks (such as clustering and association rules). The work could

involve applying other types of decomposition, such as space or sample decomposition [52].
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