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Abstract

Modeling gene regulation is an important problem in genomic research. Boolean networks

(BN) and its generalization Probabilistic Boolean networks (PBNs) have been proposed to

model genetic regulatory interactions. BN is a deterministic model while PBN is a stochastic

model. In a PBN, on one hand, its stationary distribution gives important information

about the long-run behavior of the network. On the other hand, one may be interested in

system synthesis which requires the construction of networks from the observed stationary

distribution. This results in an inverse problem which is ill-posed and challenging. Because

there may be many networks or no network having the given properties and the size of the

inverse problem is huge. In this paper, we consider the problem of constructing PBNs from a

given stationary distribution and a set of given Boolean Networks (BNs). We first formulate

the inverse problem as a constrained least squares problem. We then propose a heuristic

method based on Conjugate Gradient (CG) algorithm, an iterative method, to solve the

resulting least squares problem. We also introduce an estimation method for the parameters

of the PBNs. Numerical examples are then given to demonstrate the effectiveness of the

proposed methods.

Key Words: Boolean networks, genetic networks, inverse problem, probabilistic Boolean

networks, stationary distribution.

∗School of Mathematical Sciences, Fudan University, Shanghai, China. Email: zhangs@fudan.edu.cn
†Corresponding author. Advanced Modeling and Applied Computing Laboratory, Department of Mathematics,

The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail: wching@hkusua.hku.hk.
‡Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. Email:dlkcissy@hotmail.com
§Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: nktsing@hku.hk.

1



1 Introduction

Building mathematical models from microarray data sets and developing efficient nu-

merical algorithms for studying the regulatory interactions among DNA, RNA, proteins

and small molecules are hot topics in bioinformatics [5, 17]. There have been many for-

malisms proposed in the literature to study genetic regulatory networks such as Bayesian

networks [22, 38], Boolean networks (BNs) [19, 20], correlation-based methods [26], mul-

tivariate Markov chain model [6], regression model [41], evolutionary models [2], Proba-

bilistic Boolean Networks (PBNs) [31, 32, 33, 35]. Reviews on many other mathematical

models can be found in [13, 37].

Among all these models, BN and its extension PBN have received much attention as

they can capture the “switching behavior” of a biological process [17]. In a BN, the gene

expression states are quantized to only two levels: on and off (represented as 1 and 0).

The target gene is predicted by several genes called its input genes via a Boolean function.

When the input genes and the Boolean functions of all the genes are given, we say that

a BN is defined. We remark that complex network analysis can be applied to BNs [36].

Furthermore, applications of BNs to complex systems and solid earth geophysics can be

found in [16].

There many methods available for inferring a BN. A general nonlinear framework for

inferring the associations between the expressions of genes via Coefficient of Determination

(COD) in multivariate expression arrays is given in [21]. The coefficient there measures

the degree to which the expression levels of an observed gene set can be applied to improve

the prediction of the expression level of the target gene relative to the best prediction in

the absence of observations. Later inferring a BN is formulated as a consistency and best-

fit extension problem [24]. More recent works related to BN construction can be found in

[15, 27]. In [15], an universal minimum description length based method is proposed where

the description length is derived from a universal normalized maximum likelihood model.

The search space is reduced by an implementable analogue of Kolmogorov’s structure

function. In [27], Liu et al. analyzed the expected inference error relative to deviations in

the networks’ dynamic regime from the assumption of criticality. By taking into account

the criticality via a penalty term in the inference procedure the prediction accuracy can

be improved.
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A BN is a deterministic model, the only randomness comes from its initial state. Given

an initial state, the BN will eventually enter into a set of state(s) called the attractor cycles.

The attractor cycles have significant biological meanings [17]. Since genetic regulation

process exhibits uncertainty and microarray data sets used to infer the model have errors

due to experimental noise in the complex measurement processes, it is more realistic to

consider a stochastic model, the Probabilistic Boolean network (PBN). To extend BNs

to PBNs, for each gene, there can be more than one Boolean function (a set of Boolean

functions with probabilities assigning to them). The dynamics (transitions) of a PBN can

be described by a Markov chain [31, 35].

For the inference of a PBN, the Boolean functions, the predictor sets and the selection

probabilities of the Boolean functions can be obtained using the methods proposed in

[14, 21, 25]. Given a PBN, assuming the underlying Markov chain is irreducible, its long-

run behavior is characterized by its stationary distribution. The stationary distribution

gives the first-order statistical information of a PBN and one can understand a genetic

network, and identify the influence of different genes in such a network. Recently an iter-

ative method, power method in conjunction with an efficient construction method for the

transition probability matrix has been proposed to compute the stationary distribution

[40]. Later a matrix approximation method has been proposed in [7] to get an approxi-

mation of the stationary distribution. Furthermore, it is possible to control some genes

in a network so as to drive the whole network into a desirable stationary distribution.

Therapeutic gene intervention or gene control policy [8, 11, 12, 32, 35, 41] can therefore

be developed and studied.

In this paper, we focus on the construction of PBNs based on a given stationary

distribution and a given set of BNs. This is an inverse problem of large size and it is

ill-posed which means that there can be many networks or even no network having the

desirable properties. A modified Conjugate Gradient (CG) method is employed to solve

the problem. In fact, for the BN case, Pal, et al. [29] have presented two algorithms

to solve the inverse problem of finding attractors constituting a BN. Such problems are

very important to network inference from steady-state data, as most microarray data sets

are assumed to be obtained from sampling the steady-state [29]. However, to our best

knowledge, the PBN case has not been addressed in literature.
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The remainder of the paper is structured as follows. In Section 2, we give a brief

review on both BNs and PBNs. Section 3 presents the inverse problem of PBNs and the

modified CG method for solving the problem. In Section 4, numerical examples are given

to demonstrate the effectiveness of the proposed algorithm. Finally concluding remarks

are given to address further research issues in Section 5.

2 A Review on Boolean Networks and Probabilistic Boolean

Networks

A BN G(V, F ) consists of a set of vertices (genes)

V = {v1, v2, . . . , vn}

and a list of Boolean functions

F = {f1, f2, . . . , fn}.

We define vi(t) to be the state (0 or 1) (not expressed or expressed) of the vertex vi at

time t, and fi : {0, 1}n → {0, 1}, to represent the rules of the regulatory interactions

among the genes:

vi(t+ 1) = fi(v(t)), i = 1, 2, . . . , n

where

v(t) = (v1(t), v2(t), . . . , vn(t))
T

is called the Gene Activity Profile (GAP). Here xT is the transpose of the vector x. The

GAP can take any possible form (states) from the set

S = {(v1, v2, . . . , vn)T : vi ∈ {0, 1}}

and thus totally there are 2n possible states.

The following is an example of a BN of three genes. We give the truth table of the

BN in Table 1.
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Table 1

State v1(t) v2(t) v3(t) f (1) f (2) f (3)

1 0 0 0 0 0 0

2 0 0 1 1 1 0

3 0 1 0 1 0 1

4 0 1 1 1 1 0

5 1 0 0 0 1 0

6 1 0 1 0 1 1

7 1 1 0 0 0 1

8 1 1 1 1 0 0

From the truth table above, we observe if the current network state is (0, 0, 0) (State

1) then in the next time step, the network state will be again (0, 0, 0). This means

(0, 0, 0) ↔ (0, 0, 0) is a cycle of period one. If the current network state is (0, 0, 1) (State

2) then in the next time step, the network state will be (1, 1, 0). While if the current

network state is (1, 1, 0) (State 7) then in the next time step, the network state will be

(0, 0, 1) (State 2). Thus (0, 0, 1) ↔ (1, 1, 0) is a cycle of period two. The transition

probability matrix of the 3-gene BN is then given by

A =




1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0




. (1)

Here each column has only one non-zero element and it is one. This is a special class of

column stochastic matrices. We remark that for each given BN, its transition probability

matrix is unique up to the ordering of the states. This representation of a BN is useful
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for the extension to PBN.

Since a BN is a deterministic model, to overcome this deterministic rigidity, extension

to a probabilistic setting is natural. To extend the concepts of a BN to a stochastic

model, for each vertex vi in a PBN, instead of having only one Boolean function as in

BN, there are a number of Boolean functions (predictor functions) f
(i)
j (j = 1, 2, . . . , l(i))

to be chosen for determining the state of gene vi and usually l(i) cannot be very large.

The probability of choosing f
(i)
j as the predictor function is c

(i)
j ,

0 ≤ c
(i)
j ≤ 1 and

l(i)∑
j=1

c
(i)
j = 1 for i = 1, 2, . . . , n.

The probability c
(i)
j can be estimated by using the method of Coefficient of Determination

(COD) [14] with real gene expression data sets.

We let fj be the jth possible realization, where

fj = (f
(1)
j1

, f
(2)
j2

, . . . , f
(n)
jn

), 1 ≤ ji ≤ l(i), i = 1, 2, . . . , n

Suppose that the selection of the Boolean function fji for each gene i is an independent

process, then the probability of choosing the corresponding BN with Boolean functions

(fj1 , fj2 , . . . , fjn) is given by

qj1j2···jn =
n∏

i=1

c
(i)
ji
.

There are at most

N =
n∏

i=1

l(i)

different possible realizations of BNs. We note that the transition process among the

states in the set S forms a Markov chain process. Let a and b be any two column vectors

in the set S. Then the transition probability

P {v(t+ 1) = a | v(t) = b} =
N∑
j=1

P {v(t+ 1) = a | v(t) = b, the jth network is selected} · qj.
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Here we let

qj = qj1j2···jn and j = j1 +
n∑

i=2

(
(ji − 1)(

i−1∏

k=1

l(k))

)
.

We will then use both of them when there is no confusion. By letting a and b take all the

possible states in S, one can get the transition probability matrix of the Markov chain

(or the PBN). The transition probability matrix can be written as ([7])

A =
N∑
j=1

qjAj. (2)

Here Aj is the corresponding transition matrix of the jth BN (see Equation (1) for in-

stance) and qj is the probability of choosing the jth BN. We note that there are at most

N2n nonzero entries in the transition probability matrix A and this means the matrix is

sparse, i.e., having a lot of zero entries.

We remark that there are several different kinds of PBNs. The instantaneously random

PBN described above is the simplest one. Random gene perturbation can be added to a

PBN to stabilize the network. It is the description of the random inputs from the outside

due to external stimuli. The effect of the random gene perturbation is to make the genes

flip from state 1 to state 0 or vice versa. This makes the underlying Markov chain of the

PBN ergodic [34]. The instantaneously random PBN can also be extended to the context-

sensitive PBN [30]. For simplicity of discussion, here we focus on the inverse problem of

instantaneously random PBNs.

3 The Inverse Problem and the Modified Conjugate Gradient

Method

In this section, we first present the inverse problem of building a PBN and we then present

the modified Conjugate Gradient (CG) method for solving the inverse problem.

3.1 The Inverse Problem

Suppose that the possible BNs constituting the PBN are known and they are denoted by

(A1, A2, . . . , AN) and the steady-state behavior of the PBN, the stationary distribution p
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can also be observed. Then we have

Ap = p and A =
N∑
j=1

qjAj.

The inverse problem here is to get the parameters qj, j = 1, 2, . . . , N . Now we let the

matrix

V = [v1,v2, . . . ,vN ]

where

vj = Ajp and q = (q1, q2, . . . , qN)
T .

Then one possible way to get qj is to consider the following minimization problem:

h(q∗) = min ||V q− p||22 (3)

subject to

0 ≤ qj ≤ 1 and
N∑
j=1

qj = 1.

3.2 The Modified Conjugate Gradient Method

We note that in practice the matrix V can be very large, it may not be possible to

store the whole matrix and therefore one may seek for iterative method for solving the

above minimization. One possible candidate is to consider the Conjugate Gradient (CG)

method, see for instance [3, p. 470]. Given a symmetric positive definite m ×m matrix

Hm, a well-known and successful iterative method for solving the linear system Hmx = b

is the CG method. The convergence rate of this method depends on the spectrum of

the matrix Hm. For example if the spectrum of Hm is contained in an interval, i.e.

σ(Hm) ⊆ [a, b] and xi is the approximate solution obtained in the ith iteration, then the

error ri = b−Hmxi is given by

||ri||2
||r0||2 ≤ 2

(√
b−√

a√
b+

√
a

)i

. (4)
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Generally speaking, it can be shown that CG method will converge in at most m steps

[3], i.e., the number of iterations required for convergence is of O(m).

We observe that

||V q− p||22 = (V q− p)T (V q− p)

and

(V q− p)T (V q− p) = qTV TV q− 2qTV Tp+ pTp.

Thus the minimization problem (3) without constraints is equivalent to

min
q

{qTV TV q− 2qTV Tp}.

If V is a full rank matrix then V TV is a symmetric positive definite matrix. The mini-

mization problem without constraints is equivalent to solving

V TV q = V Tp

with the CG method, see for instance [23]. We note that if there is a probability distri-

bution q satisfying the equation V q = p with 1Tq = 1 and 0 ≤ q ≤ 1, then the CG

method can yield the solution. To ensure that 1Tq = 1, we add a row of (w,w, . . . , w) to

the bottom of the matrix V and form the new matrix is V̄ . At the same time, we add

an entry w at the end of the vector p to get a new vector p̄. Here w is a large positive

number so as to ensure the constraint 1Tq = 1 is active. Thus we consider the revised

equation:

V̄ T V̄ q = V̄ T p̄.

Since it may happen that there is no such a vector q, the CG algorithm has to be modified

to ensure the first constraint 0 ≤ q ≤ 1 is satisfied, see Appendix 6.1. The modification is

to ensure that the constraint 0 ≤ q ≤ 1 has to be satisfied in each iteration step. We have

to run the modified CG method for a number of times with different initial guesses to get

the best solution in the sense of the smallest residual error in 2-norm. We remark that the

main computational cost of the CG method comes from the matrix-vector multiplication

which takes O(N2n) operations. Since the number of iteration for convergence is O(N),

if we are going to run the CG method for T times with T different initial guesses, then
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the total complexity will be O(TN22n).

3.3 Estimation of c
(i)
j

Once we get the estimates of the probabilities qj1j2···jn , we may have N equations of the

following form:
n∏

i=1

c
(i)
ji

= qj1j2···jn .

For ease of presentation of the analysis, in the following, we consider the special case that

l(i) = 2 for i = 1, 2, . . . , n. We remark that the techniques can be applied similarly to the

cases l(i) ≥ 3 for i = 1, 2, . . . , n.

Now we have c
(i)
2 = 1 − c

(i)
1 and N = 2n. To estimate c

(k)
1 , we note that for jk = 1, 2,

we have respectively

c
(1)
j1

· · · c(k−1)
jk−1

c
(k)
1 c

(k+1)
jk+1

· · · c(n)jn
= qj1···jk−11jk+1···jn

and

c
(1)
j1

· · · c(k−1)
jk−1

(1− c
(k)
1 )c

(k+1)
jk+1

· · · c(n)jn
= qj1···jk−12jk+1···jn .

Therefore for any j1, · · · , jk−1, jk+1, · · · , jn ∈ {1, 2}, we have

c
(k)
1

1− c
(k)
1

=
qj1···jk−11jk+1···jn
qj1···jk−12jk+1···jn

. (5)

or equivalently

c
(k)
1 r

(k)
j1···jn − qj1···jk−11jk+1···jn = 0

where

r
(k)
j1···jn = qj1···jk−11jk+1···jn + qj1···jk−12jk+1···jn . (6)

Since there may not exist c
(k)
1 satisfying all the equations. One possible way to estimate

c
(k)
1 is to consider the minimizer of the following functional

J(c
(k)
1 ) =

∑

j1,··· ,jk−1,jk+1,...,jn∈{1,2}

(
c
(k)
1 r

(k)
j1···jn − qj1···jk−11jk+1···jn

)2

(7)
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and 0 ≤ c
(k)
1 ≤ 1.

Since the objective function of the above minimization problem is of the form:

f(x) =
n∑

i=1

(aixi − bi)
2,

by solving

f ′(x) =
n∑

i=1

2ai(aixi − bi) = 0

we obtain the optimal solution as follow:

x∗ =

∑n
i=1 aibi∑n
i=1 a

2
i

.

The minimizer of the problem (7) can be easily shown to be

c
(k)∗
1 =

∑

j1,··· ,jk−1,jk+1,...,jn∈{1,2}
r
(k)
j1···jn × qj1···jk−11jk+1···jn

∑

j1,··· ,jk−1,jk+1,...,jn∈{1,2}
(r

(k)
j1···jn)

2
.

It is straightforward to show that c
(k)∗
1 ∈ [0, 1] by using (6). We then define

J(c
(1)
1 , . . . , c

(n)
1 ) =

n∑

k=1

J(c
(k)
1 ).

as a measure of the the fitness of the estimators. The smaller this value is, the better the

estimators are. Thus one may use

J(c
(1)∗
1 , . . . , c

(n)∗
1 ) =

n∑

k=1

J(c
(k)∗
1 ) (8)

together with the optimal value h(q∗) in (3) to rank different PBNs obtained.

4 Numerical Examples

In this section, we present some numerical examples. We first give a numerical demonstra-

tion of our proposed algorithm in Example I. We then consider a frequently used example
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of a 3-genes network proposed by Shmulevich, et al. [31].

4.1 Example I

In the first example, we consider a PBN with three genes n = 3. The truth table of the

Boolean functions are given in Table 2.

Table 2

State (v1(t), v2(t), v3(t)) f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

1 (0,0,0) 0 0 0 1 0

2 (0,0,1) 1 0 1 1 0

3 (0,1,0) 1 0 0 0 1

4 (0,1,1) 1 1 1 1 0

5 (1,0,0) 0 1 1 0 0

6 (1,0,1) 0 1 1 0 1

7 (1,1,0) 0 1 0 0 1

8 (1,1,1) 1 1 0 1 0

Since Gene 1 and 3 have two possible Boolean functions, there are four possible BNs. The

transition matrices of the BNs A1, A2, A3, A4 are given as follow:

A1 =




0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0




A2 =




1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0



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A3 =




0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 1 0 0 1 1 0 0

0 0 0 1 0 0 0 0




A4 =




1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0




.

Suppose

(c
(1)
1 , c

(1)
2 ) = (0.25, 0.75) and (c

(2)
1 , c

(2)
2 ) = (0.60, 0.40) (9)

then we have

(q1, q2, q3, q4) = (0.15, 0.10, 0.45, 0.30). (10)

It is straightforward to check that the stationary distribution is given by

p = (0.1394, 0.1394, 0.1002, 0.0127, 0.1574, 0.1271, 0.2570, 0.0667)T .

Now we may assume that p is the observed stationary distribution and we wish to apply

the modified CG method to find qi and c
(i)
j pretending that qi and c

(i)
j are not known. We

let

vi = Aip i = 1, 2, 3, 4

and get

V =




0.2570 0.1394 0.1002 0.1394

0.1394 0.2570 0.1394 0.1002

0.2845 0.1574 0.0000 0.1394

0.0000 0.1271 0.0000 0.0000

0.1002 0.0667 0.2570 0.0667

0.0667 0.1002 0.0667 0.2570

0.0000 0.1521 0.4239 0.1701

0.1521 0.0000 0.0127 0.1271




.

Because q1 + q2 + q3 + q4 = 1, to include this constraint, one has to add one more row of
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(w,w,w,w) to the bottom of the matrix V and add one more entry (w) to the bottom of

the vector p, i.e.

V̄ =




0.2570 0.1394 0.1002 0.1394

0.1394 0.2570 0.1394 0.1002

0.2845 0.1574 0.0000 0.1394

0.0000 0.1271 0.0000 0.0000

0.1002 0.0667 0.2570 0.0667

0.0667 0.1002 0.0667 0.2570

0.0000 0.1521 0.4239 0.1701

0.1521 0.0000 0.0127 0.1271

w w w w




and

p̄ = (0.1394, 0.1394, 0.1002, 0.0127, 0.1574, 0.1271, 0.2570, 0.0667, w)T .

Using the modified CG method with w = 100, one can recover the solution in (10).

To obtain c
(1)
1 , c

(1)
2 , c

(2)
1 , c

(2)
2 we have the following equations:





c
(1)
1 c

(2)
1 = q1 = 0.15

c
(1)
1 c

(2)
2 = c

(1)
1 (1− c

(2)
1 ) = q2 = 0.10

c
(1)
2 c

(2)
1 = q3 = 0.45

c
(1)
2 c

(2)
2 = c

(1)
2 (1− c

(2)
1 ) = q4 = 0.30.

Then we have
c
(1)
1

1− c
(1)
1

=
0.10

0.30
and

c
(1)
1

1− c
(1)
1

=
0.15

0.45
.

and
c
(2)
1

1− c
(2)
1

=
0.45

0.30
and

c
(2)
1

1− c
(2)
1

=
0.15

0.10

Solving the above equations, we have the solutions as follow:

c
(1)∗
1 =

1

4
, c

(1)∗
2 =

3

4
, c

(2)∗
1 =

3

5
, c

(2)∗
2 =

2

5

same as (9). The sum of squares of errors J(c
(1)∗
1 , c

(2)∗
1 ) = 0 in this example.

In general, in the case of n genes and each gene has two possible Boolean func-
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tions, there are (22
n
)2n truth tables and for each truth table, there are N = 2n BNs.

The computational cost for examining all the possible PBNs will be O((22
n
)2nTN22n) =

O(T2n2
n+1+3n). Thus to find the possible BNs, i.e., the matrices Ai is still a challenging

problem for future research.

4.2 Example II

In this subsection, we consider a frequently used example of a 3-genes network proposed

by Shmulevich, et al. [31]. The function sets F = (F1, F2, F3), where

F1 = {f (1)
1 , f

(1)
2 }, F2 = {f (2)

1 } and F3 = {f (3)
1 , f

(3)
2 }.

The functions and their selection probability are given in Table 3.

Table 3

State (v1(t), v2(t), v3(t)) f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

1 (0,0,0) 0 0 0 0 0

2 (0,0,1) 1 1 1 0 0

3 (0,1,0) 1 1 1 0 0

4 (0,1,1) 1 0 0 1 0

5 (1,0,0) 0 0 1 0 0

6 (1,0,1) 1 1 1 1 0

7 (1,1,0) 1 1 0 1 0

8 (1,1,1) 1 1 1 1 1

c
(i)
j 0.6 0.4 1 0.5 0.5

Since

(c
(1)
1 , c

(1)
2 ) = (0.60, 0.40) and (c

(2)
1 , c

(2)
2 ) = (0.50, 0.50)

then we have

(q1, q2, q3, q4) = (0.30, 0.20, 0.30, 0.20).

15



It is straightforward to check that the stationary distribution is given by

p = (0.5063, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4937)T .

Now we may assume that p is the observed stationary distribution and we wish to apply

CG method to find qi and c
(i)
j pretending that qi and c

(i)
j are not known.

Using our proposed algorithm, we can get many different solutions when using differ-

ent randomly chosen initial guesses. For this example, we applied our algorithm 30 times

and got 30 different solutions. The followings are three of the solutions obtained:

(1) q = [0.3901, 0.2267, 0.3704, 0.0128]

(c
(1)
1 , c

(1)
2 ) = (0.7256, 0.2744) and (c

(2)
1 , c

(2)
2 ) = (0.5520, 0.4480).

(2) q = [0.2286, 0.2067, 0.3754, 0.1893]

(c
(1)
1 , c

(1)
2 ) = (0.6128, 0.3872) and (c

(2)
1 , c

(2)
2 ) = (0.4216, 0.5784).

(3) q = [0.1820, 0.2931, 0.2732, 0.2517]

(c
(1)
1 , c

(1)
2 ) = (0.4587, 0.5413) and (c

(2)
1 , c

(2)
2 ) = (0.4812, 0.5188).

To further evaluate the solutions, one can apply equation (8) as a measure to rank these

solutions. Then have q∗ = [0.3, 0.2, 0.3, 0.2] and

(c
(1)
1 , c

(1)
2 ) = (0.60, 0.40) and (c

(2)
1 , c

(2)
2 ) = (0.50, 0.50)

is one of the best solution as the objective function in (8) is 0 in this case.

Moreover, the computational time of our algorithm also depends on the initial guess.

In general, it will spend 3 seconds for our algorithm running for 30 times.
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5 Concluding Remarks

In this paper, we study the problem of constructing Probabilistic Boolean Networks

(PBNs) from a given stationary distribution and a set of BNs. This is an inverse prob-

lem of large size. We have formulated the inverse problem as a constrained least squares

problem and proposed a heuristic method based on Conjugate Gradient (CG) method to

solve the resulting least squares problem.

The followings are some future research issues.

(i) One can also consider the problem of finding PBNs without a set of given BNs, in

this case the problem size is huge. One possible way to tackle this huge problem

is to consider heuristic methods like genetic algorithms [9]. Moreover, we may still

obtained many PBNs, one further possible criteria for selecting PBNs is to consider

maximizing the entropy rate of a Markov chain [4, 10]. The entropy rate of a Markov

chain is defined as

−
N∑
i=1

(
πi

N∑
j=1

pji log pji

)

where πi is the stationary probability that the Markov chain is in state i and pji is

the one-step transition probability from state i to state j. This can be computed

easily by using the observed stationary distribution and the recovered transition

probability matrix.

(ii) The computational cost for examining all the possible PBNs using our proposed

algorithms is huge, heuristic methods such as genetic algorithms [28] and particle

swarm optimization methods [39] will be developed to solve the problem efficiently.

(iii) Extension of the proposed methods to the case that each gene has more than two

Boolean functions.

(iv) It is interesting to study the same inverse problem for more general PBNs such as

the context-sensitive PBNs.
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6 Appendix

6.1 The Modified CG Method

Choose an initial guess of probability distribution y0;

H = V̄ T V̄ ;

b = V̄ Tp;

r0 = b−Hy0;

k = 1;

p1 = r0;

α1 = rt0r0/p
t
1Hp1;

y1 = y0 + α1p1;

r1 = r0 − α1Hp1;

while ||rk||2 > tolerance,

k = k + 1;

βk = rtk−1rk−1/r
t
k−2rk−2;

pk = rk−1 + βkpk−1;

αk = rtk−1rk−1/p
t
kHpk;

zk = yk−1 + αkpk;

% % % % Additional Constraints % % % %

For l = 1 : n,

If zk(l) > 1 then temp = (1− yk−1(l))/pk(l);

If zk(l) < 0 then temp = −yk−1(l)/pk(l);

If temp < αk then αk = temp;

end;

% % % % % % % % % % % % % % % % %

yk = yk−1 + αkpk;

rk = rk−1 − αkHpk;

end;

y = yk.
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