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Abstract

To study the communication between information systems, Wang et al. [C. Wang, C. Wu, D. Chen, Q. Hu, and C. Wu,
Communicating between information systems, Information Sciences 178 (2008) 3228-3239] proposed two concepts
of type-1 and type-2 consistent functions. Some propertiesof such functions and induced relation mappings have been
investigated there. In this paper, we provide an improvement of the aforementioned work by disclosing the symmetric
relationship between type-1 and type-2 consistent functions. We present more properties of consistent functions and
induced relation mappings and improve upon several deficient assertions in the original work. In particular, we unify
and extend type-1 and type-2 consistent functions into the so-called neighborhood-consistent functions. This provides
a convenient means for studying the communication between information systems based on various neighborhoods.
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1. Introduction

Rough set theory [7, 8] is a mathematical tool to deal with inexact or uncertain knowledge in information systems.
It has originally described the indiscernibility of elements by equivalence relations. In order to handle incomplete
information systems and complex practical problems, the requirement of equivalence relations has been relaxed to
general binary relations in the literature (see [9, 10, 11, 14, 15, 16, 17, 18, 19, 22, 23] and the bibliographies therein)
and the resultant systems are referred to as generalized approximation spaces by some authors. Although a great deal
of work is concerned with investigating internally the structures and properties of a generalized approximation space,
in recent years there are a few studies [1, 2, 3, 4, 13, 15, 16, 20] to compare the structures and properties of two
generalized approximation spaces via homomorphisms or mappings. As explained in [12], homomorphisms allow
one to translate the information contained in one granular world into the granularity of another granular world and
thus provide a communication mechanism for exchanging information with other granular worlds.

In [16], Wang et al. introduced the notions of type-1 and type-2 consistent functions and investigated their prop-
erties from different perspectives. Moreover, they used relation mappingsinduced by mappings from generalized
approximation spaces to arbitrary sets to construct relations on codomains. As an application of the properties of
type-1 and type-2 consistent functions and relation mappings, they introduced two kinds of homomorphisms as a
mechanism for communicating between information systems and gave some properties of information systems under
homomorphisms. For example, they discussed some attributes of relation information systems by using type-1 and
type-2 consistent functions and found out that the attribute reductions in the original system and its image system are
equivalent under a certain condition. It turns out that consistent functions are useful for comparing the approximations
and reductions in the original system and its image system. It should be pointed out that some other related works
investigating information systems through homomorphisms[1, 2, 3, 4, 13, 20] are based on equivalence relations or
other particular relations and are quite different from [15, 16].

The purpose of this paper is to provide an improvement of [16]by disclosing the symmetric relationship between
type-1 consistent functions and type-2 consistent functions. We present more properties of consistent functions and
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induced relation mappings and improve upon several deficient assertions in [16]. More concretely, we unify and
extend type-1 and type-2 consistent functions into the notion of neighborhood-consistent functions. We show that
type-1 consistent functions are exactly predecessor-consistent functions, which reveals the symmetry of type-1 and
type-2 consistent functions. Based on this observation, more properties of consistent functions are discovered. In
addition, we greatly improve the theorem in [16] that describes the lower and upper approximations under relation
mappings. We also present a new relationship between neighborhoods and relation mappings, which provides an
approach to computing the predecessor and successor neighborhoods of an element of codomain with respect to the
induced relation.

The remainder of this paper is structured as follows. In Section 2, we introduce the concept of neighborhood-
consistent functions and show that type-1 consistent functions are exactly predecessor-consistent functions. Some
properties of consistent functions are discussed in this section. Section 3 is devoted to amending and extending the
properties of relation mapping, including the improvementof the theorem describing the lower and upper approxi-
mations under relation mappings in [16] and a new relationship between neighborhoods and relation mappings. We
conclude the paper in Section 4.

2. Consistent functions

In this section, we examine consistent functions and their properties.
Let U denote a finite and nonempty set called the universe. For eachelementx of U, we may associate it with

a subsetn(x) of U, called aneighborhoodof x. Note that a neighborhood ofx may or may not containx. The
mappingn : U −→ P(U) is said to be aneighborhood operator, where we writeP(U) for the power set ofU. In
addition, we follow generally used notation. In particular, the symbolsS1\S2, f (S), f ⊣(T) denote, respectively, the
sets{x | x ∈ S1, x < S2}, { f (x) | x ∈ S}, and{x ∈ U | f (x) ∈ T}, where f : U −→ V is a mapping,S ⊆ U, andT ⊆ V.
With the notion of neighborhood, we can introduce the following definition.

Definition 2.1. Let U andV be finite and nonempty universal sets, andn : U −→P(U) a neighborhood operator. A
mappingf : U −→ V is called aneighborhood-consistent functionwith respect to neighborhood operatorn if for any
x, y ∈ U, n(x) = n(y) wheneverf (x) = f (y).

Let U be a finite and nonempty universal set, and suppose thatR ⊆ U × U is a binary relation onU. For each
x ∈ U, we associate it with apredecessor neighborhood Rp(x) and asuccessor neighborhood Rs(x) as follows [19]:

Rp(x) = {y ∈ U | (y, x) ∈ R}; Rs(x) = {y ∈ U | (x, y) ∈ R}.

We callRp apredecessor neighborhood operatorand callRs asuccessor neighborhood operator. More neighborhoods
can be found in the literature [5, 6, 18, 19]. For example, based upon a binary relationR, one can define additional
types of neighborhoods ofx:

Rp∧s(x) = {y | (x, y) ∈ R and (y, x) ∈ R} = Rp(x) ∩ Rs(x),

Rp∨s(x) = {y | (x, y) ∈ R or (y, x) ∈ R} = Rp(x) ∪Rs(x).

In this paper, we are mainly concerned with the neighborhoodoperatorsRp andRs. For later need, let us restate
Definition 2.1 for the two operators.

Definition 2.2. Let U andV be finite and nonempty universal sets,R a binary relation onU, and f : U −→ V a
mapping.

(1) The mappingf is called apredecessor-consistent functionwith respect toR if for any x, y ∈ U, Rp(x) = Rp(y)
wheneverf (x) = f (y).

(2) The mappingf is called asuccessor-consistent functionwith respect toR if for any x, y ∈ U, Rs(x) = Rs(y)
wheneverf (x) = f (y).

In other words, a mappingf is predecessor-consistent (respectively, successor-consistent) if any two elements of
U with the same image underf have the same predecessor (respectively, successor) neighborhood.

To illustrate the definition, let us see a simple example.
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Example 2.1. SetU = {x1, x2, . . . , x7} andV = {y1, y2, . . . , y6}. TakeR = {(x1, x2), (x1, x3), (x2, x4), (x3, x4), (x3, x5),
(x4, x6), (x4, x7), (x5, x6), (x5, x7)}. Define fi : U −→ V, i = 1, 2, 3, as follows:

f1(x j) = y j for j = 1, 4, 5; f1(x2) = f1(x3) = y2; f1(x6) = f1(x7) = y6.

f2(x j) = y j for j = 1, 2, 3; f2(x4) = f2(x5) = y4; f2(x6) = f2(x7) = y6.

f3(x j) = y j for j = 1, 2, . . . , 5; f3(x6) = f3(x7) = y6.

Then by definition, it is easy to check thatf1 is predecessor-consistent (not successor-consistent) with respect toR,
f2 is successor-consistent (not predecessor-consistent) with respect toR, and f3 is both predecessor-consistent and
successor-consistent with respect toR.

We now recall the concept of consistent functions introduced in [16].

Definition 2.3 ([16], Definition 3.1). Let U andV be finite universes,R a binary relation onU, and f : U −→ V a
mapping. Let

[x] f = {y ∈ U | f (y) = f (x)},

[x]R = {y ∈ U |Rs(y) = Rs(x)}.

If [ x] f ⊆ Rs(y) or [x] f ∩ Rs(y) = ∅ for anyx, y ∈ U, then f is called atype-1 consistent functionwith respect toR on
U. If [ x] f ⊆ [x]R for anyx ∈ U, then f is called atype-2 consistent functionwith respect toR onU.

As we will see, the concept of type-1 (respectively, type-2)consistent function is equivalent to that of predecessor-
consistent (respectively, successor-consistent) function in the sense of Definition 2.2. We prefer the latter term, asit
is suggestive.

Theorem 2.1. Let U and V be finite and nonempty universal sets and R a binary relation on U.

(1) A mapping f : U −→ V is a predecessor-consistent function with respect to R if and only if it is a type-1
consistent function with respect to R.

(2) A mapping f: U −→ V is a successor-consistent function with respect to R if andonly if it is a type-2 consistent
function with respect to R.

Proof. We need only to prove the first assertion; the second one follows directly from Definitions 2.2 and 2.3.
For (1), suppose thatf : U −→ V is a predecessor-consistent function with respect toR. In order to prove that

f is a type-1 consistent function, it suffices to show that for anyx, y ∈ U, either [x] f ⊆ Rs(y) or [x] f ∩ Rs(y) = ∅.
Equivalently, we need only to show that for anyx, y ∈ U, if [ x] f ∩ Rs(y) , ∅, then [x] f ⊆ Rs(y). Assume that
[x] f ∩ Rs(y) , ∅. Then there existsz ∈ [x] f ∩ Rs(y). Therefore, (y, z) ∈ R, namely,y ∈ Rp(z). On the other hand,
for anyw ∈ [x] f , we have thatf (w) = f (x) = f (z). By the definition of predecessor-consistent function, wesee that
Rp(w) = Rp(z). Consequently,y ∈ Rp(w), and thus (y,w) ∈ R, which means thatw ∈ Rs(y). As a result, we have that
[x] f ⊆ Rs(y), and thus,f is type-1 consistent with respect toR.

Conversely, assume thatf is a type-1 consistent function with respect toR. Suppose, by contradiction, that
there existx1, x2 ∈ U with f (x1) = f (x2) such thatRp(x1) , Rp(x2). Without loss of generality, assume that there
is y ∈ Rp(x1)\Rp(x2), that is, (y, x1) ∈ R, while (y, x2) < R. The former implies that [x1] f ∩ Rs(y) , ∅ since
x1 ∈ [x1] f∩Rs(y), and the latter means that [x1] f * Rs(y) becausex2 ∈ [x1] f \Rs(y). It contradicts with the definition of
type-1 consistent function. Therefore,f is predecessor-consistent by definition, finishing the proof of the theorem.

Recall that a binary relationR on U is said to bereflexiveif ( x, x) ∈ R for everyx ∈ U; the relationR is said to be
symmetricif ( x, y) ∈ R implies (y, x) ∈ R for anyx, y ∈ U; the relationR is said to betransitiveif for any x, y, z ∈ U,
(x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R. For a binary relationR, theinverse R−1 of R is defined by

R−1
= {(y, x) | (x, y) ∈ R}.

Clearly,R is reflexive (respectively, transitive) if and only ifR−1 is reflexive (respectively, transitive), andR is sym-
metric if and only if R = R−1. Observe that the predecessor neighborhood defined byR is exactly the successor
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neighborhood defined byR−1, and conversely, the successor neighborhood defined byR is exactly the predecessor
neighborhood defined byR−1. Formally, for anyx ∈ U,

Rp(x) = {y ∈ U | (y, x) ∈ R} = {y ∈ U | (x, y) ∈ R−1} = R−1
s (x), (1)

Rs(x) = {y ∈ U | (x, y) ∈ R} = {y ∈ U | (y, x) ∈ R−1} = R−1
p (x). (2)

Let R andQ be two binary relations onU. DefiningR∪ Q andR∩ Q by set-theoretic union and intersection,
respectively, we have the following equations [19]:

(R∪ Q)p(x) = Rp(x) ∪ Qp(x), (3)

(R∪ Q)s(x) = Rs(x) ∪ Qs(x), (4)

(R∩ Q)p(x) = Rp(x) ∩ Qp(x), (5)

(R∩ Q)s(x) = Rs(x) ∩ Qs(x). (6)

They follow directly from the definitions of predecessor andsuccessor neighborhoods.
The following proposition clarifies the relationship between predecessor-consistent functions and successor-con-

sistent functions. As a result, we may think that predecessor-consistent functions and successor-consistent functions
are symmetric in some sense.

Proposition 2.1. Let U and V be finite and nonempty universal sets and R a binary relation on U.

(1) A mapping f: U −→ V is predecessor-consistent with respect to R if and only if it is successor-consistent with
respect to R−1.

(2) A mapping f: U −→ V is successor-consistent with respect to R if and only if it is predecessor-consistent with
respect to R−1.

Proof. It follows immediately from Eqs. (1) and (2).

Corollary 2.1. Let U and V be finite and nonempty universal sets. If R is a symmetric relation on U, then a mapping
f : U −→ V is predecessor-consistent with respect to R if and only if it is successor-consistent with respect to R.

Proof. It follows immediately from Proposition 2.1 and the fact that R−1
= R if R is symmetric.

In addition, a predecessor-consistent function is exactlysuccessor-consistent whenR is reflexive and transitive.
To prove this, it is convenient to have the following lemma.

Lemma 2.1. Let R be a reflexive and transitive relation on U. Then for any x, y ∈ U, Rp(x) = Rp(y) if and only if
Rs(x) = Rs(y).

Proof. We only prove the necessity; the sufficiency can be verified similarly. By contradiction, assume that there
exist x, y ∈ U such thatRp(x) = Rp(y), but Rs(x) , Rs(y). Without loss of generality, suppose that there exists
z ∈ Rs(x)\Rs(y). Then we see that (x, z) ∈ R, but (y, z) < R. SinceR is reflexive, we get thaty ∈ Rp(y) = Rp(x), namely,
(y, x) ∈ R. We thus have by the transitivity ofR that (y, z) ∈ R, a contradiction. Consequently,Rs(x) = Rs(y) and the
necessity holds.

Theorem 3.3 in [16] says that a mapping is a type-1 consistentfunction if and only if it is a type-2 consistent
function, when the relationR is reflexive and transitive. A simpler proof of this theorem arises from the above lemma.

Theorem 2.2([16], Theorem 3.3). Let U and V be finite and nonempty universal sets. If R is a reflexive and transitive
relation on U, then a mapping f: U −→ V is predecessor-consistent with respect to R if and only if it is successor-
consistent with respect to R.

Proof. It follows from Lemma 2.1.

Suppose thatR andQ are two binary relations onU, and f : U −→ V is a mapping. Theorem 3.6 in [16] shows
us thatf ((R

⋂
Q)s(x)) = f (Rs(x))

⋂
f (Qs(x)) for anyx ∈ U if f is predecessor-consistent with respect to bothR and

Q. In fact, the next theorem shows us that this equation holds if f is predecessor-consistent with respect to eitherRor
Q. By the way, we also present a similar property of successor-consistent functions.
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Theorem 2.3. Let R and Q be binary relations on U, and f: U −→ V a mapping.

(1) If f is predecessor-consistent with respect to either R or Q,then f((R
⋂

Q)s(x)) = f (Rs(x))
⋂

f (Qs(x)) for any
x ∈ U.

(2) If f is successor-consistent with respect to either R or Q, then f((R
⋂

Q)p(x)) = f (Rp(x))
⋂

f (Qp(x)) for any
x ∈ U.

Proof. (1) Without loss of generality, we may assume thatf is predecessor-consistent with respect toR. To prove
f ((R
⋂

Q)s(x)) = f (Rs(x))
⋂

f (Qs(x)), it is sufficient to show thatf ((R
⋂

Q)s(x)) ⊇ f (Rs(x))
⋂

f (Qs(x)) since the
inverse inclusion is always true. For anyy ∈ f (Rs(x))

⋂
f (Qs(x)), there arez1 ∈ Rs(x) andz2 ∈ Qs(x) such thatf (z1) =

y = f (z2). Therefore,Rp(z1) = Rp(z2) by assumption. It follows from the factz1 ∈ Rs(x) that x ∈ Rp(z1) = Rp(z2),
and thusz2 ∈ Rs(x). This, together withz2 ∈ Qs(x), gives rise toz2 ∈ Rs(x)

⋂
Qs(x) = (R

⋂
Q)s(x). Consequently,

y = f (z2) ∈ f ((R
⋂

Q)s(x)), as desired.
(2) Again, without loss of generality, we may assume thatf is successor-consistent with respect toR. Whence,f

is predecessor-consistent with respect toR−1 by Proposition 2.1. It follows from the first assertion and Eqs. (1), (2),
(5), and (6) that

f ((R∩ Q)p(x)) = f ((R∩ Q)−1
s (x))

= f ((R−1 ∩ Q−1)s(x))

= f (R−1
s (x)) ∩ f (Q−1

s (x))

= f (Rp(x)) ∩ f (Qp(x)),

namely,f ((R
⋂

Q)p(x)) = f (Rp(x))
⋂

f (Qp(x)), finishing the proof of the theorem.

For the union operation, any mapping preserves predecessorneighborhoods and successor neighborhoods.

Proposition 2.2. Let R and Q be binary relations on U, and f: U −→ V a mapping. Then for any x∈ U,

(1) f ((R
⋃

Q)p(x)) = f (Rp(x))
⋃

f (Qp(x)).
(2) f ((R

⋃
Q)s(x)) = f (Rs(x))

⋃
f (Qs(x)).

Proof. It follows directly from Eqs. (3) and (4).

The next theorem complements Theorem 3.4 in [16], where the second part was missing.

Theorem 2.4. Let R be a binary relation on U, and f: U −→ V a mapping.

(1) The mapping f is predecessor-consistent with respect to R ifand only if f⊣( f (Rs(x))) = Rs(x) for any x∈ U.
(2) The mapping f is successor-consistent with respect to R if and only if f⊣( f (Rp(x))) = Rp(x) for any x∈ U.

Proof. (1) For the ‘ if ’ part, suppose, by contradiction, that therearex1, x2 ∈ U with f (x1) = f (x2) such thatRp(x1) ,
Rp(x2). Without loss of generality, assume that there existsz ∈ Rp(x1)\Rp(x2). Therefore, (z, x1) ∈ R and (z, x2) < R.
The former means thatx1 ∈ Rs(z). We thus get thatf (x2) = f (x1) ∈ f (Rs(z)). Consequently,x2 ∈ f ⊣( f (Rs(z))) = Rs(z),
which forces that (z, x2) ∈ R, a contradiction. Whence,f is predecessor-consistent with respect toR

To see the ‘ only if ’ part, we may assume, again by contradiction, that there existsz ∈ f ⊣( f (Rs(x)))\Rs(x) for
somex ∈ U becauseRs(x) ⊆ f ⊣( f (Rs(x))) always holds. We thus get thatf (z) ∈ f (Rs(x)). Hence, there isy ∈ Rs(x)
satisfying f (y) = f (z). As f is predecessor-consistent with respect toR, we see thatRp(y) = Rp(z). This implies by
the previous argumenty ∈ Rs(x) thatx ∈ Rp(z), namely,z ∈ Rs(x), a contradiction. Thereby,f ⊣( f (Rs(x))) = Rs(x) for
anyx ∈ U.

(2) By Proposition 2.1,f is successor-consistent with respect toR if and only if it is predecessor-consistent with
respect toR−1. By the first assertion, this is equivalent tof ⊣( f (R−1

s (x))) = R−1
s (x), for any x ∈ U. Further, this is

equivalent tof ⊣( f (Rp(x))) = Rp(x) for any x ∈ U, asR−1
s (x) = Rp(x). Thereby, (2) is true and this finishes the proof

of the theorem.
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3. Relation mappings

In order to develop tools for studying the communication between two information systems, [16] explored rela-
tion mappings and their properties. This section is devotedto amending and extending some properties of relation
mappings.

Let us review the definition of relation mappings introducedin [16].

Definition 3.1 ([16], Definition 4.1). Let f : U −→ V be a mapping. Thenf can induce a mappinĝf : P(U×U) −→
P(V × V) and a mappinĝf ⊣ : P(V × V) −→P(U × U), that is,

f̂ (R) =
⋃

x∈U

{ f (x) × f (Rs(x)}, for anyR∈P(U × U),

f̂ ⊣(Q) =
⋃

y∈V

{ f ⊣(y) × f ⊣(Qs(y))}, for anyQ ∈P(V × V).

We call f̂ and f̂ ⊣ relation mappingandinverse relation mappinginduced byf , respectively.

The following is a compact, equivalent statement of Definition 3.1.

Definition 3.2. Let U andV be nonempty universal sets, andf : U −→ V a mapping.

(1) Therelation mappinginduced byf , denoted byf̂ , is a mapping fromP(U × U) to P(V × V) defined by

f̂ (R) = {( f (x), f (y)) | (x, y) ∈ R}

for all R ∈P(U × U).
(2) Theinverse relation mappinginduced byf , denoted byf̂ ⊣, is a mapping fromP(V ×V) to P(U ×U) defined

by
f̂ ⊣(Q) = {(x, y) ∈ U × U | ( f (x), f (y)) ∈ Q}

for all Q ∈P(V × V).

To illustrate the above definition, let us revisit Example 2.1.

Example 3.1. Recall that in Example 2.1,U = {x1, x2, . . . , x7}, V = {y1, y2, . . . , y6}, andR= {(x1, x2), (x1, x3), (x2, x4),
(x3, x4), (x3, x5), (x4, x6), (x4, x7), (x5, x6), (x5, x7)} ∈P(U × U). Considerf1 : U −→ V defined by

f1(x j) = y j for j = 1, 4, 5; f1(x2) = f1(x3) = y2; f1(x6) = f1(x7) = y6.

Then it follows by definition that

f̂1(R) = {(y1, y2), (y2, y4), (y2, y5), (y4, y6), (y5, y6)},

f̂1
⊣
( f̂1(R)) = {(x1, x2), (x1, x3), (x2, x4), (x2, x5), (x3, x4), (x3, x5), (x4, x6), (x4, x7), (x5, x6), (x5, x7)}.

Recall that in [16], Theorem 4.2 (4) says that when the mapping f : U −→ V is surjective and predecessor-
consistent with respect toR ⊆ U × U, the transitivity ofR implies that of f̂ (R). In fact, the requirement thatf is
surjective is not necessary. Moreover, we find that the successor-consistent function has the same property.

Theorem 3.1. Suppose that R⊆ U × U is transitive and f: U −→ V is successor-consistent with respect to R. Then
f̂ (R) is transitive.

Proof. For any (y1, y2) ∈ f̂ (R) and (y2, y3) ∈ f̂ (R), there exist (x1, x2) ∈ R and (x′2, x3) ∈ R satisfying f (x1) = y1,
f (x2) = f (x′2) = y2, and f (x3) = y3. Therefore, we see thatx3 ∈ Rs(x′2) = Rs(x2), which means that (x2, x3) ∈ R. It
follows from the transitivity ofR that (x1, x3) ∈ R, and thus,

(y1, y3) = ( f (x1), f (x3)) ∈ f̂ (R).

This proves the transitivity of̂f (R).
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Let f : U −→ V be a mapping, andR,Q ∈ P(U × U). In [16], Theorem 4.3 (3) says that iff is predecessor-
consistent and successor-consistent with respect to bothRandQ, then f̂ (R∩Q) = f̂ (R)∩ f̂ (Q). In fact, the requirement
of f can be relaxed as follows.

Theorem 3.2. Let f : U −→ V be a mapping, and R,Q ∈ P(U × U). Then f̂ (R∩ Q) = f̂ (R) ∩ f̂ (Q) if one of the
following conditions holds.

(1) The mapping f is both predecessor-consistent and successor-consistent with respect to R.
(2) The mapping f is both predecessor-consistent and successor-consistent with respect to Q.
(3) The mapping f is predecessor-consistent with respect to R and successor-consistent with respect to Q.
(4) The mapping f is successor-consistent with respect to R and predecessor-consistent with respect to Q.

Proof. We only prove (1) and (3), because of the symmetry of the assertions. Note thatf̂ (R∩ Q) ⊆ f̂ (R) ∩ f̂ (Q)
always holds by definition. Hence, we need only to verify the inverse inclusion. For any (z1, z2) ∈ f̂ (R) ∩ f̂ (Q), there
exist (x1, x2) ∈ R and (y1, y2) ∈ Q such thatf (x1) = f (y1) = z1 and f (x2) = f (y2) = z2. It remains to check that
(z1, z2) ∈ f̂ (R∩ Q).

Let us begin with (1). Sincef is both predecessor-consistent and successor-consistentwith respect toR, we
have thatRs(x1) = Rs(y1) andRp(x2) = Rp(y2). It follows from (x1, x2) ∈ R that x2 ∈ Rs(x1) = Rs(y1), and thus,
y1 ∈ Rp(x2) = Rp(y2), namely (y1, y2) ∈ R. Combining this with the fact that (y1, y2) ∈ Q, we get that (y1, y2) ∈ R∩ Q,
and thus, (z1, z2) = ( f (y1), f (y2)) ∈ f̂ (R∩ Q). Therefore, we get that̂f (R) ∩ f̂ (Q) ⊆ f̂ (R∩ Q), as desired.

For (3), becausef is predecessor-consistent with respect toR and successor-consistent with respect toQ, we
obtain thatRp(x2) = Rp(y2) andQs(x1) = Qs(y1). The former gives rise tox1 ∈ Rp(x2) = Rp(y2), namely, (x1, y2) ∈ R,
while the latter yields thaty2 ∈ Qs(y1) = Qs(x1), i.e., (x1, y2) ∈ Q. We thus get that (x1, y2) ∈ R∩ Q, which implies
that (z1, z2) = ( f (x1), f (y2)) ∈ f̂ (R∩ Q). Therefore,f̂ (R) ∩ f̂ (Q) ⊆ f̂ (R∩ Q), finishing the proof of the theorem.

The next theorem extends the assertion (2) of Theorem 4.6 in [16], where only the sufficiency has been provided.

Theorem 3.3. Let f : U −→ V be a mapping and R⊆ U ×U. Thenf̂ ⊣( f̂ (R)) = R if and only if f is both predecessor-
consistent and successor-consistent with respect to R.

Proof. We first prove the necessity. Assume, by contradiction, thatf is not predecessor-consistent. Then there are
x1, x2 ∈ U with f (x1) = f (x2) such thatRp(x1) , Rp(x2), say,z ∈ Rp(x1)\Rp(x2). That is, (z, x1) ∈ R and (z, x2) < R.
We thus find that

( f (z), f (x2)) = ( f (z), f (x1)) ∈ f̂ (R).

Hence,
(z, x2) ∈ f̂ ⊣( f̂ (R)) = R,

namely, (z, x2) < R, which is absurd. Consequently,f is predecessor-consistent with respect toR. Similarly, it is easy
to show thatf is also successor-consistent with respect toR. Whence, the necessity is true.

One may refer to [16] for the proof of the sufficiency. For the convenience of the reader, we give another proof
in our context. It is obvious that̂f ⊣( f̂ (R)) ⊇ R. Let us verify that f̂ ⊣( f̂ (R)) ⊆ R. For any (y1, y2) ∈ f̂ ⊣( f̂ (R)), we
have by the definition of inverse relation mapping that (f (y1), f (y2)) ∈ f̂ (R). Therefore, there is (x1, x2) ∈ R such
that f (x1) = f (y1) and f (x2) = f (y2). Since f is both predecessor-consistent and successor-consistentwith respect
to R, we get thatRs(x1) = Rs(y1) andRp(x2) = Rp(y2). It follows that x1 ∈ Rp(x2) = Rp(y2), which implies that
y2 ∈ Rs(x1) = Rs(y1), namely, (y1, y2) ∈ R. As a result, we have that̂f ⊣( f̂ (R)) = R. This completes the proof of the
theorem.

Now, we would like to establish a relationship between neighborhoods and relation mappings.

Theorem 3.4. Let f : U −→ V be a mapping and R⊆ U × U. Then for any x∈ U,

(1) f̂ (R)p( f (x)) =
⋃

f (x′)= f (x)
f (Rp(x′)). In particular, f̂ (R)p( f (x)) = f (Rp(x)) if f is predecessor-consistent with

respect to R.
(2) f̂ (R)s( f (x)) =

⋃
f (x′)= f (x)

f (Rs(x′)). In particular, f̂ (R)s( f (x)) = f (Rs(x)) if f is successor-consistent with respect

to R.
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Proof. We only prove the first assertion, since the second one can be proved similarly. For anyz ∈ f̂ (R)p( f (x)), there
is (z′, x′) ∈ R such thatf (z′) = z and f (x′) = f (x). Therefore,z′ ∈ Rp(x′), which implies thatz = f (z′) ∈ f (Rp(x′)).
Hence,

z ∈
⋃

f (x′)= f (x)

f (Rp(x′)).

This means that
f̂ (R)p( f (x)) ⊆

⋃

f (x′)= f (x)

f (Rp(x′)).

Conversely, for any
z ∈

⋃

f (x′)= f (x)

f (Rp(x′)),

there isx′ ∈ U with f (x′) = f (x) such thatz ∈ f (Rp(x′)). Whence, there existsy ∈ Rp(x′) satisfying f (y) = z. It
follows that (y, x′) ∈ R, and thus, (f (y), f (x′)) ∈ f̂ (R). Thanks tof (x′) = f (x), it yields that (f (y), f (x)) ∈ f̂ (R), that
is, z= f (y) ∈ f̂ (R)p( f (x)). Consequently,

⋃

f (x′)= f (x)

f (Rp(x′)) ⊆ f̂ (R)p( f (x)),

and thus,
f̂ (R)p( f (x)) =

⋃

f (x′)= f (x)

f (Rp(x′)),

as desired.
If f is predecessor-consistent with respect toR, then for anyx′ ∈ U with f (x′) = f (x), we have by definition that

Rp(x′) = Rp(x). This gives rise to

f̂ (R)p( f (x)) =
⋃

f (x′)= f (x)

f (Rp(x′)) = f (Rp(x)).

Hence, the first assertion holds.

Remark 3.1. Note that Theorem 3.4 provides an approach to computing the predecessor and successor neighborhoods
of an element ofV with respect tof̂ (R). In fact, for anyy ∈ V, if y < f (U), then it is clear that̂f (R)p(y) = f̂ (R)s(y) = ∅.
Otherwise, there is somex ∈ U such thatf (x) = y, and thus, one may use Theorem 3.4 to computef̂ (R)p(y) and
f̂ (R)s(y).

To state the next theorem, we need to recall the notion of approximations. LetU be a finite and nonempty universal
set, and letR⊆ U ×U be a binary relation onU. The ordered pair (U,R) is referred to as ageneralized approximation
space. For anyX ⊆ U, one can characterizeX by a pair of lower and upper approximations (see, for example,
[18, 19]). Thelower approximation apr

R
X andupper approximationaprRX of X are defined as

apr
R
X = {x ∈ U |Rs(x) ⊆ X} and aprRX = {x ∈ U |Rs(x) ∩ X , ∅},

respectively.
In [16], Theorem 4.8 (1-6) investigate the lower and upper approximations under relation mappings. For the sake

of comparison, let us review the results.

Theorem 3.5([16], Theorem 4.8). Let f : U −→ V be a mapping and R⊆ U × U.

(1) If f is successor-consistent with respect to R, then

f (apr
R
X) ⊆ apr

f̂ (R)
f (X)

for any X⊆ U.
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(2) If f is both predecessor-consistent and successor-consistent with respect to R, then

f (apr
R
X) = apr

f̂ (R)
f (X) = f (X)

for any R-definable set X⊆ U.
(3) If f is bijective, then

f (apr
R
X) = apr

f̂ (R)
f (X)

for any X⊆ U.
(4) If f is successor-consistent with respect to R, then

f (aprRX) ⊇ apr f̂ (R) f (X)

for any X⊆ U.
(5) If f is both predecessor-consistent and successor-consistent with respect to R, then

f (aprRX) = apr f̂ (R) f (X) = f (X)

for any R-definable set X⊆ U.
(6) If f is bijective, then

f (aprRX) = apr f̂ (R) f (X)

for any X⊆ U.

Remark 3.2. Let us remark that the assertions (2) and (4) do not hold in general. For (2), consider the case thatf is
not surjective. Then for anyy ∈ V\ f (U), we have thatf̂ (R)s(y) = ∅ ⊆ f (X) and thus

y ∈ apr
f̂ (R)

f (X).

But
y < f (apr

R
X) ⊆ f (U)

sincey < f (U). Hence,
f (apr

R
X) = apr

f̂ (R)
f (X) = f (X)

is not true in this case.
For (4), let us consider a counter example. TakeU = {x, y, z}, V = {a, b}, andR= {(x, y)}, and definef as follows:

f (x) = a, f (y) = f (z) = b.

Clearly, f̂ (R) = {(a, b)}, and moreover,f is successor-consistent with respect toR. Taking X = {z}, we find that
aprRX = ∅ and thusf (aprRX) = ∅. On the other hand, we have that

f (X) = {b} andapr f̂ (R) f (X) = {a}.

Therefore,
f (aprRX) + apr f̂ (R) f (X),

and the assertion (4) in Theorem 3.5 is false.

Let us present an improved version of Theorem 3.5.

Theorem 3.6. Let f : U −→ V be a mapping and R⊆ U × U.

(1) If f is successor-consistent with respect to R, then

f (apr
R
X) ⊆ apr

f̂ (R)
f (X)

for any X⊆ U.
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(2) If f is surjective, then
apr

f̂ (R)
f (X) ⊆ f (apr

R
X)

for any X⊆ U with f⊣( f (X)) = X.
(3) If f is surjective and successor-consistent with respect toR, then

f (apr
R
X) = apr

f̂ (R)
f (X)

for any X⊆ U with f⊣( f (X)) = X.
(4) For any X⊆ U,

f (aprRX) ⊆ apr f̂ (R) f (X).

(5) If f is predecessor-consistent with respect to R, then

f (aprRX) = apr f̂ (R) f (X)

for any X⊆ U.

Before giving the proof of the theorem, let us briefly compareit with Theorem 3.5. In the above theorem, the
assertion (1) is the same as the corresponding one in Theorem3.5; (2) and (4) are newly added; (3), following
immediately from (1) and (2), greatly improves the third assertion in Theorem 3.5, because the bijection off is much
stronger than thatf is surjective and successor-consistent with respect toR. In fact, if f is bijective, thenf is injective,
surjective, predecessor-consistent, and successor-consistent, and moreover,f ⊣( f (X)) = X for anyX ⊆ U. (5) amends
the fourth assertion and significantly improves the fifth andsixth assertions in Theorem 3.5.

Proof of Theorem 3.6.One may refer to [16] for the proof of (1). (3) is a direct corollary of (1) and (2). Hence, we
only need to verify (2), (4), and (5).

Let us start with (2). Suppose thatf is surjective andf ⊣( f (X)) = X. For any

y ∈ apr
f̂ (R)

f (X),

we have thatf̂ (R)s(y) ⊆ f (X), as
apr

f̂ (R)
f (X) = {y ∈ V | f̂ (R)s(y) ⊆ f (X)}

by definition. In the case of̂f (R)s(y) = ∅, since f is a surjective mapping, there existsx ∈ U such thatf (x) = y and
Rs(x) = ∅ ⊆ X. Therefore,

x ∈ apr
R
X = {x ∈ U |Rs(x) ⊆ X},

and thus,
y = f (x) ∈ f (apr

R
X).

If f̂ (R)s(y) , ∅, then for anyy′ ∈ f̂ (R)s(y), there is (x, x′) ∈ Rsuch thatf (x) = y and f (x′) = y′. To show that

y = f (x) ∈ f (apr
R
X),

by the previous argument it is sufficient to show thatRs(x) ⊆ X. By contradiction, assume that there is somez ∈
Rs(x)\X, that is, (x, z) ∈ Randz < X. Thanks to (x, z) ∈ R, we get that (f (x), f (z)) ∈ f̂ (R), namely, (y, f (z)) ∈ f̂ (R). As
a result,f (z) ∈ f̂ (R)s(y) ⊆ f (X), which means thatz ∈ f ⊣( f (X)). As f ⊣( f (X)) = X, it forces thatz ∈ X, a contradiction.
Consequently, we obtain that

apr
f̂ (R)

f (X) ⊆ f (apr
R
X),

which proves (2).
Let us continue proving (4). By definition,

aprRX = {x ∈ U |Rs(x) ∩ X , ∅},
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and thus,
f (aprRX) = { f (x) |Rs(x) ∩ X , ∅}.

For anyy ∈ f (aprRX), there existsx ∈ U satisfying thatf (x) = y andRs(x) ∩ X , ∅. Takingx′ ∈ Rs(x) ∩ X, we find
that f (x′) ∈ f̂ (R)s(y) ∩ f (X), which means that̂f (R)s(y) ∩ f (X) , ∅. Hence,

y = f (x) ∈ apr f̂ (R) f (X),

which yields that
f (aprRX) ⊆ apr f̂ (R) f (X),

as desired.
Finally, we verify (5). Suppose thatf is predecessor-consistent with respect toR. By (4), it suffices to show that

apr f̂ (R) f (X) ⊆ f (aprRX).

For any
y ∈ apr f̂ (R) f (X),

it follows by definition thatf̂ (R)s(y) ∩ f (X) , ∅. Whence, there existsy′ ∈ f̂ (R)s(y) ∩ f (X), which means that there
is some (x, x′) ∈ R such thatf (x) = y and f (x′) = y′. We thus get thatx ∈ Rp(x′). On the other hand, there is some
x′′ ∈ X such thatf (x′′) = y′, asy′ ∈ f (X). Therefore,f (x′) = f (x′′), which implies thatRp(x′) = Rp(x′′) since f is
predecessor-consistent with respect toR. Consequently,x ∈ Rp(x′′), namely,x′′ ∈ Rs(x). This, together withx′′ ∈ X,
forces thatx′′ ∈ Rs(x) ∩ X. Hence,Rs(x) ∩ X , ∅, and thus,x ∈ aprRX, which gives thaty = f (x) ∈ f (aprRX).
Thereby,

apr f̂ (R) f (X) ⊆ f (aprRX),

as desired. This completes the proof of the theorem. �

Remark 3.3. For any generalized approximation space (U,R) and X ⊆ U, one may also define the pair of lower
and upper approximations using other neighborhoods (see, for example, [18, 19]). For example, employing the
predecessor neighborhood, thelower approximation apr′

R
X andupper approximationapr′RX of X can be defined as

apr′
R
X = {x ∈ U |Rp(x) ⊆ X} and apr′RX = {x ∈ U |Rp(x) ∩ X , ∅},

respectively. Based upon the newly defined approximations,there is no difficulty to develop corresponding theorem
to describe the lower and upper approximations under relation mappings. We do not go into the details here.

4. Conclusion

In this paper, we have unified and extended type-1 and type-2 consistent functions introduced in [16] into the no-
tion of neighborhood-consistent functions. Furthermore,we have found that type-1 consistent functions are nothing
else than predecessor-consistent functions. Based on thisobservation, we have explored more properties of consistent
functions and induced relation mappings and improve upon several deficient assertions in [16]. With the concept of
neighborhood-consistent functions, the present work can be easily generalized to other approximation spaces based on
different neighborhoods. Most recently, the authors have introduced predecessor-consistent and successor-consistent
functions with respect to a fuzzy relation in [21] and greatly improved some characterizations of fuzzy relation map-
pings presented in [13]. Besides, Yang and Xu have recently introduced the concepts ofR-open sets,R-closed sets,
and regular sets of a generalized approximation space (U,R) in [17]. It would be interesting to examine whether
consistent functions and relation mappings preserve some properties ofR-open sets,R-closed sets, and regular sets.
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