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Abstract

To study the communication between information systemsig/éa al. [C. Wang, C. Wu, D. Chen, Q. Hu, and C. Wu,
Communicating between information systems, Informatioe®&ces 178 (2008) 3228-3239] proposed two concepts
of type-1 and type-2 consistent functions. Some propesfisach functions and induced relation mappings have been
investigated there. In this paper, we provide an improvermithe aforementioned work by disclosing the symmetric
relationship between type-1 and type-2 consistent funsti®Ve present more properties of consistent functions and
induced relation mappings and improve upon several defiaggertions in the original work. In particular, we unify
and extend type-1 and type-2 consistent functions intodheasled neighborhood-consistent functions. This presid

a convenient means for studying the communication betwdenmation systems based on various neighborhoods.
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1. Introduction

Rough set theory [7, 8] is a mathematical tool to deal witlxawt or uncertain knowledge in information systems.
It has originally described the indiscernibility of elentey equivalence relations. In order to handle incomplete
information systems and complex practical problems, tlggirement of equivalence relations has been relaxed to
general binary relations in the literature (see [9,(10] ¥1\15,16| 1/7, 18, 19, 22, 23] and the bibliographies therein)
and the resultant systems are referred to as generalizeobd@mppation spaces by some authors. Although a great deal
of work is concerned with investigating internally the stures and properties of a generalized approximation space
in recent years there are a few studies (1,12, 3, 4| 13, 15, dl&to2compare the structures and properties of two
generalized approximation spaces via homomorphisms opimgg. As explained in_[12], homomorphisms allow
one to translate the information contained in one granutaitdrnto the granularity of another granular world and
thus provide a communication mechanism for exchangingnétion with other granular worlds.

In [1€], Wang et al. introduced the notions of type-1 and tZpeonsistent functions and investigated their prop-
erties from diferent perspectives. Moreover, they used relation mappirdisced by mappings from generalized
approximation spaces to arbitrary sets to construct oglaton codomains. As an application of the properties of
type-1 and type-2 consistent functions and relation maypithey introduced two kinds of homomorphisms as a
mechanism for communicating between information systemdsyave some properties of information systems under
homomorphisms. For example, they discussed some attilofiteelation information systems by using type-1 and
type-2 consistent functions and found out that the atteilbatiuctions in the original system and its image system are
equivalentunder a certain condition. It turns out that &sieat functions are useful for comparing the approxinretio
and reductions in the original system and its image systershduld be pointed out that some other related works
investigating information systems through homomorphifing,|3, 4, 13| 20] are based on equivalence relations or
other particular relations and are quitéedient from|[15} 16].

The purpose of this paper is to provide an improvement of fi&jisclosing the symmetric relationship between
type-1 consistent functions and type-2 consistent funstidVe present more properties of consistent functions and
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induced relation mappings and improve upon several defigiegertions in_[16]. More concretely, we unify and
extend type-1 and type-2 consistent functions into theomotif neighborhood-consistent functions. We show that
type-1 consistent functions are exactly predecessorigtens functions, which reveals the symmetry of type-1 and
type-2 consistent functions. Based on this observatiorremooperties of consistent functions are discovered. In
addition, we greatly improve the theorem in|[16] that ddsesithe lower and upper approximations under relation
mappings. We also present a new relationship between raighbds and relation mappings, which provides an
approach to computing the predecessor and successor odigiolds of an element of codomain with respect to the
induced relation.

The remainder of this paper is structured as follows. IniBe@, we introduce the concept of neighborhood-
consistent functions and show that type-1 consistent fomstare exactly predecessor-consistent functions. Some
properties of consistent functions are discussed in tlise Section 3 is devoted to amending and extending the
properties of relation mapping, including the improvemeinthe theorem describing the lower and upper approxi-
mations under relation mappings in [16] and a new relatignshtween neighborhoods and relation mappings. We
conclude the paper in Section 4.

2. Consistent functions

In this section, we examine consistent functions and theipgrties.

Let U denote a finite and nonempty set called the universe. For@aatentx of U, we may associate it with
a subsen(x) of U, called aneighborhoodf x. Note that a neighborhood of may or may not contairx. The
mappingn : U — Z(U) is said to be aeighborhood operatowhere we write??(U) for the power set ol. In
addition, we follow generally used notation. In particuldie symbolsS;\S,, f(S), f*(T) denote, respectively, the
sets{x | x € Sy, x ¢ Sy}, {f(X) | x € S}, and{x € U | f(X) € T}, wheref : U — V is a mappingS c U, andT C V.
With the notion of neighborhood, we can introduce the follaywdefinition.

Definition 2.1. Let U andV be finite and nonempty universal sets, emdJ — £?(U) a neighborhood operator. A
mappingf : U — V is called aneighborhood-consistent functiarnith respect to neighborhood operatuif for any
XY € U, n(X) = n(y) wheneverf (x) = f(y).

Let U be a finite and nonempty universal set, and supposeRh@at) x U is a binary relation otJ. For each
x € U, we associate it with predecessor neighborhoog®) and asuccessor neighborhood(R) as follows [19]:

Ro(¥) ={yeU[(y.,x) eR} Ry(X)={yeU|(xy)eR:.

We callR, apredecessor neighborhood operasord callRs asuccessor neighborhood operatdfore neighborhoods
can be found in the literaturel[5, 16,118/ 19]. For exampleglagon a binary relatioR, one can define additional
types of neighborhoods of

Rpas(X) = {y [(x.y) € Rand . X) € R} = Ry(X) N Rs(x),
Rovs(X) = {y [(x.y) € Ror (y,X) € R} = Ry(X) U Rs(X).
In this paper, we are mainly concerned with the neighborlupmtatorR, andRs. For later need, let us restate
Definition[2.] for the two operators.
Definition 2.2. Let U andV be finite and nonempty universal sefsa binary relation oiJ, andf : U — V a
mapping.
(1) The mapping is called apredecessor-consistent functiaith respect taR if for any x,y € U, Rp(X) = Rp(Y)
wheneverf (x) = f(y).

(2) The mappingdf is called asuccessor-consistent functiaith respect taR if for any x,y € U, Rg(X) = Rs(y)
wheneverf (x) = f(y).

In other words, a mapping is predecessor-consistent (respectively, successaistent) if any two elements of
U with the same image undérhave the same predecessor (respectively, successorpoeigiod.
To illustrate the definition, let us see a simple example.
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Example 2.1. SetU = {x, Xo,..., X7} andV = {y1,ys,...,¥s}. TakeR = {(X1, X2), (X1, X3), (X2, Xa), (X3, Xa), (X3, Xs5),
(X, X5), (Xa, X7), (X5, Xg), (X5, X7)}. Definefi : U — V,i = 1,2, 3, as follows:

fi(xj) = yj for j = 1,4,5; f1(x2) = f1(Xs) = y2; f1(%e) = f1(x7) = Ye.
fa(x;) = yj for j = 1,2,3; fo(xs) = f2(xs) = Ya; f2(X6) = f2(X7) = Y.
fa(x)) =yjforj=1,2,...,5; fz(xe) = f3(x7) = Ye.

Then by definition, it is easy to check thhtis predecessor-consistent (not successor-consistethty@gipect tdz,
f, is successor-consistent (not predecessor-consistahty@spect tdR, and f; is both predecessor-consistent and
successor-consistent with respecRto

We now recall the concept of consistent functions introdiind16].

Definition 2.3 ([1€], Definition 3.1) Let U andV be finite universesk a binary relation oiJ, andf : U — V a
mapping. Let

X ={yeU[f(y) = f(¥)}
[Xr=1{y € U |Rs(y) = Rs(X)}.

If[X]+ € Rs(y) or [X]t N Rs(y) = 0 for anyx,y € U, thenf is called atype-1 consistent functiomith respect taR on
U. If[X]+ € [X]r for anyx € U, thenf is called atype-2 consistent functiomith respect tdR on U.

As we will see, the concept of type-1 (respectively, typedt)sistent function is equivalent to that of predecessor-
consistent (respectively, successor-consistent) fondti the sense of Definitidn 2.2. We prefer the latter termit as
is suggestive.

Theorem 2.1. Let U and V be finite and nonempty universal sets and R a birdayion on U.

(1) A mapping f: U — V is a predecessor-consistent function with respect to Rdf enly if it is a type-1
consistent function with respect to R.

(2) Amapping f: U — V is a successor-consistent function with respect to R ifoarylif it is a type-2 consistent
function with respect to R.

Proof. We need only to prove the first assertion; the second onersltbrectly from Definition§ 2]2 arid 2.3.

For (1), suppose thdt : U — V is a predecessor-consistent function with respe@ ttn order to prove that
f is a type-1 consistent function, it §ices to show that for any,y € U, either X]; € Rs(y) or [X]+ N Rs(y) = 0.
Equivalently, we need only to show that for aryy € U, if [X]+ N Rs(y) # 0, then K]+ € Rs(y). Assume that
[XI+ N Rs(y) # 0. Then there exists € [X]; N Rs(y). Therefore, ¥, 2) € R, namely,y € Ry(2). On the other hand,
for anyw € [X];, we have thaf (w) = f(X) = f(2). By the definition of predecessor-consistent function see that
Rp(W) = Rp(2). Consequentlyy € Ry(w), and thusy, w) € R, which means thaw € Rs(y). As a result, we have that
[X]+ € Rs(y), and thusf is type-1 consistent with respectfo

Conversely, assume thdtis a type-1 consistent function with respectRo Suppose, by contradiction, that
there existxy, xo € U with f(x1) = f(x2) such thatRy(x1) # Ry(X2). Without loss of generality, assume that there
isy € Rp(x1)\Rp(x2), that is, ¢, x1) € R, while (y,x2) ¢ R The former implies thatXi]+ N Rs(y) # 0 since
x1 € [x1]tNRs(y), and the latter means thag] s ¢ Rs(y) because: € [x1]\Rs(y). It contradicts with the definition of
type-1 consistent function. Thereforfeis predecessor-consistent by definition, finishing the fobthe theorem. O

Recall that a binary relatioR on U is said to beaeflexiveif (x, X) € Rfor everyx € U; the relationR is said to be
symmetridf (x,y) € Rimplies {, X) € Rfor anyx,y € U; the relationR is said to bdransitiveif for any x,y,ze U,
(x,y) € Rand §, 2 € Rimply (x, 2) € R. For a binary relatiom, theinverse R* of Ris defined by

R ={(y, %) (xy) €R}.

Clearly, R is reflexive (respectively, transitive) if and onlyRf?! is reflexive (respectively, transitive), aiiis sym-
metric if and only ifR = R1. Observe that the predecessor neighborhood defineR isyexactly the successor
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neighborhood defined big~1, and conversely, the successor neighborhood defineRlibyexactly the predecessor
neighborhood defined By *. Formally, for anyx € U,

Ro(¥) ={yeU |y, eR ={yeU|(xy) e R = R*(x), (1)
R ={yeU|(xy) eR ={yeU|(y.¥) e R} =RX. 2)

Let RandQ be two binary relations obJ. DefiningRU Q andR N Q by set-theoretic union and intersection,
respectively, we have the following equations [19]:

(RUQ)p(X) = Rp(X) U Qp(x), ®3)
(RUQ)s(x) = Rs(x) U Qs(X), (4)
(RNQ)p(¥) = Rp(x) N Qp(X), ()
(RN Q)s(¥) = Rs(X) N Qs(x). (6)

They follow directly from the definitions of predecessor aadcessor neighborhoods.

The following proposition clarifies the relationship betmepredecessor-consistent functions and successor-con-
sistent functions. As a result, we may think that predegessnsistent functions and successor-consistent fumgtio
are symmetric in some sense.

Proposition 2.1. Let U and V be finite and nonempty universal sets and R a birdayion on U.

(1) Amapping f: U — V is predecessor-consistent with respect to R if and ontydfduccessor-consistent with
respect to RZ.

(2) Amapping f: U — V is successor-consistent with respect to R if and only $ffiiredecessor-consistent with
respect to RL.

Proof. It follows immediately from Egs. (1) and (2). O

Corollary 2.1. Let U and V be finite and nonempty universal sets. If R is a syriemelation on U, then a mapping
f : U — V is predecessor-consistent with respect to R if and ontysfsuccessor-consistent with respect to R.

Proof. It follows immediately from Propositidn 2.1 and the factttRa' = Rif Ris symmetric. O

In addition, a predecessor-consistent function is exatcessor-consistent whénis reflexive and transitive.
To prove this, it is convenient to have the following lemma.

Lemma 2.1. Let R be a reflexive and transitive relation on U. Then for any « U, Ry(X) = Rp(y) if and only if
Rs(X) = Rs(Y)-

Proof. We only prove the necessity; thefBaiency can be verified similarly. By contradiction, assuiat there
existx,y € U such thatRy(x) = Rp(y), butRs(x) # Rs(y). Without loss of generality, suppose that there exists
z < Ry(X)\Rs(Y). Then we see thak(z) € R, but {y, 2) ¢ R. SinceRis reflexive, we get that € Ry(y) = Ry(x), namely,

(v, X) € R We thus have by the transitivity & that §/, 2) € R, a contradiction. Consequentigg(x) = Rs(y) and the
necessity holds. O

Theorem 3.3 in[[16] says that a mapping is a type-1 consis$terttion if and only if it is a type-2 consistent
function, when the relatioR is reflexive and transitive. A simpler proof of this theorensas from the above lemma.

Theorem 2.2([16], Theorem 3.3) Let U and V be finite and nonempty universal sets. If R is a frefle@nd transitive
relation on U, then a mapping f U — V is predecessor-consistent with respect to R if and ontyisfsuccessor-
consistent with respect to R.

Proof. It follows from LemmdZ2.1L. O

Suppose thaR andQ are two binary relations od, andf : U — V is a mapping. Theorem 3.6 in_[16] shows
us thatf (RN Q)s(X)) = f(Rs(X)) N f(Qs(X)) for anyx € U if f is predecessor-consistent with respect to fo#nd
Q. In fact, the next theorem shows us that this equation hblfissipredecessor-consistent with respect to eiher
Q. By the way, we also present a similar property of successosistent functions.
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Theorem 2.3. Let R and Q be binary relations on U, and fJ — V a mapping.

() If f is predecessor-consistent with respect to either R ath@n (RN Q)s(X)) = f(Rs(X)) N f(Qs(X)) for any
xe U.

(2) If f is successor-consistent with respect to either R or @ntR((RM Q)p(X)) = F(Ry(X)) N F(Qp(X)) for any
xeU.

Proof. (1) Without loss of generality, we may assume tffias predecessor-consistent with respecRtoTo prove
f(RNQ)s(X) = fF(Rs(x)) N f(Qs(X)), it is suficient to show thatf (RN Q)s(X)) 2 f(Rs(X)) N f(Qs(X)) since the
inverse inclusion is always true. For ap¢ f(Rs(X)) N f(Qs(X)), there arey € Rg(X) andz, € Qy(X) such thatf (z) =
y = f(z). ThereforeR,(z1) = Ry(z2) by assumption. It follows from the faei € Ry(x) thatx € Ry(z1) = Rp(z),
and thusz, € Ry(X). This, together wittez, € Qs(X), gives rise taz, € Ry(X) (N Qs(X) = (RN Q)s(X). Consequently,

y = f(z) € f((RN Q)s(X)), as desired.
(2) Again, without loss of generality, we may assume tha successor-consistent with respecRtdVhence f
is predecessor-consistent with respedtd by Propositio Z]1. It follows from the first assertion ancsEf), [2),

(@), and [(6) that

HRNQp(¥) = F(RNQ)H(X)
= F(RTnQ™)s(¥)
= FR(x) N F(QsH(¥)
= f(Ro(x)) N f(Qp(x)).

namely,f (RN Q)p(x)) = T(Ry(X)) N F(Qp(X)), finishing the proof of the theorem. O
For the union operation, any mapping preserves predecesigitborhoods and successor neighborhoods.

Proposition 2.2. Let R and Q be binary relations on U, and tJ — V a mapping. Then for any«U,

(1) f((RUQ)p(X)) = F(Rp(x)) U F(Qp(x))-
(2) f((RUQ)s(®)) = F(Rs(x)) U f(Qs(x)).

Proof. It follows directly from Egs.[(B) and{4). O
The next theorem complements Theorem 3.4 in [16], wheredbersl part was missing.

Theorem 2.4. Let R be a binary relation on U, and:fU — V a mapping.

(1) The mapping f is predecessor-consistent with respect t@aftionly if f(f(Rs(X))) = Rs(X) for any xe U.
(2) The mapping f is successor-consistent with respect to Riibaty if f'(f(Rp(X))) = Ry(xX) for any xe U.

Proof. (1) For the ‘if’ part, suppose, by contradiction, that tharex, x, € U with f(x1) = f(x2) such thaR,(x;) #
Ro(x2). Without loss of generality, assume that there exdstsR,(x1)\Rp(x2). Therefore, £, x;) € Rand ¢ x) ¢ R
The former means thai € Rs(2). We thus getthat(x;) = f(x1) € f(Rs(2)). Consequentlys, € f*(f(Rs(2)) = Rs(2),
which forces thatZ, x;) € R, a contradiction. Whencd, is predecessor-consistent with respedRto

To see the ‘only if’ part, we may assume, again by contraalictthat there existg € f*(f(Rs(x)))\Rs(x) for
somex € U becausdry(x) € f*(f(Rs(X))) always holds. We thus get thé{z) € f(Rs(X)). Hence, there iy € Ry(X)
satisfyingf(y) = f(2). As f is predecessor-consistent with respedRfave see thaR(y) = Ry(2). This implies by
the previous argumenpte Ry(x) thatx € Ry(2), namelyz € Ry(x), a contradiction. Thereby, (f(Rs(x))) = Rs(x) for
anyxe U.

(2) By Propositio ZJ1f is successor-consistent with respecRtif and only if it is predecessor-consistent with
respect toR"1. By the first assertion, this is equivalent to(f(R51(x))) = Rs1(x), for anyx € U. Further, this is
equivalent tof *(f(Rp(X))) = Rp(X) for anyx € U, asR;}(X) = Ry(X). Thereby, (2) is true and this finishes the proof
of the theorem. O



3. Relation mappings

In order to develop tools for studying the communicationssn two information systems, |16] explored rela-
tion mappings and their properties. This section is devatezimending and extending some properties of relation
mappings.

Let us review the definition of relation mappings introduaeflLé].

Definition 3.1 ([1€], Definition 4.1) Letf : U — V be a mapping. Thefhcan induce a mappinf: 2(UxU) —
Z(V x V) and amapping™ : Z(V xV) — Z(U x U), that s,

f(R) = U{f(x) x f(Rs(X)}, foranyRe (U x U),

xeU

Q) = [Jif*() x Q). foranyQ e 2(V x V).

yeV

We call f and f* relation mappingandinverse relation mappininduced byf, respectively.
The following is a compact, equivalent statement of Defimif8.].

Definition 3.2. LetU andV be nonempty universal sets, ahd U — V a mapping.
(1) Therelation mappingnduced byf, denoted byfA, is a mapping fromz?(U x U) to Z(V x V) defined by

fR = {(f(), fM) I(x V) € RY

forallRe (U x U).
(2) Theinverse relation mappingnduced byf, denoted byf*, is a mapping fronZ?(V x V) to £2(U x U) defined
by
f(Q) ={(xy) e UxU [(f(x), f(y)) € Q}
forallQ e Z2(V x V).

To illustrate the above definition, let us revisit Exaripl#.2.

Example 3.1. Recall thatin Example2 1 = {x1, X, . .., x7h V ={y,¥2, ..., Vs}, andR = {(Xq1, X2), (X1, X3), (X2, X4),
(X3, Xa), (X3, X5), (Xa, Xg), (X4, X7), (X5, X6), (X5, X7)} € Z(U x U). Considerf; : U — V defined by

fi(xj) = yj for j = 1,4,5; fi(x2) = fi(Xs) = y2; f1(Xe) = fa(X7) = Ye.
Then it follows by definition that
fl(RZ = {(Y1, ¥2), (Y2, Ya), (Y2, ¥5), (Y4, ¥6), (V5. ¥6) 1}
fi ' (FL(R) = 1(x1, X2), (X1, Xa), (Xa» Xa), (Xas X5), (Xa, Xa), (X3, X5), (Xa» X6)» (Xas X7), (X5, X6)» (X6, X7)).

Recall that in|[16], Theorem 4.2 (4) says that when the mappin U — V is surjective and predecessor-
consistent with respect & ¢ U x U, the transitivity ofR implies that of f(R). In fact, the requirement thdt is
surjective is not necessary. Moreover, we find that the ssoreconsistent function has the same property.

Theorem 3.1. Suppose that R U x U is transitive and f: U — V is successor-consistent with respect to R. Then
f(R) is transitive.

Proof. For any §1,Y») € f(R) and §/,,V3) € f(R), there exist X1, x2) € Rand ;, x3) € R satisfyingf(x;) = yi,
f(x2) = f(X;) = y2, andf(x3) = ys3. Therefore, we see thag € Ry(X,) = Rs(x2), which means thatg, x3) € R. It
follows from the transitivity ofR that (x1, X3) € R, and thus,

(V1. ¥3) = (F(x), F(xa) € f(R).
This proves the transitivity of (R). O



Let f : U — V be a mapping, anR Q € £(U x U). In [1€], Theorem 4.3 (3) says that ifis predecessor-
consistent and successor-consistent with respect tdratidQ, thenf(RNQ) = f(R)N f(Q). In fact, the requirement
of f can be relaxed as follows.

Theorem 3.2. Let f : U — V be a mapping, and,® € (U x U). Thenf(Rn Q) = f(R) n f(Q) if one of the
following conditions holds.

(1) The mapping f is both predecessor-consistent and suceeessistent with respect to R.
(2) The mapping f is both predecessor-consistent and suceeessistent with respect to Q.
(3) The mapping f is predecessor-consistent with respect tad®accessor-consistent with respect to Q.
(4) The mapping f is successor-consistent with respect to R @ pessor-consistent with respect to Q.

Proof. We only prove (1) and (3), because of the symmetry of the tiseer Note thath(R NQ c f(R) N f(Q)
always holds by definition. Hence, we need only to verify theetse inclusion. For anyy, z,) € f(R) n f(Q), there
exist (X1, Xo) € Rand §1,y2) € Q such thatf(x1) = f(y1) = z and f(x2) = f(y2) = z. It remains to check that
(Z]_, Zg) € f(Rﬂ Q)

Let us begin with (1). Sincd is both predecessor-consistent and successor-consigtantespect toR, we
have thatRs(x1) = Rs(y1) andRp(x2) = Rp(y2). It follows from (x1, X2) € Rthatx, € Rs(x1) = Rs(y1), and thus,
Y1 € Rp(X2) = Rp(Y2), namely §1,y2) € R. Combining this with the fact thay(, y,) € Q, we get thatys,y,) e RN Q,
and thus, £, 2) = (f(y1), f(y2)) € f(RN Q). Therefore, we get thai(R) N f(Q) c f(RN Q), as desired.

For (3), becauséd is predecessor-consistent with respecRtand successor-consistent with respecQtowe
obtain thatRy(x2) = Rp(y2) andQs(x1) = Qs(y1). The former gives rise t&; € Rp(x2) = Rp(y2), namely, &1, y2) € R,
while the latter yields thag, € Qs(y1) = Qs(X1), i.e., (x1,¥2) € Q. We thus get thatq, y2) € Rn Q, which implies
that @1, ) = (f(xp), f(y2)) € f(Rm Q). Thereforef(R) N f(Q) C f(Rm Q), finishing the proof of the theorem. [J

The next theorem extends the assertion (2) of Theorem 4Xin\vhere only the diiciency has been provided.

Theorem 3.3. Let f : U — V be a mapping and R U x U. Thenf*(f(R)) = R if and only if f is both predecessor-
consistent and successor-consistent with respect to R.

Proof. We first prove the necessity. Assume, by contradiction, thiatnot predecessor-consistent. Then there are
X1, X2 € U with f(x1) = f(x2) such thaRp(x1) # Rp(X2), say,z € Ry(X1)\Rp(X2). Thatis, g x1) € Rand ¢ x2) ¢ R.
We thus find that A
(@), f(x2)) = (f(2), f(x1)) € f(R).
Hence, o
zx) e t'(f(R) =R

namely, ¢ x2) ¢ R, which is absurd. Consequentlyjs predecessor-consistent with respedRt&imilarly, it is easy
to show thatf is also successor-consistent with resped.téVhence, the necessity is true.

One may refer to [16] for the proof of the fficiency. For the convenience of the reader, we give anotluafpr
in our context. It is obvious thaf*(f(R)) 2 R. Let us verify thatf*(f(R)) € R. For any §1,y2) € f(f(R), we
have by the definition of inverse relation mapping thiy(), f(y2)) € f(R). Therefore, there isx{, %) € R such
that f(x1) = f(y1) and f(x2) = f(y2). Sincef is both predecessor-consistent and successor-consigtarrespect
to R, we get thaRs(x1) = Rs(y1) andRp(X2) = Rp(y2). It follows thatx; € Rp(X2) = Rp(y2), which implies that
y> € Ro(x1) = Rg(y1), namely, {1,y2) € R. As a result, we have thdt'(f(R)) = R. This completes the proof of the
theorem. O

Now, we would like to establish a relationship between niearhoods and relation mappings.

Theorem 3.4. Let f: U — V be a mappingand R U x U. Then for any »x U,
(1) fA(R)p(f(x)) = U f(Ry(Xx)). In particular, f(R)p(f(x)) = f(Rp(x)) if f is predecessor-consistent with
f )

respect to R. A
2) T(Rs(f(X)) = U f(Rs(X)). In particular, f(R)s(f(X)) = f(Rs(X)) if f is successor-consistent with respect
f(x )

to R.



Proof. We only prove the first assertion, since the second one carovegsimilarly. For any € f(R)p(f(x)), there
is (Z,Xx') € Rsuch thatf(z) = zand f(x") = f(x). Thereforez € Ry(X’), which implies thaz = f(Z) € f(Ry(X')).

Hence,
ze U f(Ro(X)).
f(x)=F(%)
This means that .
f(R)p(f(¥) < U f(Rp(x)).
()= f(x)
Conversely, for any
ze ) f(Ro(x)),
f(x)=F(%)
there isx’ € U with f(x) = f(x) such thatz € f(Ry(x)). Whence, there exists € Ry(X) satisfyingf(y) = z It
follows that /, X') € R, and thus, {(y), f(X)) € f(R). Thanks tof(x') = f(x), it yields that ¢(y), f(X)) € f(R), that
is,z= f(y) € T(R)p(f(x)). Consequently,

L) fRo(x)) € FRIN(F(4),

f(x)=f(x)

and thus,

fRF)= [ R,

f(x)=f(x)

as desired.
If fis predecessor-consistent with resped®ithen for anyx’ € U with f(x') = f(x), we have by definition that
Rp(X') = Ry(x). This gives rise to

f(Rp(f(¥) = U f(Rp(X)) = F(Rp(x)).
f(x)=f(X)
Hence, the first assertion holds. O

Remark 3.1. Note that Theorein 3.4 provides an approach to computing#eepessor and successor neighborhoods
of an element o¥ with respect tof (R). In fact, foranyy € V, if y ¢ f(U), then itis clear that (R)(y) = f(R)s(y) = 0.
Otherwise, there is some e U such thatf(x) = y, and thus, one may use Theoreml 3.4 to comg(i(y) and

f(Rsy).

To state the next theorem, we need to recall the notion oftqipiations. Let be a finite and nonempty universal
set, and leR C U x U be a binary relation obJ. The ordered pairy, R) is referred to as generalized approximation
space For anyX C U, one can characteriz¢ by a pair of lower and upper approximations (see, for example
[18,/19]). Thelower approximation aprx andupper approximatio@prg X of X are defined as

a_erX={er |Rs(X) € X} and aprgX = {x e U |Ry(X) N X # 0},

respectively.
In [1€], Theorem 4.8 (1-6) investigate the lower and uppg@rapimations under relation mappings. For the sake
of comparison, let us review the results.

Theorem 3.5([1€], Theorem 4.8) Let f : U — V be a mappingand R U x U.

(1) If f is successor-consistent with respect to R, then

flaprX) < apr o, F(X)

forany Xc U.



(2) If f is both predecessor-consistent and successor-cemsigiith respect to R, then

f(a_erX) =apr

apr, () = f(X)

for any R-definable set X U.
(3) If f is bijective, then

f(apr.X) = aPlw )

forany Xc U.
(4) If f is successor-consistent with respect to R, then

f(@prrX) 2 aprsg f(X)

forany Xc U.
(5) If f is both predecessor-consistent and successor-cemsiglith respect to R, then

f@PTRX) = AT f(X) = F(X)

for any R-definable set X U.
(6) If f is bijective, then
f@prgX) = a_prfA(R) f(X)
forany Xc U.

Remark 3.2. Let us remark that the assertions (2) and (4) do not hold irgenFor (2), consider the case tHais
not surjective. Then for anye V\ f(U), we have thaf (R)s(y) = 0 C f(X) and thus

ye a_prf‘(R) F(X).

But
yé f(a_erX) c f(U)

sincey ¢ f(U). Hence,
f(apr,X) = apr; 109 = 109

is not true in this case.
For (4), let us consider a counter example. Teke {x,y, z}, V = {a, b}, andR = {(X, y)}, and definef as follows:

f)=a f(y)=f@="h

Clearly, f(R) = {(a,b)}, and moreoverf is successor-consistent with respecRo Taking X = {z}, we find that
aprgrX = 0 and thusf (aprgX) = 0. On the other hand, we have that

f(X) = {b} andaprsg f(X) = {a}.

Therefore,
f(@prgX) 2 a_prfA(R) f(X).
and the assertion (4) in Theorém]3.5 is false.
Let us present an improved version of Theofem 3.5.
Theorem 3.6. Let f: U — V be amappingand R U x U.
(1) If f is successor-consistent with respect to R, then

flapr.X) c aprg, f(X)

forany Xc U.



(2) If f is surjective, then

f(R)f(X) C f(apr X)

for any Xc U with f*(f(X)) = X
(3) If f is surjective and successor-consistent with respe&, tihen

f(a_erX) apr,_ f(X)

hialad -
for any X< U with f*(f(X)) = X
(4) Forany Xc U,
f(@prrX) € apfyg f(X).
(5) If f is predecessor-consistent with respect to R, then

f@prgX) = a_prfA(R) f(X)
forany Xc U.

Before giving the proof of the theorem, let us briefly compiangith Theoreni3.b. In the above theorem, the
assertion (1) is the same as the corresponding one in Thé®®m(2) and (4) are newly added; (3), following
immediately from (1) and (2), greatly improves the thirdeation in Theorer 315, because the bijectiorf & much
stronger than thatt is surjective and successor-consistent with respert to fact, if f is bijective, therf is injective,
surjective, predecessor-consistent, and successoistamtsand moreovef,(f(X)) = X forany X ¢ U. (5) amends
the fourth assertion and significantly improves the fifth aixth assertions in Theordm 8.5.

Proof of Theoreri 3160ne may refer to [16] for the proof of (1). (3) is a direct cdaoy of (1) and (2). Hence, we
only need to verify (2), (4), and (5).
Let us start with (2). Suppose thhis surjective and *(f (X)) = X. For any
yeapr, o f(X),
we have thaf (R)s(y) € f(X), as R
apr; f(X) = ly e VI f(R)y) € F(X))
by definition. In the case orf(R)s(y) = (, sincef is a surjective mapping, there exist€ U such thatf(x) = y and
Rs(X) = 0 € X. Therefore,
xea_erX= {xe U |Rg(X) € X},

and thus,
y=f(x) e f(a_erX).

If f(R)s(y) # 0, then for anyy’ € f(R)s(y), there is & X’) € Rsuch thatf(x) = yandf(x') = y'. To show that
y = f(x) € f(apr_X),

by the previous argument it is icient to show thaRg(X) € X. By contradiction, assume that there is some

Rs(X)\X, thatis, & 2) € Randz ¢ X. Thanks to §, 7) € R, we get that {(x), f(2)) € f(R), namely, ¢, f(2)) € f(R). As

aresult,f(2 e fA(R)s(y) ¢ f(X), which meansthate f*(f(X)). As f*(f(X)) = X, itforcesthai € X, a contradiction.
Consequently, we obtain that

ap rf(R)f(X) C f(apr X),

which proves (2).
Let us continue proving (4). By definition,

aprgrX = {xe U |Rs(x) N X # 0},
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and thus,
f@prgX) = {f(x) IRs(X) N X # 0}.

For anyy € f(aprgX), there existx € U satisfying thatf (x) = y andRs(x) N X # 0. TakingX" € Ry(x) N X, we find
thatf(x') € f(R)s(y) n f(X), which means that(R)s(y) N f(X) # 0. Hence,

y = f(x) € apryg f(X),

which yields that
f(@prgX) € apryg, f(X),

as desired.
Finally, we verify (5). Suppose thdtis predecessor-consistent with resped®tdy (4), it sufices to show that

aprig f(X) € f(@prrX).

For any
y € apfyg f(X),

it follows by definition thatf(R)s(y) N f(X) # 0. Whence, there existg € f(R)s(y) N f(X), which means that there
is some K, X') € Rsuch thatf(x) = y and f(x') = y’. We thus get thax € Ry(x’). On the other hand, there is some
X’ € X such thatf(x”) =y, asy’ € f(X). Therefore,f(x) = f(x”), which implies thaR,(x") = Ry(x”) sincef is
predecessor-consistent with respedRtaConsequentlyx € Ry(x”), namely,x” € Ry(x). This, together withx” € X,
forces thatx” € Rs(X) N X. Hence,Rs(X) N X # 0, and thusx € aprgX, which gives thay = f(x) € f(@prgX).
Thereby,

aprg f(X) c f(@aprgX),

as desired. This completes the proof of the theorem. O

Remark 3.3. For any generalized approximation spateR) and X € U, one may also define the pair of lower
and upper approximations using other neighborhoods (seeexfample, [[18, 19]). For example, employing the
predecessor neighborhood, fbever approximatiorﬂ{qx andupper approximatiompr' g X of X can be defined as

apr' X ={xe U |Ry(X) C X} and aprgX = {x € U |Rp(X) N X # 0},

respectively. Based upon the newly defined approximatibese is no dficulty to develop corresponding theorem
to describe the lower and upper approximations under oglatiappings. We do not go into the details here.

4. Conclusion

In this paper, we have unified and extended type-1 and tyg@i&istent functions introduced in [16] into the no-
tion of neighborhood-consistent functions. Furthermare have found that type-1 consistent functions are nothing
else than predecessor-consistent functions. Based oolibésvation, we have explored more properties of congisten
functions and induced relation mappings and improve upwaraédeficient assertions in_[16]. With the concept of
neighborhood-consistentfunctions, the present work eagelsily generalized to other approximation spaces based on
different neighborhoods. Most recently, the authors havedntred predecessor-consistent and successor-consistent
functions with respect to a fuzzy relation in [21] and greathproved some characterizations of fuzzy relation map-
pings presented in [13]. Besides, Yang and Xu have recemilgduced the concepts Bfopen setsR-closed sets,
and regular sets of a generalized approximation spd¢cB)(in [17]. It would be interesting to examine whether
consistent functions and relation mappings preserve seopepies ofR-open setsR-closed sets, and regular sets.
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