
Design controller for synchronization of an array of delayed neural
networks using a controllable probabilistic PSOI

Yang Tang∗,a,b, Zidong Wanga,c, Jian-an Fanga

aCollege of Information Science and Technology, Donghua University, Shanghai 201620, P.R. China.
bInstitute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, P.R. China.

cDepartment of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH,
United Kingdom.

Abstract

This paper introduces a controllable probabilistic particle swarm optimization (CPPSO)
algorithm based on Bernoulli stochastic variables and a competitive penalized method.
The CPPSO is proposed to solve optimization problems and is applied to design the
memoryless feedback controller, which is used in synchronization of an array of delayed
neural networks (DNNs). The learning strategies occur in a random way and are governed
by Bernoulli stochastic variables. The expectation of Bernoulli stochastic variables are
automatically controlled by search environment. The proposed method not only keeps the
diversity of the swarm, but also maintains rapid convergence of the PSO according to a
competitive penalized mechanism. In addition, the convergence speed is improved because
the inertia weight each particle is automatically computed according to the feedback of
fitness value. The efficiency of the proposed CPPSO is demonstrated by comparing it
with some well-known PSO algorithms on benchmark test functions with and without
rotation. In the end, the proposed CPPSO algorithm is used to design the controller for
synchronization of an array of continuous-time delayed neural networks.

Key words: Swarm intelligence, neural networks, Bernoulli stochastic variable,
controllable probabilistic particle swarm optimization (CPPSO), discrete and distributed
delay

1. Introduction

Complex networks lie in our lives such as food webs, ecosystems, and metabolic path-
ways. The complexity of networks in the social, biological, engineering, and physical
sciences gives rise to many challenges for scientists and engineers. As a special complex
network, there has been increasing interest in artificial neural networks due to their fruitful

IThis research was partially supported by the National Natural Science Foundation of PR China (Grant
No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007),
the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation
Project of Shanghai(Grant No 09JC1400700), the Engineering and Physical Sciences Research Council
EPSRC of the U.K. under Grant No. GR/S27658/01, an International Joint Project sponsored by the
Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany.

∗Corresponding author.
Email addresses: tangtany@gmail.com (Yang Tang), Zidong.Wang@brunel.ac.uk (Zidong Wang),

jafang@dhu.edu.cn (Jian-an Fang)

Preprint submitted to Information Sciences August 15, 2010

applications in numerous areas [4, 5, 9, 13-17, 25-27, 34, 38].
Synchronization indicates that two or more systems adjust each other to lead to a

common dynamical behavior. Since Pecora and Carroll proposed a method to synchro-
nize two identical chaotic systems with different initial values [21], chaos synchronization
has drawn considerable attention from various research fields such as biological networks,
secure communication, and chemical reactions. Recently, arrays of coupled systems have
stirred much research interest due to the fact that they can exhibit many interesting phe-
nomena such as synchronization and autowaves, and they play a very important role in
modeling interacting biological systems. Among them, the synchronization in coupled
identical delayed neural networks has been found to have an important effect on the fun-
damental science. For instance, the synchronization hypothesis for brain activities was
formulated in 1938 [35], and the modern neurophysiological experiments reinforced that
synchronous oscillations of neural activities in the brain structures are important in signal
processing and coding [10]. For details concerning synchronization of neural networks, we
refer the authors to see [4, 5, 13, 15, 25, 26, 38], and the references cited therein. How-
ever, in these well-studied works, linear matrix inequality (LMI) and adaptive method are
employed to synchronize an array of neural networks, where a number of assumptions are
needed for mathematical derivation and the results obtained have conservativeness.

In search of an algorithm candidate for designing the controller for synchronization
arrays of delayed NNs, the particle swarm optimization (PSO) algorithm is a competent
one. The PSO has been introduced by Kennedy and Eberhart in [19] and is inspired by
the motion of a flock of birds searching for food. A PSO algorithm iteratively explores a
search space with a swarm of particles, searching for the global optimum. Each particle
flies through the search space according to its velocity. At every step, the velocity is ad-
justed so that previous personal best positions and the best position found by the swarm
within a specific neighborhood act as guiders. During the last decade, PSO algorithm
has stirred much attention in various areas [1-3, 6-8, 11, 12, 18, 20, 22-24, 39] due to
its effectiveness in performing optimization problems. Unfortunately, PSO suffers from
the premature convergence problem, which does exist in complex optimization issues. In
[22-24, 39], some tuning parameters methods including inertia weights and acceleration
coefficients for PSOs have been proposed to enhance the PSO’s search performance. A
comprehensive learning PSO (CLPSO) was proposed in [12], which shows its superiority
in dealing with multimodal functions. In [1, 2, 6, 8], some operators such as selection,
mutation and so on have been introduced in PSOs. However, it is worth mentioning that,
in almost all the works mentioned above, the convergence speed is not fast or the global
search performance can be further improved. In this paper, a controllable probabilistic
PSO using a competitive penalized method is developed to shorten this gap.

A CPPSO is proposed using a controllable probability method in this paper. Basically,
using binary switching sequence, the PSO is switched from different learning strategies
governed by Bernoulli stochastic variables. The probabilities of the stochastic variables are
adjusted according to the current search information by a competitive penalized method.
In addition, an adaptive inertia weight method is proposed to adjust the inertia weight
automatically to improve the convergence performance. Tests are carried out on vari-
ous topological structures in the PSO paradigm to demonstrate the effectiveness of the

2

CPPSO. Comparison between the proposed CPPSO and other improved PSO algorithms
is studied comprehensively. Finally, the proposed CPPSO algorithm is used to design the
controller for synchronization of an array of delayed neural networks.

2. PSO algorithms

2.1. Traditional PSO algorithms

The PSO, first introduced by Kennedy and Eberhart [19], is a stochastic optimization
technique that can be likened to the behavior of a flock of birds.

In PSO, a swarm consists of N particles moving in a D-dimensional search space. The
position of the ith particle is denoted by a vector, xi(k) = (xi1(k), xi2(k), · · · , xiD(k)),
where xin(k) ∈ [xmin,n, xmax,n] (1 ≤ n ≤ D) with xmin,n and xmax,n being lower and upper
bounds for the nth dimension, respectively. In the search process, each particle successively
adjusts its own position toward the global optimum according to the two factors: the best
position encountered by itself (pbest) denoted as pi = (pi1, pi2, · · · , piD) and the global best
position in the whole swarm (gbest) denoted as pg = (pg1, pg2, · · · , pgD). The velocity of
the ith particle at the kth iteration is represented by vi(k) = (vi1(k), vi2(k), · · · , viD(k)),
and is limited to a maximum velocity vi,max = (vi max,1, vi max,2, · · · , vi max,D). r1,j and
r2,j are uniform random numbers sampled from U(0, 1). c1 and c2 are the acceleration
constants reflecting the weighting of stochastic acceleration terms that push the particle
to pbest and gbest, respectively. The velocity vi and position xi of the particle at next step
are updated as follows:

vi,j(k + 1) = wvi,j(k) + c1r1,j(k)(pi,j(k)− xi,j(k)) + c2r2,j(k)(pg,j(k)− xi,j(k)),

xi,j(k + 1) = xi,j(k) + vi,j(k + 1), (1)

where w is the inertia weight. In this paper, the maximum velocity Vmax is set to the 20%
of the search range [8].

2.2. Some improved PSO

PSO has attracted much attention since its introduction in 1995. Many researchers
have focused on improving its search performance using various methods. One of the
variants is the linearly decreasing inertia weight w introduced in [23, 24]. In [23, 24], a
linearly decreased inertia weight w over time (LDIW) was proposed. Eberhart and Shi
also found that the fixed or linearly decreased inertia weight for PSO is not effective for
real-world applications. A random inertia weight factor was proposed when considering
the dynamic nature of real-world applications [8].

On the other hand, PSO with time-varying acceleration coefficients (TVAC) was in-
troduced by Ratnaweera et al. [22] . The improvement has the same motivation and the
similar techniques as the LDIW, in which the cognitive coefficient c1 is decreased linearly
and the social coefficient c2 is increased linearly over time as the follows:

c1 = (c1f − c1i)× kmax − k

kmax
+ c1i,

c2 = (c2f − c2i)× kmax − k

kmax
+ c2i, (2)

3

where c1i and c2i are the initial values of the acceleration coefficients c1 and c2; c1f and
c2f are the final values of the acceleration coefficient c1 and c2, respectively. Usually,
c1i = 2.5, c2i = 0.5, c1f = 0.5 and c2f = 2.5.

The constriction factor has been introduced into PSO for making an analysis of the
convergence in [7]. It has been recommended that a constriction factor may help to
realize convergence. w = 0.729 and c1 = c2 = 2.05 are suggested in their work. In
addition, designing different kinds of structures to improve the search performance of
PSO is also an hot topic. In [11], a fully informed particle swarm (FIPS) algorithm
was proposed, in which the search information of the particle’s entire neighborhood is
used to lead the particles. Recently, some evolutionary techniques such as selection [2],
crossover [6] and mutation [1] have been introduced to the PSO. On the other hand, a
comprehensive-learning PSO (CLPSO) [12] was presented. Its learning method abandons
the global best information, while all other particles’ past best information is used to
update particles’s velocity instead. It is confirmed that CLPSO leads to great improvement
in multimodal optimization problems. More recently, an adaptive PSO was proposed in
[39]. An evolutionary factor was introduced to identify four defined evolutionary states in
each generation, which enables the automatic adaption of inertia weight and acceleration
coefficients.

3. A controllable probabilistic PSO

In this section, a controllable probabilistic PSO (CPPSO) is proposed for efficient
search and rapid convergence speed. The learning strategies of the proposed PSO are gov-
erned by Bernoulli stochastic variables. A competitive penalized technique is introduced
so as to allow the automatical control of learning probability. Furthermore, an adaptive
control method for inertia weight is proposed to adjust the inertia weight of each particle.
The proposed adaptive method can greatly improve the convergence speed. A local search
technique is used to further refine the solution.

3.1. Control of inertia weight

The inertia weight w is usually used to balance the global and local search abilities of
PSO and plays a very important role in PSO. Generally, linearly decreased inertia weight,
fixed inertia weight or random inertia weight is used in variants of PSO [8, 23, 24]. It
is believed that a large inertia weight enables global search and a small inertia weight
facilities local search.

The fitness information characteristics of each particle vary during a PSO evolutionary
process. Each particle in the swarm plays a different role in the searching process. For
example, a particle which has the worst fitness may become the best particle (has best
fitness) in the following generation. Thus, the fitness information of each particle would
be different in searching process. Therefore, how to use this information to control the
inertia weight would be a significant and promising research topic in PSO. Usually, the
particle which has worst fitness should have a large velocity to fly toward the current best
particle found so far or enable itself to achieve global search. The best particle should have
a small speed to search around itself to refine the search solution. Based on this idea, in
this paper, a novel control method of inertia weight is proposed by an evolutionary state

4

Calculate the fitness value

of each particle

Calculate of each particle

according to EQ. (3)
ig

Compute inertia weight of

each particle according to EQ. (4)

If the fitness value of particle

is updated and i N≤

1i =

learning according to

EQ. (13) and EQ. (14)

penalizing according to

EQ. (13) and EQ. (14)

1i i= +

, ,Generate () and ()i j i jk kρ ξ

Save andd NS S

Update the velocity

according to EQ. (5)

no

Figure 1: Flowchart of learning scheme.

function (ESF). The inertia weight is determined according to ESF automatically.
At each generation, we calculate the fitness of each particle i and get a set of fitness

values fi(i = 1, 2, · · · , N). Compare all fi, and determine the maximum value fmax and
minimum value fmin. Using the set of fitness values, the ESF can be measured as

gi =
fi − fmin

fmax − fmin
, (i = 1, 2, · · · , N) ∈ [0, 1]. (3)

It is clear to see from the above equation that each particle has different ESF at each
generation. The ESF can be used to determine the inertia weight of each particle. That
is, the worst particle has the largest speed to enable global search and the best particle
in the swarm has the smallest speed to refine the current solution. Hence, it would be
beneficial to allow w to follow the evolutionary state function using the following sigmoid
mapping w(gi) : R+ → R+:

wi = 0.5gi + 0.4, (i = 1, 2, · · · , N) ∈ [0.4, 0.9]. (4)

Note that by using this technique, the swarm has the inertia weight that lies in the range
[0.4, 0.9] in the evolutionary process. The swarm can benefit from this technique to have
global search capabilities and local search capabilities at each generation simultaneously.
The inertia weight of each particle will increase or decrease according to its fitness; thus,
the inertia weight of each particle is time-varying in the evolutionary process. If the

5

0 500 1000 1500 2000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Generations

In
er

tia
 w

ei
gh

t o
f o

ne
 p

ar
tic

le

Figure 2: The parameter adaption process

for inertia weight of one particle.

0 500 1000 1500 2000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Generations

M
ea

n
va

lu
e

of
 in

er
tia

 w
ei

gh
t o

f N
 p

ar
tic

le
s

Figure 3: The parameter adaption process

for mean inertia weight of the swarm.

particle has the best fitness, it will have the smallest velocity to refine itself. The worst
particle (has the worst fitness) will have the largest velocity to enable a global search
(learn from other particles). As wi is monotonic with gi, wi will adapt to the search
environment characterized by gi. If a better solution is found outside the swarm, almost
all the particles in the swarm will have large gi and wi, resulting in the global search. If
the swarm clusters for searching solution more accurately, nearly all the particles will have
small gi and wi, benefiting the local search.

It is worth pointing out that this technique is simple to implement in PSO since the
calculation of wi does not need extra computation. The entire process of controlling the
inertia weight is illustrated in Fig. 1. An example of the change in the inertia weight
of one particle and the change in the mean inertia weight of the swarm are shown in
Fig. 2 and Fig. 3, respectively. The example is given for solving the Griewank function
with 20 particles and 30 dimensions. It can be seen from Fig. 2 that the technique can
dynamically adjust the inertia weight of the particle according to its fitness. In the early
phase, the inertia weight is large to enable the particle a global search. At the end of the
search process, the velocity decreases to around 0.4 to have the ability of searching locally.
Fig. 3 shows that the mean value of inertia weight ranges from [0.43,0.7], a fact which
describes that the state of the PSO changes into local search from global search gradually.

Remark 1. In this paper, since we define the fitness value the smaller the better when
solving maximum problems, we will use negative value as the fitness value. Note that in
our scheme, each particle has its own velocity belonging to [0.4, 0.9]. This mechanism helps
the particle to play a different role in finding a better solution in the evolution process, as
discussed above.

3.2. PSO with controllable probability

In this subsection, a controllable probabilistic particle swarm optimization is developed
to help the PSO to achieve different learning strategies automatically. This approach is
used to adaptively control the probability of different learning strategies. The proposed
CPPSO combined with adaptive inertia weight is given as follows:

vi,j(k + 1) = wi(k)vi,j(k) + ρi,j(k)c1r1,j(k)(pr,j(k)− xi,j(k))

6

+ (1− ρi,j(k))c1r1,j(k)(pi,j(k)− xi,j(k))

+ ξi,j(k)c2r2,j(k)(pg,j(k)− xi,j(k)), (5)

xi,j(k + 1) = xi,j(k) + vi,j(k + 1), (6)

where pr,j(k) stands for another particles’s history best fitness in the jth dimension. ρi,j(k)
are stochastic variables that describe the following random events for the system (5):

{
Event 1: system (5) experiences pr,j(k),
Event 2: system (5) experiences pi,j(k),

(7)

Let ρi,j(k) be Bernoulli distributed sequences defined by

ρi,j(k) =

{
1, if Event 1 occurs,
0, if Event 2 occurs,

(8)

where ρi,j(k) satisfy Prob{ρi,j(k) = 1} = ρi0,Prob{ρi,j(k) = 0} = 1− ρi0.
Similarly, ξi,j(k) are stochastic variables that describe the following random events for

the system (5):
{

Event 1: system (5) experiences pg,j(k),
Event 2: system (5) does not experience pg,j(k),

(9)

Set ξi,j(k) be Bernoulli distributed sequences defined by

ξi,j(k) =

{
1, if Event 1 occurs,
0, if Event 2 occurs,

(10)

where ξi,j(k) satisfy Prob{ξi,j(k) = 1} = ξ0, Prob{ξi,j(k) = 0} = 1− ξ0.
In summary, system (5) will experience four cases according to the different stochastic

variables ρi,j(k) and ξi,j(k). The state of system (5) is determined as follows:

S =





1, if ρi,j(k) = 1 and ξi,j(k) = 0,

2, if ρi,j(k) = 1 and ξi,j(k) = 1,

3, if ρi,j(k) = 0 and ξi,j(k) = 0,

4, if ρi,j(k) = 0 and ξi,j(k) = 1.

(11)

Obviously, if S = 1 or S = 3, the learning strategy of system (5) becomes the learning
scheme proposed in [12]. If S = 4, the learning strategy of system (5) turns into the
original PSO [19]. In our proposed system (5), the term pg,j(k) is added to enhance the
local search performance. In [12], it was found that comprehensive learning techniques will
improve the global search performance of PSO. However, the convergence speed is slow
and the selection of learning probability is empirically rather than intelligently. Note that
different learning probability values ρi0 yield different search performance in multimodal
functions. Similarly, different ξ0 offers various results of PSO when dealing with different
functions. Thus, a competitive penalized method is proposed here to balance the tradeoff
between local search and global search abilities.

7

Remark 2. Note that we introduce the stochastic variables ρi,j(k) and ξi,j(k) to describe
different learning strategies occurring in a random way. Using binary sequence switching to
describe stochastic event is widely used in our previous works, such as miss measurement,
random packet losses and stochastic delay [28, 31-33].

Remark 3. The stochastic variables used in our paper can well describe the loss infor-
mation conveyed in a flock of birds, forming the original idea from which PSO arises.
The intermittent information losses are known in the process of communication among
the particles in the swarm. In this paper, the information losses are viewed as a binary
switching sequence that is specified by a conditional probability distribution.

Remark 4. Clearly, the learning strategies in our proposed model can cover the learning
scheme proposed in [12] as a special case. If S = 1 or S = 3, the learning strategy
of system (5) becomes the learning scheme proposed in [12]. gbest is also added in our
model to improve the convergence speed. In addition, a competitive penalized approach is
proposed in this paper to select efficient learning strategy and abandon inefficient learning
strategy instead of using fixed learning strategy.

For each dimension of the particle i, two random numbers are generated by sampling
from [0, 1]. Determine the state of system (5) using two random numbers. As shown in
(11), we can further summarize the learning strategies as follows:





learn from pr,j(k), if S = 1,

learn from pr,j(k) and pg,j(k), if S = 2,

learn from pi,j(k), if S = 3,

learn from pi,j(k) and pg,j(k), if S = 4.

(12)

We employ the selection procedure of the particles’s dimension learning strategies as fol-
lows.

(1) Choose the learning strategy at each generation according to learning probability
ρi0 and ξ0.

(2) If the learning strategy is S = 1 or S = 3, randomly choose three particles from
the population. Compare the fitness values of these three particles’s pi(k) and select the
best one. Use the winner’s pbest as the exemplar to learn from that dimension. Save the
learning strategy of each dimension as Sd(j)(i = 1, 2, · · · , N ∗D). If the learning strategy
is S = 2 or S = 4, update the velocity of the dimension according to (5).

(3) After all the dimensions in each particle have learned from one of the four strate-
gies, we randomly generate an integer number q ranges from [1, N ∗D]. Using this random
number, we get the each particle’s learning strategy SN = Sd(q)(i = 1, 2, · · · , N).

(4) After the velocities of all the particles have been updated, the activation probability
variables ρi0 are updated as follows:

ρi0 =





ρi0 + α, if the fitness value of particle i is updated
and SN = 1 or SN = 2,

ρi0 − β, if the fitness value of particle i is not updated
and SN = 3 or SN = 4,

(13)

8

where α is the learning rate and β is the penalizing rate.
(5) Similarly, the activation probability variable ξ0 is updated according to:

ξ0 =





ξ0 + α, if the fitness value of particle i is updated
and SN = 2 or SN = 4,

ξ0 − α, if the fitness value of particle i is not updated
and SN = 2 or SN = 4,

(14)

In addition to the control method of inertia weight, we observe from the learning method
that there exist three differences between the learning strategies CLPSO and the proposed
learning methods.

(1) Instead of using particle’s own pi(k) and its neighbor’s pr(k), we also employ the
pg(k) to guide the particle to fly to the current global optima found so far quickly.

(2) Instead of using two learning strategies to control PSO, we use four learning strate-
gies to control PSO.

(3) The activation probability variables ρi0 and ξ0 are automatically adjusted by the
current search information. An efficient competitive penalized approach is proposed here
to adapt the variables to the appropriate values.

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Generations

M
ea

n
va

lu
e

of
 ρ

0 a
nd

 ξ
0

ρ
0

ξ
0

Figure 4: The parameter adaption process for ρ0 and

xi0.

Note that all the particles have the same ξ0, which can enable the quick convergence
speed or enlarge the search diversity of the swarm rapidly. ρi0 are initialized to 0.05 and
adaptively adjusted according to the learning rate α and penalizing rate β. ξ0 is initialized
to 0.005 since the swarm benefits the global search in the early phase. If ρi0 or ξ0 are
smaller than 0.005, we set ρi0 = 0.005 or ξ0 = 0.005, respectively. SN (i) is initialized to 1
throughout this paper. The flowchart of this technique can be seen from Fig. 1. CPPSO
with the method proposed in subsection 3.1 and 3.2 is named CPPSO-I in this paper. An
example of the change in mean value of ρi0 and ξ0 of the swarm is shown in Fig. 4. It
is for solving the Griewank function with 20 particles and 30 dimensions. It can be seen
from Fig. 4 that the technique can dynamically adjust ρi0 and ξ0 to suitable values by a

9

competitive penalized method. From Fig. 4, it is observed that the ρi0 should keep a low
value to achieve better solution when tackling with Griewank function.

Remark 5. The competitive penalized method proposed in our paper can be summarized
as follows. If the current learning strategy is efficient to find the global optimum, that is,
the current learning strategy can update the fitness value successfully, then the learning
probability will increase in order to promote more frequent occurrence. If the learning
strategy employed is useless to update the fitness value, the learning method will be
penalized by reducing the learning probability.

3.3. Elite local learning approach

In this subsection, an elite local learning approach (ELLA) is used to accelerate the
convergence speed. This approach is controlled automatically in the evolutionary process.
Let γ(k)(k ≥ 0) be a Markov chain taking values in a finite state space S = {1, 2, · · · , N}
with probability transition matrix Γ(k) = (α(k)

ij)N×N given by

P = {γ(k + 1) = j|γ(k) = i} = α
(k)
ij , i, j = 1, 2, · · · , N, (15)

where α
(k)
ij ≥ 0(i, j ∈ S) is the transition rate from i to j and

∑N
j=1 α

(k)
ij = 1.

The ELLA randomly selects one dimension of the globally best particle, which is
represented by Pj for the jth dimension. Only one dimension is chosen in that the local
optima are likely to have better solution in one dimension. Each dimension of the globally
best particle has the same probability to be chosen. The elite learning is carried out by
the following two search strategies

Pj = Pj + ((λ1,j − λ2,j) ∗ r1 − λ1,j) ∗R1, (16)

Pj = Pj + ((η1 − η2) ∗ r2 − η1) ∗R2, (17)

where r1 and r2 are uniformly distributed random numbers sampled from U(0, 1). λ1,j

and λ2,j are the upper and lower bounds of the chosen particle in the swarm in jth dimen-
sion at each step. η1 and η2 are the maximal and minimal value of all dimensions of the
globally best particle at each generation. R1 and R2 are the search radii of the learning
method which are controlled by a probability matrix Γ(k).

To choose the R1 and R2, consider the following probability transition matrix

Γ(k) =

(
α(k) 1− α(k)

α(k) 1− α(k)

)
, (18)

where α(k) is time-varying and is used to choose the radius. γ(k) = 1 denotes that the
Ri(i = 1, 2) is taken as ρ1 = 1, while γ(k) = 2 indicates that the Ri is chosen as ρ2 = 0.1.
It is suggested that α(k) should decrease linearly with time and is given by

α(k) = (α1 − α2)× kmax − k

kmax
+ α2, (19)

10

where α1 and α2 are the upper and lower bounds of α(k). We set α1 = 1 and α2 = 0
in this paper, which indicates that ρ1 occurs frequently and ρ2 seldom happens in the
early stage. In elite learning, the new position is accepted if the fitness is better than the
current globally best position. Otherwise, the new position is abandoned.

One problem that should be taken into consideration is that these two search methods
are not always useful in the search process. A competitive penalized learning method is
proposed here to deal with this problem. Define Q, Q1 and Q2 as ELLA activation variable,
local search learning (16) activation variable and local search learning (17) activation
variable, respectively. We make use of Q to control the activation of ELLA. Meantime,
Q1 and Q2 are used to activate (16) and (17), respectively. Q is updated as follows:

Q =





Q + θ, if one of the search strategy i

succeed to update the globally best particle,
Q, if the search strategy i

fails to improve the globally best particle,

(20)

where θ is the learning rate, which is fixed as θ = 0.05 in this paper.
The activation probability variables Q1 and Q2 are updated as follows:

Qi =





Qi + δ1, if the search strategy i

succeed to update the globally best particle,
Qi − δ2, if the search strategy i

fails to improve the globally best particle,

(21)

where i = 1, 2 denotes the search strategy (16) and (17), respectively. δ1 is the learning
rate and δ2 is the penalizing rate. In this paper, we fix δ1 = 0.5 and δ2 = 0.001. If
the magnitude of the updated Qi(i = 1, 2) exceeds 1, then Qi is assigned the value 1.
Similarly, if Qi decreases under 0.01, then Qi is set to 0.01. CPPSO with the method
proposed in subsection 3.1, 3.2 and 3.3 is named CPPSO-II in this paper.

In summary, the pseudo code of CPPSO-II algorithm is described as follows by above
discussion:
CPPSO.InitializeParameters();

while (FE is not equal to FEmax)

{
for i = 1:particle numbers N

{
CPPSO.UpdatePosition();// update positions of particle i according to Eq. (6)

val=CPPSO.CalculateFitness();// calculate fitness of particle i

CPPSO.UpdateFE();// calculate FEs

if (val < the best fitness of particle i found so far)

{
save the position xi(k) and val;

CPPSO.UpdateLearnProbability();// according to Eq. (13) and Eq. (14)

}
else CPPSO.PenalizeLearnProbability();// according to Eq. (13) and Eq. (14)

}

11

if (Rand() < Q)

{
if (Rand()< Q1)

{
CPPSO.GenerateRadius();// according to Eq. (15), (18) and (19)

CPPSO.ELLA1();// according to Eq. (16)

val=CPPSO.CalculateFitness();

CPPSO.UpdateFE();

if (val < the best fitness in the swarm found so far)

{
save the position and val to the best particle;

CPPSO.RewardQ();// according to Eq. (20)

CPPSO.RewardQ1();// according to Eq. (21)

}
else CPPSO.PenalizeQ1();// according to Eq. (21)

}
if (Rand()< Q2)

{
CPPSO.GenerateRadius();// according to Eq. (15), (18) and (19)

CPPSO.ELLA2();// according to Eq. (17)

val=CPPSO.CalculateFitness();

CPPSO.UpdateFE();

if (val < the best fitness in the swarm found so far)

{
save the position to best particle and val;

CPPSO.RewardQ();// according to Eq. (20)

CPPSO.RewardQ2();// according to Eq. (21)

}
else CPPSO.PenalizeQ2();// according to Eq. (21)

}
}

for i = 1:particle numbers N

{
CPPSO.CalculateWeight();// calculate each particle’s weight using Eq. (3) and (4)

for j = 1:dimension D

{
CPPSO.UpdateVelocity();// update velocity according to Eq. (5), ρi0 and ξ0

}
}
CPPSO.SaveLearnStrategy();// save SN

}

12

4. Experiments

In the experiments, twelve well-known benchmarks [30, 37] have been used to test
the performances of CPPSO. The experiments are performed to verify the effectiveness of
SPSO and compare the CPPSO with other well-known PSOs to show its superiority.

4.1. Experiments setup

Twelve benchmark functions are listed in Table 1 and (22)-(33) are used to test the
performance of PSOs. All the functions are tested on 30 dimensions. The population
sizes of all the PSOs are set to 20. f1(x) and f2(x) are unimodal optimization problems.
f1(x) is used to test the convergence speeds of PSOs. f2(x) can be treated as a multi-
modal problem since it has a narrow valley from the perceived local optima to the global
optimum. f3(x) to f8(x) are multimodal problems which are hard to optimize. Note
that some functions are separable and can be solved by using D one-dimensional searches.
Hence, four rotated multimodal problems are used to test the performance of the PSOs.
To rotate a function, first an orthogonal matrix M should be generated according to the
Salomon’s method [29]. The original variable x is left multiplied by the orthogonal ma-
trix M to get the new rotated variable y = M ∗ x. This variable y is used to compute
the fitness value f . Clearly, when one dimension in x is changed, all dimensions in y will
be influenced. Thus, the rotated function cannot be solved by D one-dimensional searches.

Sphere : f1(x) =
D∑

i=1

x2
i , (22)

Rosenbrock : f2(x) =
D−1∑

i=1

(100(xi+1 − xi)2 + (xi − 1)2), (23)

Weierstrass : f3(x) =
D∑

i=1

(
kmax∑

k=0

[ak cos(2πbk(yi + 0.5))]−D

kmax∑

k=0

[ak cos(2πbk ∗ 0.5)]

)
,

a = 0.5, b = 3, kmax = 20, (24)

Rastrigin : f4(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10), (25)

Noncontinuous Rastrigin : f5(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10),

where yi =

{
xi, |xi| < 0.5,
round(2xi)

2 , |xi| ≥ 0.5,
(26)

Ackley : f6(x) = −20e
−0.2

√
1
D

∑D
i=1 x2

i − e
1
D

∑D
i=1 cos 2πxi + 20 + e, (27)

13

Griewank : f7(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos(
xi√

i
) + 1, (28)

Generalized Penalized :

f8(x) =
π

D
{10 sin2(πy1) +

D−1∑

i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
D∑

i=1

u(xi, 10, 100, 4),

where yi = (1 +
1
4
(xi + 1)), u(xi, a, k, m) =





k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a.

(29)

Rotated Rastrigin : f9(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10), y = M ∗ x, (30)

Rotated noncontinuous Rastrigin :

f10(x) =
D∑

i=1

(z2
i − 10 cos(2πzi) + 10),

where zi =

{
yi, |yi| < 0.5,
round(2yi)

2 , |yi| ≥ 0.5, y = M ∗ x,
(31)

Rotated Griewank : f11(x) =
1

4000

D∑

i=1

y2
i −

D∏

i=1

cos(
yi√
i
) + 1, y = M ∗ x, (32)

Rotated Rosenbrock : f12(x) =
D−1∑

i=1

(100(yi+1 − yi)2 + (yi − 1)2), y = M ∗ x, (33)

Experiments are conducted to compare six PSO algorithms including the proposed
CPPSO-I and CPPSO-II on the 12 test problems with 30 dimensions. The population
size of six PSO is 20. Four existing PSO algorithms are shown in Table 2 in detail. The
first PSO is LDIW [23, 24] with linearly decreasing inertia weight. TVAC [22] is a PSO
with time-varying acceleration parameters and incorporating a self-organizing method.
CLPSO delivers a comprehensive-learning strategy, which is used to yield better perfor-
mance for multimodal functions [12]. APSO is an adaptive PSO, which can adjust the
acceleration coefficients and inertia weight adaptively [39] according to an evolutionary
factor by calculating average distance. The parameters for these PSOs are provided in
Table 2.

14

Table 1: Benchmark configurations

Functions Name Dimension Search Space Minimum Threshold
f1(x) Sphere 30 [−100, 100]D 0 0.01
f2(x) Rosenbrock 30 [−10, 10]D 0 100
f3(x) Weierstrass 30 [−0.5, 0.5]D 0 0.01
f4(x) Rastrigin 30 [−5.12, 5.12]D 0 50
f5(x) Noncontinuous Rastrigin 30 [−5.12, 5.12]D 0 50
f6(x) Ackley 30 [−32, 32] 0 0.01
f7(x) Griewank 30 [−600, 600]D 0 0.01
f8(x) Generalized Penalized 30 [−50, 50]D 0 0.01
f9(x) Rotated Rastrigin 30 [−5.12, 5.12]D 0 50
f10(x) Rotated noncontinuous Rastrigin 30 [−5.12, 5.12]D 0 50
f11(x) Rotated Griewank 30 [−600, 600]D 0 0.01
f12(x) Rotated Rosenbrock 30 [−10, 10]D 0 100

Table 2: PSO algorithms for comparison

Algorithm Parameters Reference
LDIW w : 0.9− 0.4, c1 = c2 = 2 [23]
TVAC w : 0.9− 0.4, c1 : 2.5− 0.5, c2 : 0.5− 2.5 [22]
CLPSO w : 0.9− 0.4, c = 1.49,m = 7 [12]
APSO Automatically chosen [39]

In all the experiments, the algorithm configuration of the CPPSO is listed as follows.
Learning rate α and penalizing rate β are set to 0.001 and 0.001, respectively. Search
radii ρ1 and ρ2 are chosen as 1 and 0.1, respectively. The initial states are all set to
SN (i) = 1(i = 1, 2, · · · , N).

All the algorithms use the same number of 2 × 105 fitness evaluations (FEs) for each
test function, as suggested in [30]. Further, all the experiments are performed on the same
machine with a Core 2 2.26-GHz CPU, 2-GB memory, and Windows XP operating system.
Each algorithm will repeat 30 times independently for eliminating random discrepancy.

4.2. Adjust learning rate and penalizing rate

In this subsection, the effect of learning rate α and penalizing rate β are investigated
on CPPSO-I here. For the sake of simplicity, in this paper, we assume α = β. Appropriate
α and β can enhance global and local search capabilities and reduce inefficient learning
strategy, leading to saving the consumption of FEs. The results of mean values and
standard deviations of the solutions are provided in Table 1. α is fixed to 0.0001, 0.0005,
0.001, 0.005 and 0.01 in the experiment, respectively.

From the results, it can be found that α = β = 0.001 reveals the best performance.
Large α and β give rise to new learning strategy quickly, while small α and β lead to slow
change the learning strategy. Therefore, in this paper, α = β = 0.001 is adopted.

15

Table 3: Effects of the learning rate and penalizing rate on search accuracy and convergence rate(The best

value is in Bold font.)

α 0.0001 0.0005 0.001 0.005 0.01
f1 Average 2.5×10−58 6.2×10−60 1.4×10−63 1.3×10−61 4.2×10−5

Mean FEs 19172 21783 21735 19377 19110
f2 Average 11.6 0.65 0.02 1.07 11

Mean FEs 12479 21687 21641 22033 24032
f4 Average 0.06 0.06 0 0 0

Mean FEs 19408 10927 9451 11038 11508
f6 Average 2.0×10−14 2.1×10−14 2.4×10−14 0.0001 0.004

Mean FEs 15888 28113 13801 32331 32742
f9 Average 60.1224 50.7438 37.9 70.6456 68.6524

Mean FEs - 67232 43551 - -

Table 4: Search result comparisons among six PSOs on twelve test functions
LDIW TVAC CLPSO APSO CPPSO-I CPPSO-II

f1 Mean 2.3×10−50 2.6×10−17 2.5×10−27 4.2×10−132 1.4×10−63 2.9×10−140

Best Value 1.2×10−55 3.2×10−32 2.1×10−28 3.9×10−148 1.7×10−72 9.9×10−159

Std. Dev. 4.3×10−50 6.4×10−19 2.3×10−27 5.6×10−145 2.3×10−64 1.6×10−138

f2 Mean 29.7 31.8 18.7 2.1 0.02 0.02

Best Value 3.8 2.4 9.7 0.0006 0.0001 0.0001

Std. Dev. 37.0 25.7 5.4 1.1 0.04 0.03

f3 Mean 2.1×10−4 0.0801 2.3×10−11 0.05 0 0

Best Value 5.6×10−4 0.002 4.2×10−12 0.003 0 0

Std. Dev. 3.7×10−4 0.02 1.7×10−11 0.03 0 0

f4 Mean 25.8 47.9 3.7×10−11 0.003 0 0

Best Value 13.6 23.8 0 0 0 0

Std. Dev. 25.1 11.6 1.5×10−10 0.007 0 0

f5 Mean 14.8 34.1 1.1×10−9 0.003 0 0

Best Value 7.9 16.2 2.3×10−11 1.2× 10−15 0 0

Std. Dev. 14.3 15.7 2.2×10−9 0.004 0 0

f6 Mean 9.7× 10−14 0.09 3.7× 10−14 8.4× 10−15 2.4×10−14 1.3×10−14

Best Value 7.7× 10−15 2.8× 10−13 2.5× 10−14 4.1× 10−15 4.1×10−15 7.7×10−15

Std. Dev. 7.4× 10−14 0.3 6.7× 10−14 2.5× 10−15 1.7×10−14 1.9×10−15

f7 Mean 0.01 0.03 2.7× 10−11 0.0008 0 0

Best Value 0 0 4.4× 10−12 0.0001 0 0

Std. Dev. 0.02 0.01 1.2× 10−11 0.001 0 0

f8 Mean 1.9× 10−32 0.02 4.1× 10−28 3.0×10−17 1.5× 10−32 1.5× 10−32

Best Value 1.5× 10−32 1.2× 10−26 3.0×10−17 1.5× 10−32 1.5× 10−32 1.5× 10−32

Std. Dev. 3.7× 10−33 0.04 5.6× 10−29 1.41×10−26 0 0

f9 Mean 53.3 50.2 43.3 200.0 37.9 41.9

Best Value 30.8 32 35.4 89.2 20.8 33.2

Std. Dev. 20.4 14.8 6.7 152.3 8.5 5.3

f10 Mean 71.4 59.4 49.7 176.2 46.8 41.8

Best Value 43 27 38.1 97 35.2 31.8

Std. Dev. 12.0 16.5 5.5 48.6 9.3 6.0

f11 Mean 0.0176 0.02 1.7× 10−6 0.0113 5.5× 10−10 1.2× 10−12

Best Value 0 5.5× 10−15 2.3× 10−8 9.0× 10−6 0 0

Std. Dev. 0.02 0.01 2.3× 10−6 0.0088 7.3× 10−10 3.1× 10−12

f12 Mean 48.6 37.6 25.1 51.0 22.3 20.5

Best Value 16.4 18.4 20.5 20.9 13.2 12.2

Std. Dev. 36.2 30.2 2 40.6 3.5 5.9

16

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 5 0

10
−1 0 0

10
−5 0

10
0

10
5 0

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(a)

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−2

10
0

10
2

10
4

10
6

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(b)

0 0.5 1 1.5 2

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(c)

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000

10
−1 8

10
−1 5

10
−1 2

10
−9

10
−6

10
−3

10
−0

10
3

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(d)

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−1 8

10
−1 5

10
−1 2

10
−9

10
−6

10
−3

10
−0

10
3

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(e)

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000

10
−1 5

10
−1 0

10
−5

10
0

10
5

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(f)

0 0.5 1 1.5 2

x 10
5

10
−20

10
−15

10
−10

10
−5

10
0

10
5

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(g)

FEs

M
ea

n
fit

ne
ss

0 50000 100000 150000 200000
10

−3 5

10
−2 5

10
−1 5

10
−5

10
5

10
1 5 CPPSO−I

CPPSO−II
PSO−LDIW
PSO−TVAC
CLPSO
APSO

(h)

4.3. Comparisons on the solution accuracy
The mean solutions, the best solution and standard deviation (Std. Dev.) of the

solutions are listed in Table 4. The best result among those PSOs is indicated by Boldface

17

0 0.5 1 1.5 2

x 10
5

10
1

10
2

10
3

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(i)

0 0.5 1 1.5 2

x 10
5

10
1

10
2

10
3

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(j)

0 0.5 1 1.5 2

x 10
5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(k)

0 0.5 1 1.5 2

x 10
5

10
1

10
2

10
3

10
4

10
5

FEs

M
ea

n
fit

ne
ss

CPPSO−I
CPPSO−II
PSO−LDIW
PSO−TVAC
APSO
CLPSO

(l)

Figure 5: Performance of the algorithms for twelve 30-dimensional benchmark functions.(a) Sphere func-

tion. (b) Rosenbrock function. (c) Weierstrass function. (d) Rastrigin function. (e) Noncontinuous

Rastrigin function. (f) Ackley function. (g) Griewank function. (h) Generalized Penalized function. (i)

Rotated Rastrigin function. (j) Rotated noncontinuous Rastrigin function. (k) Rotated Griewank function.

(l) Rotated Rosenbrock function.

in the table. Fig. 5 depicts the comparisons in terms of convergence, mean solutions and
evolution processes in solving 12 benchmark functions.

From the Table 4 and Fig. 5(a), it is obviously that, the CPPSO-II provides the best
performance on the sphere function, which is used to test the convergent rates. CPPSO-I
outperforms CLPSO and ranks the third among these PSOs. Table 4 and Fig. 5(b)-
Fig. 5(h) illustrates the comparisons on the multimodal functions without rotation, which
are difficult to optimize. CPPSO-I and CPPSO-II achieve the global optimum on the
optimization of complex functions f3, f4, f5 , f7 and f8. It is worth pointing out that
CPPSO-I and CPPSO-II perform much better than other PSOs on f2, which is usually
difficult to optimize. From the Table 4 and Fig. 5(b)- Fig. 5(h), it is found that both
CPPSO-I and CPPSO-II have good search performance on multimodal functions. CPPSO-
II can refine the search results more accurately than CPPSO-I. Though APSO performs
better than CPPSO on f6, its mean solutions and best solution of other functions are worse
than those of the CPPSO-I and CPPSO-II. When tackling rotated functions, CPPSO-I
and CPPSO-II surpass CLPSO on four rotated functions, seen from Table 4 and Fig.
5(i)-Fig. 5(l). CPPSO-II offers a little better performance on the rotated problems than
CPPSO-I does except f9. We observe that the method proposed in this paper can help the
PSO to search the optimum as well as maintain a high convergence speed. The capability

18

of the proposed approach to avoid local optima and find global optimum of multimodal
functions indicates the superiority of CPPSO.

Comparing the results and the convergence graphs obtained using above mentioned
6 PSO algorithms, CLPSO has good global search ability and slow convergence speed.
APSO can converge to the best solution found so far quickly though it is easy to stuck
in the local optima. Its search performance is seriously affected after rotation. CPPSO
has better local search ability and global search ability although CPPSO’s performance is
also affected by the rotation.

4.4. Comparisons on convergent rate

The convergent rate for achieving the global optimum is another key point for mea-
suring the algorithm performance. Note that in solving real-world optimization problems,
the ”FE” overwhelms the algorithm overhead. Generally, the FE accounts for the most
time as the PSO is highly computation efficient. Hence, the computational complexities
of these algorithms are not compared here. Table 5 shows that CPPSO needs least FEs
to achieve the acceptable solution on f2, f3, f5, f6, f7, f8, f9, revealing that CPPSO has
a higher convergent rate than other algorithms do. Though APSO outperforms CPPSO-I
and CPPSO-II on the other functions, CPPSO-I or CPPSO-II rank second on these func-
tions. In addition, APSO has much worse successful ratio and accuracy than CPPSO-I
and CPPSO-II do on the tested functions.

4.5. Comparisons on successful ratio

Table 5 also shows that CPPSO yields the highest ratio for achieving acceptable solu-
tions in 30 runs. According to the no free lunch theorem [36], any elevated performance
over one class of problems is offset by performance over another class. Hence, one algo-
rithm cannot perform better than all others on every problem.

In summary, the CPPSO performs best on both unimodal and multimodal functions.
The CPPSO possesses capabilities of fast convergence, highest successful ratio, least FEs
and best search accuracy among these PSOs. The performance arises from the competitive
and penalized mechanism, adaptive inertia weight and ELLA.

5. Analysis of adaptive inertia weight and controllable probabilistic approach

Two techniques, i.e., adaptive inertia weight and controllable probabilistic approach
are also used to test the effects of them on the search performance of CPPSO. The perfor-
mance of CPPSO-I without adaptive inertia weight or controllable probabilistic approach
is tested, respectively. Results of 30 independent runs are shown in Table 6.

It is clear from the results that with both adaptive inertia weight and controllable
probabilistic approach, CPPSO-I outperforms other variants of CPPSO-I on search accu-
racy. CPPSO-I can not only deliver the highest accuracy on unimodal functions, but also
deliver a good global search performance on multimodal functions. Moreover, with only
controllable probabilistic technique, CPPSO-I still performs well on tested functions when
testing search accuracy. However, CPPSO-I with only controllable probabilistic method

19

Table 5: Convergence speed and algorithm reliability comparisons; ’-’ representing no runs reached an

acceptable solution

LDIW TVAC CLPSO APSO CPPSO-I CPPSO-II
f1 Mean FEs 106534 45339 56745 7978 21735 9385

Ratio(%) 100 100 100 100 100 100
f2 Mean FEs 103910 45741 48910 24254 21641 19248

Ratio(%) 100 100 100 100 100 100
f3 Mean FEs 118981 0 106211 31451 34016 31022

Ratio(%) 100 0 100 10 100 100
f4 Mean FEs 92437 35056 62535 3418 9451 4479

Ratio(%) 100 70 100 100 100 100
f5 Mean FEs 101656 47491 47440 3160 8788 3073

Ratio(%) 100 83.3 100 100 100 100
f6 Mean FEs 110427 54642 63212 40209 13801 15235

Ratio(%) 100 96.7 100 100 100 100
f7 Mean FEs 55331 18136 75658 72629 27448 22342

Ratio(%) 16.7 13.3 100 100 100 100
f8 Mean FEs 66340 36411 56957 27773 16058 10687

Ratio(%) 100 80 100 100 100 100
f9 Mean FEs 50820 36411 123109 - 43551 79884

Ratio(%) 50 80 93.3 0 96.7 90
f10 Mean FEs 10271 21717 50219.8 11208 58179 60782

Ratio(%) 3.3 30 43.3 10 66.7 76.7
f11 Mean FEs 40382 12959 84169 11545 30691 24807

Ratio(%) 36.67 23.3 100 66.7 100 100
f12 Mean FEs 95954 44893 44414.6 11665.1 27782 29291

Ratio(%) 76.7 93.3 100 93.3 100 100
Mean Reliability 73.6 64.1 94.7 73.3 96.95 97.2

needs more FEs to get the acceptable solutions.
On the other hand, the CPPSO with only adaptive inertia weight and without control-

lable probabilistic approach can obtain acceptable solutions rapidly. However, it suffers
from bad search performance for global optimum on the tested functions. It is also worth
mentioning that, CPPSO with adaptive inertia weight, combined with controllable proba-
bilistic approach can provide a much better performance on accuracy as well as has a fast
convergence speed. It has been shown from Table 6 that adaptive inertia weight can en-
hance the convergence capability. However, PSO with controllable probabilistic approach
alone and without parameter switching offers a good performance for searching global
optimum on the functions, as discussed above.

To summarize, the full CPPSO is the most powerful for the tested functions. The
results verify that adaptive inertia weight can accelerate the convergence and controllable
probabilistic approach can help the swarm to have a better global search ability.

20

Table 6: Advantages of adaptive inertia weight and controllable probabilistic approach

Algorithms CPPSO-I with both CPPSO-I with CPPSO-I with
adaptive weight and controllable probability adaptive weight

controllable probability
f2 Average 0.02 9.8 19.8

Std. Dev. 0.0001 13.5 27.3
FEs 21641 33462 11463

f4 Average 0 2.3×10−13 0.2
Std. Dev. 0 6.5×10−13 0.5

FEs 9451 61816 20384
f5 Average 0 2.6 14.4

Std. Dev. 0 1.4 2.7
FEs 8788 77354 16094

f6 Average 2.4×10−14 2.4×10−14 1.1×10−14

Std. Dev. 4.1×10−15 4.1×10−15 1.2×10−15

FEs 13801 58052 14614
f7 Average 0 0 5.3×10−12

Std. Dev. 0 0 2.7×10−12

Mean FEs 27448 50273 15381

6. Synchronization of an array of delayed neural networks via a CPPSO

In this section, we will utilize the proposed novel CPPSO to design the controller for
synchronization of an array of neural networks with mixed time-delays.

6.1. An array of delayed neural networks model

To facilitate the readers, let us present the complex networks in a step-by-step way.
We start with the following master network:

ds(t) = (−Cs(t) + Af(s(t)) + Bg(s(t− τ1)) + D

∫ t

k=t−τ2

h(s(k))dk)dt

(34)

where s(t) = (s1(t), s2(t), · · · , sn(t))T ∈ Rn is the state vector of the network; A is a
constant matrix; matrices B and C are the connection weight matrix and the delayed
connection weight matrix, respectively; τ1 is a time delay and τ2 is the distributed de-
lay. f(s(t)) = (f1(s(t)), · · · , fn(s(t)))T , g(s(t)) = (g1(s(t)), · · · , gn(s(t)))T and h(s(t)) =
(h1(s(t)), · · · , hn(s(t)))T . In this paper, an array of linearly coupled identical networks
with mixed time-delays under study is proposed as follows:

dxi(t) = [−Cxi(t) + Af(xi(t)) + Bg(xi(t− τ1)) + D

∫ t

k=t−τ2

h(s(k))dk

+
N∑

j=1

wijΓxj(t) + ui(t)]dt, i = 1, 2, · · · , N, (35)

21

where xi(t) = [xi1(t), xi2(t), · · · , xin(t)]T ∈ Rn is the state vector of the ith node; ui(·)
is the control input to ensure that xi(t) − s(t) → 0 as t → ∞; Γ represents the inner
coupling matrix between the subsystems; W = (wij)N×N is the coupling configuration
matrices representing the coupling strength and the topological structure of the networks,
satisfying

wii = −
N∑

j=1,j 6=i

wij , i, j = 1, 2, · · · , N. (36)

In order to investigate the synchronization for coupled networks (35), we let ei(t) =
xi(t)−s(t) be the synchronization error. Then, the error system follows immediately from
(34) and (35) as follows:

dei(t + 1) = [−Cei(t) + Af̃(ei(t)) + Bg̃(ei(t− τ1)) + D

∫ t

k=t−τ2

h̃(s(k))dk

+
N∑

j=1

wijΓej(t) + ui(t)]dt, i = 1, 2, · · · , N, (37)

where f̃(ei(t)) = f(xi(t))− f(s(t)), g̃(ei(t)) = g(xi(t))− g(s(t)) and h̃(ei(t)) = h(xi(t))−
h(s(t)).

We are going to design a controller ui(t) in order to make the coupled system (37)
synchronized. For simplicity of the implementation, we adopt the following memoryless
state-feedback controller:

ui(t) = Kei(t). (38)

Substitute (38) into (37) to give the following closed-loop system:

dei(t + 1) = [(−C + K)ei(t) + Af̃(ei(t)) + Bg̃(ei(t− τ1)) + D
−1∑

m=−τ2

h̃(ei(k))dk)

+
N∑

j=1

wijΓej(t)]dt, i = 1, 2, · · · , N. (39)

The problem of synchronization is similar and can be viewed as follows:

J =
M∑

k=1

N∑

i=1

‖ei(k)‖2, i = 1, 2, · · · , N, (40)

where k = 1, 2, · · · ,M is the sampling time point and M denotes the length of data used
for synchronization. The synchronization of system (39) can be achieved by searching
suitable K∗ such that the objective function (40) is minimized, i.e.

(K∗) = arg min
(K)∈Ω

(J), (41)

where Ω is searching space admitted for control gain.

22

Remark 6. Recently, synchronization problems of an array of continuous-time delayed
neural networks have been investigated extensively in [4, 5, 15, 25, 26, 38]. The controller
designed in above works are used in terms of LMIs or adaptive controller. However, the
results derived in the works need a number of assumptions and have conservativeness. In
this paper, we aim to deal with synchronization problem of an array of neural networks
using a CPPSO. It can be seen that the synchronization of an array of neural networks is
achieved with high efficiency.

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

x
1
(t)

x 2
(t

)

(a)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

S
yn

ch
ro

n
iz

a
tio

n
 e

rr
o
r

Adaptive method
The proposed controller

(b)

0 50 100 150 200 250 300 350 400 450 500
10

−20

10
−15

10
−10

10
−5

10
0

Generation

S
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r

Adaptive method
The proposed controller

(c)

Figure 6: Time evolution of synchronization error.

Consider the following single node of complex networks (34) with the following param-
eters:

C =

(
1 0
0 1

)
, A =

(
1.8 −0.15
−5.2 3.5

)
, B =

(
−1.7 −0.12
−0.26 −2.5

)
, D =

(
0.6 0.15
−2 −0.1

)
,

τ1 = 1, τ2 = 0.9. The synchronization error is computed as

E(k) =
1
N

√√√√
N∑

i=1

e2
i (k), (42)

The topology and inner coupling matrix of an array of neural networks with mixed time-
delays are considered as follows:

G =

(
−1 1
1 −1

)
,Γ =

(
1 0
0 1

)
.

23

Like adaptive controller [25, 26], supposing that the controller is designed as follows:

K =

(
K11 0
0 K22

)
. (43)

We use CPPSO-I to design the controller of an array of neural networks. The pop-
ulation size of CPPSO-I is set 10 and the generation for PSO is 20. The Runge-Kutta
method is used to solve the the (34) and (35). The generation number of neural networks
is set 500 and the step size is 0.01 second. Fig. 6(a) shows chaotic behaviors of the neural
networks (34). Fig. 6(b) shows the synchronization error and Fig. 6(c) illustrates the
synchronization error in logarithm form. It can be seen from Fig. 6(b) and Fig. 6(c) that
the error states of synchronization tend to zero faster and more accurate than the con-
ventional adaptive method in [25, 26], which demonstrates the great efficiency of CPPSO
presented in this paper.

7. Conclusion

The controller design problem has been investigated for synchronization of an array
of neural networks with mixed time-delays via a CPPSO algorithm. Based on the infor-
mation of fitness value, an evolutionary state function is defined and computed, which
offers an effective way to control inertia weight. As illustrated in the benchmark tests,
the adaptive control of the inertia weight enables the PSO more efficient, providing an
improved convergence speed in terms of FEs to reach acceptable solutions for benchmark
functions.

A velocity updating equation with Bernoulli stochastic variables is proposed to make
the particles learn from different strategies. The learning strategies are automatically
selected efficiently using a competitive penalized method. Furthermore, an elite local
learning approach is developed to lead the swarm to refine converging solutions efficiently.
The searching radius is switched between different values governed by a Markov chain in
ELLA. The substantially improved global solution accuracy as a result of the ESF, PSO
with controllable probability and ELLA are verified in both unimodal and multimodal
problems.

Note that the ESF, PSO with controllable probability and ELLA are easy to set and
require no burden to implement. Therefore, the CPPSO is simple and easy to use as the
standard PSO, since it offers in substantially improved performance in terms of conver-
gence speed and solution accuracy.

Finally, we have employed the CPPSO to design the memoryless feedback controller
for synchronization of an array of delayed neural networks. Compared with the results
obtained by Lyapunov method, the controller design using CPPSO has faster convergence
speed.

We would like to point out that it is possible to extend our main results to design
control scheme of acceleration coefficients using ESF and apply our methods to other evo-
lutionary computation algorithms. The corresponding results will appear in our future
works.

24

8. Acknowledgement

The authors are grateful to the Editor and anonymous reviewers for their careful
reading and constructive comments.

References

[1] P. S. Andrews, An investigation into mutation operators for particle swarm optimization, in
Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada, 2006, pp. 1044-1051.

[2] P. J. Angeline, Using selection to improve particle swarm optimization, in Proc. IEEE Congr.
Evol. Comput., Anchorage, AK, 1998, pp. 84-89.

[3] F. VD. Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization,
IEEE Trans. Evol. Comput. , vol. 8.,no. 3 pp.225-239, June 2004.

[4] J. Cao, P. Li, and W. W. Wang, Global synchronization in arrays of delayed neural networks
with constant and delayed coupling, Phys. Lett. A, vol. 353, pp. 318-325, 2006.

[5] G. Chen, J. Zhou, and Z. R. Liu, Global synchronization of coupled delayed neural networks
and applications to chaotic CNN models, Int. J. Bifur. Chaos, vol. 14, no. 7, pp. 2229-2240,
2004.

[6] Y. P. Chen, W. C. Peng, and M. C. Jian, Particle swarm optimization with recombination
and dynamic linkage discovery, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 6,
pp. 1460-1470, Dec. 2007.

[7] M. Clerc, J. Kennedy, The particle swarm: explosion, stability, and convergence in a multi-
dimensional complex space, IEEE Transactions on Evolutionary Computation 6(1). Piscat-
away, NJ, 2002, pp. 58-73.

[8] R. C. Eberhart and Y. H. SHi, Particle swarm optimization: Developments, applications and
resouces, in Proc. IEEE Congr. Evol. Comput. Seoul, Korea, 2001, pp. 81-86.

[9] H. Gao, J. Lam, and G. Chen, New criteria for synchronization stability of general complex
dynamical networks with coupling delays, Phys. Lett. A, vol. 360, pp. 263-273, 2006.

[10] C. M. Gray, Synchronous oscillations in neuronal systems: Mechanism and functions, J.
Comput. Neurosci., vol. 1, pp. 11-38, 1994.

[11] R. Mendes, J. Kennedy, and J. Neves, The fully informed particle swarm: Simpler, maybe
better, IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 204-210, Jun. 2004.

[12] J.J. Liang, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions, IEEE Trans. Evol. Comput., vol. 10, no. 3, pp.
281-295, Jun. 2006.

[13] J. Liang, Z. Wang and X. Liu, Robust synchronization of an array of coupled stochastic
discrete-time delayed neural networks, IEEE Tran. on Neural Networks, 9(2008)1910-1921.

[14] J. Liang, Z. Wang, X. Liu, Robust passivity and passification of stochastic fuzzy time-delay
systems Information Sciences, 180(2010), 1725-1737.

[15] W. L. Lu and T. P. Chen, Synchronization of coupled connected neural networks with delays,
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp. 2491-2503, Dec. 2004.

25

[16] W. L. Lu and T. P. Chen, Synchronization analysis of linearly coupled networks of discrete
time systems, Physica D, vol. 198, pp. 148-168, 2004.

[17] J. H. Lü, X. H. Yu, and G. Chen, Chaos synchronization of general complex dynamical
network, Physica A, vol. 334, pp. 281-302, 2004.

[18] Y. Wang, Y. Yang, Particle swarm optimization with preference order ranking for multi-
objective optimization, Information Sciences, 179(2009)1944-1959.

[19] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International
Conference On Neural Network, 1995, pp. 1942-1948.

[20] R.A.Krohling and L.dos Santos Coelho, Coevolutionary particle swarm optmization using
Gaussian distribution for solving constrned optimization problems, IEEE Trans. Syst., Man,
Cybern. B, vol.36, no.6, pp.1407-1416, Dec. 2006.

[21] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol.
64, no. 8, pp. 821-824, 1990.

[22] A. Ratnaweera, SK. Halgamure, HC. Watson. Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Trans Evol. Comput. 2004;8:240-
55.

[23] Y. Shi, RC. Eberhart. Empirical study of particle swarm optimization. In: Proceedings of
the 1999 IEEE congress on evolutionary computation. Piscataway (NJ): IEEE Press; 1999.
p. 1945-50.

[24] Y. Shi, RC Eberhart. Parameter selection in particle swarm optimization. In: Proceedings
of the 7th international conference on evolutionary programming VII. LNCS, vol. 1447. New
York: Springer-Verlag; 1998. p. 591-600.

[25] Y. Tang, R. Qiu, J. Fang, Q. Miao, M. Xia, Adaptive lag synchronization in unknown stochas-
tic chaotic neural networks with discrete and distributed time-varying delays, Physics letters
A, 372(2008)4425-4433.

[26] Y. Tang, J. Fang, Robust synchronization in an array of fuzzy delayed cellular neural networks
with stochastically hybrid coupling, Neurocomputing 72 (2009) 3253-3262.

[27] Y. Tang, Z. D. Wang and J. Fang, Pinning control of fractional-order weighted complex
networks, Chaos,19(2009)013112.

[28] Y. Tang, J. Fang, M. Xia, D. Yu, Delay-distribution-dependent stability of stochastic discrete-
time neural networks with randomly mixed time-varying delays, Neurocomputing, 72 (2009)
3830-3838.

[29] R. Salomon, Reevaluating genetic algorithm performance under coordinate rotation of bench-
mark functions, BioSystems, vol. 39, pp. 263-278, 1996.

[30] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari,
Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter
optimization, in Proc. IEEE Congr. Evol. Comput.,2005, pp.1-50.

[31] Z. Wang, F. Yang, Daniel W. C. Ho, and X. Liu, Robust H∞ Control for Networked Systems
With Random Packet Losses, IEEE Trans Systems, man and cybernetics-PART B, VOL. 37,
NO. 4, AUGUST 2007.

26

[32] Z. Wang, F. Yang, D.W. C. Ho, and X. Liu, Robust finite-horizon filtering for stochastic
systems with missing measurements, IEEE Signal Process. Lett., vol. 12, no. 6, pp. 437-440,
Jun. 2005.

[33] Z. Wang, D. W. C. Ho., and X. Liu. Variance-constrained filtering for uncertain stochastic
systems with missing measurements. IEEE Transactions on Automatic Control, 48(2003)1254-
1258.

[34] C. W. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonrecip-
rocal time-varying coupling, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 5, pp.
282-286, May 2005.

[35] A. A. Ukhtomsky, Collected Works (in Russian). Leningrad, Russia: Nauka, 1978, pp. 107-
237.

[36] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Congr.
Evol. Comput. vol. 1, no, 1, pp. 67-82, Apr. 1997.

[37] X. Yao, Y. Liu and G. M. Lin, Evolutionary programming made faster, IEEE Trans. Evol.
Comput., vol.3, no.2, pp.82-102, July,. 1999.

[38] W. Yu, J. Cao, J. Lü, Global Synchronization of Linearly Hybrid Coupled Networks with
Time-Varying Delay, SIAM J. applied dynamical systems, 7(2008)108-133.

[39] Z. Zhan, J. Zhang, Y. Li, H.S.H. Chung, Adaptive particle swarm optimization, IEEE Trans.
System, man and cybernetics-B, 39(2009)1362-1381.

27

