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Abstract

Multimodal optimization problems pose a great challenge of locating mul-
tiple optima simultaneously in the search space to the particle swarm opti-
mization (PSO) community. In this paper, the motion principle of particles
in PSO is extended by using the near-neighbor effect in mechanical theory,
which is a universal phenomenon in nature and society. In the proposed
near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each
particle explores the promising regions where it resides under the compos-
ite forces produced by the “near-neighbor attractor” and “near-neighbor re-
peller”, which are selected from the set of memorized personal best positions
and the current swarm based on the principles of “superior-and-nearer” and
“inferior-and-nearer”, respectively. These two forces pull and push a parti-
cle to search for the nearby optimum. Hence, particles can simultaneously
locate multiple optima quickly and precisely. Experiments are carried out
to investigate the performance of NN-FPSO in comparison with a number
of state-of-the-art PSO algorithms for locating multiple optima over a series
of multimodal benchmark test functions. The experimental results indicate
that the proposed NN-FPSO algorithm can efficiently locate multiple optima
in multimodal fitness landscapes.
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problem, near-neighbor effect, force-imitated particle dynamics.

1. Introduction

Particle swarm optimization (PSO) is a branch of computational intel-
ligence, inspired by social interaction among entities, rather than simply
depending on separate individual cognitive abilities [17, 18]. Traditionally,
studies on PSO algorithms have been concentrated on uni-modal optimiza-
tion functions. For uni-modal optimization functions, the aim is to design
algorithms that can quickly and precisely find a single global optimum in the
solution space. PSO has been widely applied for solving various uni-modal
optimization problems with promising results due to the property of fast
convergence [31, 40].

However, most real world optimization problems are subject to multi-
modal environments, where multiple peaks exist in the fitness landscape
[14, 19]. For multimodal optimization problems (MOPs), it is usually de-
sirable to simultaneously locate multiple optima, including global optima or
even local optima. This may be beneficial in terms of algorithm design and
practical applications [29]. Regarding the first aspect, several meta-heuristic
algorithms, including evolutionary algorithms (EAs) and swarm intelligence
(SI), tend to converge toward the best solution found so far, while neglecting
other promising areas that may have been previously explored. Striving to
find multiple peaks allows the algorithm to search for different potential areas,
and, hence, avoid getting stuck onto a local optimum during the optimization
process. Regarding the second aspect, in various real world applications, the
optimization tasks require to find more than one optima. Hence, searching
for a diverse set of equally acceptable and high quality solutions may provide
alternative solutions for an ideal decision-making in the macrocosmic sense
[15]. In addition, many optimization problems in the real world are subject
to dynamic environments, which also requires searching for multiple optima
in order to rapidly detect environmental changes and respond to the changes
to track the changing optima [5, 28].

Within the classical PSO model, the principles that govern each particle’s
movement are the interaction among particles and the retrospection of the
past experience of the particle. Instead of running a classical optimization
method (i.e., point-by-point approach) for many times, each of which aims
to find one optimum, population-based techniques may be applied to find
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a set of optimal solutions in parallel in one run. Furthermore, due to the
special feature of adjusting an individual’s position according to the valu-
able information obtained through its neighbor connections, PSO turns out
to be potentially attractive for solving MOPs. However, the classical PSO
algorithm needs to be adapted for optimal results in finding multiple optima.
The key drawback of the classical PSO algorithm lies in the diversity loss:
once the swarm has converged to one point in the search space, particles may
lose the ability to explore other optima [14, 36, 39].

In recent years, PSO has been applied to address MOPs with some
promising results. Several approaches, such as the niching and speciation
methods [1, 8, 20], have been developed for locating multiple optima in the
fitness landscape. The main idea behind these approaches is to partition the
whole swarm into several sub-swarms to locate different promising areas in
the search space. With these approaches, two issues should be addressed.
The first one is how to determine the neighbors for a particle, with the aim
of assigning particles to suitable regions among different promising areas.
The second issue concerns how to design the information-sharing strategy
between a particle and its meaningful neighbors. The main task of the above
two concerns usually requires a niching parameter to specify the radius of
each niche. EAs have been proved sensitive to this user-specified parameter.
However, setting it to a proper value is a major challenge since the knowledge
may be unavailable a priori in real world applications [11, 30].

In this paper, a new force-imitated dynamics is introduced for the move-
ment of particles in PSO. Inspired by a conventional phenomenon in nature,
called the near-neighbor effect, each particle employs two force agents, the
“near-neighbor attractor” and “near-neighbor repeller”, which are selected
from the memorized personal best sets and the current swarm according
to the principles of “superior-and-nearer” and “inferior-and-nearer”, respec-
tively. These two members enforce the particle to move towards an appro-
priate area among different promising regions, and, hence, encourage the
whole swarm population to locate various peaks in the multimodal fitness
landscape. The proposed algorithm is called the near-neighbor effect based
force-imitated PSO (NN-FPSO). NN-FPSO removes the need to specify the
niching parameter. In order to investigate the performance of the proposed
NN-FPSO algorithm for MOPs, experiments are carried out to analyze the
effect of crucial techniques on the behavior of NN-FPSO and compare it with
several state-of-the-art PSO algorithms on a set of commonly used bench-
mark MOPs in this paper.

3



The rest of this paper is outlined as follows. The next section presents rel-
evant work, including the mathematical description of MOPs, the force based
principles of the PSO algorithm, and a brief review on related researches for
MOPs. Section 3 describes the inspiration from nature of this study, in-
cluding the near-neighbor effect in nature and the force-imitated dynamics
equation, which is derived from the force theory. Section 4 provides the pro-
posed NN-FPSO in detail. The experimental study that provides an analysis
over the effect of specific mechanisms and parameters, and the performance
comparison of NN-FPSO with other PSO algorithms for locating multiple
optima on MOPs, is presented in Section 5. Finally, Section 6 concludes this
paper with some discussions on the relevant future work.

2. Related work

2.1. Multimodal optimization problems (MOPs)

Many commercial and engineering optimization problems have multiple
optimal solutions, including global and local optima. The MOP is NP-hard
in terms of its computational complexity [29]. Without loss of generality, we
discuss maximization problems in this paper. Given a continuous domain D,
which is a subset of the universe Rn, and a function f : D → Rn, a global
optimum ~x∗

G of f over the domain D is defined as any point ~x from D that
satisfies the following condition:

∀~x ∈ D, f(~x) ≤ f(~x∗
G). (1)

Given ǫ > 0, and the ǫ-neighborhood of ~x∗ can be defined as follows:

N(~x∗, ǫ) = {~x | ‖~x− ~x∗‖ < ǫ} (2)

Then, a local optimum ~x∗
L of f over the domain D is defined as any point ~x

from D that satisfies the following condition:

∀~x ∈ N(~x∗
L, ǫ) ∩D, f(~x) ≤ f(~x∗

L). (3)

Optimization algorithms usually suffer from some difficulties in solving
MOPs due to the existence of multiple global optima. For example, Fig-
ure 1 shows the fitness landscape of a typical multimodal function, the 2-
dimensional Shubert function, denoted Shubert 2D in this paper. Shubert
2D has 760 optima, including 18 global optima. As shown in Figure 1, there
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Figure 1: The 2-dimensional Shubert function.

exist many potential attractors distributed in different regions of the fitness
landscape. It is a difficult task to distinguish among them during the whole
optimization process. Therefore, it may be beneficial to evolve sub-groups in
parallel, which are driven by suitable attractors, separately.

In practical applications, it is usually desirable to detect all the global
optima, such as computing all Nash equilibria for producing a reliable esti-
mation of the outcome that can be reached through a game playing. Another
interesting research area is the computation of period orbits of nonlinear
mappings [29], and detecting all points of some specific types can be used in
dissipative dynamical systems.

2.2. Particle swarm optimization (PSO)

PSO was first introduced by Kennedy and Eberhart in [13, 16]. PSO em-
ploys a population of particles that fly over the fitness landscape, of which
the swarm dynamics was inspired by the collective behavior of organisms,
such as bird flocking and fish schooling. Each particle holds a memory of the
best position that it has seen so far and the best position obtained within its
neighborhood. A particle updates its velocity based on its current velocity
and position along with the above two memorized positions. The modifica-
tion of the moving orbit of a particle, say particle i, is described as follows
[9]:

~vi(t+ 1) = χ~vi(t) + c1~ξ × (~pi(t)− ~xi(t)) + c2~η × (~pg(t)− ~xi(t)) (4)
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~xi(t + 1) = ~xi(t) + ~vi(t+ 1), (5)

where χ is the inertia weight, which controls the degree that the velocity
of a particle at time t influences the velocity of that particle at time t + 1.
Vectors ~vi(t) and ~xi(t) represent the current velocity and position of particle
i at time t, respectively, ~pi(t) and ~pg(t) represent the position of the best
solution discovered so far by particle i and the position discovered so far by
all particles in the neighborhood of particle i, respectively, c1 and c2 are the
acceleration constants that determine the influence of the two attractors to
particle i, respectively, and ~ξ and ~η are random vectors with each constituent
randomly drawn with a uniform distribution from [0, 1].

In the classical PSO model, according to Eqs. (1) and (2), particles share
information through the swarm attractor, ~pg, and evoke memories via parti-
cle attractors, ~pi. Based on Eqs. (1) and (2), each particle’s movement can
also be considered as being accelerated by two elastic forces produced by two
attractors, which correspond to the previous best position found by itself
and the previous best position found by particles in its neighborhood, re-
spectively. The velocity update for a particle, say particle i, can be modified
as follows:

~vi(t+ 1) = χ(~vi(t) + ~ai(t)) (6)

where χ and ~vi(t) are as defined before, and ~ai(t) is the acceleration produced
by the force described as follows:

~ai(t) =
∑

j∈Ai(t)

Fij(t)

mi(t)
(7)

where Ai(t) is the set of agents that act on agent i at time t, Fij(t) is the
force produced by agent j on agent i at time t, and mi(t) is the mass of agent
i at time t. In this study, we assume mi(t) is a constant with the value 1.
For the classical PSO model, we have the following acceleration formula:

~ai(t) = c1~ξ × (~pi(t)− ~xi(t)) + c2~η × (~pg(t)− ~xi(t)) (8)

where ~pi(t), ~pg(t), c1, c2, ~ξ, and ~η are as defined before.
Several versions of the PSO algorithm have been developed [31] since PSO

was first introduced. Among them, there are two main models, called gbest
(global best) and lbest (local best), respectively. These two models differ in
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the way of defining the neighborhood for each particle. In the gbest model,
the neighborhood of a particle consists of the particles in the whole swarm,
which share information between each other. On the contrary, in the lbest
model, the neighborhood of a particle consists of several fixed particles.

Over the years, researchers have also investigated the force-based dynam-
ics for the swarm in PSO, such as controlling the movement of particles,
and evolving with genetic programming through a series of force generat-
ing equations [29]. Blackwell [4] used a charged PSO algorithm to solve the
dynamic optimization problem by considering a bi-modal parabolic environ-
ment of high spatial and temporal severity. This work was extended by using
quantum swarms and charged particles to avoid the collision of particles for
addressing dynamic environments [5]. The idea of applying attraction and
repulsion in PSO was proposed by some researchers. Riget and Vesterstroem
have proposed an attractive and repulsive PSO (ARPSO) algorithm with
the aim of preventing premature convergence on MOPs. Within ARPSO,
the attraction and repulsion phases are two stages when updating the veloc-
ity of a particle. The swarm is alternated between these two phases according
to a diversity measurement. The attraction phase causes the particles con-
verging toward one another, while repulsion pushes particles away from one
another for enhancing diversification. Dalland and Lam [10] proposed a mod-
ified ARPSO algorithm and implemented it on a combinatorial benchmark
problem, the orienteering problem, which is a variation of the well-known
traveling salesmen problem.

2.3. Researches on locating multiple optima

In recent years, PSO has been increasingly applied for MOPs. When solv-
ing MOPs, an efficient PSO algorithm should be able to locate and maintain
multiple peaks simultaneously [21, 29]. This greatly challenges classic PSO
algorithms due to the diversity loss.

Regarding locating multiple optima in multimodal landscapes, the be-
haviour of the two PSO models, i.e., the gbest model and the lbest model, is
quite different. For the gbest PSO model, van den Bergh and Engelbrecht [40]
proved that particles will congregate onto a single point, even incapable of
obtaining different global optima when the algorithm is executed for many
times. Parsopoulos and Vrahitis [29] noted that when applying the gbest
model for tackling MOPs, the swarm tends to move back and forth in the
landscape, which causes particles fail to decide where to land. With the idea
of isolating a potentially good solution and stretching the fitness landscape
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for a comprehensive exploration for other potential global optima, the algo-
rithm has been proved to be able to locate all optima on the test functions.
The technique is similar to the derating method applied in the sequential
niche method from the GA community [1].

The lbest PSO model is less vulnerable to the attraction of a global or
local optimum than the gbest model. For the lbest PSO model, Parsopoulos
[29] has empirically indicated that it is inefficient for locating optima because
the adopted neighbor best is not suitable for attraction. Brits et al. [8] have
proposed a nbest PSO algorithm using the “neighborhood best” for each
particle, which is defined as the center of positions of its n closest members.
However, the method suffers from the difficulty of setting the parameter n,
which requires a prior knowledge about a specific problem domain.

The niching method, which was inspired by the social interaction and
adaption of individuals around multiple resources, is an efficient technique
for EAs to address MOPs. The basic principle of the niching method is to
maintain the population diversity by dividing the population into several
sub-groups in order to focus on different promising areas in the search space,
thereby finding multiple peaks in parallel. Various niching techniques have
been proposed in the EA community. A brief review is provided as follows.

Petrowski [30] introduced a niching method, called clearing, for genetic
algorithms (GAs). The motivation of this method is to share finite resources
in the sub-population that contains similar individuals, which are measured
by the Euclidean distance. The fitness of inferior members within a pre-
specified radius around a dominant member is set to zero, which is considered
to be “cleared”. This technique has shown a competitive ability of avoiding
gene drift.

Similar to the above method, the speciation approach is also a consider-
able technique for locating multiple optima. Li [19] has explored the clearing
method by using the notion of speciation to GAs. Different from Petrowsk’s
method, the speciation method discourages the interaction of particles in
different sub-groups, and tries to simultaneously locate multiple optima in
the search space. Through the adaptive creation of multiple species, Li et
al. [20, 21] have further incorporated the idea of species into the classical
PSO algorithm and differential evolution (DE) for solving MOPs. In their
algorithm, at each iteration, multiple species are identified, and a neighbor
best particle, called species seed, is determined within each specie. Their al-
gorithms have shown to be more competitive on MOPs than those reported
in the literature.
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The crowding method was originally introduced by De Jong [12] as a
diversification technique. It was inspired by the phenomenon that similar
members compete for limited resources. In the crowding method, different
promising areas are occupied by dissimilar individuals, while similar popu-
lation members compete within the same niche. Within a niche, inferior old
members will be replaced (i.e., crowded out of the population) by the fitter
ones when the niche has reached its maximal capacity. Mahfound [23, 24]
developed some novel methods to eliminate the requirement of user-specified
parameters and reduce the replacement error for matching multiple peaks.
With the aim of providing a restorative pressure for GAs, the probabilistic
crowding proposed by Mengshoel [27] has shown some promising results in
multimodal fitness landscapes.

Goldberg and Richardson [14] suggested a fitness sharing method with the
purposes of locating and preserving multiple optima. This method allows the
growth of similar individuals by enabling each population member to share
its fitness assignment with nearby members, where the proximity between
two individuals is synthetically considered with their fitness and distance.
Deb and Goldberg [11] further studied effective techniques to set the niche
parameters to improve the behavior of locating multiple optima.

As a PSO based niching technique, NichePSO [8] identifies niches by
measuring changes of the particle’s fitness. A sub-swarm is created when
a particle’s fitness exhibits a little variance over several iterations, which
contains this particle and its closest topological neighbors. NichePSO has
shown to be substantially successful in finding multiple optima, including
global and some local optima, on MOPs.

Researches have also been carried out on enhancing the robustness of
niching techniques for MOPs. It is a crucial task to determine the nich-
ing radius to estimate the distance between those multiple optima without
prior information of a problem. Bird [2] presented adaptive niching PSO
algorithms that adaptively adjust the radius without per-specifying this pa-
rameter. The experimental results indicate that this algorithm is insensitive
to the adopted parameters, making it capable of solving a series of problems
without additional tunings.

A recent work by Li [22] aimed to remove the requirement for specifying
niching parameters. The idea is to encourage each particle to absorb infor-
mation from its fitter-and-closer neighbor, which provides PSO with a good
performance on locating global optima. For each particle, the neighbor that
holds the largest ratio of the fitness difference and the Euclidean distance is
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selected from the memory swarm. Their experimental results indicate that
sub-groups of particles near each other are able to explore multiple local
peaks in MOPs and that this algorithm is suitable for finding optima in
the multimodal landscape in parallel when the population size is sufficiently
large.

The aforementioned approaches indicate some key considerations to im-
prove the performance of PSO in multimodal fitness landscapes. They are
summarized as follows:

1. Particles should exploit information from their respective neighbors
that hold valuable knowledge. This may pull the particles to search
for promising regions. On the other hand, each particle should take
advantage of knowledge from its weaker neighbors. This may push the
particle to move along in the probing direction and extensively explore
the search space.

2. Dynamic communication models based on the feedback of the fitness
landscape may be beneficial for the adaptive searching and locating
behavior.

3. Personal best so far positions of particles can provide reliable and valu-
able information found so far by the population, which can create an
interaction network to correctly guide the movement of particles.

4. It would be desirable to remove the need of pre-specified parameters
without any prior information of a problem.

In the following section, we describe the inspiration from nature regarding
two principles, the near-neighbor effect and the force-imitated mechanism.
Then, the proposed NN-FPSO algorithm that applies the force-imitated
mechanism using the near-neighbor effect will be described in detail in Sec-
tion 4.

3. Inspiration from Nature

3.1. The near-neighbor effect

The concept of the near-neighbor effect (i.e., the vicinal effect) is derived
from nature. It usually refers to an interactive phenomenon between two or
multiple individuals, which hold similar characters, structures, or adjacent
locations, such as the attraction and repulsion effect on the vicinal group
in the chemology [32], and the next-nearest-neighbor hopping of the crystal
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lattice in the physical domain [38]. A common animal behavior is that an in-
dividual tends to perceive and react to what it sees locally, and is most likely
to be attracted by the superior ones while attempting to depart from the in-
ferior ones [26, 41]. These mechanisms enable each organism to process some
promising properties through the agency of its immediate surroundings (i.e.,
neighbors), and hence magnifies its influence across the whole population or
flock.

There are two essential principles behind the near-neighbor effect phe-
nomenon in physics. They are briefly summarized as follows:

1. Selectivity: The activation of the near-neighbor effect is determined by
the surface or properties of an organism. In general, this interaction
often takes place between neighbors in the spatial measurement with
consistent attributes or characters in the intrinsic aspects.

2. Pluralism: There are numerous categories of these action forms. The
pattern (either mono-directional or bi-directional) and degree of action
are also determined by the properties of organisms.

3.2. The force-imitated mechanism

In the physics domain, force is the primary reason that causes system
dynamics, which is carried out by the quanta of interactions. The motion
state of individuals will be changed when they are subject to external forces.
The “action in distance” force, such as the universal gravitation and the
Coulomb force, acts between two separated entities within a certain range
without any delay. The force is proportional to a certain operation between
properties of these two entities (i.e., the mass and the electrical quantity),
while is inversely proportional to the square of the distance between them
[33]. Therefore, at a specific time t, the force acting on agent i at position
~xi(t) from agent j at position ~xj(t) can be described as follows:

~Fij(t) = K(t)
ci(t)

⊗

cj(t)

Dn
ij(t)

(~xi(t)− ~xj(t)) (9)

where K(t) is a constant at time t, Dn
ij(t) = ‖~xi(t)− ~xj(t)‖

n(n = 1, 2, 3, . . .),
ci(t) and cj(t) are the concerned attribute (such as the mass in the Newton’s
law of universal gravitation [32] and the electrical charge in the Coulomb’s
law [38]) of agent i and agent j, respectively, the symbol “

⊗

” represents a
certain mathematical operation between the two adopted attributes. In this
study, Eq. (9) is called the force-imitated equation.
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4. The proposed NN-FPSO algorithm

In this paper, the concept of the near-neighbor effect is integrated into
the force-imitated mechanism and then applied into the PSO algorithm to
improve its ability of locating multiple optima on MOPs, which results in
the proposed NN-FPSO algorithm in this paper. NN-FPSO adopts a new
information-sharing scheme, which is described as follows. Each particle
iteratively samples a region conducted by a compound acceleration vector,
which is composed of three constituents: the difference between the particle
and its personal best position, an attraction acceleration, and a repulsion
acceleration. The attraction acceleration is produced by the near-neighbor
attractor selected from the memory swarm based on a spatial method, which
allows the particle to explore the possible region where a near optimum may
reside. At the meanwhile, in order to avoid a particle from being trapped into
the current promising area (e.g., being stuck onto a local best point) and,
hence, losing the ability to search for other peaks, a near-neighbor repeller is
selected from the current swarm, also based a spatial technique. By applying
this method at each iteration, the near-neighbor attractor and the near-
neighbor repeller for each particle are identified and drive that particle to
search for different optima in its neighborhood.

Following the above discussions, the acceleration formula in NN-FPSO is
changed from Eq. (8) in the classic PSO model to the following:

~ai(t) = c1~ξ × (~pi(t)− ~xi(t)) + ~ai att(t) + ~ai rep(t) (10)

~ai att(t) = ~Fi att(t)/mi(t) (11)

~ai rep(t) = ~Fi rep(t)/mi(t) (12)

where ~ai att(t) and ~ai rep(t) are the acceleration produced by the near-neighbor

attraction force ~Fi att(t) and the near-neighbor repulsion force ~Fi rep(t) on par-
ticle i at iteration t, respectively. Figure 2 illustrates the possible movement
trend of a particle under these two forces, and presents the comparison be-
tween the classical PSO algorithm and the proposed NN-FPSO algorithm in
terms of where a particle may move to a possible region.

It is noticeable that the particle ~xi tends to explore in a new neighborhood
region under the guidance of valuable information, including the “superior”
information derived from the “near-neighbor” best solution in the memory
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iX  (t)

i_repF       (t)
i_repX       (t)

P  (t)i
P       (t)i_att

Near−Neighbour Repeller

Personal Best Position

iX  (t+1)
F       (t)i_att

Near−Neighbour Attractor

Figure 2: The update of particle i from ~xi(t) to ~xi(t + 1) driven by the composite force

produced by the near-neighbor attractor ~Fi att(t), the near-neighbor repeller ~Fi rep(t), and

the personal best ~Pi(t)

swarm, denoted as ~Pi att(t), and the “inferior” information derived from the

worst solution in the current swarm, denoted as ~Xi rep(t). This way, this tech-
nique may help the population search comprehensively in the search space
while guaranteeing the searching speed.

4.1. The near-neighbor attraction force

In order to encourage each particle to search for the “achievable” op-
timum of its own neighborhood in the multimodel fitness landscape, the
near-neighbor attraction force is introduced. The force-loaded particle is
adopted according to a spatial method. The near-neighbor attraction force
is calculated based on Eq. (9) described in Section 3 as follows:

~Fi att = Katt

f(~Pi att)− f(~Pi)

‖~Pi att − ~Pi‖2
(~Pi att − ~Pi) (13)

Katt =
Iatt × ‖A‖2

f( ~XBest)− f( ~XWorst)
(14)

where ~Pi is the personal best position of particle i, ~Pi att is the near-neighbor
attractor, Iatt is the attraction influence factor, which implies the influence
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degree of the near-neighbor attractor of a particle on the movement trend of
that particle, ~XBest and ~XWorst are the best solution and the worst solution
of the current swarm respectively, and ‖A‖ is the spatial size of the solution
space and can be described as follows:

‖A‖ =

√

√

√

√

d
∑

k=1

(XU
k −XL

k )
2 (15)

where d is the dimension of the search space and XU
k and XL

k are the upper
and lower bound of the search space regarding the k-th dimension, respec-
tively. The near-neighbor attractor ~Pi att can be determined as follows:

~Pi att = argmax
~Pj :j=1,··· ,M ∧ j 6=i

f(~Pj)− f( ~Pi)

‖~Pj − ~Pi‖
(16)

where M is the swarm size.
We adopt such a rule for the near-neighbor attraction force for two rea-

sons. First, the memory swarm is much more stable than the current swarm.
This is because the best points found so far by corresponding moving parti-
cles are updated only when new better points are found [22]. Second, each
particle can absorb the “receivable” and “superior” information. On the
one hand, the similar information encourages a particle to efficiently utilize
the information of its own and its meaningful neighbors, and, hence, move
toward the peak in the neighborhood. On the other hand, the superior infor-
mation provides particles with more possible regions where different optima
may reside.

4.2. The near-neighbor repulsion force

One potential issue regarding the efficiency of the NN-FPSO algorithm
is that particles tend to converge to the local optima. Therefore, the sole
attraction force does not contribute further to the improvement of explo-
ration. In order to avoid particles from being trapped onto the local optima,
the near-neighbor repulsion force is introduced into NN-FPSO and can be
calculated as follows:

~Fi rep = Krep

f( ~Xi rep)− f(~xi)

‖ ~Xi rep − ~xi‖2
( ~Xi rep − ~xi) (17)
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Krep =
Irep × ‖A‖2

f( ~XBest)− f( ~XWorst)
(18)

where Irep is the repulsion-influence factor, which implies the influence degree
of the near-neighbor repeller of a particle on the movement trend of that
particle, ‖A‖ is the spatial size of the solution space, and ~Xi rep is the near-
neighbor repeller of particle i, which can be determined as follows:

~Xi rep = argmax
~Xj :j=1,2,··· ,M ∧ j 6=i

f(~xi)− f( ~Xj)

‖~xi − ~Xj‖
(19)

The reason we adopt such a principle lies in that it is expected to make a
better use of the inferior-and-nearer particles by exploiting some indicative
information so that other areas of the search space can be fully explored.

It is noticeable that the idea of applying attraction and repulsion in PSO
has been introduced in ARPSO, which has shown competitive performance in
multimodal contexts. As mentioned above, the basic motivation of ARPSO
is to use a diversity measure to alternate the algorithm between exploration
and exploitation behaviors, and hence, encouraging individuals to cover more
regions for locating the global optima. Different from ARPSO, NN-FPSO
uses the interaction between particles and their meaningful neighbors, which
is expected to drive individuals to their suitable regions among different
promising regions where the global (local) optima may reside [19]. The near-
neighbor effect is applied for developing multiple partitions of the whole
population in parallel for locating optima in the multimodal fitness landscape.

5. Experimental study

5.1. Test functions

In order to test the performance of investigated algorithms, seven bench-
mark multimodal functions were used in the experimental study. They rep-
resent MOPs of different properties. More detailed description of these func-
tions can be found in [21, 25, 35]. The first five functions F1 to F5 are shown
in Table 1. F1 to F4 are relatively simple MOPs, which are low-dimensional
functions. F5 is the Shubert function, which is a much more challenging
function as it is highly multimodal. For example, F5 in the 2-dimensional
space, denoted Shubert 2D or F5(2D), is as shown in Figure 1, where the
18 global optima out of 760 optima form 9 pairs of two global peaks that
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Table 1: Multimodal test functions

Function Range Number of Global Peaks

F1(x, y) = (y − 5.1x2

4π2 + 5x
π
− 6)2 −5 ≤ x ≤ 10 5

+10(1 − 1
8π )cos(x) + 10 0 ≤ y ≤ 15

F2(x, y) = 200 − (x2 + y − 11)2 −6 ≤ x, y ≤ 6 4
−(x+ y2 − 7)2

F3(x, y) = −4[(4 − 2.1x2 + x4

3 )x
2 −1.9 ≤ x ≤ 1.9 2

+xy + (−4 + 4y2)y2] −1.1 ≤ y ≤ 1.1
F4(x) = sin6(5πx) 0 ≤ x ≤ 1 5

F5(~x) =
∏d

i=1

∑5
j=1 j × cos[(i+ 1)xi + j] −10 ≤ xi ≤ 10 d · 3d

F6(~x) = 1
d

∑d
i=1 sin(10log(xi)) 0.25 ≤ xi ≤ 10 6d

are the closest to each other. F5 poses a great challenge to the niching tech-
nique since the niching radius is unique for all catchment areas. The number
of global optima in F5 increases quickly with the increment of the number
of dimensions, i.e., the value of d. For example, the 3-dimensional Shubert
function, denoted Shubert 3D or F5(3D), has 81 global optima in 27 groups
and the 4-dimensional Shubert function, denoted Shubert 4D or F5(4D), has
324 global optima in 81 groups.

The sixth benchmark problem F6 is the invented Vincent function, which
has 6d global peaks. Different from the regular distances between global peaks
in F5, it has no local peaks but has vastly different spacing between global
optima. The seventh test function F7 is the Hump function with an arbitrary
number of peaks, which has been widely used as a multimodal benchmark
problem [35]. Within this problem, each optimum can be represented by four
features: the location, the height, the shape, and the radius of the basin of
attractors. The hump function with K peaks is defined as follows:

f(~x) = max
i=1,2,··· ,K

fi(~x) (20)

fi(~x) =

{

Hi[1− (d(~x,
~Xi)

Ri
)αi], if d(~x, ~Xi) ≤ Ri

0, otherwise
(21)

where fi(~x) is the definition of peak i, ~Xi, Hi, and Ri are the location, height,
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and radius of peak i, respectively, αi is the shape factor of peak i, and d(~x, ~Xi)
is the Euclidean distance between solution ~x and the center of peak i.

5.2. Experimental design

In this section, three sets of experiments are carried out to investigate
the performance of NN-FPSO in multimodal environments. In the first set
of experiments, the sensitivity analysis on the effect of key parameters and
critical approaches on the performance of NN-FPSO is carried out on dif-
ferent multimodal test functions. In addition, a guideline for setting the
parameters introduced into NN-FPSO (i.e., Iatt and Irep) is provided, with
an experimental verification that NN-FPSO is robust regarding them within
a range for different MOPs. In the second set of experiments, NN-FPSO
is compared with ARPSO, which has also used the idea of attraction and
repulsion in PSO on the test functions. In the third set of experiments,
NN-FPSO is compared with four other peer PSO algorithms in multimodal
environments with different complexities of the fitness landscape.

The four peer PSO algorithms are described as follows. The first PSO al-
gorithm is the species-based PSO (SPSO) algorithm proposed in [20]. SPSO
uses a local “species seed”, which provides the local best to particles whose
positions are within a specific species radius rs. SPSO has been shown to
produce competitive results in multimodal environments and is more effec-
tive than other niching techniques in the literature when the species radius
is set to a proper value. The second peer PSO algorithm is the fitness Eu-
clidean ratio PSO (FER-PSO) algorithm [22]. FER-PSO follows the basic
idea of encouraging the survival of fitter and closer particles and removes the
need to specify any niching parameters for locating multiple optima. The
third peer algorithm is the adaptive niching PSO (ANPSO) algorithm pro-
posed in [2] with the aim of releasing the requirement for pre-determining
any niching parameters. ANPSO is another state-of-the-art PSO model for
locating multiple optima in parallel. The fourth peer algorithm is the en-
hanced SPSO (ESPSO) algorithm [3], whose primary motivation is also to
reduce the sensitivity of SPSO to the niching parameters.

In the experiments, for each PSO variant, the learning factors c1 = c2 =
2.05 and the inertia weight ω = 0.729844 were applied as suggested in [20].
For the peer PSO algorithms, other parameters were set to the values that
were recommended by their authors respectively. For each experiment of an
algorithm on a test problem, 50 independent runs were executed with the
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same set of random seeds in order to have a fair comparison among different
algorithms.

In order to evaluate the ability of algorithms for locating all global optima
in parallel, three performance measurements that were used in [3] were also
adopted in this study. They are the accuracy, the convergence speed, and the
success rate, which are described as follows.

5.2.1. Performance measurements

The first performance measurement is the accuracy, denoted as µ in this
paper. It is defined as the average of fitness differences between all known
global optima and their closest particles. Accuracy was recorded in the final
iteration step and calculated as follows [2]:

µ =
1

Nopt

Nopt
∑

j=1

|f( ~optj)− f(~xoptj )| (22)

where Nopt is the number of all known global optima, ~optj is the j-th global

optimum, and ~xoptj is the corresponding particle that is the closest to ~optj .
It can be seen that this measurement can give an accurate indication of how
closely an algorithm identifies all global optima.

In order to test the ability of algorithms to quickly and precisely converge
onto all global optima, the convergence speed at a required level of accuracy
is taken as the second performance measurement in this paper. The fitness
difference between each known global optimum ~optj and its closest particle
~xoptj is calculated for each iteration. A global optimum is considered to be

found if a solution is close enough to the global optimum according to an
expected accuracy acceptance threshold δ (0 ≤ δ ≤ 1), that is, the following
condition should be met:

∀~x ∈ Sopt ∃~y ∈ S : min{‖~x− ~y‖} ∧ ‖f(~x)− f(~y)‖ ≤ δ (23)

where Sopt is the set of all known global optima, S is the current swarm, and
min{‖~x− ~y‖} returns the closest pair of a global optimum and a solution.

The above equation can be used to calculate the number of iterations
CStep required by an algorithm to find all global optima, i.e., the convergence
speed of an algorithm, and the number of evaluations (Ce) for an algorithm
to locate all global optima can be calculated as follows:

Ce = CStep ×M (24)
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where M is the swarm size. Eq. (23) can also be used to justify the number
of peaks found by an algorithm within a maximum allowable number of
iterations.

In addition to the above two performance measurements, the performance
measurement of the success rate was also used in the experimental study,
which represents the percentage of runs in which all global optima were
successfully located.

5.3. Sensitivity analysis of parameters of NN-FPSO

5.3.1. Effect of the swarm size

The aim of this set of experiments is to test the effect of the swarm size
M on the performance of NN-FPSO on different MOPs. Given that the
complexity of the test functions is quite different, experiments were carried
out with M set in the range of [10, 100] and δ = 0.00001 for F1-F4 and with
M set in the range of [50, 500] and δ = 0.1 for F5(2D) due to a relatively
larger number of global optima in F5. Other parameters of NN-FPSO were
set as follows: Iatt = 0.5, Irep = 0.1, and a maximum of 200000 evaluations
was allowed for each run of NN-FPSO on a MOP. The experimental results
regarding the convergence speed and the success rate averaged over 50 runs
are provided in Figure 3 and Figure 4, respectively.
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Figure 3: The average number of evaluations needed to find all global optima over 50 runs
of NN-FPSO with Iatt = 0.5, Irep = 0.1, and different swarm sizes on functions: (a) F1-F4

and (b) F5(2D).
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Figure 4: The average success rate over 50 runs of NN-FPSO with Iatt = 0.5, Irep = 0.1,
and different swarm sizes on functions: (a) F1-F4 and (b) F5(2D).

From Figure 3, it can be seen that for F1-F4 the swarm size around 30
always gives the best performance, and for F5(2D) the best performance is
achieved with the swarm size set to 150. The convergence speed decreases
rapidly when the swarm size is below these two values in the above two cases,
and a larger swarm size uses more evaluations per iteration and hence hinders
the optimization performance. The standard deviation, as shown in Figure
3, decreases with an increasing swarm size in all investigated functions.

When examining the reliability of NN-FPSO for simultaneously locating
all global optima, Figure 4 indicates that the swarm size does not have a
large effect on the success rate, as long as it is sufficient for the population
to cover peaks. NN-FPSO achieves a 100% success rate when the swarm size
is above 30 for F1-F4 and above 100 for F5(2D), respectively.

5.3.2. Effect of the near-neighbor attraction factor (Iatt)

As mentioned in Section 4, the near-neighbor attraction has a potential
to drive a particle towards its fitter-and-closer neighboring point, and hence
enables the particle to explore the possible area of its own surrounding. The
attraction influence factor Iatt has a significant influence on NN-FPSO’s abil-
ity of locating multiple optima in multimodal environments. Setting Iatt to
a large value may cause particles ignore the accumulated information of its
personal best (see Eq. (10)), and induce a risk of wasting the computational
effort of a particle to search in the same area where its local fitter neighbor
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Table 2: The number of peaks found (mean and standard deviation over 50 runs) by
NN-FPSO with Irep = 0.1, M = 30, and different Iatt on MOPs

Iatt F1 F2 F3 F4 F5(2D) F5(3D) F5(4D)

0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
0.1 5.00±0.00 4.00±0.00 1.98±0.45 4.85±0.25 18.00±0.00 41.15±5.85 61.42±6.73
0.5 5.00±0.00 4.00±0.00 2.00±0.00 5.00±0.00 17.94±3.12 40.98±4.28 59.89±4.92
1 4.87±0.48 3.82±0.47 1.92±0.21 4.75±0.13 16.93±2.81 38.24±3.12 52.48±3.12
5 1.25±0.33 2.37±0.24 1.24±0.35 3.28±0.25 8.48±2.52 12.27±2.15 14.15±4.24
10 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

has already searched. On the contrast, setting Iatt to a small value may
weaken the capacity of particles to identify their own regions properly.

In order to test the influence of Iatt on the performance of NN-FPSO,
experiments were carried out with Iatt set to different values in the set
{0, 0.1, 0.5, 1, 5, 10}. In addition to F1-F5(2D), the Shubert 3D and Shu-
bert 4D functions were also used as the test functions. The swarm size of
NN-FPSO was set to 30 for F1-F4 and 100 for F5(2D). The swarm size was
set to 1500 for Shubert 3D and Shubert 4D since they have a large number of
optima in the search space. The parameter Irep = 0.1 was used in NN-FPSO,
and a maximum of 200000 evaluations was allowed for each run of NN-FPSO
on a MOP. The experimental results regarding the number of peaks found
by NN-FPSO within 200000 evaluations over 50 runs are shown in Table 2.
In Table 2 (and other tables in this paper), the best result achieved for each
function is shown in bold font.

The results in Table 2 show that the attraction influence factor Iatt should
be set in the range of [0.1, 1.0] for a better performance of NN-FPSO on the
test functions. It can be observed that, for a function with a relatively small
number of peaks (i.e., F1-F4), setting Iatt to around 0.5 always gives a better
result than other settings. When the environment becomes more multimodal
and challenging (i.e., Shubert 2D, Shubert 3D, and Shubert 4D functions),
setting Iatt to around 0.1 seems more suitable. This indicates that diversifica-
tion is beneficial for handling those problems with relative more peaks in the
multimodal fitness landscape. The poor performance for Iatt = 0 indicates
that the near-neighbor attraction scheme is beneficial for the performance
of NN-FPSO on MOPs. When Iatt = 10, which gives the largest attraction
effect among all the settings of Iatt, NN-FPSO always performs worse than
other settings (except for the case of Iatt = 0 as discussed above). This occurs
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Figure 5: (a) The average number of evaluations needed to find all global optima on
functions F1-F5(2D) and (b) the average number of peaks found on Shubert 3D and
Shubert 4D over 50 runs of NN-FPSO with Irep = 0.1 and different Iatt.

due to two factors. Firstly, too much attraction from the near-neighbor at-
tractor weakens too much the effect of the personal experience of a particle,
which may produce stable and valuable information for a better adapta-
tion for multimodal landscapes. Secondly, the effect of the exploration of
nearby possible regions discovered is also vital for the identification process.
This indicates that a good trade-off between the search ability for identi-
fying promising areas and the exploration ability for promoting successive
movements is important for locating all global optima in parallel.

Since one key aim of this study is to minimize the requirement of tuning
parameters and the problem dependency of the algorithm, it is necessary to
test the robustness of the NN-FPSO algorithm regarding relevant parameters.
Based on the above analysis, the experimental results regarding NN-FPSO’s
ability of locating global optima with Irep = 0.1 and Iatt set in the range of
[0.1, 1.0] are provided in Figure 5. From Figure 5(a), it can be seen that Iatt in
the range of [0.1, 1.0] does not have a large effect on the number of evaluations
required by NN-FPSO to locate all the global optima for F1-F5(2D). Again
setting Iatt to around 0.5 can produce the best performance for F1-F5(2D)
and setting Iatt to values smaller than 0.5 causes an increase in the number
of evaluations required. The reason may lie in the fact that NN-FPSO with
Iatt = 0.5 has a sufficient search power to quickly locate different peaks. A
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Table 3: The number of peaks found (mean and standard deviation over 50 runs) by
NN-FPSO with Iatt = 0.5, M = 30, and different Isep on MOPs

Isep F1 F2 F3 F4 F5(2D) F5(3D) F5(4D)

0 2.46±0.42 0.00±0.00 0.00±0.00 3.27±0.65 0.00±0.00 0.00±0.00 0.00±0.00
0.1 5.00±0.00 4.00±0.00 2.00±0.00 5.00±0.00 17.94±3.12 40.98±4.28 59.89±4.92
0.5 4.97±0.73 3.82±0.61 1.92±0.34 4.95±0.40 18.00±0.00 41.24±4.23 60.04±4.21
1 4.85±0.64 3.75±0.54 1.85±0.32 4.92±0.38 17.04±3.07 38.25±4.16 57.32±4.03
5 1.45±0.32 1.36±0.12 1.05±0.22 2.12±0.19 6.23±1.25 9.25±1.17 12.57±3.15
10 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

larger value of Iatt may drive NN-FPSO to converge onto some areas more
quickly, that is, particles are rapidly trapped into some local optima. Hence,
we recommend setting Iatt = 0.5 in this study.

Figure 5(b) shows that on the Shubert 3D and Shubert 4D functions, the
number of peaks found by NN-FPSO within 200000 evaluations is not much
affected by Iatt in the range [0.1, 1.0]. It can be observed that the best result
on both test functions was achieved by setting Iatt to around 0.5. Although
NN-FPSO was unable to find all global optima on these functions, NN-FPSO
is able to locate 42.95 global peaks on the average on Shubert 3D, showing
that it has the search power of differentiating the peaks within each of the
27 groups of global peaks. On Shubert 4D, NN-FPSO is able to locate 62.5
global peaks on the average, but is unable to locate all of the 81 groups of
global peaks in the search space.

5.3.3. Effect of the near-neighbor repulsion factor (Irep)

The near-neighbor repulsion mechanism is another key strategy intro-
duced into NN-FPSO for MOPs. This mechanism is expected to prevent a
particle from being attracted away from its local optimum by other fitter
particles, and pushing it to move towards the global optimum in its “respon-
sibility” under the guidance of the near-neighbor repulsion force. Similar
to the previous test of the near-neighbor attraction mechanism, in order to
examine the effect of the near-neighbor repulsion scheme on the behavior of
NN-FPSO for different multimodal problems, experiments were carried out
with Iatt = 0.5 and Irep set to 0, 0.1, 0.5, 1, 5, and 10, respectively. The ex-
perimental results regarding the number of peaks found by NN-FPSO within
200000 evaluations over 50 runs are provided in Table 3.

From Table 3, it can be seen that the optimal setting for Iref is around
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0.1 for F1-F4 and around 0.5 for F5(2D), F5(3D), and F5(4D), respec-
tively. This indicates that the near-neighbor repulsion scheme is important
to maintain the diversity, which is a key consideration especially for locating
multiple global optima. NN-FPSO performs the worst when Irep is set to 0
or 10. When Irep = 0, particles are likely to be trapped onto their nearby
local optima, that is, the locating ability does depress due to the diversity
loss. In the case of Irep = 10, particles tend to focus on the information
derived from the inferior ones, but neglecting the fitter ones. By doing this
for each iteration, many misleading directions may be produced, leaving the
entire swarm ill-adapted to the multimodal environment.

Furthermore, we are interested in investigating the range of Irep in which
NN-FPSO is robust on different problems. The performance of NN-FPSO
was tested with Irep in the range of [0.1, 1.0]. The experimental results re-
garding the NN-FPSO’s ability of locating global optima with Iatt = 0.5 and
Irep set in the range of [0.1, 1.0] are provided in Figure 6. From Figure 6, it
can be seen that Irep within the range [0.1, 1.0] does not have a large effect
on the performance of NN-FPSO. Hence, we recommend setting Irep to 0.1,
which is expected to prevent particles from exploiting within the promising
areas and ensure a sufficient exploration search power.
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Figure 6: (a) The average number of evaluations needed to find all global optima on
functions F1-F5(2D) and (b) the average number of peaks found on Shubert 3D and
Shubert 4D over 50 runs of NN-FPSO with Iatt = 0.5 and different Iref .
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Table 4: Comparison results regarding the number of peaks found (mean and standard
deviation over 50 runs) after 200000 evaluations of algorithms on F1-F5. The t-test results
of comparing NN-FPSO with ARPSO algorithms are shown in brackets

MOP ARSO NN-FPSO

F1 4.72±0.05(+) 5.00±0.00
F2 3.86±0.35(+) 4.00±0.00
F3 1.98±0.45(+) 2.00±0.00
F4 4.96±0.63(+) 5.00±0.00

F5(2D) 16.89±0.75(+) 18.00±0.00

Table 5: Comparison results regarding the accuracy (mean and standard deviation over
50 runs) after 200000 evaluations of algorithms on F1-F4. The t-test results of comparing
NN-FPSO with ARPSO algorithms are shown in brackets

MOP ARPSO NN-FPSO

F1 1.86E-2±5.62E-5(+) 0.00E+0±0.00E+0
F2 3.78E-1±7.55E+0(+) 1.26E-5±1.28E-7
F3 5.95E-3±5.34E-10(+) 5.78E-9±7.21E-13
F4 2.34E-3±3.24E-6(+) 5.18E-6±8.75E-15

5.4. Experimental comparison with ARPSO

This set of experiment provides the performance comparison of NN-FPSO
and ARPSO on multimodal functions F1-F5(2D). The experimental results
regarding the number of peaks found and the accuracy are given in Table
4 and Table 5, respectively. In these tables, the statistical test results of
comparing NN-FPSO with ARPSO by the one-tailed t-test with 98 degrees
of freedom at a 0.05 level of significance are also given in the brackets, where
the t-test result shown as “+” means that NN-FPSO is significantly better
than ARPSO.

From Table 4 and Table 5, a significant result is that NN-FPSO outper-
forms ARPSO on all test functions. This result validates the efficiency of
introducing the near-neighbor effect scheme into PSO for locating all global
optima in parallel. The basic motivation behind NN-FPSO of allowing par-
ticles to search for different promising regions is beneficial for promoting the
population diversity and searching for the suitable peak of each particle.
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Table 6: Comparison results regarding the number of peaks found (mean and standard
deviation over 50 runs) after 200000 evaluations of algorithms on F1-F5. The t-test results
of comparing NN-FPSO with other PSO algorithms are shown in brackets

MOP SPSO FER-PSO ANPSO ESPSO NN-FPSO

F1 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00
F2 4.00±0.00(∼) 3.12±0.97(+) 9.24±0.39(+) 3.37±0.47(+) 4.00±0.00
F3 2.00±0.00(∼) 1.85±0.35(+) 1.92±0.42(+) 1.94±0.55(+) 2.00±0.00
F4 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00(∼) 5.00±0.00

F5(2D) 16.81±0.17(+) 16.56±0.35(+) 17.54±0.65(∼) 16.87±0.42(+) 18.00±0.00

Table 7: Comparison results regarding the accuracy (mean and standard deviation over
50 runs) after 200000 evaluations of algorithms on F1-F4. The t-test results of comparing
NN-FPSO with other PSO algorithms are shown in brackets

MOP SPSO FER-PSO ANPSO ESPSO NN-FPSO

F1 1.98E-6±2.45E-7(+) 0.00E+0±0.00E+0(∼) 0.00E+0±0.00E+0(∼) 1.86E-6±3.27E-7(∼) 0.00E+0±0.00E+0
F2 9.78E-3±1.65E+0(+) 1.32E-4±6.79E-8(+) 1.37E-4±7.52E-6(+) 4.28E-4±3.68E-8(+) 1.26E-5±1.28E-7
F3 4.25E-5±4.45E-13(+) 6.24E-6±8.52E-9(+) 7.86E-6±6.32E-10(+) 8.67E-5±4.25E-10(+) 5.78E-9±7.21E-13
F4 1.86E-5±7.25E-9(+) 7.78E-5±9.86E-11(+) 5.42E-5±5.68E-10(+) 8.86E-5±8.24E-10(+) 5.18E-6±8.75E-15

5.5. Major experimental results and analysis

In this set of experiments, the performance of NN-FPSO in multimodal
environments is compared with the four peer PSO algorithms, i.e., SPSO,
FER-PSO, ANPSO, and ESPSO. These algorithms are presented for locating
all global optima in parallel for MOPs. All corresponding parameters were
fixed to be the same values for the multimodal test functions.

5.5.1. Comparison on MOPs in the low dimensional search space

This set of experiments investigates the performance comparison between
the PSO algorithms on MOPs in the low dimensional search space, i.e., F1-
F4. The experimental results regarding the number of peaks found, the
accuracy, and the convergence speed, are given in Table 6, Table 7, and Table
8, respectively. In these tables, the statistical test results of comparing NN-
FPSO with each peer PSO algorithm by the one-tailed t-test with 98 degrees
of freedom at a 0.05 level of significance are also given in the brackets, where
the t-test result is shown as “+”, “−”, or “∼” if NN-FPSO is significantly
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Table 8: Comparison results regarding the convergence speed (mean and standard devia-
tion over 50 runs) after 200000 evaluations of algorithms on F1-F5(2D). The t-test results
of comparing NN-FPSO with other PSO algorithms are shown in brackets

MOP SPSO FER-PSO ANPSO ESPSO NN-FPSO

F1 3169±692(+) 4214±704(+) 5220±3323(+) 3720±704(+) 3143±625
F2 4069±731(+) 6788±821(+) 16308±13157(+) 4228±802(+) 4023±753
F3 2872±827(+) 3088±924(+) 2798±857(+) 2383±917(+) 2022±804
F4 2007±703(+) 2055±834(+) 6124±2465(+) 2013±837(+) 1945±625

F5(2D) 166050±42214(+) 188423±45677(+) 82248±10608(+) 272216±45272(+) 82428±10575

better than, significantly worse than, or statistically equivalent to a peer
algorithm, respectively.

From Tables 6, 7, and 8, it can be seen that increasing the problem com-
plexity poses a difficult issue for all PSO algorithms in locating all global
optima in parallel. Another significant result is that NN-FPSO outperforms
other PSO algorithms on all investigated cases. This validates the efficiency
of introducing the force-imitated mechanism based on the near-neighbor ef-
fect into PSO for MOPs. The new movement strategy can integrate valuable
information efficiently, and the combination of the near-neighbor attraction
scheme with the near-neighbor repulsion scheme has an intensive exploration
ability that helps particles search for global optima continuously rather than
converging into local optima nearby.

5.5.2. Comparison on MOPs in the 3- and 4-dimensional search space

The functions F5(3D), F5(4D), and 3-dimensional F6, denoted F6(3D),
pose a serious challenge to niching algorithms that rely on a fixed niche
radius parameter [40]. Based on above discussions, the swarm size was set
to 1500 and the maximal number of evaluations was set to 200000 in this
set of experiments. Even with a large swarm size, it is difficult for the PSO
algorithms to find all peaks in one run. Hence, we measured the number
of peaks found by each algorithm. The experimental results regarding the
number of peaks found are given in Table 9.

Table 9 shows that NN-FPSO gives better performance than other PSO
variants. The results suggest that it may be preferable to use the near-
neighbor attraction and repulsion effects to locate each optimum, rather
than a niching method relying on a fixed or adaptive niche radius value.
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Table 9: Comparison results regarding the number of peaks found (mean and standard
deviation over 50 runs) after 200000 evaluations of algorithms on F5(3D), F5(4D), and
F6(3D). The t-test results of comparing NN-FPSO with other PSO algorithms are shown
in brackets

MOP SPSO FER-PSO ANPSO ESPSO NN-FPSO

F5(3D) 8.47±0.32(+) 7.25±0.26(+) 8.26±0.75(+) 10.11±2.11(+) 41.15±5.85
F5(4D) 4.25±0.26(+) 3.11±0.31(+) 43.24±2.12(+) 45.67±2.57(+) 61.42±6.73
F6(3D) 75.92±2.46(+) 70.25±2.01(+) 76.25±1.97(+) 78.17±2.42(+) 84.98±6.85

Due to the near-neighbor identification process which integrates fitness and
distance factors, NN-FPSO is able to develop stable “promising regions” on
the majority of the global peaks.

5.5.3. Comparison on MOPs in the higher dimensional space

The Hump function F7 is a multimodal function generator that has been
widely used as multimodal benchmark problems in the literature. The per-
formance of the five PSO algorithms were also investigated on the Hump
functions of 5 to 25 dimensions. In this study, the features of each peak
i (i = 1, 2, · · · , K) in the Hump functions were set as follows: the height
Hi = 1.0 and the shape factor αi = 1.0. The radius of each peak is constant
and increases with accordance to the number of dimensions (Ri = 0.29 for
the 5-D Hump function instances, Ri = 0.60 for the 10-D instances, and
Ri = 1.45 for the 25-D instances). The swarm size of PSO algorithms was
set with the consideration of the complexity of functions. It was set to 800,
900, 1000, and 1100 for the 5-D Hump functions with 20, 30, 40, and 50
peaks, respectively. For the 10-D Hump functions with 20, 30, 40, and 50
peaks, the swarm size was set to 800, 900, 1000, and 1100, respectively. For
the most difficult 25-D Hump functions with 20, 30, 40, and 50 peaks, the
swarm size was set to 2700, 2800, 2900, and 3000, respectively.

The experimental results are provided in Table 10, where the t-test re-
sults of comparing NN-FPSO with other PSO algorithms with 98 degrees of
freedom at a 0.05 level of significance are shown in brackets. From Table 10,
it can be observed that NN-FPSO outperforms other algorithms in all test
cases with different number of peaks. One major reason lies in that the two
near-neighbor effects adopted in NN-FPSO continuously balance the abilities
of exploiting known regions and exploring other optima in the search space.
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Table 10: Comparison results regarding the number of peaks found (mean and standard
deviation over 50 runs) by algorithms within 200000 evaluations on the Hump functions
of different number of dimensions and different number of peaks, where K denotes the
number of peaks in the search space. The t-test results of comparing NN-FPSO with
other PSO algorithms are shown in brackets

K SPSO FER-PSO ANPSO ESPSO NN-FPSO

5-D Hump function
20 19.82±0.06(∼) 17.85±0.72(+) 20.00±0.00(∼) 19.05±0.56(+) 20.00±0.00
30 29.61±0.32(∼) 28.73±0.87(+) 28.24±0.49(+) 28.37±0.68(+) 30.00±0.00
40 38.92±0.29(+) 36.54±0.92(+) 38.79±0.63(+) 39.12±0.79(+) 40.00±0.00
50 47.21±0.73(+) 48.56±0.62(+) 48.04±0.73(+) 48.97±0.52(+) 49.75±0.85

10-D Hump function
20 19.68±0.56(∼) 16.48±0.57(+) 18.32±0.49(+) 18.90±0.78(+) 19.84±0.41
30 26.46±1.47(+) 26.57±1.52(+) 27.31±0.52(+) 27.92±0.85(+) 28.40±1.05
40 36.21±2.42(+) 32.45±2.86(+) 36.63±0.32(+) 36.33±0.81(+) 37.25±1.84
50 46.98±4.16(+) 43.82±4.09(+) 46.53±0.73(+) 46.97±0.72(+) 47.70±2.07

25-D Hump function
20 4.24±0.07(+) 5.12±0.11(+) 8.63±0.23(+) 9.23±0.35(+) 16.45±0.45
30 6.46±0.12(+) 7.02±0.17(+) 9.24±0.39(+) 10.37±0.47(+) 21.24±0.56
40 18.92±0.15(+) 9.54±0.19(+) 10.32±0.45(+) 11.12±0.59(+) 31.65±1.62
50 9.81±0.17(+) 10.56±0.21(+) 12.54±0.53(+) 13.17±0.62(+) 36.75±1.85

6. Conclusion and future work

This paper presents a new PSO model, called near-neighbor effect based
force-imitated PSO (NN-FPSO), with the combination of the near-neighbor
effect in nature and the mechanics theory in physics for locating multiple
global optima in parallel for multimodal optimization problems (MOPs). The
basic motivation behind NN-FPSO is to utilize an efficiently integrated and
interactive mechanism to simultaneously optimize particles toward multiple
peaks. A new force-imitated equation is introduced into PSO, which produces
a new version for PSO from the mechanics domain. This model uses the
fitness and spatial information to identify the meaningful neighbors for each
particle for a highly efficient interaction. Besides the personal best position,
the movement of each particle is also guided by the following two forces:

• The near-neighbor attraction force. It is important to enable parti-
cles to identify promising areas where the optima may reside. One
straightforward method is to allow particles nearby each other to work
together toward their closest peak, rather than the fittest peak. Hence,
we adopt the superior-and-nearer neighbor in the personal best sets to
be an attraction force, and use the force-imitated mechanism presented
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in this study to improve each particle’s movement to its possible peaks.
It ensures an exploitation ability for promising regions, thereby driving
particles to their local vicinity in the multimodal fitness landscape.

• The near-neighbor repulsion force. Although particles should investi-
gate local promising regions, they need to ultimately progress toward
the global optima. The near-neighbor repulsion force produced by the
inferior-and-nearer neighbor prevents the collision of particles within
a local region discovered and guarantees the swarm diversity to seek
for other optima undiscovered, as well as exploring potentially more
promising regions.

In order to justify the proposed NN-FPSO, experiments were carried out
to compare the performance of NN-FPSO with a number of state-of-the-art
PSO algorithms on a series of multimodal benchmark problems. From the
experimental results, some conclusions can be drawn on the multimodal test
problems. First, the introduction of the near-neighbor effect with the force-
limited mechanism is beneficial for the performance of PSO in multimodal
environments. Second, the proposed near-neighbor attraction scheme is effi-
cient to improve the performance of NN-FPSO for locating all global optima
in parallel. Third, the strategy of extracting information from other particles
besides the best solutions as in the classic PSO algorithm is a good choice
for preserving valuable information and avoiding convergence to improve the
performance of PSO for multimodal problems.

Generally speaking, the experimental results indicate that the proposed
NN-PSO algorithm can be a good optimizer for MOPs.

For future work, it would be valuable to improve the performance of NN-
FPSO for more challenging MOPs, such as the Shubert 3D and Shubert 4D
functions. In this study, the value of Iatt and Irep are fixed during the whole
optimization process. It may be beneficial to adaptively adjust these two
parameters according to some feedback information from the swarm, such as
the population statistics at each iteration. Furthermore, the concept of the
near-neighbor force in the study is similar to the attractive and repulsive force
in mobile robot motion planning based on the potential field [43]. Therefore,
it is also worthy to extend the force-imitated mechanism for more practical
models, such as orienteering problems [10], dynamic multimodal problems,
and dynamic multi-objective problems [37, 42], which also have wide practical
applications in the real world.
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