
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Integrating hardware agents into an enhanced multi-agent architecture
for Ambient Intelligence systems

Dante I. Tapia a,⇑, Juan A. Fraile b, Sara Rodríguez a, Ricardo S. Alonso a, Juan M. Corchado a

a Department of Computers and Automation, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
b Faculty of Informatics, Pontifical University of Salamanca, Compañía, 5, 37002 Salamanca, Spain

a r t i c l e i n f o

Article history:
Available online 14 May 2011

Keywords:
Ambient Intelligence
Distributed architectures
Multi-agent systems
Service-oriented architecture
Wireless sensor networks

a b s t r a c t

Ambient Intelligence (AmI) systems require the integration of complex and innovative
solutions. In this sense, agents and multi-agent systems have characteristics such as auton-
omy, reasoning, reactivity, social abilities and pro-activity which make them appropriate
for developing distributed systems based on Ambient Intelligence. In addition, the use of
context-aware technologies is an essential aspect in these developments in order to per-
ceive stimuli from the context and react to it autonomously. This paper presents the inte-
gration of the Hardware-Embedded Reactive Agents (HERA) Platform into the Flexible and
User Services Oriented Multi-agent Architecture (FUSION@), a multi-agent architecture for
developing AmI systems that integrates intelligent agents with a service-oriented architec-
ture approach. Because of this integration, FUSION@ has the ability to manage both soft-
ware and hardware agents by using self-adaptable heterogeneous wireless sensor
networks. Preliminary results presented in this paper demonstrate the feasibility of
FUSION@ as a future alternative for developing Ambient Intelligence systems where users
and systems can use both software and hardware agents in a transparent way, achieving a
higher level of ubiquitous computing and communication.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The search for software capable of better adapting to people’s needs and particular situations has led to the development
of Ambient Intelligent (AmI) systems [43]. AmI tries to adapt technology to people’s needs by incorporating omnipresent
computing elements that communicate ubiquitously among themselves [29]. These systems capture and manage relevant
information that surrounds them and constitutes the context [19]. Individuals are also becoming increasingly accustomed
to living with more and more technology in the hope of increasing their quality of life and facilitating their daily activities.
Nowadays, there is a wide range of small, portable and non-intrusive devices intended to help users with their daily life [31].
These devices allow agents to gather context-information in a dynamic and distributed way [8]. However, the integration of
such devices is not an easy task. Therefore, it is necessary to develop innovative solutions that integrate different approaches
in order to create flexible and adaptable systems, especially for achieving higher levels of interaction with people in a ubiq-
uitous and intelligent way.

Along these lines, the implementation of distributed architectures has been presented as a solution to such problems [23].
Classical functional architectures are characterized by trying to find modularity and a structure oriented to the system itself.
Modern functional architectures like service-oriented architecture (SOA) consider integration and performance to be aspects
that must be taken into account when functionalities are created outside the system [8]. The development of AmI-based

0020-0255/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2011.05.002

⇑ Corresponding author. Tel.: +34 923 294400x1525; fax: +34 923 294514.
E-mail addresses: dantetapia@usal.es (D.I. Tapia), jafraileni@upsa.es (J.A. Fraile), srg@usal.es (S. Rodríguez), ralorin@usal.es (R.S. Alonso),

corchado@usal.es (J.M. Corchado).

Information Sciences 222 (2013) 47–65

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins

Author's personal copy

systems that integrate different subsystems demands the creation of complex and flexible applications. As the complexity of
an application increases, it needs to be divided into modules with different functionalities. Since different applications could
require similar functionalities, there is a trend towards the reutilization of resources that can be implemented as part of
other systems. One of the most prevalent alternatives in distributed architectures is Multi-Agent Systems (MAS) which
can help to distribute resources and reduce the central unit tasks [2]. A distributed agent-based architecture provides more
flexible ways to move functions to where actions are needed, thus obtaining better responses at execution time, autonomy,
services continuity and superior levels of flexibility and scalability than centralized architectures [10]. Multi-agent systems
have been successfully applied to several scenarios, such as education, culture, entertainment, medicine, commerce, robotics,
etc. [15,21,40].

AmI-based developments require the use of sensors strategically distributed over the environment. In this sense, sensors
expand the agents’ context-aware capabilities in order to change dynamically their behavior and personalize their reactions
[19]. Sensor networks are used for gathering the information needed by intelligent environments, whether in home automa-
tion, industrial applications, etc. [42]. Sensor networks need to be fast and easy to install and maintain [30]. It is possible to
distinguish between two types of sensor networks: wired and wireless. Wireless sensor networks (WSN) are more flexible
and require less infrastructural support than wired sensor networks. Although there are plenty of technologies for imple-
menting WSNs (e.g., ZigBee, Wi-Fi or Bluetooth), it is not easy to integrate devices from different technologies into a single
network [31]. The lack of a common architecture may lead to additional costs due to the necessity of deploying non-
transparent interconnection elements among the different networks [33]. Moreover, the developed elements are dependent
on the application to which they belong, thus complicating their reutilization.

The main objective of the research presented in this paper is to design, build and deploy an innovative platform that ad-
dresses the requirements of Ambient Intelligence paradigm, such as context-awareness and ubiquitous communication,
allowing the use of heterogeneous WSNs and taking advantage of the use of intelligent agents directly embedded on wireless
nodes. In this sense, this paper describes the integration of the HERA (Hardware-Embedded Reactive Agents) platform into FU-
SION@ (Flexible and User Services Oriented Multi-agent Architecture) [48]. On the one hand, FUSION@ is an architecture aimed
at facilitating the development of AmI-based systems with advanced context-aware capabilities. FUSION@ exploits the use of
intelligent agents as the main components in employing a service-oriented approach, focusing on distributing the most of
the systems’ features into remote and local services and applications. On the other hand, HERA is an evolution of SYLPH
(Services laYers over Light PHysical devices) [17]. SYLPH has the ability to use dynamic and self-adaptable heterogeneous
WSNs and has been already tested to work with FUSION@ [1]. In HERA, agents are directly embedded into wireless nodes.
This way, through the integration of HERA and FUSION@, there is no difference between a software and a hardware agent.
That is, FUSION@ can run both software and hardware agents that offer services to other agents and applications, regardless
of whether the agent is a piece of code or a wireless sensor. In effect, FUSION@ combines these two approaches and formal-
izes the integration of agents, services, communications and wireless technologies to automatically obtain information from
users and the environment in an evenly distributed way, focusing on the characteristics of ubiquity, awareness, intelligence,
mobility, etc., all of which are concepts defined by AmI.

The next section presents the specific problem description that essentially motivated the development of FUSION@ and
HERA and their integration. Section 3 describes the main characteristics of FUSION@ and HERA and briefly explains some of
their components, including the integration of HERA into the FUSION@ architecture. Finally, Section 4 presents the results
and conclusions obtained.

2. Motivation and related approaches

One of the key aspects for the construction of AmI-based systems is obtaining information about the people and their
environment through sensor networks. We have developed several systems based on AmI [15,16,21,46]. However, these
developments have caused significant problems when integrating sensors from different network technologies with agents,
services and applications (e.g., hardware incompatibilities, reduced performance, etc.). This section discusses some of the
most important problems of existing functional architectures, including their suitability for constructing intelligent environ-
ments according to the AmI paradigm. This section also presents the strengths and weaknesses of existing platforms and
analyzes the feasibility of a new alternative: the integration of HERA into FUSION@.

Ambient Intelligence proposes three essential concepts: ubiquitous computing, ubiquitous communication and intelli-
gent user interfaces [33]. AmI-based systems must be dynamic, flexible, robust, adaptable to changes in context, scalable
and easy to use and maintain. In addition, dependability [3] and resilience [52] are attributes pursued by this kind of sys-
tems. The development of AmI-based systems that integrate different subsystems demands the creation of complex and flex-
ible applications. As the complexity of an application increases, so does its need to be divided into modules with different
functionalities. Since different applications could require similar functionalities, there is a trend towards the reutilization
of resources that can be implemented as part of other systems. This trend is the best solution in the long-term and can
be accomplished by using a common platform. However, it is difficult to carry out because the systems in which those func-
tionalities are implemented are not always compatible with other systems.

An alternative to such an approach is the reimplementation of the required functionalities. Although it implies more
development time, it is generally the easiest and safest solution. However, reimplementation can lead to duplicated func-
tions and a more difficult system migration. A distributed architecture provides more flexible ways to move functions to

48 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

where actions are needed, thus obtaining better responses, autonomy, services continuity, and superior levels of flexibility
and scalability than centralized architectures [29]. In addition, excessive centralization negatively affects system function-
alities, overcharging or limiting their capabilities. For this reason, it is difficult for the system to dynamically adapt its behav-
ior to the changes in the infrastructure. Thus, distributed architectures look for the interoperability among different systems,
the distribution of resources and the independence of programming languages [29].

As said before, one of the most prevalent alternatives in distributed architectures is multi-agent systems. An agent can be
defined as a computational system situated in an environment and able to act autonomously in this environment to achieve
its design goals [50]. Expanding this definition, an agent is anything with the ability to perceive its environment through
sensors, and to respond in the same environment through actuators, assuming that each agent may perceive its own actions
and learn from the experience [37]. A multi-agent system is defined as any system composed of multiple autonomous agents
incapable of solving a global problem, where there is no global control system, the data is decentralized and the computing is
asynchronous [25,50]. Clearly, these definitions are closely related to Ambient Intelligence. There are several agent frame-
works and platforms [7,32,45] that provide a wide range of tools for developing distributed multi-agent systems. The devel-
opment of agents is an essential component in the analysis of data from distributed sensors, and gives those sensors the
ability to work together and analyze complex situations, thus achieving high levels of interaction with humans [34].
Multi-agent systems have been successfully applied to several Ambient Intelligence scenarios, such as education, culture,
entertainment, medicine, commerce, industry, robotics, etc. [6,11,21,22,38–40,43,48]. Furthermore, agents can use reasoning
mechanisms and methods in order to learn from past experiences and to adapt their behavior according to the context [5,16].

Nevertheless, multi-agent systems do not always cover the actual necessities of distributed systems. Thus, several
developments consider the integration between agents and modern functional architectures, such as service-oriented
architecture (SOA) [2,12,18]. These developments try to improve the distribution of the available resources, facilitate the
reutilization of functionalities and optimize the compatibility among different platforms. In classic functional architectures,
the modularity and structure are oriented towards the systems themselves. Modern functional architectures such as SOA
allow functionalities to be created outside the system, as external services linked to the architecture. The term ‘‘service’’
can be defined as a mechanism that facilitates the access to one or more features (e.g., functions, network capabilities,
etc.) [12]. Services are integrated through communication protocols that have to be used by applications to share resources
in the network.

Another alternative to integrate subsystems in different environments is that known as Enterprise Application Integration
(EAI) [27], widely used in business environments. The EAI consists of the use of software to integrate a set of applications and
information taking into account basic principles of computer systems architectures. The success achieved by the effective
and efficient application of the information technology and the knowledge engineering onto EAI has encouraged the analysis
of the performance of this framework on other environments. However, its use on Ambient Intelligence scenarios makes it
harder the integration of the distributed information throughout the environment. Even though there are many solutions
provided by the EAI, most of them have failed from a practical point of view [27].

Any AmI-based scenario has to take into account the information about the context, which can be gathered by sensor net-
works. The context includes information about the people and their environment. The information may consist of many dif-
ferent parameters such as location, the building status (e.g., temperature), vital signs (e.g., heart rhythm), etc. Sensor
networks need to be fast and easy to install and maintain. Each element that forms part of a sensor network is called a node.
In an AmI scenario, nodes must communicate directly with one another in a distributed way [33]. In a centralized architec-
ture, most of the intelligence is located in a central node. That is, the central node is responsible for managing most of the
functionalities and knowing the existence of all nodes in a specific WSN. That means that a node belonging to a certain WSN
does not know about the existence of another node forming part of a different WSN, even though this WSN is also part of the
system. Nonetheless, this model can be improved using a common distributed architecture where all nodes in the system
can know about the existence of any other node in the same system regardless of the technology or interface they use or
the sub-network to which they belong.

2.1. Comparison of existing approaches that integrate multi-agent systems and WSNs

Both FUSION@ and HERA have stemmed from the necessity to more efficiently cover the challenges produced by the AmI-
based systems. The fusion of the multi-agent technology and wireless sensor networks is not easy due to the difficulty in
developing, debugging and testing distributed applications for devices with limited resources. The interfaces developed
for these distributed applications are either too simple or, in some cases, do not even exist, which even further complicates
their maintenance. Therefore, there are researches [49] that develop methodologies for the systematic development of mul-
ti-agent systems for WSNs. Some researches that relate multi-agent technologies with WSNs [28] insist that the combination
of such technologies extends the life of wireless sensor nodes trough the reduction of the power consumption. However,
these researches have not analyzed the capacities achieved by agents after analyzing the data obtained by WSNs. ActorNet
[26] is other study that describes a mobile agent platform for WSNs. Implementing agent programs over WSNs is compli-
cated due to the limitations of the sensor nodes, their limited memory, small bandwidth and low energy autonomy. ActorNet
facilitates the development, providing an abstract environment for mobile code oriented to light objects over WSNs.
ActorNet platform defines as its top layer an actor language interpreter. Likewise, the platform provides services such as
virtual memory management and blocking input–output operations. Thus, ActorNet allows a wide range of dynamic

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 49

Author's personal copy

applications, including customized queries and aggregation functions, in the sensor network platform. However, each mobile
agent is only centered on a sensor node. On the contrary, with the integration of HERA into FUSION@ the multi-agent system
manages all data obtained by the WSNs to find effective and fast solutions. In addition, there are researches [41] that detail
the design of practical applications over WSNs to control light, temperature and occupation levels in the physical environ-
ment. Sandhu [41] proposes the use of multi-agent systems to process information received by sensors, thus facilitating the
decision-making process. Moreover, distributed learning through the multi-agent system provides a robust method of auto-
configuration and adaption to the environment. Nevertheless, Sandhu [41] does not present any result or a detailed system
evaluation. On the other hand, the integration of HERA into FUSION@ has produced some experiments with very promising
results. Baker et al. [4] present the integration of an agent-based WSN within an existing MAS focused on condition moni-
toring. In this research, it is used SubSense, a multi-agent middleware platform developed to allow condition monitoring
agents to be deployed onto a WSN. The architecture of the SubSense platform is based on the model defined by FIPA
(Foundation for Intelligent Physical Agents), but customized so that agents are embedded into sensor nodes. SubSense plat-
form is implemented over 512KB RAM SunSPOT sensor nodes using the Java Mobile Edition (J2ME). HERA platform can run
on lightweight sensor nodes with just 8KB RAM. In addition, SubSense platform is not aimed to solve Ambient Intelligence
challenges and it is not focused on working with heterogeneous WSNs. There are other studies [24] that supervise the trans-
port through software agents, RFID (Radio Frequency IDentification) readers and WSNs. In these studies, software agents pre-
process the information that they receive from sensors, and only communicate significant changes in the status of the freight
to its owner. Jedermann et al. [24] present a system for tracking and monitoring elements applied to fruit logistics. In this
case, software agents make autonomous decisions but do not have any language capacity or reasoning for improving their
functioning. However, when integrating HERA into FUSION@, the agents coordinate their own functions and have learning
and reasoning capacities that offer the best results and continually improve the given solutions. Furthermore, most of the
works that relate multi-agent systems and WSNs talk about Mobile Agents based on WSN (MAWSN). For instance, the study
presented by Qi and Wang [35] deal with planning routes to mobile agents based on WSN that consume the minimum
amount of resources. The analysis of such a study is centered on the optimal design of the itinerary of the mobile agent.
Fok et al. [20] also describe their system, Agilla, as a mobile agent that facilitates the fast development of applications on
WSNs and apply it to fire tracking. Agilla allows users to create and integrate special programs called mobile agents that
coordinate among themselves through local spaces and relate among themselves through WSNs to develop tasks specific
to a given application. In a similar way, Zboril et al. [51] propose WSageNt, a platform that is implemented through mobile
agents running on wireless sensor nodes. One key feature of this platform is a module for an agent control language inter-
pretation. This language is presented as an original low-level control language known as Agent Low Level Language (ALLL).
This research poses that in WSN-based agent platforms the resources limitations of sensor motes do not allow affording its
development as an ordinary agent platform that should accomplish the FIPA specifications. Opposite to Agilla, WSageNt is
supposed to be fault-tolerant and not to be only focused on WSNs. However, it has not context-awareness features and,
as Agilla, does not seem to contemplate the interconnection of heterogeneous WSNs. These three studies [20,35,51] relating
mobile agents and WSNs are very specific, while the integration of HERA into FUSION@ is not. The integration of HERA into
FUSION@ produces a multi-agent architecture that relates a multi-agent system with WSNs, allowing it to be applied to dif-
ferent scopes and environments. Other studies, as this one described by Chen et al. [14] try to reduce the redundancy of the
data gathered by sensors from different types of networks by using mobile agents that pack the data. This achieves faster
data delivering and energy savings in the reception and delivery of the data. Other research presented by Chen et al. [13]
proposes a MAWSN system that improves the communication of the nodes and mobile agents with regards to the client–
server model. It also packs the data gathered by the sensor network, reduces the reception and delivery times and saves en-
ergy in devices with a low autonomy capacity. Along the lines of fusing or packing data gathered by sensors, Rajagopalan
et al. [36] use a mobile routing agents’ model to try to state the quality of the fused data and the cost of communication
between the transmitter and the receiver. With their model, the authors explain the problem of multiple optimization goals,
maximizing the detected signal energy and reducing the maximum energy consumption lost in the process. These three
studies [13,14,36] focus on the fusing and optimizing the data communication process in a WSN through mobile agents.

The integration of HERA into FUSION@ provides a hybrid architecture that takes advantage of the capacities and particular
features of each of them. Both FUSION@ and HERA are models that successfully solve the problems they set out to resolve.
FUSION@ is a multi-agent architecture specially designed for developing AmI-based systems. FUSION@ is mainly centered on
distributing systems functionalities onto applications and services, which are managed by a set of intelligent agents. HERA is
a platform specially designed to implement hardware agents. Because HERA is based on SYLPH, it allows devices from dif-
ferent radio and networks technologies to coexist in the same distributed network. The combination of FUSION@ and HERA
facilitates and speeds up the integration between agents and sensors for reusing resources in the context. This approach al-
lows the development of multi-agent systems with increased scalability. It also expands the agents’ capabilities to obtain
information about the context and to automatically react over the environment. A totally distributed approach and the
use of heterogeneous WSNs provides an architecture that is better capable of recovering from errors, and more flexible to
adjust its behavior in execution time.

A comparison between some of these approaches that integrate multi-agent systems and wireless sensor networks is de-
picted in Table 1. As can be seen, one of the main contribution of the platforms based on SYLPH, such as the integration of
SYLPH with FUSION@, the HERA platform and the new integration of HERA into FUSION@ presented in this paper, is that
these allow the integration of multi-agent systems with heterogeneous WSNs. Other approaches do not take into account

50 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

the use of such heterogeneous WSNs and they are focused on working with sensor nodes that use just an only radio tech-
nology. Furthermore, in the design of both FUSION@ and HERA, they have been mainly aimed to address the necessities of
Ambient Intelligence, such as context-awareness and ubiquitous computing, while other existing approaches are not spe-
cially centered on dealing with these requirements. The real implementation of hardware-embedded agents into heteroge-
neous wireless sensor networks focused on solving the necessities that Ambient Intelligence systems require is which make
the integration of HERA into FUSION@ so innovative, opposite to other approaches. HERA has been designed to have agents
directly embedded into sensor nodes, giving a step over SYLPH. However, the integration of HERA into FUSION@ provides an
architecture where software and hardware-embedded agents can interact each other, not being distinction between them,
while other existing approaches do not take this feature into account.

3. FUSION@ and HERA

This section presents the integration of the new HERA (Hardware-Embedded Reactive Agents) platform into FUSION@
(Flexible and User Services Oriented Multi-agent Architecture). First, the FUSION@ Architecture and its components and agents
are described. Next, the new HERA platform and the WSN-SOA platform on which it is based, SYLPH (Services laYers over Light
PHysical devices), are explained. And finally, after presenting former approaches of combining SYLPH and FUSION@, the
integration of HERA into FUSION@ is finally described.

3.1. The FUSION@ architecture

FUSION@ is a SOA-based [47] multi-agent architecture that facilitates the integration of distributed multi-agent systems
[48]. The FUSION@ model has also been designed to develop systems based on the Ambient Intelligence paradigm. Multi-
agent systems help to distribute resources and reduce the central unit tasks [2]. There are several agent frameworks and
platforms, such as Open Agent Architecture (OAA) [32], RETSINA [45] and JADE [7], which provide a wide range of tools
for developing distributed multi-agent systems. FUSION@ exceeds these architectures and frameworks by adding new layers,
and facilitating the distribution and management of resources (i.e., services). A distributed agent-based architecture provides
more flexible ways of moving functions to where actions are needed, thus obtaining better responses at execution time,
autonomy, services continuity, and superior levels of flexibility and scalability than centralized architectures. FUSION@
can be used to develop any kind of complex systems because it is capable of integrating almost any service and application
desired, without depending on any specific programming language. Because the architecture acts as an interpreter, the users
can run applications and services that can be programmed in virtually any language, but have to follow a communication
protocol that all applications and services must incorporate. Another important functionality is that, because of the agents’
capabilities, the newly developed systems can use reasoning mechanisms or learning techniques to handle services and
applications according to context characteristics, which can change dynamically over time. Agents, applications and services
can communicate in a distributed way, even from mobile devices. This makes it possible to use resources regardless of their
location. It also makes is possible to start or stop agents, applications, services or devices separately, without affecting the
other resources, providing the system with an elevated adaptability and capacity for error recovery.

FUSION@ sits on top of existing agent frameworks by adding new layers to integrate a service-oriented approach and
facilitate the distribution and management of resources. Therefore, the FUSION@ framework was modeled after the SOA
model, but has added the applications blocks that represent the interaction with users. These blocks provide all the function-
alities of the architecture. FUSION@ adds new features to common agent frameworks, such as OAA, RETSINA and JADE and
improves the services provided by these previous architectures. These other architectures have limited communication abil-
ities and are not compatible with SOA architectures. Fig. 1 shows the UML deployment diagram of FUSION@, where can be
seen the four basic blocks of FUSION@:

– Applications. These represent all the programs that can be used to exploit the system functionalities. Applications are
dynamic and adaptable to context, reacting differently according to the particular situations and the invoked services. They
can be executed locally or remotely, even on mobile devices with limited processing capabilities, because computing tasks
are primarily delegated to the agents and services.

Table 1
Comparison between existing approaches focused on integrating multi-agent systems and wireless sensor networks.

Heterogeneous WSNs Hardware-embedded agents Context-awareness AmI-oriented

actorNet No Yes Partly No
SubSense No Yes Yes No
Agilla No Yes Partly No
WSageNt No Yes No No
FUSION@ + SYLPH Yes No Yes Yes
HERA (stand-alone) Yes Yes Yes Yes
FUSION@ + HERA Yes Both Yes Yes

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 51

Author's personal copy

– Agent platform. This is the core of FUSION@, integrating a set of agents, each one with special characteristics and
behaviors. An important feature in this architecture is that the agents act as controllers and administrators for all
applications and services, managing the adequate functioning of the system, from services, applications, communication
and performance to reasoning and decision-making. In FUSION@, services are managed and coordinated by deliberative
BDI agents with distributed computation and coordination abilities. The agents modify their behavior according to the users’
preferences, the knowledge acquired from previous interactions, as well as the choices available to respond to a given
situation.

– Services. These represent the activities that the architecture offers. They are the bulk of the functionalities of the system
at the processing, delivery and information acquisition levels. Services are designed to be invoked locally or remotely.
Services can be organized as local services, Web Services, GRID services, or even as individual stand-alone services. Services
can make use of other services to provide the functions that users require. FUSION@ has a flexible and scalable directory of
services that can be invoked, modified, added or eliminated dynamically and on-demand. It is absolutely necessary that all
services follow the communication protocol to interact with the rest of the architecture components.

– Communication protocol. This allows applications and services to communicate directly with the agent platform. The
protocol is completely open and independent of any programming language, facilitating ubiquitous communication
capabilities. This protocol is based on SOAP specification to capture all messages between the platform and the services
and applications [18]. Services and applications communicate with the agent platform via SOAP messages. A response is sent
back to the specific service or application that made the request. All external communications follow the same protocol,
while the communication amongst agents in the platform follows the FIPA agent communication language (ACL) specifica-
tion. This is especially useful when applications run on limited processing-capable devices (e.g., cell phones or PDAs).
Applications can use agent platforms to communicate directly (using FIPA ACL specification) with the agents in FUSION@,
so while the communication protocol is not needed in all instances, it is absolutely required for all services.

One of the advantages of FUSION@ is that the users can access the system through distributed applications, which run on
different types of devices and interfaces (e.g., computers, cell phones, PDAs). All requests and responses are handled by the

FUSION@ Applications

Services
SOAP/ACL

SOAP

Java, .Net, C/C++,
Pascal, Prolog, JavaScript

JADE OAA RETSINA

RMI 'Main Container
Agent Container Facilitator Communicator HTN

Java Java, C/C++, Prolog Java, C/C++

OS OS OS

ICL KQMLFIPA/ACL

Communication Agents

FUSION@ Agents

Fig. 1. UML deployment diagram of the basic schema of the FUSION@ architecture. The association between FUSION@ and each agent platform is defined
according to its respective communication protocol. In a similar way, communication protocols are also used to associate the FUSION@ architecture itself
with both services and applications.

52 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

agents in the platform. The agents analyze all requests and invoke the specified services either locally or remotely. Services
process the requests and execute the specified tasks. Then, services send back a response with the result of the specific task.

FUSION@ is a modular multi-agent architecture, where services and applications are managed and controlled by
deliberative BDI (Belief, Desire, Intention) agents [9,50]. Deliberative BDI agents are able to cooperate, propose solutions
on very dynamic environments, and face real problems, even when they have a limited description of the problem and
few resources available. These agents depend on beliefs, desires, and intentions, and plan representations to solve problems
[9]. Deliberative BDI agents are the core of FUSION@. Therefore there are different kinds of agents in the architecture, each
one with specific roles, capabilities and characteristics. This fact facilitates the flexibility of the architecture to incorporate
new agents. However, there are pre-defined agents that provide the basic functionalities of the architecture:

– CommApp Agent. This agent is responsible for all communications between applications and the platform. It manages
the incoming requests from the applications to be processed by services. It also manages responses from services (via the
platform) to applications. The CommApp Agent is always on ‘‘listening mode’’. Applications send XML messages to the agent
requesting a service; this agent then starts communication by using sockets to create a new thread. The agent sends all
requests to the Admin Agent which processes the request. The socket remains open until a response to the specific request
is sent back to the application using another XML message. All messages are sent to the Security Agent for their structure and
syntax to be analyzed.
– CommServ Agent. It is responsible for all communications between services and the platform. Its functionalities are sim-

ilar to CommApp Agent but in reverse. This agent is always on ‘‘listening mode’’, waiting for responses from services. The
Admin Agent indicates to the CommServ Agent which service must be invoked. Then, the CommServ Agent creates a new thread
with its respective socket and sends an XML message to the service. The socket remains open until the service sends back a
response. All messages are sent to the Security Agent for their structure and syntax to be analyzed. This agent also periodically
checks the status of all services to know if they are idle, busy or crashed.
– Directory Agent. It manages the list of services that can be used by the system. For security reasons, the list of services is

static and can only be manually modified; however, services can be dynamically added, erased or modified. The list contains
the information of all trusted available services. The name and description of the service, the required parameters and the IP
address of the computer where the service is running are some of the information stored in the list of services. However,
there is dynamic information that is constantly being modified: the service performance (average time to respond to
requests), the number of executions and the quality of the service (QoS). This last data is very important, as it assigns a value
between 0 and 1 to all services. All new services have a quality of service value set to 1. This value decreases when the service
fails (e.g., service crashes, no service found, etc.) or has a subpar performance compared to similar past executions. QoS is
increased each time the service efficiently processes the assigned tasks. Information management is especially important
in environments where the data processed is very sensitive and personal (e.g., healthcare applications). Thus, security must
be a major concern when developing this kind of systems. For this reason, FUSION@ does not implement a service discovery
mechanism, requiring systems to employ only the specified services from a trusted list of services. However, agents can
select the most appropriate service (or group of services) to accomplish a specific task.
– Supervisor Agent. This agent supervises the correct functioning of the other agents in the system. Supervisor Agent peri-

odically verifies the status of all agents registered in the architecture by sending ping messages. If there is no response, the
Supervisor Agent kills the agent and creates another instance of that agent.
– Security Agent. This agent analyzes the structure and syntax of all incoming and outgoing XML messages. If a message is

not correct, the Security Agent informs the corresponding agent (CommApp or CommServ) that the message is undeliverable.
This agent also directs the problem to the Directory Agent, which modifies the QoS of the service where the message was sent.
– Admin Agent. The Admin Agent decides which service must be called by taking into account the QoS and users’ prefer-

ences. Users can explicitly invoke a service, or they can let the Admin Agent decide which service is the best for accomplishing
the requested task. If there are several services that can resolve the task requested by an application, the agent selects the
optimal choice. An optimal choice has a higher QoS and better performance. Admin Agent has a routing list to manage mes-
sages from all applications and services. This agent also checks if services are working properly. It requests the CommServ
Agent to send ping messages to each service on a regular basis. If a service does not respond, the CommServ Agent informs
the Admin Agent, which tries to find an alternative service, and informs the Directory Agent to modify the respective QoS. Fur-
thermore, the Admin Agent is responsible for checking if the Supervisor Agent is alive. If not, the Admin Agent initiates a new
instance of the Supervisor Agent so that the system can better recover from errors.
– Interface Agent. This kind of agent was designed to be embedded in user applications. Interface agents communicate

directly with the agents in FUSION@ so there is no need to employ the communication protocol, rather the FIPA ACL spec-
ification. The requests are directly sent to the CommApp Agent, which forwards them to the Security Agent so that it analyzes
the requests. If they are correct, the CommServ Agent sends them to the Admin Agent. The rest of the process follows the same
guidelines for calling any service. These agents must be simple enough to allow them to be executed on mobile devices, such
as cell phones or PDAs. All high demand processes must be delegated to services.

FUSION@ is an open architecture that allows developers to modify the structure of the agents, previously described, so
that they are not defined in a static manner. Developers can add new agent types or extend the existing ones to conform

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 53

Author's personal copy

to their projects’ needs. However, most of the agents’ functionalities should be modeled as services, releasing them from
tasks that could be performed by services. Services represent all functionalities that the architecture both offers to users
and uses itself. As previously mentioned, services can be invoked locally or remotely. All information related to services
is stored into a directory, which the platform uses in order to invoke them. This directory is flexible and adaptable, so ser-
vices can be modified, added or eliminated dynamically. Services are always on ‘‘listening mode’’ to receive any request from
the platform. It is necessary to establish a permanent connection with the platform by using sockets. Every service must have
a permanent listening port open in order to receive requests from the platform. Services are requested by users through
applications, but all requests are managed by the platform, not directly by applications. This provides more control and secu-
rity when requesting a service because the agents can control and validate all messages sent to the services and applications.
When the platform requests a service, the CommServ Agent sends an XML message to the specific service. The message is
received by the service and creates a new thread to perform the task. The new thread has an associated socket which main-
tains communication open to the platform until the task is finished and the result is sent back to the platform. This method
provides services that include managing multiple and simultaneous tasks, so services must be programmed to allow multi-
threading. However, there could be situations where multi-tasks are permitted, for instance high demanding processes
where multiple executions could significantly reduce the services performance. In these cases, the Admin Agent asks the
CommServ Agent to consult the status of the service, which informs the platform that it is busy and cannot accept other re-
quests until it has finished.

3.2. The HERA platform

HERA (Hardware-Embedded Reactive Agents) facilitates agents, applications and services communication in FUSION@
through the use of dynamic and self-adaptable heterogeneous WSNs. There have been several attempts to integrate WSNs
and a SOA approach [28,44,49]. Unlike those approaches, the agents in HERA are directly embedded on the WSN nodes and
their services can be invoked from other nodes in the same network or another network connected to the original one. HERA
is an evolution of SYLPH (Services laYers over Light PHysical devices) [17]. The SYLPH platform follows a SOA model [12] for
integrating heterogeneous WSNs in AmI-based systems. As SYLPH, HERA focuses specifically on devices with small resources
in order to save CPU time, memory size and energy consumption. In SYLPH, services are directly offered by the wireless sen-
sor nodes that are part of the platform. In the same way, any node in the platform can directly invoke a SYLPH service offered
by other node in the platform, no matter if both nodes are in the same physical wireless network or not.

Each element that forms part of a sensor network is called a node. In an AmI scenario, nodes must communicate directly
with one another in a distributed way. In a centralized architecture, most of the intelligence is located in a central node. That
is, the central node is responsible for managing most of the functionalities and knowing the existence of all nodes in a spe-
cific WSN. That means that a node belonging to a certain WSN does not know about the existence of another node forming
part of a different WSN, even though this WSN is also part of the system. For this reason, it is difficult for the system to
dynamically adapt its behavior to the changes in the infrastructure. In addition, excessive centralization negatively affects
system functionalities, overcharging or limiting their capabilities. Nonetheless, this model can be improved using a common
distributed architecture where all nodes in the system can know about the existence of any other node in the same system
regardless of the technology or interface they use or the sub-network to which they belong. This can be achieved by adding a
middleware logical layer over the existing application layers on the nodes. A distributed architecture provides more flexible
ways to move functions to where actions are needed, thus obtaining better responses, autonomy, services continuity, and
superior levels of flexibility and scalability than centralized architectures.

The HERA platform has been designed to enable an extensive integration of WSNs and optimize the distribution, manage-
ment and reutilization of the available resources and functionalities in its networks. As a result of SYLPH, HERA provides the
possibility of connecting wireless sensor networks based on different radio and link technologies, whereas other approaches
do not. That is, HERA allows the agents embedded into nodes to work in a distributed way and does not depend on the lower
stack layers related to the WSN formation (i.e., network layer) or the radio transmission among the nodes that form part of
the network (i.e., data link and physical layers). Likewise, HERA can be executed over multiple wireless devices indepen-
dently of their microcontroller or the programming language they use.

In SYLPH, the main objective is to distribute resources over multiple WSNs by modeling the functionalities as indepen-
dent services. As explained below, the information gathered by SYLPH nodes can be managed by intelligent agents by using
the integration of SYLPH with the FUSION@ multi-agent architecture. Thus, the agents running on FUSION@ can use reason-
ing mechanisms to adapt their behavior to the context information obtained through SYLPH nodes. However, HERA goes a
step further than SYLPH. In HERA, agents are directly embedded on the wireless nodes. Therefore, each wireless node is an
agent and works inside FUSION@ as another software agent running on platforms such as RETSINA or JADE. This way,
through the integration of HERA into FUSION@, there is no difference between a software agent and a hardware agent.

SYLPH covers aspects related to services such as registration, discovering and addressing. Additionally, a node can invoke
functionalities offered by any other node in the system, regardless of whether they are in the same WSN or not. Some nodes
in the system can integrate service directories for distributing registration and discovering services. Node registration is done
in the corresponding WSN (i.e., specific network) and service registration is maintained by multiple services directories.
Thus, the process of connecting new nodes to the system is performed in a dynamic way. A node can know about the
existence of other nodes and the services they offer. Therefore, it can directly communicate with other nodes to perform

54 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

a specific service. A SOA model was chosen in SYLPH because architectures based on this model are asynchronous and
non-dependent on context (i.e., previous states of the system, which must not be confused with context-aware environ-
ments) [12]. Thus, devices working on them do not continuously take up processing time, consume less energy and are free
to perform other tasks.

SYLPH can be executed over multiple wireless devices independently of their microcontroller or the programming lan-
guage they use. SYLPH works in a distributed way so that the application code does not have to reside almost completely
on a single central node. SYLPH allows the interconnection of several networks from different wireless technologies, such
as ZigBee or Bluetooth. Thus, a node designed over a specific technology can be connected to a node from a different tech-
nology. In this case, both WSNs are interconnected by a set of intermediate gateways simultaneously connected to several
wireless interfaces. SYLPH allows applications to work in a distributed way and independently of the lower layers related to
the WSNs formation (i.e., network layer) and the radio transmission among the nodes that comprise them (i.e., data link and
physical layers). The services can be executed from multiple wireless devices. Given that neither developers nor users have
to worry about what kind of technology each node in the system uses, the experience is transparent for everybody involved.
This facilitates the inclusion of context-aware capabilities into AmI-based systems because developers can dynamically inte-
grate and remove nodes on demand.

3.2.1. Layers and components of the HERA platform
SYLPH implements an organization based on a stack of layers [42]. Each layer in one node communicates with its peer in

another node through an established protocol. In addition, each layer offers specific functionalities to the immediately upper
layer in the stack. These functionalities are usually called interlayer services, which must not be confused with the services
invoked from node to node. These interlayer services are abstract functions and independent of the implementation of the
platform. The SYLPH layers are added over the existent application layer of each WSN stack, allowing the platform to be
reutilized over different technologies. Fig. 2 shows the SYLPH layers and protocol stacks over two ZigBee nodes through
an UML deployment diagram. The structure of SYLPH will now be described.

– SYLPH Message Layer (SML). The SML offers the upper layers the possibility of sending asynchronous messages between
two nodes through the SYLPH Services Protocol (SSP). These messages specify the source and destination nodes and the ser-
vice invocation in a SYLPH Services Definition Language (SSDL) format. The SSDL describes the service itself and the param-
eters to be invoked. This SML not only transports the services invocations over the network, but also the services registration
and search functions.
– SYLPH Application Layer (SAL). The SAL allows different nodes to directly communicate with each other using SSDL

requests and responses that will be delivered in encapsulated SML messages following the SSP. SAL implements the service
code (i.e., firmware) from within each node, allowing each one to communicate with the SYLPH platform and invoke services
located in other nodes. Moreover, there are other interlayer services for registering services or finding services offered by
other nodes. In fact, these interlayer services for registering and searching services call other interlayer services offered
by the SYLPH Services Directory Sub-layer (SSDS). Therefore, the SAL can use the interlayer services of the SML either directly
or through the SSDS.
– SYLPH Services Protocol (SSP). The SSP is the internetworking protocol of the SYLPH platform. SSP has functionalities

similar to those of the Internet Protocol (IP). That is, it allows sending packets of data from one node to another node regard-
less of the WSN to which each one belongs. Every node has a unique SSP 32-bit address in the SYLPH network. Therefore, an
SSP packet includes a header that describes the SSP addresses of the source node and the destination node, as well as infor-
mation for managing transmissions that involve multiple SSP packets (i.e., number of SSP packet and remaining bytes).

ZigBee

APS/ZDO

SML

SAL

ZigBee

APS/ZDO

SML

SAL

SSDL

HERACLES

SSP

APS

ZigBee

HERA

SSDS

HERA

SSDS

Fig. 2. UML deployment diagram of the HERA platform running over SYLPH. This diagram shows the HERA Agents layer running as a component on the
SYLPH Application Layer. Likewise, it can be seen the different layers of SYLPH and HERA, as well as the different protocols that communicate each layer on
different ZigBee nodes.

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 55

Author's personal copy

– SYLPH Services Definition Language (SSDL). The SSDL is the IDL (Interface Definition Language) used by SYLPH. Unlike
other IDLs such as WSDL (Web Services Definition Language) [18], SSDL does not use as many intermediate separating tags,
and the order of its elements is fixed. SSDL has been specifically designed to work with limited computational resources
nodes. Nodes can request the SSDS for the location of services and their specifications using SSDL.
– SYLPH Services Directory Sub-layer (SSDS). The SSDS creates dynamic services tables to locate and register services in

the network. A node that stores and maintains services tables is called SYLPH Directory Node (SDN). These tables are made
up of a list of service entries, each of which includes the description of a service in SSDL format and the SSP address of the
node that offers the service. In addition, each entry stores additional information about the service whose location and
description is maintained in the network. Such information includes, for instance, a Quality of Service (QoS) rate and the last
time the SDN checked if the service was available. A node in the network can make a request to the SDN to know the location
(i.e., network address) of a certain service. Requests are packed in SML messages and must follow the SSP. SSDS is also used
by the SAL when registering a new service.

The HERA Agent platform adds its own agents layer over the SYLPH stack of layers, as shown in Fig. 2. As the HERA plat-
form is based on the existing layers of SYLPH platform, the applications and systems built over HERA take advantage of one
of the main features of SYLPH: it can be run over any wireless sensor node regardless of its radio technology or the program-
ming language used for development. In addition, as HERA is designed over SYLPH communication layers, HERA Agents run-
ning on WSNs with different radio technology can communicate among themselves through one or more SYLPH Gateways,
as explained below. Consequently, the main components added by HERA to the SYLPH’s stack of layers are:

– The HERA Agents Layer (or just HERA). HERA Agents are specifically intended to run on devices with reduced resources,
precisely what SYLPH was designed for. To communicate with each other, HERA Agents use HERACLES, the agent commu-
nication language designed for being used under the HERA platform. Each HERA Agent is an intelligent piece of code running
over the SYLPH Application Layer. As explained below, there must be at least one facilitator agent in every agent platform.
This agent is the first created in the platform and acts as a directory for searching agents. In HERA, the equivalent of these
agents is the HERA-SDN (HERA Spanned Directory Node).
– HERA Communication Language Emphasized to Simplicity (HERACLES). The HERACLES language is directly based on

the SSDL language. As with SSDL, HERACLES does not use intermediate tags and the order of its elements is fixed to constrain
the resource necessities of the nodes. This makes its human-readable representation, used by developers for coding, very
similar to SSDL. When HERACLES is translated to HERACLES frames, the actual data transmitted among nodes, they are
encapsulated into simple SSDL frames using ‘‘HERA’’ as their service id field.

3.2.2. HERA basic operation and HERA Spanned Directory Nodes (HERA-SDNs)
The behavior of SYLPH is essentially similar to that of any other service oriented architecture. However, SYLPH has several

characteristics and functionalities that make it different from other models. First, a service registers itself on the SDN and
informs the network of its location, the parameters it requires, and the type of returned value after its execution. In order
to do this, the service uses SSDL, which was created to work with limited resources nodes. Once the service has been reg-
istered in the SDN, it can be invoked by any application using SYLPH. Both the SDN and the services can be stored in any
node of the WSN or in other subsystem connected to the WSN. This system can be, for instance, a simple personal computer
connected through a USB port to a wireless interface. Thus, developers decide which nodes or subsystems will implement
each part of the distributed application. Any node in the network can ask the SDN for the location of a particular service
and its specification using SSDL. Because the aim of the architecture is to be as distributed as possible, it is possible to have
more than one SDN in the same network, which makes it possible for redundancies to exist or services to be organized in
different directories. The SDN can be stored in one of the network nodes, with a memory external to the microcontroller
if necessary, or it can be contained on a computationally higher machine connected to the WSN, as is the case of a data server
or a personal computer with wireless connection.

The UML sequence diagram depicted in Fig. 3a shows how a node can discover services in the network. For example,
SYLPH node #1, belonging to WSN ‘‘A’’ registers itself in the SYLPH platform. For this, it sends a broadcast message searching
for existing SDNs in the network. At this moment, only SDN #0 is active, so after receiving the broadcast message it sends a
message to node #1 informing of its situation (i.e., SSP address) and its setup parameters. An example of a setup parameter is
whether the SDN will periodically inform of its presence or if the nodes themselves have to ask it. After this, node #1 is able
to communicate with SDN #0 in order to obtain information about the possible services existing in the network. Later, node
#2 registers itself on the platform. It belongs to a different WSN, called WSN ‘‘B’’ and perhaps uses a radio technology dif-
ferent than that used by WSN ‘‘A’’. This is possible because of the SYLPH Gateways, described below. As node #2 has SDN
functionalities, it informs the rest of the nodes with a broadcast message. SDN #1 stores this information on its SSDS entry
list and informs node #2 about its role as SDN. Any node in the network can not only offer or invoke SYLPH services, but also
include SDN functionalities in order to provide services descriptions to other network nodes. SDNs include additional infor-
mation about services, for example, a Quality of Service rate and a timestamp that represents the last time the SDN checked if
the service was available. A SDN can be configured to check the services periodically or to allow service broadcasts.

56 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

Every agent platform needs some kind of facilitator agent that needs to be created before other agents are instantiated in
the platform [7,32,45]. Facilitator agents act as agent directories. This way, every time an agent is created, it is registered on
one of the existing facilitator agents. This allows other agents to request one of the facilitator agents in order to know where
an agent with certain functionalities is and how to invoke such functionalities. As HERA is intended to run on machines that
are not more complex than sensor nodes themselves are, it was necessary to design some hardware facilitator agents that do

node#1 (WSN A) SDN#0 (WSN A)

broadcasts message
searching a SDN SSDS_SDNinform(SSPaddress, SDNparameters)

Radio technology A

SDN#2 (WSN B)

Radio technology B

SSDS_SDNsearch()

SSDS_getServices()

list of SYLPH services

SSDS_SDNinform(SSPaddress, SDNparameters)
broadcasts message
identifying itself as SDN

SSDS_SDNstore(SDN#0)

SDN#0 entry
SDN#1 entry

SDN#0 entry

SSDS_SDNstore(SDN#2) SDDS_SDNstore(SDN#2)

node#1 entry
SDN#2 entry SSDS_SDNstore(SDN#0)

SSDS_SDNinform(SSPaddress, SDNparameters)

SDN #0 entry

Radio technology A

node#1 entry

node#1 (WSN A) SDN#0 (WSN A)

HERA-SDN#0

at SDN#0 in WSN A

its existence starts
the HERA agent platform

HERA_instantiate(HERA-SDN#1)

HERA_instantiate(HERA-SDN#0)

ok

ok

HERA-SDN#1
at node#1 in WSN A

HERA-SDN #1 entry

HERA-SDN#0 entry

SDN#0 entry
SDN#2 entry

node#1 entry
SDN#2 entry

HERA_instantiate(Agent#2)

ok
HERA Agent#2

at node#1 in WSN A

node#3 (WSN B)

HERA_instantiate(Agent#3)

ok

HERA Agent#3

at node#3 in WSN B

HERA_instantiate(Agent#4)

HERACLES(call-for-proposal)

broadcasts call-for-proposal
to find another HERA-SDN

HERACLES(inform)

HERA_instantiate(Agent#4)

ok

HERA Agent#4

at node#3 in WSN B

SDN#2 entry

HERA-SDN#1 entry

HERA-SDN#0 entry
HERA Agent#2 entry

HERA-SDN#1 entry
HERA Agent#3 entry

HERA-SDN#0 entry

HERA-SDN#0 entry
HERA Agent#2 entry
HERA Agent#4 entry HERA-SDN#1 entry

(b)

(a)

Fig. 3. UML sequence diagrams showing examples of the basic operation of SYLPH and HERA platforms when registering services or agents on the SYLPH
Directory Nodes (a) and the HERA Spanned Directory Nodes (b), respectively.

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 57

Author's personal copy

not need more CPU complexity and memory size than what a regular sensor node has. In order to do this, HERA’s facilitator
agents, called HERA-SDNs (HERA Spanned Directory Nodes) are based on the SYLPH Directory Nodes (SDN), described above.
This way, any HERA node can perform as a HERA-SDN, just as SDNs do in the SYLPH platform. However, a HERA-SDN does
not also have to be a SDN. HERA-SDN instances itself and starts the HERA platform by registering a special SYLPH service
called ‘‘HERA’’ on a SDN stored on any node of the SYLPH network. When a new HERA Agent wants to instantiate itself
through a HERA-SDN, it looks for the ‘‘HERA’’ service on the SYLPH network, using a primitive service of the SSDL/SSP layers.
When a HERA Agent is correctly instantiated, the HERA layer also registers a ‘‘HERA’’ service for the agent in a SDN. In this
way HERA Agents can send HERACLES messages to each other over SYLPH, referring to the service of each node with HERA
Agents, including HERA-SDNs, as ‘‘HERA’’.

Fig. 3b shows the basic operation of HERA Agents and HERA-SDNs through another UML sequence diagram. In order to
start the HERA platform, an initial HERA-SDN must be created. This will be HERA-SDN #0 running on SDN #0. At that
moment, other SYLPH nodes with HERA running on them can instantiate more HERA Agents or even more HERA-SDNs. Be-
cause HERA is designed to run on devices with low resources that are usually connected wirelessly, it is very important that
the platform does not have to depend on only one HERA-SDN (i.e., one facilitator agent). This way, if the HERA-SDN crashes
(e.g., power failure or problems with radio transmission), the HERA platform will not fail and will not need to be started
again. After the creation of the HERA-SDN #0, the SYLPH node #1 uses the HERA-SDN #0 to instantiate a new HERA-SDN,
the HERA-SDN #1, thus increasing the redundancy of the HERA-SDNs and the robustness of the platform. The SYLPH node
#1 also instantiates the HERA Agent #2, this time through the HERA-SDN #1. SYLPH node #3, in the other WSN, instantiates
HERA Agent #3 through the HERA-SDN #0, even if they are in distinct WSNs. With SYLPH, this is no longer a problem. At a
specific moment, SDN #0 is powered off. After that, SYLPH node #3 looks for HERA-SDN #0. As HERA-SDN #0 does not reply,
SYLPH node #3 sends a broadcast call-for-proposal HERACLES frame in order to find a live HERA-SDN. As HERA-SDN #1 re-
plies, HERA Agent #4 is created through HERA-SDN #1. As shown in Fig. 3b, there can be several HERA Agents in a single
SYLPH node. Moreover, there can be SYLPH nodes with no HERA implementation. A SYLPH Gateway is a clear example of
this, as explained below. If, at a certain moment, HERA Agent #2 wants to look for an agent, but HERA-SDN #0 is not alive
again, then HERA Agent #2 also has to look for an existing HERA-SDN in the platform, thus storing entries for the two HERA-
SDNs. When HERA-SDN #0 is alive again, it will be useful for HERA Agent #2 to have this redundancy on HERA-SDNs entries.

(d) HERACLES request frame sent over SSDL/SSP

(c) SSDL Service response over SSP

SSP
header

SSDL
header status SSP

trailer

(a) SSDL Service definition sent by the SDN over SSP

(b) SSDL Service invocation over SSP

(e) HERACLES inform frame received over SSDL/SSP as response

SSP
header

SSDL
header Service Id Node Id string

mark
float
mark

outputs
mark

boolean
mark

SSP
trailer

SSP
header

SSDL
header Service Id units string

endmark pressure SSP
trailer

SSP
header

SSDL
header

Service Id
(HERA) Node Id HERACLES

header
HERACLES

sender
HERACLES

receiver
content
mark

action
mark

inform-if
mark

HERACLES
sender

HERACLES
receiver

content
mark

message
mark

state
mark

message
end

content
end

SSP
trailer

SSP
header

SSDL
header

Service Id
(HERA) Node Id HERACLES

header
HERACLES

sender
HERACLES

receiver
content

start
message

start result message
end

content
end

SSP
trailer

Fig. 4. Examples of SYLPH’s SSDL frames over SSP and HERA’s HERACLES frames over SSP/SSDL.

58 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

3.2.3. The HERA Communication Language Emphasized to Simplicity (HERACLES)
SSDL (SYLPH Services Definition Language) is the IDL (Interface Definition Language) used by SYLPH. Unlike other IDLs

such as WSDL (Web Services Definition Language) [18], SSDL does not use as many intermediate separating tags, and the order
of its elements is fixed. SSDL has been specifically designed to work with limited computational resource nodes. Nodes can
request the SSDS for the location of services and their specifications using SSDL. The reason for these constraints is to reduce
processing in the devices microcontrollers. Consequently, using a simple IDL makes it possible to use nodes with fewer re-
sources, less power consumption and at a lower cost. In most cases a few float point data for informing the status of a sensor
is sufficient. Thus, most service definitions require only a few bytes. SSDL considers the basic types of data (e.g., integer, float
or Boolean), allowing the use of more complex data structures, such as variable length arrays or character strings. This makes
SSDL flexible enough to specify more complex services if required.

In the List 1 in the appendix we demonstrate a simple example of the use of SSDL in order to define a SYLPH service. This
representation of SSDL is the human-readable version, used by developers when defining services, not the version actually
transmitted. It is clear that its syntax is slightly similar to that of C language. Assembler and C are the most used program-
ming languages for coding microcontroller firmware. However, C language is more human-readable than assembler. The
example defines a simple service called registerServiceOnFireAlarm. This service is stored in a sensor device that be-
longs to a wireless network with the SYLPH platform running over it.

In fact, this representation of the SSDL syntax is the one used by developers to specify the services in the firmware run-
ning on the devices attached to SYLPH architecture. After specifying the service by means of SSDL human-readable syntax,
developers translate definitions to specific code for the target language (e.g., C or nesC) and the microcontroller where the
service will run. When the node registers its service in a SDN, SYLPH layers do not transmit the human-readable SSDL mes-
sage, but a more compact array of bytes that describe the service and how to invoke it from other nodes. Fig. 4 shows the
SSDL frames involved in the registerServiceOnFireAlarm service definition (a), invocation (b) and response (c) when
transmitted over SSP. When a node asks a SDN for the service definition, the SDN answers with a frame as shown in
Fig. 4a. This frame describes the service identification, the address of the node that stores the service, the definition of
the input and output parameters, and the QoS offered by the service. It has a SSDL header that specifies the SSDL data length
and the type of frame it is (registration, definition, invocation or response). We can see that there is an outputs mark that
denotes the input parameters and the output parameters that follow it. In the example of the registerServiceOnFire-

Alarm service, a service callback is described as an input parameter. To specify that issue, there are some service start and end
marks. As the service callback has no input parameters, the outputs mark is the first field inside its definition in the param-
eters description. Once the invoker node knows the service definition, it can call the service by sending a SSP frame to the
node that stores the service. This frame (Fig. 4b) does not need any mark inside it, because the input parameters have to
follow the specified order. Thus, the SSDL combines ease of parsing with flexibility in the type and size of the used param-
eters. The SSP header includes the SSP address of the destination node. The response frame contains only the output param-
eter (Fig. 4c).

In HERA, the hardware agents communicate with each other through the HERA Communication Language Emphasized to
Simplicity (HERACLES). This language is an extension of the SSDL used in SYLPH. As explained above, SSDL has two distinct
representations [17]: one that is human-readable, similar to C language and used for services development proposals, and
one embedded on frames that SYLPH nodes understand. This is done in this way because in nodes with reduced resources
(memory and CPU time) it is not convenient to overload the microcontroller and the memory space with a heavy parsing
method. When developing a program, programmers use the human-readable representation to define agents’ functionalities,
similar to that shown on List 2 in the appendix.

However, similar to SYLPH, HERA Agents transmit the more compact representation of HERACLES as frames. The compact
frames corresponding to the previous example are also represented in Fig. 4. This kind of compact frames is what HERA
Agents transmit in a heterogeneous WSN based on HERA-SYLPH over the SSDL/SSP protocols. Fig. 4d shows the frame
corresponding to the HERACLES request, whereas Fig. 4e depicts the frame corresponding to the HERACLES inform of the pre-
vious example.

3.2.4. Operation of HERA over heterogeneous WSNs using SYLPH Gateways
As previously mentioned, with SYLPH, a node in a specific type of WSN (e.g., ZigBee) can directly communicate with a

node in another type of WSN (e.g., Bluetooth). Therefore, several heterogeneous WSNs can be interconnected through a
SYLPH Gateway. A SYLPH Gateway is a device with several hardware network interfaces (e.g., a Wi-Fi network card), each
of which is connected to a distinct WSN. As with an IP gateway, a SYLPH Gateway does not need to implement the layers
over the SML. The SYLPH Gateway stores routing tables for forwarding SSP packets among the different WSNs with which
it is interconnected. The information transported in the SSP header is enough to route the packets to the corresponding
WSN. If several WSNs belong to the SYLPH network, there is no difference between invoking a service stored either in a node
in the same WSN or in a node in a different WSN. For example, if a source node invokes a service stored in a destination node
located in a different WSN, the source node looks for the service in a SDN present in the WSN to which it belongs. In fact, the
entry stored in the services table of that SDN points to the SSP address of the SYLPH Gateway. When the source node invokes
the service in the destination node, the SYLPH Gateway forwards the call message to the destination node through its hard-
ware interface connected to the WSN where the destination node is located. Fig. 5 shows an UML deployment diagram rep-
resenting a ZigBee and a Bluetooth network working together using SYLPH.

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 59

Author's personal copy

Because of HERA is implemented over SYLPH through the addition of new layers and protocols (HERA Agents and HER-
ACLES), it can be used over several heterogeneous WSNs in a transparent way. HERA Agents are implemented over the SAL
layer, so HERA does not mind how many intermediate SYLPH Gateways and different WSNs there are between the location of
one HERA Agent and another. This is demonstrated in Fig. 5. Both HERA Agents and HERA-SDNs communicate with each
other directly through HERACLES. HERA Agents use SAL’s service points to deliver HERACLES frames between agents. Since
HERACLES frames are transported as other SSDL frames over SSP between SYLPH nodes, HERA Agents do not need to know
which nodes other HERA Agents are stored on, or if such nodes are in remote WSNs.

3.3. Integration of HERA into FUSION@

Before the development of HERA, the use of FUSION@ was proposed [1] to interact with a SYLPH network from a system
that is not made up of WSNs. Consequently, two agents in SYLPH were designed to interact with FUSION@: SylphInterface
Agent and SylphMonitor Agent. The SylphInterface Agent allows the rest of the agents to discover and invoke services offered
by SYLPH WSN nodes. Moreover, the SylphInterface Agent can offer services to the wireless nodes. In order to do this, the WSN
node in the FUSION@–SYLPH Gateway stores service entries on its SSDS table. As shown in the UML deployment diagram
depicted in Fig. 6, the SylphInterface Agent performs as a broker between the SYLPH network and the FUSION@ architecture.

ZigBee Bluetooth

APS/ZDO RFCOMM/SDP

ZigBee

APS/ZDO

SML

SAL

Bluetooth

RFCOMM/SDP

SML

SAL

SSDL

APS

ZigBee

SML SSP

RFCOMM/SDP

Bluetooth

ZigBee Node ZigBee-Bluetooth SYLPH Gateway Bluetooth Node

SSP

HERACLESHERA

SSDS

HERA

SSDS

Fig. 5. UML deployment diagram of SYLPH and HERA over a ZigBee and a Bluetooth network through a SYLPH Gateway. As can be seen, HERA Agents on
nodes from different radio technologies communicate each other in a transparent way thanks to SYLPH.

FUSION@

WSN node #0 on
gateway

Sylph node #1

Sylph node #2

SSDL/SSP

SSDL/SSP

SSDL/SSP

SSDS

SDN #0 entry

SSDS
SSDS

FUSION@ Agents

SylphMonitor Agent

SylphInterface Agent

Service on node #1 entry
Service on node #2 entry
Services on SylphInterface Agent
Services on SylphMonitor Agent

SDN #0 entry

Fig. 6. UML deployment diagram of the interaction between SYLPH and FUSION@ where HERA is not yet present. Even though the features of FUSION@
provide an easy way to access SYLPH services as other services and applications, the integration of HERA into FUSION@ improves this architecture
embedding agents directly on wireless sensor nodes.

60 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

The SylphMonitor Agent allows the agent platform to monitor the state and operation of the SYLPH network. Thus, the
SylphMonitor Agent monitors all the traffic (i.e., service invocations, responses, registrations or searches) in the SYLPH net-
work. It is necessary for the nodes to operate in a special debug mode, so that every time a node invokes a service it also
invokes a monitoring service on a node connected to the SYLPH WSN node in the gateway. The node gathers all the
invocations and forwards them to the SylphMonitor Agent running on the agent platform. The same process is done for service
responses, searches and registrations. The SylphMonitor Agent makes it possible to observe when a node is searching for a
certain service in the network, the services offered by the nodes, and the contents of the SSDS entries tables stored in the
SDNs.

In the new proposal, with the integration of the HERA platform into the FUSION@ architecture, hardware agents of HERA
and software agents of FUSION@ can communicate with each other in a transparent way. Even though HERA can run on just
light hardware nodes, its integration into FUSION@ allows building systems and applications where hardware reactive
agents can interact directly with heavier software deliberative agents. This integration can be seen on the UML deployment
diagram shown in Fig. 7. FUSION@ was enhanced in order to support HERACLES for both Services and Applications blocks. To
do this, the CommServ Agent and the CommApp Agent were modified in FUSION@ to support the HERACLES language. This
way, the HERA-SDNs can communicate with the CommServ Agent and the CommApp Agent through the HERACLES language.

The manner in which several heterogeneous HERA/SYLPH WSNs are connected with the pre-defined agents of FUSION@ is
done through a HERA-SDN running on a SYLPH Gateway. Therefore, predefined-agents of FUSION@ run, for example, in a
JADE platform on a complex machine, as a server or a workstation. Any platform that understands ACL is valid for running
pre-defined FUSION@ agents. There are SYLPH Gateways that interconnect the server and one of the SYLPH WSNs. This
SYLPH Gateway can be, for example, a ZigBee node connected through a serial port (e.g., USB or RS-232) to the server
and some code in the server where SYLPH layers and protocols are implemented. In addition, a HERA-SDN on that same
SYLPH Gateway is instantiated in the HERA platform running over the heterogeneous SYLPH WSNs. This way, the HERA-
SDN is a HERA Agent that can communicate through HERACLES both with the HERA Agents in the WSN nodes and with
the CommServ Agent and the CommApp Agent in the FUSION@ platform on the server, as now they understand the HERACLES
language.

4. Experiments and results

In order to test the HERA platform, its integration into FUSION@ and its feasibility in AmI-based systems, we deployed a
distributed WSN infrastructure with HERA running over it. The infrastructure consists of a ZigBee network with 31 nodes,
one acting as ZigBee coordinator and the rest as ZigBee routers. Each ZigBee node includes an 8-bit C51-based microcontrol-
ler with 8448 bytes of RAM and 128 KB of Flash memory and an IEEE 802.15.4/ZigBee transceiver. These devices include tem-
perature and light sensors, some buttons and some LEDs, which allows them to be used as sensors and actuators. In fact,

HERA

HERA-SDNs

(Real Time) OS

C, nesC, Java

HERACLES

FUSION@ Applications

Services
SOAP/ACL

SOAP

Java, .Net, C/C++,
Pascal, Prolog, JavaScript

JADE OAA RETSINA

RMI 'Main Container
Agent Container Facilitator Communicator HTN

Java Java, C/C++, Prolog Java, C/C++

OS OS OS

ICL KQMLFIPA/ACL

Communication Agents

FUSION@ Agents

Fig. 7. UML deployment diagram representing the integration of HERA platform into FUSION@ architecture. As can be seen, HERA interact with FUSION@ as
other agent platform, no matter if HERA Agents are, in fact, hardware-embedded agents running on wireless sensor nodes from different radio technologies.

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 61

Author's personal copy

these devices were selected because we had already used them in previous developments and we intend to integrate them in
future projects as well. The ZigBee nodes are distributed in a short-range simple mesh, with less than 10 m between any
router and the coordinator. Each time the ZigBee network is formed, nodes are powered on different random times, so that
the mesh topology is different each time. This means that the number of neighbors and children nodes of any node and their
addresses is different every time. However, they are some constraints: the maximum depth of the network (i.e., the maxi-
mum number of hops between the coordinator and any node in the network) is 5, the maximum number of neighbors of any
node is 8 and the maximum number of children of any node in the network is also 8. Each time the ZigBee network is formed,
the SYLPH platform is started over it. This way, the ZigBee coordinator has SDN capabilities and also SYLPH Gateway capa-
bilities for connecting the ZigBee network with a server through a USB port, if that were ever required.

We have also developed an application for monitoring the state and operation of the HERA network. This application is
based on a previous one we had developed for monitoring SYLPH networks. As with the previous one, this application mon-
itors all the traffic (i.e., service invocations, responses, registrations or searches) in the SYLPH network. It is necessary for the
nodes to operate in debug mode, so that every time a node invokes a service it also invokes a monitoring service on a node
connected to a computer (e.g., via a USB port). The node gathers all the invocations and forwards them to the monitoring
application running on the computer. The same process is done for service responses, searches and registrations. The mon-
itoring application makes it possible to observe when a node is searching for a certain service in the network, the services
offered by the nodes, and the contents of the SSDS entry tables stored in the SDNs. In addition, with the newly developed
application it is possible to monitor the HERA Agent instances in the HERA-SDNs of the HERA platform and also the HERA-
CLES request, inform and other frames.

Several experiments were carried out to evaluate the performance of both HERA alone (i.e., without FUSION@) and HERA
with FUSION@, mainly to test how it handled the instances of HERA-SDN and HERA Agents, as well as the exchange of frames
between agents through HERACLES. The first experiment consisted of trying to start a platform with just HERA over a ZigBee
SYLPH network. As previously described, the network was made up of 31 ZigBee nodes, one of them acting as SDN and 30
acting as SYLPH nodes. After the entire SYLPH network is correctly created the coordinator and SDN try to instance a HERA-
SDN. HERA-SDN instances itself and starts the HERA platform registering a special SYLPH service called ‘‘HERA’’ on the SDN
stored on the same ZigBee coordinator node. Then, 10 of the 30 SYLPH nodes try to instance one HERA Agent, each of them in
the HERA platform. Once the HERA-SDN and the 10 HERA Agents were successfully instantiated, the HERA-SDN started to
‘‘ping’’ every of the 10 HERA Agents with a HERACLES request frame including an inform-if command and waiting for a inform
frame as a ‘‘pong’’ response. Each HERA Agent is pinged by the HERA-SDN one time every 5 s during 1 h. This experiment was
performed to measure the success ratio of the platform start and the agent instantiation. The experiment was run until the
platform and the agents were successfully started and instantiated 50 times. When the SYLPH network could not be correctly
created the run was discarded and was not taken into account in the 50 runs. Furthermore, if the HERA platform could not be
completely started and created (i.e., all 10 HERA Agents correctly instantiated), these runs were also discarded and not taken
into account as forming part of the 50 runs. This way, the experiment was run 55 times. If any HERA Agent crashed (e.g., it
got blocked or the node fell from the WSN) it was immediately restarted. Through the HERA monitoring application previ-
ously described, HERACLES messages were registered in order to measure when a ping-pong failed and if a HERA Agent had
to be restarted. The results are shown in Table 2 which indicates that it is necessary to improve SYLPH creation and the
instantiation of HERA Agents. In the first case, a better ARQ (Automatic Repeat Request) mechanism could increase SSP-
over-WSN transmissions. In the second case, it is necessary to debug the implementation of the Agents and fix errors. In
addition, the robustness of the HERA Agents should be improved by introducing a mechanism to ping and keep running
the HERA Agents and the HERA-SDNs.

The second experiment consisted of the same 21 ZigBee SYLPH nodes, but this time the ZigBee coordinator was both the
SDN and SYLPH Gateway between the WSN and a computer through a USB port. This experiment is very similar to the

Table 2
Results of the HERA-alone and HERA into FUSION@ experiments.

HERA-alone experiments
Total runs 55
SYLPH not created correctly (% of total runs) 2 (3.6%)
HERA not started correctly (% of SYLPH correctly created) 3 (5.6%)
All 10 HERA Agents correctly instantiated 50
Total pings tried 7200
Ping-pongs not completed (% of total tried) 15 (0.2%)
Total restarted HERA Agents in an hour 8

HERA into FUSION@ experiments
Total tries 57
SYLPH not created correctly (% of total runs) 3 (5.2%)
HERA not started correctly (% of SYLPH correctly created) 4 (8.0%)
All 10 HERA Agents correctly instantiated 50
Total pings tried 7200
Ping-pongs not completed (% of total tried) 27 (0.3%)
Total restarted HERA Agents in an hour 6

62 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

previous one. However, this time HERA is integrated into FUSION@. Pre-defined agents of FUSION@ are created in a JADE
platform running on the computer. It is only possible to try to create the SYLPH network, and then the HERA Agents, if
the JADE platform and all FUSION@ pre-defined agents are correctly instantiated. In this case, the HERA-SDN is also a SYLPH
Gateway between the ZigBee network and the computer. Moreover, the responsibility for sending the pings to the HERA
Agents belongs to the Admin Agent of FUSION@. The Admin Agent uses ACL requests to the CommServ Agent, which commu-
nicates with the HERA-SDN in the SYLPH SDN/Gateway through HERACLES. As shown in Table 2 the SYLPH creation and
HERA start is a little worse when HERA is integrated into FUSION@ than when HERA is running alone. Moreover, when run-
ning with FUSION@, HERACLES ping-pongs fail quite a bit more. This is because the use of the SYLPH Gateway through the
USB serial port introduces some delay in the transmission and overloads the SYLPH SDN/Gateway node. Nevertheless, the
number of HERA Agents that should be restarted was very similar when running with FUSION@ which indicates that FU-
SION@ does not affect the robustness of the HERA platform.

The results of these experiments demonstrate the feasibility of the integration of the HERA platform into FUSION@. These
results show that the performance of HERA is hardly affected by its integration into FUSION@. This way, this integration en-
hances the latter with some features that FUSION@ do not provide by itself. These features include the possibility of working
with heterogeneous wireless sensor networks to build Ambient Intelligence based systems and applications that can perform
an improved context-awareness. Furthermore, the context of the environment and users is maintained by means of directly
Hardware-Embedded Reactive Agents that can interact with other existing software agents in a transparent way.

5. Conclusions and future work

The integration of the well-proven FUSION@ architecture and the new HERA platform is presented in this paper. FUSION@
(Flexible and User Services Oriented Multi-agent Architecture) facilitates the development of dynamic and intelligent multi-
agent systems. Its model is based on a service-oriented approach, by formalizing services, applications, communications
and deliberative agents. The architecture proposes an alternative where agents act as controllers and coordinators. FUSION@
exploits the agents’ characteristics to provide a robust, flexible, modular and adaptable solution that can cover most require-
ments that can be found in a wide array of distributed systems. All functionalities, including those of the agents, are modeled
as distributed services and applications.

The HERA (Hardware-Embedded Reactive Agents) platform allows wireless devices from different technologies to work to-
gether in a distributed way. These devices do not require large memory chips or fast microprocessors to exploit their func-
tionalities. The HERA model was designed to be implemented on AmI-based systems. However, it can be used by any kind of
complex systems as it is capable of integrating almost any desired functionality. HERA Agents can communicate in a distrib-
uted way, even from devices with reduced computational resources. Because of SYLPH, HERA Agents can communicate with
each other regardless of the technology or the programming language they use. Furthermore, an important new feature pro-
vided by the HERA platform is that HERA Agents are light enough to be run on WSN nodes with limited resources.

The HERA Agents are reactive because they act on devices with critical response times. Applications and services of FU-
SION@ can communicate with the HERA Agents in order to obtain information from the context and modify the environ-
ment. HERA Agents are also integrated in the multi-agent system of FUSION@. Therefore, the results obtained by BDI
agents directly influence the actions of the reactive agents.

These features make the integration of FUSION@ and HERA be an ideal approach to build applications and systems based
on Ambient Intelligence that take advantage of the benefits of both Multi-Agent Systems and heterogeneous Wireless Sensor
Networks. This way, it is possible to use this innovative proposal to implement any AmI-based application that requires the
use of sensor nodes belonging to different wireless technologies. Moreover, the integration of HERA into FUSION@ allows
such applications to use light reactive agents directly embedded into the sensor nodes, which are not required to have many
computational and memory resources to accomplish their tasks in the system. Furthermore, FUSION@ provides these appli-
cations with the integration of software agents that interact with HERA Agents in a transparent way.

There is a wide range of AmI-based applications that could be benefitted from these features. Some examples of these are
several applications that have been developed by the BISITE Research Group, such as a healthcare Tele-monitoring applica-
tion where SYLPH and FUSION@ have already been tested [1]. This healthcare application is focused on performing a remote
tele-monitoring of patients at their own homes.

As future work, this healthcare application will be enhanced by the introduction of the integration of HERA into FUSION@.
In the new design based on FUSION@ and HERA, there will be HERA Agents running on each sensor node. As in the former
design, there will be WSNs from different technologies, such as ZigBee and Bluetooth. On the one hand, ZigBee networks will
be used for implement presence detectors, panic button actuators carried by each patient and home automation sensor and
actuators. On the other hand, Bluetooth nodes will be used as biomedical sensors to control the patients’ vital signs, such as
temperature, breath and preventing possible fails. The features of FUSION@ will be used for control the sensors and actuators
deployed by the patient’s home, accessing them as services by the FUSION@ agents and, thus, performing monitoring and
management tasks using reasoning mechanisms. Nevertheless, it is also intended to test the use of the integration of HERA
into FUSION@ on other real AmI scenarios, such as surveillance routes, healthcare for Alzheimer patients [46] or even edu-
cational environments.

Future work also includes the improvement of the overall performance of the HERA platform. This way, the underlying
SYLPH platform will be also improved, especially in the network formation and the SYLPH Gateways. Furthermore, we

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 63

Author's personal copy

are working in the design of an efficient mechanism that allows HERA Agents to move throughout different nodes, no matter
the WSN technology they use. This way, we will get, for example, HERA Agents to move from a ZigBee node to a Bluetooth
node through HERA, allowing the use of different programming languages and operating systems.

Acknowledgment

This

work

has

been

supported

by

Project PET2008_0036 and FEDER funds.

Appendix A. Appendix

List 1. Sample of the use of the human-readable version of SSDL to define a SYLPH service called register-

ServiceOnFireAlarm.

service registerServiceOnFireAlarm {
input {
uint16 threshold;

servicepoint callback {
output {
boolean status; }; }; };

output {
boolean status; }; };

List 2. Sample of the human-readable representation of HERACLES language to send messages through HERA.

request {
sender agent1;

receiver agent2;

content {
action(agent2) {
inform-if {
sender agent1;

receiver agent2;

content {
message {
state result; }; };

language HERACLES;

ontology HERA_ONTOLOGY; }; }; };
language HERACLES;

ontology HERA_ONTOLOGY; };
inform {
sender agent2;

receiver agent1;

content {
message {
state result; }; };

language HERACLES;

ontology HERA_ONTOLOGY; };

References

[1] R.S. Alonso, O. García, C. Zato, O. Gil, F. De la Prieta, Intelligent agents and wireless sensor networks: a healthcare telemonitoring system, in: Y.
Demazeau, F. Dignum, J.M. Corchado, J. Bajo, R. Corchuelo, E. Corchado, et al. (Eds.), Trends in Practical Applications of Agents and Multiagent Systems,
Springer, Berlin/Heidelberg, 2010, pp. 429–436.

[2] L. Ardissono, G. Petrone, M. Segnan, A conversational approach to the interaction with Web services, Computational Intelligence 20 (2004) 693–709.
[3] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable and secure computing, IEEE Transactions on Dependable

and Secure Computing 1 (2004) 11–33.
[4] P. Baker, V. Catterson, S. McArthur, Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system,

in: 15th International Conference On Intelligent System Applications to Power Systems, 2009, ISAP ’09, 2009, pp. 1–6.
[5] B. Baruque, E. Corchado, A. Mata, J.M. Corchado, A forecasting solution to the oil spill problem based on a hybrid intelligent system, Information

Sciences 180 (2010) 2029–2043.
[6] A.L. Bauer, C.A. Beauchemin, A.S. Perelson, Agent-based modeling of host-pathogen systems: the successes and challenges, Information Sciences 179

(2009) 1379–1389.
[7] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi-agent systems with a FIPA-compliant agent framework, Software: Practice and Experience 31

(2001) 103–128.

64 D.I. Tapia et al. / Information Sciences 222 (2013) 47–65

Author's personal copy

[8] M.L. Borrajo, J.M. Corchado, E.S. Corchado, M.A. Pellicer, J. Bajo, Multi-agent neural business control system, Information Sciences 180 (2010) 911–927.
[9] M.E. Bratman, D. Israel, M.E. Pollack, Plans and resource-bounded practical reasoning, Computational Intelligence 4 (1988) 349–355.

[10] L.M. Camarinha-Matos, H. Afsarmanesh, A comprehensive modeling framework for collaborative networked organizations, Journal of Intelligent
Manufacturing 18 (2007) 529–542.

[11] C. Carrascosa, J. Bajo, V. Julian, J.M. Corchado, V. Botti, Hybrid multi-agent architecture as a real-time problem-solving model, Expert Systems with
Applications 34 (2008) 2–17.

[12] E. Cerami, Web Services Essentials: Distributed Applications with XML-RPC, SOAP, UDDI & WSDL, first ed., O’Reilly Media, Inc., 2002.
[13] M. Chen, T. Kwon, Y. Yuan, V.C. Leung, Mobile agent based wireless sensor networks, Journal of Computers 1 (2006) 14–21.
[14] M. Chen, T. Kwon, Y. Yuan, Y. Choi, V.C.M. Leung, Mobile agent-based directed diffusion in wireless sensor networks, EURASIP Journal on Applied Signal

Processing (2007) 219.
[15] J.M. Corchado, J. Bajo, A. Abraham, GerAmi: improving healthcare delivery in geriatric residences, IEEE Transactions on Intelligent Systems 23 (2008)

19–25.
[16] J.M. Corchado, J. Bajo, Y. de Paz, D.I. Tapia, Intelligent environment for monitoring Alzheimer patients, agent technology for health care, Decision

Support Systems 44 (2008) 382–396.
[17] J.M. Corchado, J. Bajo, D.I. Tapia, A. Abraham, Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare, IEEE

Transactions on Information Technology in Biomedicine 14 (2010) 234–240.
[18] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, Unraveling the Web services web: an introduction to SOAP, WSDLand UDDI, IEEE

Internet Computing 6 (2002) 86–93.
[19] A.K. Dey, G.D. Abowd, D. Salber, A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications, Human–

Computer Interaction 16 (2001) 97–166.
[20] C. Fok, G. Roman, C. Lu, Mobile agent middleware for sensor networks: an application case study, in: Fourth International Symposium on Information

Processing in Sensor Networks 2005, IPSN 2005, 2005, pp. 382–387.
[21] J.A. Fraile, J. Bajo, J.M. Corchado. AMADE: developing a multi-agent architecture for home care environments, in: 7th Ibero-American Workshop in

Multi-Agent Systems, Lisbon, Portugal, 2008, pp. 193–202.
[22] Q. Guo, M. Zhang, A novel approach for multi-agent-based intelligent manufacturing system, Information Sciences 179 (2009) 3079–3090.
[23] S. Ilarri, E. Mena, A. Illarramendi, Using cooperative mobile agents to monitor distributed and dynamic environments, Information Sciences 178 (2008)

2105–2127.
[24] R. Jedermann, C. Behrens, D. Westphal, W. Lang, Applying autonomous sensor systems in logistics – combining sensor networks, RFIDs and software

agents, Sensors and Actuators A: Physical 132 (2006) 370–375.
[25] N.R. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent research and development, Autonomous Agents and Multi-Agent Systems 1 (1998) 7–38.
[26] Y. Kwon, S. Sundresh, K. Mechitov, G. Agha, ActorNet: an actor platform for wireless sensor networks, in: Proceedings of the Fifth International Joint

Conference on Autonomous Agents and Multiagent Systems, ACM, Hakodate, Japan, 2006, pp. 1297–1300.
[27] X. Liu, W.J. Zhang, R. Radhakrishnan, Y.L. Tu, Manufacturing perspective of enterprise application integration: the state of the art review, International

Journal of Production Research 46 (2008) 4567–4596.
[28] Y. Liu, C. Zhou, K. Wang, D. Li, D. Guo, Multi-agent ERA model based on belief interaction solves wireless sensor networks routing problem, in: Hybrid

Artificial Intelligence Systems, Springer, Berlin, Heidelberg, 2008, pp. 30–37.
[29] K. Lyytinen, Y. Yoo, Issues and challenges in ubiquitous computing – introduction, Communications of the ACM 45 (2002) 62–65.
[30] S.S. Manvi, M.S. Kakkasageri, Multicast routing in mobile ad hoc networks by using a multiagent system, Information Sciences 178 (2008) 1611–1628.
[31] M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza, J. Muller, P. Spiess, S. Haller, T. Riedel, C. Decker, G. Stromberg, Decentralized enterprise

systems: a multiplatform wireless sensor network approach, IEEE Transactions on Wireless Communications 14 (2007) 57–66.
[32] D.L. Martin, A.J. Cheyer, D.B. Moran, The open agent architecture: a framework for building distributed software systems, Applied Artificial Intelligence

13 (1999) 91–128.
[33] S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven, M. Ouwerkerk, Amiware: Hardware Technology Drivers of Ambient Intelligence, illustrated

edition., Springer, 2006.
[34] F. Pecora, A. Cesta, DCOP for smart homes: a case study, Computational Intelligence 23 (2007) 395–419.
[35] H. Qi, F. Wang, Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks, in: Proceedings of the IEEE ICC’01 Helsinki, Finland

2001, pp. 147–153.
[36] R. Rajagopalan, C. Mohan, P. Varshney, K. Mehrotra, Multi-objective mobile agent routing in wireless sensor networks, in: The 2005 IEEE Congress On

Evolutionary Computation, voll. 2, 2005, pp. 1730–1737.
[37] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, D.D. Edwards, Artificial Intelligence: A Modern Approach, Prentice Hall, Englewood Cliffs, NJ, 1995.
[38] N.M. Sadeh, F.L. Gardon, O.B. Kwon, Ambient Intelligence: The My Campus Experience, Technical Report CMU-ISRI-05-123, ISRI, 2005.
[39] N. Sánchez-Pi, J. Carbó, J. Molina, JADE/LEAP Agents in an Aml Domain, in: Hybrid Artificial Intelligence Systems, Springer, Berlin, Heidelberg, 2008, pp.

62–69.
[40] N. Sanchez-Pi, J.M. Molina, A multi-agent approach for provisioning of e-services in u-commerce environments, Internet Research 20 (2010) 276–295.
[41] J. Sandhu, Wireless sensor networks for commercial lighting control decision making with multi-agent systems, in: AAAI Workshop on Sensor

Networks, 2004, pp. 131–140.
[42] J. Sarangapani, Wireless Ad hoc and Sensor Networks: Protocols, Performance, and Control, first ed., CRC, 2007.
[43] E. Serrano, J. Botia, Validating ambient intelligence based ubiquitous computing systems by means of artificial societies, Information Sciences,

doi:10.1016/j.ins.2010.11.012.
[44] E.Y. Song, K.B. Lee, STWS: a unified web service for IEEE 1451 smart transducers, IEEE Transactions on Instrumentation and Measurement 57 (2008)

1749–1756.
[45] K. Sycara, M. Paolucci, M. Van Velsen, J. Giampapa, The RETSINA MAS infrastructure, Autonomous Agents and Multi-Agent Systems 7 (2003) 29–48.
[46] D.I. Tapia, A. Abraham, J.M. Corchad, R.S. Alonso, Agents and ambient intelligence: case studies, Journal of Ambient Intelligence and Humanized

Computing 1 (2010) 85–93.
[47] D.I. Tapia, J. Bajo, J.M. Corchado, Distributing functionalities in a SOA-based multi-agent architecture, in: 7th International Conference on Practical

Applications of Agents and Multi-Agent Systems (PAAMS 2009), Springer, Berlin/Heidelberg, 2009, pp. 20–29.
[48] D.I. Tapia, J.M. Corchado, An ambient intelligence based multi-agent system for Alzheimer health care, International Journal of Ambient Computing

and Intelligence (IJACI) 1 (2009) 15–26.
[49] R. Tynan, G. O’Hare, A. Ruzzelli, Multi-agent system methodology for wireless sensor networks, Multiagent and Grid Systems 2 (2006) 491–503.
[50] M. Wooldridge, An Introduction to MultiAgent Systems, second ed., Wiley, 2009.
[51] F. Zboril, J. Horacek, P. Spacil, Intelligent agent platform and control language for wireless sensor networks, In: Third UKSim European Symposium on

Computer Modeling and Simulation, 2009, EMS ’09, 2009, pp. 482–487.
[52] W.J. Zhang, Y. Lin, On the principle of design of resilient systems – application to enterprise information systems, Enterprise Information Systems 4

(2010) 99–110.

D.I. Tapia et al. / Information Sciences 222 (2013) 47–65 65

