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Abstract. An algebraic model of a kind of modal extension of de Morgan

logic is described under the name MDS5 algebra. The main properties of this

algebra can be summarized as follows: (1) it is based on a de Morgan lattice,
rather than a Boolean algebra; (2) a modal necessity operator that satisfies

the axioms N , K, T , and 5 (and as a consequence also B and 4) of modal
logic is introduced; it allows one to introduce a modal possibility by the usual

combination of necessity operation and de Morgan negation; (3) the necessity

operator satisfies a distributivity principle over joins. The latter property
cannot be meaningfully added to the standard Boolean algebraic models of

S5 modal logic, since in this Boolean context both modalities collapse in the

identity mapping. The consistency of this algebraic model is proved, showing
that usual fuzzy set theory on a universe U can be equipped with a MDS5

structure that satisfies all the above points (1)–(3), without the trivialization

of the modalities to the identity mapping. Further, the relationship between
this new algebra and Heyting-Wajsberg algebras is investigated. Finally, the

question of the role of these deviant modalities, as opposed to the usual non-

distributive ones, in the scope of knowledge representation and approximation
spaces is discussed.

1. Introduction

Modal logic has been extensively used for devising logical accounts of epistemic
notions like belief, knowledge, and approximation in the framework of Boolean
logic. The standard logic of knowledge is S5 (Halpern et al. Halpern et al. (2003)),
and the standard logic of belief is KD45 (Hintikka Hintikka (1962)). In rough set
theory, sets are approximated by elements of a partition induced by an equivalence
relation, and a natural choice for a rough set logic is S5 again (as proposed by
Orlowska Orlowska (1985, 1990)), whereby possibility and necessity modalities ex-
press outer and inner approximation operators. In standard modal systems, the
basic modalities, called necessity (denoted by �) and possibility (denoted by ♦)
satisfy basic properties like their interdefinability via negation (�p = ¬♦¬p), and
distributivity of � over conjunction �(p ∧ q) = �p ∧�q (hence distributivity of ♦
over disjunction). Generally, distributivity of � over disjunction is not demanded
to avoid the collapse to identity of the modalities. In fact, the paper (Cattaneo and
Ciucci, 2004) triggered some discussion, especially a terminological debate about
what can be considered an acceptable modal system (or a deviant version of a
modal system) from the point of view of its algebraic semantics.

The aim of this paper is to start clarifying this issue on the side of modalities.
We consider a de Morgan algebra augmented with the unary operators standing
for distributive modalities, whose role is to sharpen elements of the algebra, and

INFORMATION SCIENCES 181, 4075-4100, 2011, DOI:10.1016/J.INS.2011.05.008

1



2 G. CATTANEO∗, D. CIUCCI∗ AND D. DUBOISO

show that this structure is non-trivial, contrary to the Boolean case. This is done
by providing two important examples one using fuzzy sets as the basic elements of
the algebra, and the other one using pairs of disjoint sets (simply orthopairs). We
show that the necessity and possibility correspond to operators extracting inner
and outer approximations of elements in the algebra, an example of which is the
core and the support of fuzzy sets.

Then we consider the structure of Brouwer-Zadeh (BZ) lattice as introduced
by Cattaneo–Nisticò in Cattaneo and Nisticò (1989), in which a Kleene algebra is
equipped with an intuitionistic negation. In this BZ context the modalities induced
by suitable composition of the two negations generate a modal S5 system based on
a Kleene algebra, but without the full distributivity property of modal operators.
The latter condition is verified in the more restrictive case of Brouwer Zadeh lattices
whose intuitionistic negation satisfies the particular Stone condition. Then we study
how the two above mentioned examples of fuzzy sets and orthopairs behave in this
stronger setting.

Finally, we consider the case of Heyting-Wajsberg algebras Cattaneo and Ciucci
(2002); Cattaneo et al. (2004a,b), where the primitive connectives are two residu-
ated implications (respectively Gödel and  Lukasiewicz ones) from which a pair of
negations can be retrieved, and whose induced structure is a special case of Stonean
Brouwer-Zadeh lattices. It is shown that applying each implication operator to ap-
proximation pairs of two elements of the HW algebra yields the approximation pair
of a well-defined third element. The significance of this result is discussed, noticing
that the latter element is a function not only of the original ones but also of their
approximations.

2. De Morgan and Kleene algebras with S5 modal operators

In this section we consider a generalisation of Boolean lattices with operators to
lattice structures equipped with an involutive negation, i.e. De Morgan algebras.
We use S5-like modal operators that are deviant in the sense that we request that
necessity distributes over disjunctions. We introduce an implication connective
induced by the canonical ordering on the algebra so as to show that basic modal
axioms can be recovered. We show that modalities on this structure called MDS5
become trivial if it is a Boolean algebra, but they are non-trivial in the general case,
whenever there are non-Boolean elements, especially on a Kleene algebra. Finally,
we study the notion of sharp (or crisp) element on the MDS5 structure, and show
two possible, non-equivalent definitions of this notion.

2.1. Modal operators on De Morgan algebras. In order to lay bare the issues
regarding the deviant modal logic appearing in (Cattaneo and Ciucci, 2004), let
us recall the corresponding algebraic structure. It consists of a system AMDS5 =
〈A,∧,∨,¬, ν, µ, 0, 1〉 where

(1) The subsystem1 AK = 〈A,∧,∨,¬, 0, 1〉 is a de Morgan lattice, i.e.,
(a) AK is a (not necessarily distributive) lattice with respect to the meet

operation ∧ and the join operation ∨. The induced partial order re-
lation a ≤ b iff a = a ∧ b (equivalently, b = a ∨ b) is such that this

1By subsystem of a given algebra, we mean an algebra based on the same domain but with a
subset of operations
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lattice turns out to be bounded by the least element 0 and the greatest
element 1.

(b) ¬ : A → A is a de Morgan complementation, i.e., it is a unary operation
that satisfies the following conditions for arbitrary elements a, b ∈ A:
(dM1) ¬(¬a) = a
(dM2) ¬(a ∨ b) = ¬a ∧ ¬b
Let us remark that, trivially, the greatest element 1, interpreted as
true (the ever true proposition), is the negation of false: 1 = ¬0.

(2) ν : A → A and µ : A → A are unary operators on the de Morgan lattice
(the argument of debate) that satisfy the following conditions for an alge-
braic version of the (modal like) necessity and possibility operators (Chellas,
1988):

(N1) ν(1) = 1 (N principle)
(N2) ν(a) ≤ a (T principle)
(N3) a ≤ b implies ν(a) ≤ ν(b) (K principle)
(N4) µ(a) = ¬(ν(¬a)) (DF♦ principle )
(N5) µ(a) = ν(µ(a)) (5 principle).

(3) The operator ν satisfies the following distributivity law with respect to the
join operation:

(MDν) ν(a) ∨ ν(b) = ν(a ∨ b)
The above is an algebraic semantic of a logical system that resembles S5, but

that is deviant from the standard algebraic semantic for the S5 modal system owing
to the following two points:

(i) The algebraic semantic of standard modal logics “interprets modal connec-
tives as operators on Boolean algebras” (Goldblatt, 2003), differently from
the present case in which modal connectives are interpreted as operators on
de Morgan algebras.

(ii) Differently from the standard modal approach to S5, the distributivity law
(MDν) for the necessity operator with respect to the ∨ operation holds.

In some sense, our structure is weaker than the standard one owing to point (i),
but it is stronger owing to point (ii). Since condition (MDν) plays a key role, in
the sequel we call MDS5 algebra a structure like the one just introduced, that can
be summarized in the following points:
(M1) it is based on a de Morgan lattice, which is NOT necessarily Boolean;
(M2) all S5 principles hold;
(M3) the non standard (with respect to modal logic) (MDν) condition holds.

Let us recall (see Cattaneo and Marino (1988)) that in a de Morgan lattice,
under condition (dM1), the following properties are mutually equivalent and each
of them is equivalent to the de Morgan condition (dM2):

(dM2a) ¬(a ∧ b) = ¬a ∨ ¬b (dual de Morgan law);
(dM2b) a ≤ b implies ¬b ≤ ¬a (contraposition law);
(dM2c) ¬b ≤ ¬a implies a ≤ b (dual contraposition law).

In general, neither the non contradiction law ∀a ∈ A, a ∧ ¬a = 0 nor the excluded
middle law ∀a ∈ A, a ∨ ¬a = 1, characterizing Boolean structures, hold (as to the
general treatment of de Morgan lattice, see also Monteiro (1960a); Cignoli (1975)).

Let us make some further remarks on the given general lattice structure, where
distributivity is not required. This is essentially due to two reasons.



4 G. CATTANEO∗, D. CIUCCI∗ AND D. DUBOISO

(nD1) All the obtained results, if the distributivity is not explicitly required, hold
in the general case of non–distributive lattices.

(nD2) From the very beginning of the algebraic-logical approach to quantum me-
chanics, expressed in the seminal Birkhoff–von Neumann paper Birkhoff
and von Neumann (1936), it has been recognized that the underlying lat-
tice structure is not Boolean, precisely it is an orthomodular lattice. The
extension of this quantum logical approach, which is now considered as a
crisp version, to the so–called unsharp (or, in other terms, fuzzy) quantum
mechanics involves in a deep way modal–like operators, of course without
any distributivity requirement about the lattice (see for instance Cattaneo
and Marino (1984); Cattaneo (1992, 1993); Cattaneo et al. (1993); Cattaneo
and Giuntini (1995), with a survey in Cattaneo et al. (2009)).

Let us stress that the following dual modal principles, with respect to a possibility
operator (Chellas, 1988), can be proved in a straightforward way.

Proposition 2.1. Let A be a MDS5 algebra. The operator µ : A 7→ A satisfies the
following properties:

(P1) µ(0) = 0 (P principle)
(P2) a ≤ µ(a) (T principle for possibility)
(P3) a ≤ b implies µ(a) ≤ µ(b) (K principle for possibility)
(P4) ν(a) = ¬(µ(¬a)) (DF� principle )
(P5) ν(a) = µ(ν(a)) (5 principle for possibility).

(MDµ) µ(a) ∧ µ(b) = µ(a ∧ b)
Note that the modal K principle has been expressed as the non–equational iso-

tonicity (increasing monotonicity) condition (N3). Under conditions (N2), (N4)
and (N5), an equational version of this principle can be equivalently formulated as

(K) ν(a ∧ b) = ν(a) ∧ ν(b) (multiplicative condition)
This condition summarizes in a unique identity the algebraic realization of two well
known modal principles for necessity:

(M) ν(a ∧ b) ≤ ν(a) ∧ ν(b) (M principle)
(C) ν(a) ∧ ν(b) ≤ ν(a ∧ b) (C principle)

Similarly for possibility, the non–equational version (P3) of the K principle is
equivalent to the equational condition:

(Kµ) µ(a ∨ b) = µ(a) ∨ µ(b) (additive condition)
that describes both the modal principles (Mµ) and (Cµ) for possibility.

Moreover, in any MDS5 algebra, also the following modal principles can be
proved.

(D) The D principle ν(a) ≤ µ(a).
(4) The 4 principle: νν(a) = ν(a) and (the 4 principle for necessity)

µµ(a) = µ(a) (the 4µ principle for possibility).
(B) The B principle: a ≤ νµ(a).

Summarizing, the MDS5 structure corresponds to the algebraic semantic of a
S5 modal–like system with the further condition (MDν), which has the equational
form of the additive condition for the necessity. Borrowing a comment from Hajek
(Hájek, 1998, p. 57), given in the BL∆ algebraic context (see section 6), “the axioms
evidently resemble modal logic with ν as necessity; but in the axiom on ν(a∨ b), ν
behaves as possibility rather than necessity.”



DEVIANT MODALITIES 5

Let us recall that the isotonic non-equational version (N3) of the K principle
has been formulated in the equational way as the above necessity multiplicative
condition (K). The two conditions (MDν) and (K) are not independent, as shown
by the following result.

Proposition 2.2. In a MDS5 algebra, the (additive) condition (MDν) implies the
(multiplicative) condition (K).

Proof. Let a ≤ b, i.e., b = a ∨ b, then ν(b) = ν(a ∨ b) and by (MDν), ν(b) = ν(a) ∨
ν(b), i.e., ν(a) ≤ ν(b). So, we have shown that the (MDν) condition implies the
isotonicity condition (N3), which, as said before, is equivalent to the multiplicative
condition (K). �

Vice–versa, the opposite in general does not hold, in the sense that in a system
which satisfies all the conditions of the only points 1 and 2 of the definition of MDS5
systems, the condition (K) is equivalent to condition (N3) but it does not imply the
distributivity condition (MDν). As an example, let us consider the Boolean lattice
whose Hasse diagram is depicted in figure 1.

•
1

•¬b = a
��

��
��

��

•
0

??
??

??
??

• b = ¬a
��������

• ????????

Figure 1. Boolean lattice with (K), but not (MDν) condition
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In this lattice the necessity operator, in the sense that all conditions (N1)–(N5)
are satisfied, is defined by the rules: ν(1) = 1 and ν(a) = ν(b) = ν(0) = 0. By
duality we have the possibility operator defined as µ(0) = 0 and µ(a) = µ(b) = 1.
However, one has that ν(a∨ b) = 1, with ν(a)∨ ν(b) = 0, i.e., the condition (MDν)
does not hold, whereas the condition (K) is trivially satisfied. This is a pure (i.e.,
Boolean based) algebraic model of the S5 modal logic.

Moreover, this result holds in any de Morgan lattice with more than the two
elements, if the two modal operators, for x running in the lattice, are defined as:

(1) ν(x) =

{
1 if x = 1
0 if x 6= 1

and µ(x) =

{
0 if x = 0
1 if x 6= 0

Monteiro in Monteiro (1960a) called these operators as chaotic or simple, whereas
the identity operators, as particular modal operators, have been named discrete.

2.2. The Boolean case and genuine MDS5 structures. All the results dis-
cussed in section 2.1, under the weaker condition of de Morgan lattice, should be
compared with the axiomatization of system S5 in (Chellas, 1988, p. 14), where of
course the underlying basic structure of the algebraic model is the Boolean one:
“By a modal algebra we mean a structure 〈B, ν〉 in which B is a Boolean algebra
and ν is a unary operation in B, an algebraic counterpart of necessitation” (Chellas,
1988, p. 212).

The critical point of the above MDS5 structure (that has been the source of the
discussion about it) arises from the following result.

Proposition 2.3. If (MDν) condition is added to the usual (i.e., based on a
Boolean) algebraic model of the system S5, A = 〈A,∧,∨,¬, ν, µ, 0, 1〉, then for all
a ∈ A, ν(a) = a = µ(a).

Proof. Let us suppose that A is a Boolean algebra. Then it holds (x∧y)∨(x∧¬y) =
x. Setting y = µ(¬x), we have (x ∧ µ(¬x)) ∨ (x ∧ ¬µ(¬x)) = x and applying (P4)
and (N3) (x ∧ µ(¬x)) ∨ ν(x) = x. Now, we show that (x ∧ µ(¬x)) = 0. Indeed,
x∧µ(¬x) = (P3)x∧µ(¬x)∧µ(x) = (MDν) = x∧µ(x∧¬x) = x∧µ(0) = 0. Thus,
ν(x) = x and by (P5), x = µ(x). �

This result means that in any Boolean case the underlying MDS5 algebraic
system trivializes because possibility and necessity modalities coincide with the
identity operator, and this modal logic reduces to classical logic. This leads, as
usual in algebraic semantic of logic or more generally in algebra, to use the term
“genuine” to denote those MDS5 structures which are not Boolean. A necessary
and sufficient condition to ensure the non-triviality of the de Morgan lattice is the
existence of an element a such that a∧¬a 6= 0 (or equivalently, such that a∨¬a 6= 1),
which prevents the structure from being Boolean.

Of course, all genuine (non–Boolean) structures can be equipped with possibility
and necessity modalities both coinciding with the identity operator obtaining a
(trivial) MDS5 algebra. Furthermore, the result of proposition 2.3 might induce
one to conjecture that also the following extension of this result to all MDS5 algebras
is true.

Conjecture.: Let AK be a genuine de Morgan lattice and let ν : A → A and
µ : A → A be two mappings that satisfy the above properties (N1)–(N5)
plus (MDν), then ν(a) = µ(a) for every element a ∈ A, i.e., the modalities
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coincide (and since ν(a) ≤ a ≤ µ(a), then ν(a) = µ(a) = a for arbitrary
a ∈ A).

However, contrary to the above conjecture, we give in section 3 two concrete
non-Boolean examples of MDS5 algebra in which this trivialization is avoided.

A sufficient condition to guarantee the non-Booleaneness of a de Morgan algebra
is the existence of complementation-invariant elements h ∈ A, different from 0 and
1, and such that ¬h = h. Indeed, one has that h∧¬h = h 6= 0 and h∨¬h = h 6= 1,
and so neither the noncontradiction principle nor the excluded middle law of the
Boolean structure hold. We note that in a de Morgan lattice there might exist more
than one complementation–invariant element. For an example, one can consider the
non-distributive lattice of 6 elements depicted in figure 2.

•
1

•b • = ¬b
��

��
��

��

•
0 = ¬1

??
??

??
??

•a = ¬a oooooooooooooo

•
OOOOOOOOOOOOOO •¬c = • c

??
??

??
??

•
��

��
��

��
• d = ¬d

OOOOOOOOOOOOOO

• oooooooooooooo

Figure 2. Non–distributive de Morgan lattice with two
complementation–invariant elements a and d, with ¬b = c and
¬c = b

2.2.1. Kleene algebras. An interesting strengthening of the de Morgan framework in
the MDS5 algebras context is the one in which the negation ¬ is Kleene, i.e., besides
(dM1) and (dM2) the following Kleene condition holds for arbitrary elements a, b ∈
A:
(Kl) a ∧ ¬a ≤ b ∨ ¬b
Consequently, the structure AK will be called Kleene lattice. When considering
a Kleene lattice, excluded middle and non-contradiction laws are substituted by
the weaker Kleene condition (Kl), which is trivially satisfied in any Boolean lattice.
Note that the lattice described in figure 2 is de Morgan and not Kleene (for instance
a∧¬a is incomparable with d∨¬d). For a systematic treatment of de Morgan and
Kleene (distributive) lattices see (Cignoli, 1965, sect. 2) and Cignoli (1975), with
the inserted bibliography, or for the non–distributive case also Cattaneo and Manià
(1974).

In a Kleene lattice if a complementation–invariant element exists, then it is
unique. Indeed, if h = ¬h and k = ¬k then from (Kl) one has that h = h ∧ ¬h ≤
k ∨ ¬k = k and k = k ∧ ¬k ≤ h ∨ ¬h = h, i.e., necessarily h = k. Hence, Kleene
structures with this kind of privileged element cannot have an even set of elements.
The simplest non–linear (i.e., not totally ordered) and non–distributive genuine
Kleene lattice is the one in figure 3.

The unique complementation-invariant element in Kleene lattices, usually de-
noted by 1/2, is interpreted as half-true, i.e. halfway between true and false. It
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•
1

•a oooooooooooooo

•
0

OOOOOOOOOOOOOO •b • = ¬b

•

• ¬a
OOOOOOOOOOOOOO

• oooooooooooooo

Figure 3. Non–distributive Kleene lattice with unique half-true
element b

should not be epistemically interpreted as possible (as proposed by Lukasiewicz
(Borowski, 1970, p. 86)) or unknown as in partial logic or Belnap logic, as these are
belief or information states. These notions cannot be modelled by genuine elements
of a truth set, but rather by subsets thereof (see Dubois Dubois (2008)).

Almost all the examples which are interesting in applications (see the fuzzy set
and the ortho-pair cases discussed in section 3 of this paper) are Kleene lattices
which possess this half-true element, with the further conditions ν(1/2) = 0 and
µ(1/2) = 1. In particular let us quote the unsharp (i.e., fuzzy) approach to quantum
mechanics in which this half element is always realized by the one-half identity
operator on a (complex separable) Hilbert space, called the semi-transparent effect
Cattaneo et al. (2009). In the recent approach to quantum computing this element
is concretely realized by a beam–splitter filter widely used in laser quantum optics
(see for instance (Nielsen and Chuang, 2000, p. 289)).

2.3. Some related structures. Let us note that, in the distributive case, any
MDS5 algebra is a particular case of the algebraic semantic of the modal system
S5 based on a de Morgan lattice, i.e., a modal algebraic structure formalized ac-
cording to the only points 1 and 2, and without condition (MDν). This kind of
S5 algebra has been investigated by Halmos in Halmos (1955, 1956) (collected in
Halmos (1962)), but differently from here on the basis of Boolean lattices, disre-
garding the fact that all the main results do not make use of the noncontradiction
and excluded middle laws. In particular, in Halmos (1955) one has (Q’1)=(N1),
(Q’2)=(N2), (Q’3)=(K), this latter logically equivalent to (N3), (Q’5)=(N5) mak-
ing use of (N4) in the equation presented at p. 22 of the book Halmos (1962). Let
us only note that the original formulation (Q’2) contains a little misprint. Halmos
condition (Q’4) is nothing else than condition (4) which, as remarked in subsection
2.1, can be proved from the other has a derived principle. As affirmed by Goldblatt
in Goldblatt (2003) “structure of this kind were later dubbed monadic algebras by
Halmos in his studies of the algebraic properties of quantifiers. The connection is
natural: the modalities have the same formal properties in S5 as do the quantifiers
in classical logic.” About this argument, Halmos himself recognizes that “the con-
cept of existential quantifier [i.e., possibility in modal terminology] occurs implicitly
in a brief announcement of some related work of Tarski and Thompson Tarski and
Thompson (1952).”
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There are counter-examples of Halmos S5 algebras (i.e., monadic algebras) without
condition (MDν), as shown in figure 4.

•
1 = µ(b)

•ν(a) = µ(a) = ¬a = a
��

��
��

��

•
0 = ν(b)

??
??

??
??

• b = ¬b
��������

• ????????

Figure 4. An example of S5 algebraic model which is not MDS5

Some years later it has been shown in (Cattaneo and Nisticò, 1989, sect. 3)2

that the Halmos S5 semantics by monadic algebras is just the one induced by
BZ posets, where the condition (MDν) is expressed in an equivalent way by point
(uq). In sect. 5 of this 1989 paper, in particular in subsect. 5.1 and 5.2, it is
described the BZ unsharp (also fuzzy) approach to quantum mechanics with the
associated physical interpretation. The corresponding rough approximations by
modal necessity–impossibility pairs is described in sect. 7, with the Hilbert space
quantum fuzzy–intuitionistic poset treated in sect. 7.2. These results about BZ
poset with induced Kleene MDS5 structures have been based on some previous
(1984) researches on axiomatic unsharp quantum mechanics Cattaneo and Marino
(1984) as starting points of successive researches (for the ones before 1993 see
Cattaneo (1992, 1993); Cattaneo et al. (1993)) Let us note that this will be the
argument of Section 4.2 in the present paper.

A structure like the S5 monadic algebra introduced by Halmos, or its BZ version,
but on the basis of a de Morgan distributive lattice, emerged some year later in
Banerjee and Chakraborty (1993) while developing a logic for rough sets, with a
formal definition appeared in Banerjee and Chakraborty (1996) with the name of
topological quasi-Boolean algebra (tqBa). Let us recall that a quasi-Boolean algebra,
according to the terminology adopted by A. Bialynicki-Birula and H. Rasiowa in
Bialynicki-Birula (1957); Bialynicki-Birula and Rasiowa (1957), is nothing else than
a de Morgan algebra according to the term introduced by G. Moisil in Moisil (1935),
as recognized by Rasiowa in (Rasiowa, 1974, p. 44, footnote(4)) (and for further
details see also Monteiro (1960b); Cignoli (1965)).

A more general abstract structure with respect to Halmos S5 monadic Boolean
algebraic system, is the one based on a Boolean algebra and satisfying the only
conditions (N1), (N2), (4, for necessity, also denoted by (4ν)), and (K), as algebraic
model of the system S4 of Lewis and Langdorf modal logical, called by Monteiro in
Monteiro (1960a) Lewis Algebras. Note that, from the pointless approach to topol-
ogy (i.e., topology-without-points treated in an abstract lattice context, and not in
the power set of some universe – see Smyth (1992)) these conditions (N1), (N2),
(4ν), and (K) define a Kuratowski interior operator and dually conditions (P1),

2in this work, algebras are built on the basis of a Kleene poset, which is not necessarily a lattice
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(P2), (4µ), and (Kµ) a Kuratowski closure operator (or a topological closure ac-
cording to Birkhoff Birkhoff (1967)). These abstract structures on the Boolean basis
have been widely studied by Rasiowa in (Rasiowa, 1974, sect. 5 of Chapt. VI) with
the name of topological Boolean algebras (tBa), whose relationship with S4 modal
logic is treated in sect. 4 of Chapt. XIII (and see also Chapt. III and Chapt. XI
of Rasiowa and Sikorski (1970)). In Rasiowa (1974), one can find the remark that
“The first results serving to establish a connection between modal logic and topol-
ogy are due to Tang Tsao–Chen Tsao-Chen (1938). This relationship was pointed
out and developed by McKinsey in McKinsey (1941), and jointly with Tarski in
McKinsey (1941); McKinsey and Tarski (1944, 1946)”. In particular, in McKinsey
and Tarski (1944) McKinsey and Tarski proved that any abstract tBa is isomorphic
to a subalgebra of a concrete topological space based on the powerset of a universe
U equipped with the Kuratowski closure operator induced by a suitable topology
for U .

As a terminological remark, if one considers the collection of all elements of S4
tBa (based on a complete lattice) which are fixed points (i.e., such that ν(a) = a)
with respect to the necessity (i.e., Kuratowski topological interior) operator ν, then
this family is the algebraic version of a real pointless topology of open elements
since it contains either the least element and the greatest element of the lattice,
it is stable with respect to arbitrary join and finite meet. Dually, the collection of
all elements which are fixed points with respect to the possibility (i.e., Kuratowski
topological closure) operator µ is the family of the closed elements. So, the term
“topological Boolean algebra” is correct. The term of topological quasi-Boolean
algebra, from this point of view, and in our opinion, should be better employed to
denote a S4 algebra based on a de Morgan (i.e., quasi–Boolean) distributive lattice.
Condition (N5) characterizing S5 algebraic models is equivalent to the property that
the families of open and the one of closed elements coincide, i.e., in this case we deal
with a family of clopen elements. This according to the Goldblatt statement that
“Another significant result of the 1948 paper McKinsey and Tarski (1948) is that
S5 is characterized by the class of all closure algebras in which each closed element
is also open” [i.e., Halmos monadic algebras]. In honor of the Halmos contribution,
it will be better to use the name of monadic Boolean algebra (mBa) for the Boolean
S5 algebra and of monadic quasi–Boolean algebra (mqBa) to denote the de Morgan
lattice case. In the context of rough set theory these kind of structures are treated
for instance in Cattaneo and Ciucci (2008, 2009a).

A further generalization of S4 mqBa is presented in Cattaneo and Ciucci (2006b),
on the basis of a previous work (Cattaneo, 1997a, Theoren 2.27). This algebraic
structure consists of a de Morgan lattice equipped with a Tarski closure opera-
tor, as generalization of S4 possibility connective, characterized by the substitu-
tion of the additive condition (Kµ) with a sub–additive condition (see (Cattaneo,
1998, sect. 2.1)). Tarski closure de Morgan lattices are categorically isomorphic to
abstract approximation spaces according to the definition presented in Cattaneo
(1998), and they turn out to be a very pathological form of pre-BZ lattices.

From another point of view, a strengthening of MDS5 algebras (again, when
considering the version based on distributive lattices) are characterized by the fur-
ther requirement that ∀x,¬ν(x) ∨ ν(x) = 1. This condition has been introduced
by Moisil in his 1940, 1941 papers Moisil (1940, 1941), with the name of modal
principle of excluded middle, in order to give an algebraic semantic of  Lukasiewicz
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three valued logic, further on investigated in the period 1963–65 by Monteiro in
Monteiro (1963, 1965), Cignoli in Cignoli (1965) (and see also the Cignoli and
Monteiro contribution Cignoli and Monteiro (1965)) and successively by Becchio
in the 1973 paper Becchio (1973) (for a treatment in the BZ poset context see the
1989 paper Cattaneo and Nisticò (1989), in particular condition (ne-1) of sect. 3).
These algebraic structures are known in literature with the name of three valued
 Lukasiewicz algebras which, according to Monteiro Monteiro (1967), “play in the
study of the three valued  Lukasiewicz propositional calculus a role analogous to
that of Boolean algebras in the study of the classical propositional calculus.” In
Banerjee and Chakraborty (1996) this strengthening of distributive MDS5 algebras
are called pre-rough algebras.

In Cattaneo et al. (1998) the structure of  Lukasiewicz algebra, as generalization
of  Lukasiewicz three valued algebra based on possibility as primitive operator de-
fined on a Kleene lattice, has been introduced in definition 4.2 by four conditions
(L1)–(L4), showing in Appendix A that they are categorically equivalent to MDS5
algebras.

Let us note that the MDS5 algebra of Figure 5 is not a three valued  Lukasiewicz
algebra since ¬ν(a) ∨ ν(a) = c.

•
1

• c = ¬a = ν(c) = µ(c) = µ(b)

• b = ¬b

• a = ¬c = ν(a) = µ(a) = ν(b)

•
0

Figure 5

Finally, a survey about a hierarchy of topological interior and closure operators,
with the corresponding modal interpretations as necessity and possibility connec-
tives, and the relationship with information systems of the rough set theory, can
be found in Cattaneo and Ciucci (2009b).

2.4. Implication and ordering in MDS5 algebras. From the viewpoint of alge-
braic semantic of logic, the lattice elements are interpreted as propositions, the meet
operation as conjunction, the join operation as disjunction, and the complement as
negation. The partial ordering induced from the lattice structure is interpreted as
a binary relation of semantical implication on propositions. “The implication rela-
tion, which is fundamental to logic, must not [...] be confused with an implication
or conditional operation, which is a logical connective that, like conjunction and
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disjunction, forms propositions out of propositions remaining at the same linguistic
level.” (Hardegree, 1979) 3. Thus, the partial order relation a ≤ b in A is rather
the algebraic counterpart of the statement “A  B is true” with respect to some
implication connective  involving sentences A and B of the object language, in
the sequel denoted by L. In this sense the implication relation a ≤ b in the lattice
A corresponds to semantic entailment among formulas from the language L.

Thus, in order to express the above modal conditions (N1)–(N5) in a formal way
nearer to the usual logical formalism, a binary lattice operation → on the lattice
A is required. This operation should play the role of algebraic counterpart of the
logical implication connective  in the language L, and should assign to each pair
of lattice elements a, b ∈ A another lattice element a → b ∈ A. “Since not just
any binary lattice operation should qualify as a material implication, [...] it seems
plausible to require that every implication operation→ be related to the implication
relation (≤) in such a way that if a proposition a implies a proposition b, then the
conditional proposition a → b is universally true, and conversely. [...] Translating
this into the general lattice context, we obtain

(2) a→ b = 1 iff a ≤ b.

Here 1 is the lattice unit element, which corresponds to the universally true propo-
sition” (Hardegree, 1981). In this just quoted paper, this condition is assumed as
one of the minimal implicative conditions.

Let us enter in some formal detail supposing that in our de Morgan lattice
structure there exists an implication operator → on A for which only the minimal
condition (2) is required to hold. Moreover, in the relevant examples treated in the
present paper none of the involved implication connective has the standard form
a →S b := ¬a ∨ b, since in none of these examples does this connective satisfy the
required condition (2).
Let us define as a truth functional tautology (also universally valid sentence) any
well formed formula, based on a MDS5 algebraic structure, and equal to the univer-
sally true element 1 of the lattice. It is now easy to prove that the ν and µ operators
satisfy the algebraic versions of axioms and rules of some celebrated modal princi-
ples, once ν is interpreted as a necessity operator and µ as a possibility operator (L
and M in a standard modal language L). Precisely:

(N) The above algebraic version of the N principle can assume also the equiv-
alent form “a = 1 implies ν(a) = 1” corresponding to the necessitation inference
rule of (Hughes and Cresswell, 1984, p. 4) “` A implies ` L(A)”, i.e., if A is true
so is L(A). In other words, according to (Chellas, 1988, p. 7), “the necessitation of
a valid sentence is itself always valid” also expressed as the rule of inference (RN)
A

L(A) .
(T) According to the above requirement (2) of minimal implicative condition

one has that (N2) is the algebraic version of the T modal tautology L(A) A.
(K) As a consequence of the monotonicity condition “a ≤ b implies ν(a) ≤

ν(b)” and under the T principle (N2) one can prove that “If the conditional and

3One may question the point about a conditional remaining at the same linguistic level as other

connectives. For instance a conditional appearing in conditional probability is not a Boolean

connective, but semantically a three-valued entity, not at the same linguistic level as Boolean
propositions. See for instance Walker (1994); Dubois and Prade (1994)
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its antecedent are both necessarily true, then the consequent is necessarily true”
(Chellas, 1988). Formally, that

(3) ν(a→ b) = 1 and ν(a) = 1 imply ν(b) = 1.

On its hand, property (3) (for proof see Cattaneo and Ciucci (2009a)) is equivalent
to

(4) ν(a→ b)→ (ν(a)→ ν(b)) = 1.

Thus, owing to the equivalence of (4) with (3), the above (N3) is the algebraic
version of the characteristic K principle formalized in a modal language L as the
tautology L(A B) (L(A) L(B)).

(5) Condition (N5) can be formalized as µ(a) → νµ(a) = 1, which in a modal
language L corresponds to the 5 tautology M(A) LM(A).

Let us stress the following comment. What we have proved here is that, in order
to obtain the algebraic versions of characteristic T, K, 5, and DF♦ axioms plus the
RN rule of inference of the modal system S5, it is sufficient to consider a de Morgan
lattice.

2.5. Sharpness in MDS5 algebras. Let us discuss the possibility of distinguish-
ing in the MDS5 algebraic context sharp (or crisp) elements from the generic ones.
The elements of a MDS5 algebra can be interpreted as representative of non-classical
unsharp situations (that may sometimes be related to gradual predicates, vague-
ness or uncertainty), and so it is of a certain importance to algebraically select just
those elements considered as crisp or sharp counterparts of this interpretation. We
have two possible options:

(S1) µ–sharp elements are those elements e ∈ A such that µ(e) = e (in general for
an element a ∈ A it is a ≤ µ(a)); note that µ(e) = e iff ν(e) = e (whereas in
general we have that ν(a) ≤ a for a running on A), i.e., an element is µ–sharp
iff it is ν–sharp. For this reasons we also say that in this case we have to do
with modal–sharp (or M–sharp) elements.

(S2) Kleene sharp (or K–sharp) elements are those elements f ∈ A such that
f ∧ ¬f = 0 (in general for an element a ∈ A it is 0 ≤ a ∧ ¬a). Also in this
case f ∧ ¬f = 0 iff f ∨ ¬f = 1 (whereas for a generic element a ∈ A one has
that a ∨ ¬a ≤ 1).

Proposition 2.4. If an element of a distributive MDS5 algebra is K–sharp then
it is also M–sharp.

Proof. Let f ∧ ¬f = 0. Then f ∨ ¬f = 1 implies, by (N1), (MDν) and (N4), that
1 = ν(1) = ν(f)∨¬µ(f), but applying to (P2), i.e., to f ≤ µ(f), the contraposition
law (dM2a) we have ¬µ(f) ≤ ¬f , and so for the just proved result we have a fortiori
that ν(f)∨¬f = 1. Now, from the hypothesis it follows that ν(f) = ν(f)∨[f∧¬f ] =
[ν(f) ∨ f ] ∧ [ν(f) ∨ ¬f ] = f by (N2) and the just obtained result. �

The converse property does not hold as can be seen in the MDS5–algebra of
figure 5. Indeed, ν(a) = a, i.e., it is M–sharp, but a ∧ ¬a = a ∧ c = a 6= 0.
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The set of all M–sharp (resp., K–sharp) elements will be denoted by AeM (resp.,
AeK) in the sequel. So, summarizing

AeM = {e ∈ A : µ(e) = e} = {e ∈ A : ν(e) = e}
AeK = {f ∈ A : f ∧ ¬f = 0} = {f ∈ A : f ∨ ¬f = 1}

AeK ⊆ AeM
Trivially AeK (and so also AeM ) is nonempty since 0, 1 ∈ AeK . Moreover, AeK
constitutes a real situation of crispness owing to the fact that the in the distributive
case the natural lattice structure describing a sharp context is the Boolean one.

Proposition 2.5. The K–sharp system AeK = 〈AeK ,∧,∨,¬, 0, 1〉 of a distributive
MDS5 algebra A is a Boolean algebra.

Proof. First of all, AeK is closed under complementation: if f ∈ AeK then trivially
also ¬f ∈ AeK . Moreover, any element of AeK is a Boolean one, i.e., for all f ∈ AeK
there exist g = ¬f ∈ AeK such that f ∧ g = 0. Hence, the only other thing to
prove is that the operators ∧,∨ are closed in AeK . Trivially, by distributive and
de Morgan properties, we have that (e ∧ f) ∧ ¬(e ∧ f) = (e ∧ f) ∧ (¬e ∨ ¬f) =
(e ∧ f ∧ ¬e) ∨ (e ∧ f ∧ ¬f) = 0 ∨ 0 = 0. That is e ∧ f ∈ AeK . Dually, it can be
proved that e ∨ f ∈ AeK . �

This result cannot be extended to the case of AeM since, taking into account
the three elements MDS5 algebra A3 = {0, a, 1}, with 0 < a < 1 under the Kleene
negation ¬a = a and equipped with the modalities ν(x) = µ(x) = x for every
x ∈ A3, the set of K sharp elements is the Boolean algebra consisting of the two
elements {0, 1} whereas the set of M sharp elements is the whole A3, which is not
Boolean.

3. Two models of MDS5 algebras

We give here two models of non-Boolean MDS5 algebras, where necessity modal-
ities that satisfy (MDν) are non-trivial: the first one based on the standard collec-
tion of fuzzy sets and the second one based on the collection of pairs of orthogonal
subsets of a given universe.

After this general treatment of MDS5 in the context of de Morgan lattice basis,
in the sequel we consider MDS5 based on Kleene lattices. This is just for coherence
with the following canonical examples of fuzzy sets and orthopairs theories that
have this basic structure.

3.1. The Fuzzy Set model of MDS5 algebraic system. Let us consider a
nonempty set of objects U , called the universe, in which a fuzzy set or generalized
characteristic function is defined as usual as a [0, 1]–valued function on U , f : U 7→
[0, 1]. We shall indicate the collection of all fuzzy sets on U by F(U) = [0, 1]U . A
particular subset of F(U) is the collection {0, 1}U of all Boolean valued functions
χ : U 7→ {0, 1}, whose collection will be denoted also by Fe(U); this subset coincide
with the collection of all the characteristic functions of subsets of U . Indeed, given
a subset A of U the corresponding characteristic function χA : U 7→ {0, 1} is the
mapping that assigns the value 1 (resp., 0) to any point x ∈ A (resp., x /∈ A).
Moreover, for a generic function χ ∈ Fe(U) let us denote by A1(χ) : {x ∈ U :
χ(x) = 1} the corresponding crisp set, then the characteristic function of the latter
is such that χA1(χ) = χ.
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The set [0, 1]U contains two special elements: the identically zero fuzzy set
∀x ∈ U, 0(x) := 0 (the characteristic function of the empty set: 0 = χ∅) and
the identically one fuzzy set ∀x ∈ U, 1(x) := 1 (the characteristic function of the
whole universe: 1 = χU ). Moreover, there exists the fuzzy set 1/2 defined by the
law: ∀x ∈ U , 1/2(x) := (1/2), which guarantees that F(U) is not coincident with
Fe(U). Extending this notation, for any k ∈ [0, 1] we will indicate as k ∈ [0, 1]U

the constant fuzzy set ∀x ∈ U , k(x) = k.
Then the proof of the following is really straightforward.

Proposition 3.1. Let us consider the structure 〈F(U),∧,∨,¬, ν, µ, 0,1,1/2〉 of
all fuzzy sets equipped with the operators, defined pointwise (∀x ∈ U) as follows:

(f1 ∧ f2)(x) := min{f1(x), f2(x)}
(f1 ∨ f2)(x) := max{f1(x), f2(x)}
¬f(x) := 1− f(x)

ν(f)(x) :=

{
1 if f(x) = 1
0 otherwise

µ(f)(x) :=

{
1 if f(x) 6= 0
0 otherwise

The partial order relation induced on F(U) by the above lattice operators is the
usual pointwise ordering on fuzzy sets:

∀f1, f2 ∈ F(U), f1 ≤ f2 iff ∀x ∈ U : f1(x) ≤ f2(x)

Then all properties (1), (2), and (3) of Section 2 characterizing a MDS5 algebra
are true. This algebra is genuine (non-Boolean) of distributive Kleene type since it
has the half-true element ¬(1/2) = 1/2.

The corresponding set of K–sharp and M–sharp elements coincide with the col-
lection of all characteristic functions:

(
F(U)

)
eM

=
(
F(U)

)
eK

= Fe(U), which is
a Boolean algebra isomorphic to the power set P(U) of the universe U by the one-
to-one correspondence A ←→ χA between a subset A of U and its characteristic
function χA that allows one to identify any subset A ⊆ U with its characteristic
function χA ∈ Fe(U), written A ≡ χA.

Then, under this formal result it is not true that in standard fuzzy set theory,
as consequence of axiom (MDν), for any genuine fuzzy set f the following identity
should hold: ν(f) = µ(f). For instance, if this claim should be true, then in any
nonempty universe U it necessarily must be ∅ ≡ ν(1/2) = µ(1/2) ≡ U , i.e., any
subset of U is simultaneously empty and nonempty, a devastating result. In fact,
ν(f) is the core of the fuzzy set f and µ(f) is its support. These sets always differ
when the fuzzy set is non–crisp.

Let us recall that in this fuzzy set example there exist several implication con-
nectives that share the above discussed Hardegree minimal condition (2). Two
important ones are the following:

(f1 →L f2)(x) : = min{1, 1− f1(x) + f2(x)}(5a)

(f1 →G f2)(x) : =

{
1 if f1(x) ≤ f2(x)
f2(x) otherwise

(5b)
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Trivially, none of them has the form (¬f ∨g)(x) = max{1−f(x), g(x)}. In particu-
lar, for this connective ¬f∨g the two fuzzy sets (1/3)(x) = 1/3 and (1/2)(x) = 1/2
are such that (1/3) ≤ 1/2, but ¬(1/3) ∨ 1/2 6= 1, i.e., it does not satisfy the min-
imal implication condition under discussion.

3.2. The orthopair model of MDS5 algebraic system. Let us now give an-
other model of the MDS5 algebraic system always based on a nonempty universe U
and consisting of the collection L3(U) of all pairs (A1, A0) of disjoint (A1∩A0 = ∅)
subsets A1 and A0 of U , also called orthopairs of subsets (for the relationship,
and the corresponding terminological debate, between these orthopairs and the
so–called intuitionistic fuzzy sets of Atanassov, see Cattaneo and Ciucci (2003a,b,
2006a)). To the best of our knowledge, the notion of pair of subsets has been in-
troduced for the first time by M. Yves Gentilhomme in Gentilhomme (1968) (see
also Moisil (1972c)) in an equivalent way with respect to the one described here.
Indeed, in these papers Gentilhomme considers pairs of ordinary subsets of the uni-
verse U of the kind (A1, Ap), under the condition A1 ⊆ Ap. Of course, the mapping
(A1, A0)→ (A1, (A0)c) institutes a one-to-one and onto correspondence that allows
one to identify the two approaches.

In particular we denote by 0 := (∅, U), 1 := (U, ∅). Also in this case the following
is straightforward.

Proposition 3.2. Let us consider the structure 〈L3(U),u,t,¬, ν, µ,0,1〉 of all
orthopairs from U equipped with the following operations:

(A1, A0) u (B1, B0) := (A1 ∩B1, A0 ∪B0)

(A1, A0) t (B1, B0) := (A1 ∪B1, A0 ∩B0)

¬(A1, A0) := (A0, A1)

ν(A1, A0) := (A1, U \A1)

µ(A1, A0) := (U \A0, A0)

Then all properties (1), (2), and (3) of Section 2 characterizing a MDS5 algebra
are satisfied, with the further property of being a genuine distributive Kleene lattice,
where the orthopair (∅, ∅) = ¬(∅, ∅) stands for the unique half-true element 1/2.

The collection of K–sharp elements and M–sharp elements coincide with the
collection of all orthopairs of the form (A,Ac), with A ∈ P(X) the generic subset of
the universe X. These “sharp” orthopairs constitute a Boolean algebra isomorphic
to the Boolean algebra P(X) by the one-to-one and onto correspondence (A,Ac)←→
A.

The partial order relation induced on L3(U) by the now considered lattice oper-
ations is:

(6) (A1, A0) v (B1, B0) iff A1 ⊆ B1 and B0 ⊆ A0 .

In the present case, the condition ν(A1, A0) = µ(A1, A0) holds iff the orthopair
is of the very particular form A0 = (A1)c in which there is no uncertainty in
the boundary region: Ab := U \ (A1 ∪ A0) = ∅. Moreover, if one argues that as
a consequence of the (MDν) condition this must be a universal property of any
orthopair of the structure, then for the particular case of the half-true element
one has (∅, U) = ν(1/2) = µ(1/2) = (U, ∅), which should lead inexorably to the
conclusion that also in this case any universe U (and so any of its subsets) is
simultaneously empty and nonempty.
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As to implication connectives that satisfy the minimal Hardegree condition for
the material implication connective (2), we can quote at least the following two
cases (whose definition is functional):

(A1, A0)⇒L (B1, B0) := ((Ac1 ∩Bc0) ∪A0 ∪B1, A1 ∩B0)(7a)

(A1, A0)⇒G (B1, B0) := ((Ac1 ∩Bc0) ∪A0 ∪B1, A
c
0 ∩B0)(7b)

As a particular remark, the implications given by equations (7) are a generalization
of Pagliani’s work Pagliani (1998).

Proposition 3.3. The operators⇒L and⇒G as defined in (7) are truth-functional
since, once set α = (A1, A0) and β = (B1, B0), they can be equivalently expressed
as follows:

α⇒L β = (¬ν(α) u µ(β)) t ¬α t β
α⇒G β = (¬ν(α) u µ(β)) t ¬µ(α) t β

Proof. We prove only the first equivalence, the second proof being similar.

(¬ν(A1, A0) u µ(B1, B0)) t ¬(A1, A0) t (B1, B0)

= ((Ac1, A1) u (Bc0, B0)) t (A0, A1) t (B1, B0)

= ((Ac1 ∩Bc0) ∪A0 ∪B1, A1 ∩B0)

�

Let us stress that the implication ¬(A1, A0)t(B1, B0) = (B1∪A0, A1∩B0) does
not satisfy the minimal condition (2) since for any A1 6= ∅, U the following holds
(∅, ∅) v (A1, ∅), but ¬(∅, ∅) t (A1, ∅) = (A1, ∅) 6= (U, ∅) = 1.

Note that under the (bijective) identification of any orthopair (A1, A0) with the
three valued fuzzy set

(8) fA1,A0 := χA1 + 1
2χU\(A1∪A0)

the restriction of the implications (5) to fuzzy sets of this kind leads to the above
formulae (7). As an immediate consequence of this fact we have that the operators
⇒L and ⇒G as defined in (7) satisfy the minimal Hardegree condition for the
material implication connective (2) since this property holds in the more general
fuzzy set context.

Moreover, in Banerjee and Chakraborty (1996) another implication on orthopairs
is introduced as follows:

(A1, A0)⇒GR (B1, B0) := ((Ac1 ∩Bc0) ∪A0 ∪B1, (Ac0 ∩B0) ∪ (A1 ∩Bc1))

This implication is different from both ⇒L and ⇒G and putting α = (A1, A0)
and β = (B1, B0) as generic orthopairs, the following chain of inclusions, according
to the above partial order relation (6), holds:

(α⇒GR β) v (α⇒G β) v (α⇒L β) .

Also ⇒GR satisfies the minimal condition (2) and, as we will discuss in a forth-
coming work, it corresponds to the Gaines-Rescher implication on three values.

Let us remark that the collection of all fuzzy sets F(U) equipped with the impli-
cation connectives of  Lukasiewicz →L and Gödel →G type from one side, and from
the other side the collection of all orthopairs L3(U) with the implication connectives
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of  Lukasiewicz ⇒L and Gödel ⇒G type are both examples of the more abstract
lattice structure of Heyting Wajsberg (HW) algebra, widely studied in Cattaneo
and Ciucci (2002); Cattaneo et al. (2004a,b) and discussed in the forthcoming sub-
section 4.4.

3.2.1. Some further remarks and generalizations. As said before, the now described
orthopair structure L3(U) has been introduced in an equivalent way by Gentil-
homme, with the de Morgan distributive lattice structure widely described by Moisil
in Moisil (1972c) and the modal operators introduced in (Moisil, 1972b, sect. 2). In
this latter paper one can find the comment that “every three valued  Lukasiewicz al-
gebra is isomorphic to some algebra of orthopairs,” and in a previous paper about
three valued  Lukasiewicz algebras the condition (MDν) is explicitly required to
hold. For a successive treatment of this argument see also Cattaneo and Nisticò
(1986), where the following important results are stressed:

(EM1) the mapping ext : F(U) → L3(U) assigning to any fuzzy set f ∈ F(U)
its semantical extension ext(f) := (A1(f), A0(f)) ∈ L3(U), where A1(f) =
{x ∈ U : f(x) = 1} and A0(f) = {x ∈ U : f(x) = 0}, is an epimorphism
of structures. The two subsets A1(f) and A0(f) are called the core (or
necessity) and the impossibility of f , respectively. The subset Ap(f) :=
U \A0(f) = {x ∈ U : f(x) 6= 0} is the support (or possibility) of f ;

(EM2) the surjective property of this mapping ϕ is consequence of the fact that
for any orthopair (A1, A0) ∈ L3(U), the three-valued fuzzy set fA1,A0 pre-
viously defined by equation (8) is such that ext(fA1,A0) = (A1, A0);

(EM3) the restriction of the extensional mapping to the collection of all these
three-valued fuzzy sets Ft(U) := {fA1,A0 ∈ F(U) : (A1, A0) ∈ L3(U)} is
an isomorphism, which allows one to identify L3(U) with the subalgebra
Ft(U) of the algebra F(U) of all fuzzy sets;

(EM4) the restriction of the extensional mapping to the collection Fe(U) of all
sharp fuzzy sets, assigning to any characteristic functional χA the orthopair
ext(χA) = (A,Ac), is an isomorphism of Boolean lattices, which allows one
to identify Fe(U) and P(U).

A generalization of the Gentilhomme-Moisil approach to orthopairs can be found
in Cattaneo (1997a), in the context of generalized rough set theory. This generalized
approach is based on a so–called preclusive, i.e., irreflexive and symmetric, binary
relation # on a universe U . Note that the logical negation of such a kind of
relation is a similarity (or tolerance), i.e., reflexive and symmetric, but in general
not transitive, relation. On the basis of a preclusive relation it is possible to extend
to the power set P(U) the notion of preclusive pair (or #–pair), written A#B, by
the law: ∀a ∈ A, ∀b ∈ B, a#b. Then one can consider the collection L3(U,#) of all
such preclusive pairs with the involved algebraic structure, very close to the one of
proposition 3.2, but with some pathological behavior which is inessential to discuss
here (see Cattaneo (1998) for details). The binary relation on U of being different
6= is just a particular case of preclusive relation and the structure L3(U, 6=) is the
one discussed in proposition 3.2, since in this case trivially A 6= B iff A ∩B = ∅.

Note that also this generalization is based on the power set of a concrete universe.
Another abstraction can be developed on the basis of a de Morgan lattice AK =
〈A,∧,∨,¬, 0, 1〉, considered as a primitive structure, without any other further
requirement. According to (Cattaneo and Nisticò, 1989, sect. 6), the binary relation
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on the lattice A defined as a ⊥ b iff a ≤ ¬b (or equivalently iff b ≤ ¬a) is an
orthogonality relation on a lattice, according to Cattaneo and Manià (1974) (and
see also (Cattaneo and Nisticò, 1989, conditions (og-1)–(og-5))). In this abstract
de Morgan lattice context, an orthopair is any pair (a1, a0) ∈ A2 such that a1 ⊥
a0, whose collection is denoted by L3(A). The unary operation on orthopairs
¬(a1, a0) := (a0, a1) is a Kleene complementation (also if the starting structure is
de Morgan), with the unique half–true element 1/2 = (0, 0). Moreover, the further
unary operations ν(a1, a0) := (a1,¬a1) and µ(a1, a0) := (¬a0, a0) are the necessity
and possibility operators of a full MDS5 structure, respectively.

4. Brouwer-Zadeh lattices and MDS5 modal structures

In the first part of the present paper we have considered a basic structure called
MDS5, which is a de Morgan (or in interesting applications Kleene) lattice equipped
with modal unary operations of necessity and possibility satisfying an unusual con-
dition named (MDν). As discussed before, in MDS5 algebra, the existence of a half
element 1

2 invariant by negation, is a sufficient condition to have a non-Boolean
structure. In this second part we investigate another structure on the basis of a
Kleene lattice, but equipped with a unary operation of complementation as alge-
braic model of a Brouwer (or intuitionistic) negation.

4.1. BZ lattices. This structure as been treated in many papers by the first two
authors, with the name of Brouwer Zadeh (BZ) lattice Cattaneo and Nisticò (1989);
Cattaneo et al. (1998); Cattaneo and Ciucci (2004, 2006a), and formalized in the
following way.

Definition 4.1. A system ABZ = 〈A,∧,∨, ¬, ∼, 0, 1〉 is a Brouwer Zadeh (BZ)
lattice iff the following properties hold:
(1) The subsystem AK = 〈A,∧,∨,¬, 0, 1〉 is a Kleene lattice with respect to the

join and the meet operations ∨ and ∧, bounded by the least element 0 and the
greatest element 1: ∀a ∈ A, 0 ≤ a ≤ 1. The unary operation ¬ : A 7→ A is a
Kleene (or fuzzy) complementation.

(2) The unary operation ∼ : A 7→ A is a Brouwer (or intuitionistic) complementa-
tion. In other words for arbitrary a, b ∈ A:

(B1) a ∧ ∼∼a = a (i.e., a ≤ ∼∼a)
(B2) ∼ (a ∨ b) = ∼a ∧ ∼b
(B3) a ∧ ∼a = 0.

(3) The two complementations are linked by the interconnection rule that must
hold for arbitrary a ∈ A:

(in) ∼∼a = ¬∼a
Given a BZ lattice, as we shall widely discuss in the forthcoming section 4.2, the

modalities are defined as ν(a) :=∼ ¬a and µ(a) := ¬ ∼ a. Differently from the
result of proposition 2.3, even if the BZ structure is based on a Boolean algebra,
these operators in general do not collapse to the identity operator, as shown in the
following example.

Example 4.2. Let us consider the Boolean BZ lattice of figure 6.
We can easily see that for every non trivial element x 6= 0, 1 of this lattice,

ν(x) =∼ ¬x = 0 6= x 6= 1 = ¬ ∼ x = µ(x). Moreover, from ∼ a =∼ b = 0 and
∼ 0 = 1 it follows that ∼∼ a =∼∼ b = 1. Notice that these two modal operators
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•
1 = ¬0 = ∼0

•¬b = a
��

��
��

��

•
0 = ¬1 = ∼1 = ∼a = ∼b

??
??

??
??

• b = ¬a
��������

• ????????

Figure 6. Boolean BZ lattice

are just the trivial ones described in equation (1) and the corresponding lattice is
the one depicted by the Hasse diagram of figure 1, as pure algebraic model of the
S5 modal logic. �

This example also shows that we can consider the special case of BZ struc-
tures based on Boolean lattices, since Boolean lattices are in particular distributive
Kleene lattices. This is different from the MDS5 algebra where in the Boolean case
the modalities will necessarily collapse to identity.

Another remark about BZ structures is that they can be applied to quantum
logics Cattaneo and Nisticò (1989); Cattaneo (1993); Cattaneo et al. (1993); Cat-
taneo and Giuntini (1995); Cattaneo (1997b), which basically are non distributive
(precisely orthomodular) lattices, as discussed in point (nD2) of section 2.1.

Example 4.3. The BZ lattice depicted in the figure 7 is not Boolean with respect
to the negation ¬.

•
1 = ¬0 = ∼0

•¬a
��

��
��

��

•
0 = ¬1 = ∼1

??
??

??
??

•a oooooooooooooo

•
OOOOOOOOOOOOOO • b

??
??

??
??

•
��

��
��

��
• ¬b

OOOOOOOOOOOOOO

• oooooooooooooo

Figure 7. Non–distributive BZ lattice in which ∼ a =∼ ¬a =∼
b =∼ ¬b = 0

This non-distributive, indeed modular (see (Birkhoff, 1967, p. 13)), lattice can
be “covered” by the two “local” Boolean BZ structures Ba = {0, a,¬a, 1} and
Bb = {0, b,¬b, 1}, each of which coincides with the lattice shown in figure 6.
In quantum logic this is the very important non-Boolean lattice describing a spin
1/2 particle. The Boolean sublattice Ba is the range of the observable measuring
the spin of the particle along the z-axis, with the element a (resp., ¬a) describing
the event “the spin of the particle along the z -axis is up (resp., down).” Similarly,
the Boolean sublattice Bb, with its two elements b and ¬b, is the range of the
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observable measuring the spin up and down along the x-axis, respectively.
The fact that there is no global Boolean lattice that covers both Ba and Bb means
that there is no observable which can simultaneously measure them, and this has
to do with the Heisenberg uncertainty principle (see (Varadarajan, 1968, p. 118,
123)). �

As seen in the previous examples, there exist Boolean BZ structures without
the collapse of both modalities to the identity. Anyway, one can consider the
case of BZ structures that correspond to a subsystem of genuine Kleene lattice, in
particular the sufficient case in which a (unique) element 1/2 ∈ A exists such that
¬(1/2) = 1/2.

In any BZ lattice with half-true element, condition ∼(1/2) = 0 is equivalent to
(B3), as we are going to prove. First, let us show a preliminary result.

Lemma 4.4. Let us assume that ABZ is a BZ lattice. Then for all a ∈ A
∼a ≤ ¬a.

Proof. Applying de Morgan condition (dM2b) to (B1) we get ¬∼∼a ≤ ¬a. Using
the interconnection rule (in) and (dM1) we have the thesis. �

Proposition 4.5. Let ABZ be a BZ lattice with half-true element. Then ∼(1/2) =
0. Conversely, let us assume that ABZ is a BZ lattice with half-true element where
axiom (B3) is replaced by condition ∼(1/2) = 0. Then for all a ∈ A

a ∧ ∼a = 0.

Proof. For any element a condition ¬a∧∼a = ∼a holds. Applying this result to 1/2
we get ¬1/2 ∧ ∼1/2 = ∼1/2. The thesis easily follows from property 1/2 = ¬1/2
and (B3).
Let us prove the converse. In any lattice the property (a ∧ b) ∨ a = a holds.
Thus, ∼ [(a ∧ b) ∨ a] = ∼a. Now, setting a := z ∨ ¬z and y := 1/2, we have
∼ [((z∨¬z)∧1/2)∨ (z∨¬z] =∼ (z∨¬z). But, by (Kl) 1/2 = 1/2∧¬1/2 ≤ a∨¬a.
That is, 1/2 ∧ (a ∨ ¬a) = 1/2. Thus, by the last property, ∼ [1/2 ∨ (z ∨ ¬z)] =∼
(z ∨ ¬z) and by (B2) ∼1/2∧ ∼ (z ∨ ¬z) = ∼z ∧ ∼¬z. By hypothesis (∼1/2 = 0),
∼z ∧ ∼¬z = 0. By this applied to z := ∼a and the interconnection rule, it follows
∼a ∧ ¬∼a = 0. Finally, a ∧ ∼a = a ∧ (¬∼a ∧ ∼a) = 0. �

Let us remark that under the weak double negation law (B1), the de Morgan
property (B2) of the Brouwer negation can be equivalently expressed as the follow-
ing contraposition law (see Cattaneo and Marino (1988)):

(B2b) a ≤ b implies ∼b ≤ ∼a
In general, in BZ lattices the following dual de Morgan law is not equivalent to

(B2):
(B4) ∼ (a ∧ b) = ∼a ∨ ∼b

Example 4.6. Let us consider the (non–distributive) BZ lattice whose Hasse dia-
gram is depicted in figure 8.

As to the (B4) condition we have that ∼ (a ∧ ¬a) = ∼0 = 1, but ∼a ∨ ∼¬a =
0 ∨ 0 = 0, i.e., ∼(a ∧ ¬a) 6= ∼a ∨∼¬a. For the non-distributivity of this lattice, let
us stress that (¬b ∧ b) ∨ a = a with (¬b ∨ a) ∧ (b ∨ a) = ¬b. �
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•
1 = ¬0 = ∼0

•¬b
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•a

•
0 = ¬1 = ∼1 = ∼a = ∼b = ∼¬a = ∼¬b
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• ¬a
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• b
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Figure 8. BZ lattice without property (B4)

Proposition 4.7. In any BZ lattice, the following two conditions involving Brouwer
negation are equivalent
1) ∼ (a ∧ b) = ∼a ∨ ∼b (dual de Morgan law)
2) ∼a ∨ ∼∼a = 1 (Stone condition)

Proof. From (B3) we have ∼(a∧∼a) = ∼0, and applying (B4) we get ∼a∨∼∼a = 1.
That from the Stone condition we obtain the de Morgan law (B4) is proved in
(Monteiro and Monteiro, 1968) in a structure even weaker than BZ lattices. �

Definition 4.8. A structure 〈A,∧,∨,¬,∼, 0, 1〉 is a Stone BZ lattice, denoted by
BZ (S), if it is a BZ lattice satisfying also the Stone condition.

Let us note that in other papers (for instance (Cattaneo et al., 1999)) this struc-
ture has been called de Morgan (with respect to the Brouwer negation) BZ lattices
and denoted by BZ(dM).

4.2. Modal algebras induced from BZ structures. Now, in the case of a BZ
lattice ABZ = 〈A,∧,∨,¬,∼, 0, 1〉, if two unary operations are defined for arbitrary
a ∈ A as

(9) ν(a) := ∼¬(a) and µ(a) := ¬∼(a)

the following results can be proved (Cattaneo et al., 2004a):
(i) The induced structure ANP = 〈A,∧,∨,¬, ν, µ, 0, 1〉 is a Kleene lattice with

necessity (N) and possibility (P) operators, ν and µ respectively, that satisfy
conditions (N1)–(N5) of point 2 section 2.1. That is, the structure of BZ
lattice induces an algebraic semantic of a S5 modal system based on a Kleene
lattice since principles N, T, K (or the equivalent M and C), and 5 are all
verified.

(ii) In general it does not induce an algebraic model of a MDS5 logical system
(i.e., a system whose algebraic model besides points 1 and 2, satisfies also
point 3 of section 2.1).

Example 4.9. The BZ lattice of figure 8 gives a concrete situation in which condi-
tion (MDν) does not hold. Indeed, one has that ν(a∨ b) = 1, with ν(a) = ν(b) = 0



DEVIANT MODALITIES 23

and so ν(a ∨ b) 6= ν(a) ∨ ν(b). In this example the two modalities ν and µ are
described by the equation (1). �

In this way BZ lattices ABZ , or better the induced structures ANP , are algebraic
versions of a S5–like modal system that is less deviant from the standard one, at
least with respect to the discussed condition (MDν). Indeed, this system can be
summarized in the following points (compare with the analogous points (M1)–(M3)
of section 2.1).
(BZ-M1) it is based on a Kleene lattice, which in general is NOT Boolean;
(BZ-M2) all S5 principles hold;
(BZ-M3) the (MDν) condition in general does NOT hold.

The following can be proved.

Lemma 4.10. Cattaneo and Nisticò (1989); Cattaneo and Ciucci (2004) Let ABZ
be a BZ lattice. Then, for arbitrary a, b ∈ A one has

(1) ν(a) = ν(ν(a)) (4-principle)
(2) ν(a ∧ b) = ν(a) ∧ ν(b) (MC-principle)
(3) ν(a) ∨ ν(b) ≤ ν(a ∨ b) (sub-additive condition)
(4) ∼a = ∼∼∼a (triple negation law Frink (1938))

Conditions (1)–(3) can be expressed in a dual way for the possibility µ.

In this BZ lattice context, making use of the unary modal operations ν and
µ defined by (9), one has the following important result relatively to the (MDν)
condition.

Proposition 4.11. In any BZ lattice ABZ , condition (MDν) is equivalent to the
dual de Morgan condition for the Brouwer negation (B4) (and so to the Stone
condition).
Thus, in the case of Stone BZ lattices the induced modal system ANP is a MDS5
algebra, with respect to which the Stone condition 2) of proposition 4.7 assumes the
form:

(10) ∀a, µ(a) ∨ ¬µ(a) = 1

Proof. From the (MDν) condition in the equivalent form (MDµ), µ(a∧ b) = µ(a)∧
µ(b), we obtain that∼(a∧b) = ¬µ(a∧b) = ¬(µ(a)∧µ(b)) = ¬µ(a)∨¬µ(b) = ∼a∨∼b.
Conversely, if the (B4) condition holds, from ∼(a ∧ b) = ∼a ∨ ∼b it follows that
¬∼(a ∧ b) = ¬(∼a ∨ ∼b) = ¬∼a ∧ ¬∼b, i.e., µ(a ∧ b) = µ(a) ∧ µ(b). �

Also when dealing with BZ lattices, and making use of the induced modal oper-
ators defined according to (9), we can define two kinds of crispness, respectively:

AeK := {e ∈ A : e ∧ ¬e = 0} = {e ∈ A : e ∨ ¬e = 1}
AeM := {f ∈ A : ν(f) = f} = {f ∈ A : µ(f) = f}

As usual, elements from AeK are said to be K–crisp and elements from AeM
M-crisp.

Proposition 4.12. Cattaneo et al. (1999) Let 〈A,∧,∨,¬,∼, 0, 1〉 be a BZ lattice.
Then, the set AeM of all M–crisp elements is a standard complemented distributive
lattice 〈AeM ,∧e,∨e, ′, 0, 1〉 with respect to the operations:
(1) The lattice join ∀e, f ∈ AeM , e ∨e f = e ∨ f .
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(2) The lattice meet ∀e, f ∈ AeM , e ∧e f = e ∧ f .
(3) The two complementations coincide on elements from AeM ,

∀e ∈ AeM , ¬e = ∼e ∈ AeM

and the mapping ¬ : AeM 7→ AeM , e→ ¬e turns out to be a standard comple-
mentation in the sense that the following are satisfied:
(SC1) ¬¬e = e,
(SC2) ¬(e ∨ f) = ¬e ∧ ¬f ,
(SC3) e ∧ ¬e = 0 (equivalently, e ∨ ¬e = 1).

As a consequence of this result, and contrary to the behavior of the MDS5 case
where in proposition 2.4 we have seen that any K-crisp element is M-crisp (i.e., the
inclusion AeK ⊆ AeM holds), we have the following.

Proposition 4.13. In any BZ structure one has the set theoretical inclusion:

AeM ⊆ AeK

i.e., any M-crisp element is also K-crisp.

Proof. Let f ∈ AeM , i.e., let f = ν(f). Then by Proposition 4.12 we have that
also ¬f ∈ AeM , i.e., one has that ¬f = ν(¬f). Hence, f ∧ ¬f = ν(f) ∧ ν(¬f) =
(2) of Lemma 4.10 = ν(f ∧ ¬f) = (SC3) of Proposition 4.12 = ν(0) = 0. �

Note that from condition 1 of Lemma 4.10 relative to necessity, and its dual
relative to possibility, we have that the modalities of each element are M–crisp. So
from this result we have that they are also K–crisp:

(11) ∀a ∈ A, ν(a), µ(a) ∈ AeM ⊆ AeK

In general the converse does not hold, as can be seen in the example of figure 8,
where a ∧ ¬a = 0 but µ(a) = 1.

As a consequence of proposition 4.13, in the case of Stone BZ lattices ABZ , whose
induced modal structure ANP is according to proposition 4.11 a MDS5 algebra for
which the inclusion AeK ⊆ AeM holds, we have the equality of the two crisp subsets,
simply denoted by Ae := AeM = AeK , whose elements are said tout court crisp
(sharp, exact).

In the BZ context, the notion of M-crispness has some relationship with ap-
proximation in rough set theory. Indeed, rough approximations generate pairs
of mutually orthogonal M–crisp elements (orthopairs) of the kind (x1, x0), with
x1, x0 ∈ AeM and x1 ≤ ¬x0 (equivalently, x0 ≤ ¬x1), this latter condition also
written as x1 ⊥ x0. With respect to the orthopair (x1, x0), the M–crisp ele-
ment x1 is called the interior of the pair, the M–crisp element x0 its exterior,
and xb := ¬x1 ∧¬x0 the boundary (see for instance (Cattaneo, 1998; Cattaneo and
Ciucci, 2004)).

The approximation of a generic (approximable) element a of the lattice A is de-
fined as the M–crisp orthopair re(a) = (ν(a),∼a) = (ν(a),¬µ(a)), whose boundary
is ab := ¬ν(a) ∧ µ(a) = µ(¬a) ∧ µ(a). In general, not all orthopairs are generated
by a rough set approximation (see section 5). The rough approximation re(a) of
an approximable element a is such that ab = 0 (i.e., there is no uncertainty on the
boundary) iff ν(a) = a = µ(a), and this is true iff re(a) is of the form (a,¬a), i.e.,
a is M–crisp. Sometimes, elements that are not crisp are also called rough.
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Let us prove that in a BZ structure whose lattice is distributive, condition (MDν)
is verified by a particular pair of elements a, b if at least one of them, either a or b,
is M-crisp, i.e., are such that ν(x) = x (or equivalently µ(x) = x).

Proposition 4.14. Let ABZ be a BZ distributive lattice. If either a or b is M–
crisp, then

ν(a ∨ b) = ν(a) ∨ ν(b)(12a)

µ(a ∧ b) = µ(a) ∧ µ(b)(12b)

Proof. Without loss in generality, let us assume that e ∈ AeM and b ∈ A, and let
us set c := µ(e ∧ b), with c ∈ AeM since according to (11) it is the possibility of
element e∧ b. By e∧ b ≤ e and monotonicity of µ we have c = µ(e∧ b) ≤ µ(e) = e.
Hence, taking into account the (SC3) of Proposition 4.12 and the distributivity of
the lattice,

c = e ∧ c = (e ∧ ¬e) ∨ (e ∧ c) = e ∧ (¬e ∨ c) (1)
From Proposition 4.12 we have that ¬e is M–crisp, moreover we have seen that c is
exact; hence, by point (1) of Proposition 4.12, also ¬e∨ c is exact. So, recalling the
point (SC3) of Proposition 4.12, for the exact element e we have that e ∨ ¬e = 1,

b ≤ µ(b) = µ(b ∧ (e ∨ ¬e)) = µ[(b ∧ e) ∨ (b ∧ ¬e)] = (MC)

= µ(b ∧ e) ∨ µ(b ∧ ¬e) = c ∨ µ(b ∧ ¬e)
≤ c ∨ µ(¬e) = c ∨ ¬e

Hence, µ(b) ≤ c∨¬e, from which it follows that e∧µ(b) ≤ e∧ (c∨¬e) = (1) = c =
µ(e ∧ b). Since e is exact the latter can be written as µ(e) ∧ µ(b) ≤ µ(e ∧ b), and
from the dual of point (3) of Lemma 4.10 we obtain (12b).
From (12b), applied to the pair ¬e (exact) and ¬b, it follows that ¬∼(¬e ∧ ¬b) =
¬∼¬e ∧ ¬∼¬b, that is (applying to both members the Kleene complementation)
∼(¬e ∧ ¬b) = (¬∼¬e ∧ ¬¬∼¬b) = ∼¬e ∨ ∼¬b. Finally, ν(e ∨ b) = ∼¬(e ∨ b) =
∼(¬e ∧ ¬b) = ∼¬e ∨ ∼¬b = ν(e) ∨ ν(b), that is (12a). �

The fact that in general a BZ lattice does not satisfy condition (MDν) allows one
to partition the class of all BZ lattices into two subclasses: the first one consisting
of all BZ lattices for which B4 (equivalently, the Stone condition) does not hold,
and the second one consisting of all BZ lattices for which this condition holds. The
two examples discussed in sections 3.1 and 3.2 are models of Stone BZ distributive
lattices, as shown below.

4.2.1. The Stone BZ lattice of fuzzy sets. In the framework of all fuzzy sets on a uni-
verse U the structure
〈F(U),∧,∨,¬,∼,0,1〉 where the operations ∧,∨, and ¬ of the Kleene distribu-
tive lattice subsystem are defined as in subsection 3.1 and the Brouwer negation
as

∼f(x) :=

{
1, if f(x) = 0
0, otherwise

is a Stone BZ lattice. Let us note that with respect to the modal operators defined
in generic BZ structures ν(f) = ∼¬(f) and µ(f) = ¬∼(f), one just obtains the two
modalities introduced in subsection 3.1. As we have seen, the crisp elements, i.e.,
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the fuzzy sets f such that ν(f) = µ(f) = f , are the {0, 1}–valued characteristic
functions, that is classical (Boolean) sets. Hence, with the now defined Brouwer
negation, from the Stone BZ lattice of fuzzy sets F(U) one induces the standard
MDS5 structure of fuzzy sets.

4.2.2. The Stone BZ lattice of orthopairs. In the framework L3(U) of all orthopairs
from a nonempty universe U the structure 〈L3(U),u,t,¬,∼,0,1〉 where the oper-
ations u, t, and ¬ of the Kleene distributive lattice subsystem are defined as in
proposition 3.2 of subsection 3.2 and the Brouwer negation as

∼(A1, A0) := (A0, (A0)c)

is a Stone BZ lattice. Also in this case we have that the modal operators in-
duced from the BZ structure, ν(A) = ∼¬(A1, A0) = (A1, (A1)c) and µ(A) =
¬∼(A1, A0) = ((A0)c, A0), coincide with the necessity and possibility operators
introduced in subsection 3.2. Therefore, with the now defined Brouwer negation,
from the Stone BZ lattice of orthopairs L3(U) one induces the standard MDS5
structure of orthopairs.

As a summary of the present subsection we have that
• Any Stone BZ distributive lattice ABZ = 〈A,∧,∨, ¬, ∼, 0, 1〉, in which con-

dition (B4) plays a fundamental role, it is possible to induce a MDS5 al-
gebra ANP = 〈A,∧,∨,¬, ν, µ, 0, 1〉 where the modal operators are defined
according to (9).

4.3. From MDS5 modal algebras to induced Brouwer–Zadeh structures.
In the previous proposition 4.11 of subsection 4.2 a standard procedure to in-
duce MDS5 algebras from Stone BZ lattices has been investigated. In this sec-
tion we discuss the converse problem. So, if one starts from a MDS5 algebra
A = 〈A,∧,∨,¬, ν, µ, 0, 1〉 and naturally defines the unary operator

∼a := ¬µ(a)

then one obtains a structure ABZ = 〈A,∧,∨, ¬, ∼, 0, 1〉, which resembles a BZ
lattice. The point is that all the requirements of Definition 4.1 are satisfied but the
contradiction law (B3). Note that the form of this condition with respect to the
primitive MDS5 operations is the following:

(B3µ) ¬a ∨ µ(a) = 1.
As an example, let us consider the lattice of figure 5. Clearly, this structure is a
MDS5 lattice, which does not satisfy property (B3), indeed, a∧∼a = a∧c = a 6= 0.

As a conclusion, figure 9 lays bare the relationship among MDS5, BZ and Stone
BZ lattices. Of course, the category of tqBa algebras contains all these structures,
and it is wider, as shown by the previously discussed example of figure 4.

Recall that both the collection of all orthopairs and of all fuzzy sets are particular
models of BZ(S).

4.4. BZ (S) algebras induced from HW algebras. In both examples of fuzzy
sets and, according to the identification of point (EM3) of subsection 3.2.1, its
formal special case of orthopairs, we have seen that it is possible to construct two
implication connectives →L and →G satisfying the Hardgree minimal condition of
implication (2). This remark naturally suggests to investigate abstract algebraic
structures based on two primitive implication connectives, some possible concrete
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Figure 9. relationship among BZ lattices, MDS5 algebras and
tqBa algebras

models of which are just F(U) and L3(U). The following structure addresses this
question (see (Cattaneo et al., 2004a)).

Definition 4.15. A system AHW = 〈A,→L,→G, 0〉 is a Heyting Wajsberg (HW )
algebra iff A is a nonempty set, 0 ∈ A, and →L,→G are binary operators, such
that, given the definitions

1) a ∨ b := (a→L b)→L b
2) a ∧ b := ¬((¬a→L ¬b)→L ¬b)
3) ¬a := a→L 0
4) ∼a := a→G 0
5) 1 := ¬0

the following are satisfied:

(HW1) a→G a = 1
(HW2) a→G (b ∧ c) = (a→G c) ∧ (a→G b)
(HW3) a ∧ (a→G b) = a ∧ b
(HW4) (a ∨ b)→G c = (a→G c) ∧ (b→G c)
(HW5) 1→L a = a
(HW6) a→L (b→L c) = ¬(a→L c)→L ¬b
(HW7) ¬∼a→L ∼∼a = 1
(HW8) (a→G b)→L (a→L b) = 1

It turns out that the operations ∧ and ∨ are just the meet and join operators of
a distributive lattice structure whose partial order is as usual defined as a ≤ b iff
a∧ b = a (equivalently, iff a∨ b = b). The two primitive binary operations →L and
→G are interpreted as implication connectives since it is easy to prove that under
the above axioms the minimal implication condition (2) holds for individually each
of them:

a ≤ b iff a→L b = 1(13a)

iff a→G b = 1(13b)

Let us remark that from any HW algebra it is possible to induce a Wajsberg
algebra (Wajsberg, 1931, 1935) (equivalently, Chang MV algebra (Chang, 1958))
with respect to the unique implicative connective →L and a symmetric Heyting
algebra (Monteiro, 1980) with respect to the unique implicative connective →G.
We refer the interested reader to (Cattaneo et al., 2004a).



28 G. CATTANEO∗, D. CIUCCI∗ AND D. DUBOISO

As to the scope of the present work, we remark that it is possible to prove that
all the axioms of Stone BZ lattice are satisfied in any HW algebra relatively to
the subsystem involving the only two negations ¬ and ∼ induced according to the
above points 3) and 4). Hence, also all the axioms of MDS5 algebras are satisfied
in any HW algebra.

Proposition 4.16. Let AHW be a HW algebra. Then,
(a) a Stone BZ distributive lattice structure ABZ = 〈A,∧,∨,¬,∼, 0, 1〉 can be in-

duced from it according to the following points:
1) By defining ∧ and ∨ as in points 1) and 2) of Definition 4.15, the

structure 〈A,∧,∨, 0, 1〉 is a distributive lattice (where as usual (13)
defines the partial order relation);

2) the unary operation ¬ : A 7→ A, ¬a := a→L 0 is a Kleene negation;
3) the unary operation ∼ : A 7→ A, ∼a := a→G 0 is a Brouwer negation

which satisfies the Stone condition in the equivalent form (B4);
4) the interconnection law (in) is satisfied.

(b) In this Stone BZ context the modal operators of necessity and possibility defined
according to (9) are the following ones:

ν(a) = (a→L 0)→G 0(14a)

µ(a) = (a→G 0)→L 0(14b)

which, according to proposition 4.11, give rise to a MDS5 algebra of Stone type
(i.e., such that the modal form (10) of the Stone condition holds).

5. The algebraic structure of approximation spaces

In this section, the pair 〈ν(a), µ(a)〉 is understood as an approximate description
of the approximable element a lying in a BZ lattice.

5.1. Approximation spaces induced from BZ lattices.

Definition 5.1. Let ABZ = 〈A,∧,∨,¬,∼, 0, 1〉 be a BZ lattice. For any element
of the BZ support a ∈ A, the rough approximation of a induced by ABZ is the
orthopair r(a) := 〈ν(a), µ(a)〉.

Remark 5.2. We use the term approximations for the two mappings ν, µ since
they satisfy the conditions defining an approximation space according to Cattaneo
(1998); Cattaneo and Ciucci (2004, 2008). That is, let ABZ be a BZ lattice and
consider the collection of M-crisp elements AeM . Then, the following hold:
(AS1) ν(a) ≤ a ≤ µ(a);
(AS2) ν(a), µ(a) ∈ AeM ;
(AS3) ∀α ∈ AeM , “α ≤ a implies α ≤ ν(a)” and “a ≤ α implies µ(a) ≤ α”.
The above three conditions (AS1)–(AS3) can be summarized by the statement:
“ν(a) (resp., µ(a)) is the best approximation of the element a from the bottom
(resp., top) by M–crisp elements”. Adopting the rough set terminology, ν(a) is also
called the lower approximation (also necessity) of a and µ(a) its upper approxima-
tion (also possibility).

In the sequel we denote the collection of all approximations on the BZ lattice A,
equivalently written as the necessity–impossibility orthopairs re(a) = 〈ν(a),¬µ(a)〉
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for a running on A, as D(A). Thus,

D(A) := {re(a) = 〈ν(a),¬µ(a)〉 : a ∈ A}
In this context, ν(a) is also called the interior and ¬µ(a) the exterior of a.

5.1.1. HW algebra induced by modalities from distributive BZ lattices. Now let us
show that the collection of all such approximation pairs definable in a distributive
BZ lattice has a HW algebraic structure. As remarked below, the distributivity of
the lattice is an essential condition in order to obtain the desired results.

Theorem 5.3. Let A = 〈A,∧,∨,¬,∼ , 0, 1〉 be a distributive BZ lattice. Let
re(a) = 〈ν(a),¬µ(a)〉 and re(b) = 〈ν(b),¬µ(b)〉 be two elements from D(A) and
let us define

re(a)⇒L re(b) : = 〈ν(a),¬µ(a)〉 ⇒L 〈ν(b),¬µ(b)〉
= 〈(¬ν(a) ∧ µ(b)) ∨ ¬µ(a) ∨ ν(b), ν(a) ∧ ¬ν(b)〉

re(a)⇒G re(b) : = 〈ν(a),¬µ(a)〉 ⇒G 〈ν(b),¬µ(b)〉
= 〈(¬ν(a) ∧ µ(b)) ∨ ¬µ(a) ∨ ν(b), µ(a) ∧ ¬ν(b)〉

Then, setting for the sake of simplicity ai := ν(a) (the necessary or interior) and
ae = ¬µ(a) (the impossible or exterior), one obtains the following:

i) the operators ⇒L and ⇒G are closed on D(A) since the following hold:

re(a)⇒L re(b) = re
(
(¬ν(a) ∧ µ(b)) ∨ ¬a ∨ b

)
= 〈(¬ai ∧ ¬be) ∨ ae ∨ bi, ai ∧ be〉(15a)

re(a)⇒G re(b) = re
(
(¬ν(a) ∧ µ(b)) ∨ ∼a ∨ b

)
= 〈(¬ai ∧ ¬be) ∨ ae ∨ bi, ¬ae ∧ be〉(15b)

ii) the structure 〈D(A),⇒L,⇒G, 〈0, 1〉〉 is a HW algebra, whose least element is
0 = re(0) = 〈0, 1〉 and corresponding greatest element 1 = ¬0 = re(1) = 〈1, 0〉.

Proof. i) If 〈ai, ae〉 , 〈bi, be〉 ∈ D(A) then,

re((¬ν(a) ∧ ¬∼b) ∨ ¬a ∨ b) =

= 〈(∼¬¬∼¬a ∧ ∼¬¬∼b) ∨ ∼¬¬a ∨ ν(b), (∼¬∼¬a ∨ ∼¬∼b) ∧ ∼¬a ∧ ∼b〉
= 〈(¬∼∼∼¬a ∧ ¬∼∼∼b) ∨ ∼a ∨ ν(b), (∼¬a ∨ ∼∼∼b) ∧ ∼¬a ∧ ∼b〉
=〈(¬ai ∧ ¬be) ∨ ae ∨ bi, ai ∧ be〉 = 〈ai, ae〉 ⇒L 〈bi, be〉

and dually, for the Gödel implication.
ii) By point i) the operators⇒L and⇒G define two binary operators on D(A). It

is straightforward to prove that under the essential condition of distributivity
of the lattice all the axioms (HW1–8) of definition 4.15 are satisfied.

�

Let us remark that the partial order induced on D(A) by the lattice operations
is

〈ν(a),¬µ(a)〉 v 〈ν(b),¬µ(b)〉 iff ν(a) ≤ ν(b) and µ(a) ≤ µ(b)
Clearly, this theorem a fortiori holds also in the case that ABZ is a Stone BZ

lattice, i.e., it is equivalently a MDS5 algebra satisfying the modal version (10) of
Stone condition. On the other hand, if A is a MDS5 algebra we do not even know
if D(A) has a lattice structure.
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5.2. The HW algebra of orthopairs and induced BZ and MDS5 struc-
tures. As previously remarked, the collection L3(U) of all orthopairs of subsets
(A1, A0) from a universe U equipped with the two binary implication operations de-
fined by equations (7) is a typical example of HW algebra 〈L3(U),⇒L,⇒G, (∅, U)〉.

According to points 2), 3)–(a) of proposition 4.16, from this HW algebra one can
induce a structure of Stone BZ distributive lattice, whose two negations are just
the Kleene one of proposition 3.2 and the Brouwer one considered in subsection
4.2.2:

¬(A1, A0) = (A1, A0)⇒L (∅, ∅) = (A0, A1)

∼ (A1, A0) = (A1, A0)⇒G (∅, ∅) = (A0, A
c
0)

On the other hand, it is easy to prove that the induced MDS5 algebra of Stone
type obtained according to the modalities defined by equations (14) of point (b) of
proposition 4.16 is just the one described in proposition 3.2.

Finally, on the basis of this BZ distributive lattice based on L3(U) one can
consider the induced collection D(L3(U)) of all rough approximations

(16) re(A1, A0) = 〈ν(A1, A0), ¬µ(A1, A0)〉 = 〈(A1, A
c
1), (A0, A

c
0)〉

which, according to point ii) of Theorem 5.3 is a MDS5 algebra. Trivially, the or-
thopair re(A1, A0) ∈ D(L3(U)), by the identifications (A1, A

c
1) ≡ A1 and (A0, A

c
0) ≡

A0, can be identified with the original orthopair (A1, A0) in L3(U). So we can
further on identify the two structures L3(U) ≡ D(L3(U)), which according to sub-
section 4.2.2 are a Stone BZ distributive lattice (and so also a MBS5 algebra of
Stone type).

5.3. The HW algebra of fuzzy sets and induced BZ and MDS5 structures.
As in the case of orthopairs on a universe U , also the collection F(U) of all fuzzy sets
on U equipped with the two implication connectives defined according to equations
(5) turns out to be a HW algebra 〈F(U),→L,→G, 0〉.

The Stone distributive BZ lattice induced from this HW algebra according to
the procedure described in point (a) of proposition 4.16, is just based on the Kleene
negation introduced in proposition 3.1 and the Brouwer one considered in subsection
4.2.1.

Also in this case the MDS5 algebra induced from this fuzzy-set HW algebra on
the basis of the modal operators defined according to equations (14) of point (b) of
proposition 4.16 is just the one described in proposition 3.1.

On this MDS5 structure based on the collection of fuzzy sets F(U) it is possible
to introduce, according to definition 5.1, the rough approximation of a generic fuzzy
set f by the orthopair of crisp sets as

re(f) := 〈ν(f),∼f〉 =
〈
χA1(f), χA0(f)

〉
obtaining the MDS5 algebra D(F(U)), according to point ii) of Theorem 5.3. Note
that one can set the identification re(f) ≡ (A1(f), A0(f)), this latter being (ac-
cording to point (EM1) of subsection 3.2.1) the orthopair from L3(U) consist-
ing of the necessity (interior) A1(f) and the impossibility (exterior) A0(f) of the
fuzzy set f . Therefore, we have obtained the algebraic structure identification
D(F(U)) ≡ L3(U), in such a way that the Stone condition of L3(U) is inherited
also by D(F(U)). Let us recall the point (EM3) of the same subsection which insti-
tute the further identification of L3(U) with the subset of fuzzy sets Ft(U) ⊆ F(U).
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In the sequel, for the sake of simplicity we set fi := ν(f) = χA1(f) and fe :=
∼f = χA0(f), and for any point x ∈ U by 〈fi, fe〉 (x) we will mean 〈fi(x), fe(x)〉.
Now, in the present D(F(U)) case the implication connectives defined according to
Theorem 5.3, for x ∈ U are expressed in the following way:

(〈fi, fe〉 ⇒L 〈gi, ge〉)(x) =


re(g)(x) if f(x) = 1
〈fe, fi〉 (x) if g(x) = 0
〈1, 0〉 otherwise

(〈fi, fe〉 ⇒G 〈gi, ge〉)(x) =


re(g)(x) if f(x) = 1
〈0, 1〉 if g(x) = 0 and f(x) 6= 0
〈1, 0〉 otherwise

5.3.1. A summary of the most relevant results about the Stone MDS5 algebras of
rough sets and of orthopairs. All the results discussed in the previous two sub-
sections, with the corresponding identifications of Stone BZ distributive lattices
on the same universe, can be summarized in the following diagram, where the
rough approximation mapping on fuzzy sets re : F(U) → D(F(U)) is expressed
by the correspondence associating with any fuzzy set f ∈ F(U) the simplified pair
〈χA1 , χA0〉:

f ∈ F(U)

re

��

ext

''PPPPPPPPPPPPPPPPPPPPPPPPPP

〈χA1 , χA0〉 ∈ D(F(U)) oo // L3(U) 3 (A1, A0)

ν

�� &&MMMMMMMMMMMMMMMMMMMMMM

L3e(U) 3 (A1, A
c
1) oo // A1 ∈ P(U)

5.4. Approximations of fuzzy sets vs. rough approximations of sets. As
an important remark it is of interest to comment on some of the results obtained
here in terms of approximations of the composition of elements expressible or not
in terms of approximation of these elements. For instance, in proposition 3.3,
implications between orthopairs are directly expressed in terms of MDS5 primitive
operations ¬,u,t, ν, µ acting on orthopairs. Also, in equation (15) of Theorem 5.3,
the same situation occurs with elements in the HW algebra of modal orthopairs
generated by a distributive BZ lattice.

The deviant modalities ν and µ are defined from scratch in the algebraic struc-
tures and their role is to extract specific features of the elements of the algebra (for
instance, one side of an orthopair, or the core or the support of a fuzzy set).

So it is no surprise that the debatable property (MDν) may hold, as the obtained
approximation of an element a is intrinsic to a itself and does not involve any
external information (it is an invariant). So, for instance, the expression of the
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elements α ⇒L β and α ⇒G β in proposition 3.3 in terms of α and β is intrinsic,
in the sense that it is devised in terms of elements of the lattice only.

The situation is very different from the case of rough sets according to Pawlak
Pawlak (1982); Pawlak and Skowron (2007), which also lead to a BZ algebra, but
where MD does not hold. The rough approximation of a Boolean subset A of
a universe S, say the nested pair (R∗(A), R∗(A)) where R∗(A) is the inner ap-
proximation of A and R∗(A) its outer approximation, is no longer intrinsic nor
invariant. It depends on an external ingredient, namely the equivalence relation
R that reflects the imperfect perception of an observer trying to grasp some un-
reachable object with a language that is not expressive enough. R∗(A) and R∗(A)
are made of unions of equivalence classes, hence depend on the partition cho-
sen, hence on the observer. Bonikowski in Bonikowski (1992) has proved that,
given two subsets A and B of S there exists another subset C of S such that
R∗(C) = R∗(A)∪R∗(B), R∗(C) = R∗(A)∪R∗(B), and this set C can be expressed
in terms of A,B and their approximations (contrary to the case studied in this
paper where C = A ∪B due to MD, but where these entities are NOT Boolean)4 .
While the existence of a partition-dependent set C may have interesting mathemat-
ical consequences (like bridging the gap between rough sets and a truth-functional
many-valued logics), the fact that the set C depends not only on A and B but on
R as well is rather troublesome, as this object is not intrinsic to the space S but
would change if another partition of the space S (another observer) is chosen. This
would be problematic in a dynamic environment (where the equivalence relation
would change, adding an attribute to the information system, for instance), or in
a multiagent setting (where each agent would refer to a different set C) since C
would not be an invariant of the space. This point would deserve a further study
in settings like rough sets, where property MD cannot hold, and modalities are
defined via an external entity like a relation representing perception by an outside
entity. For a deeper discussion about this issue see also Ciucci and Dubois (2010).

6. Comparison with Delta operator and truth stressers

Let us note that the operator ν shares some property with the Baaz Delta op-
erator, that is a projection modality ∆ in Gödel logics defined as ∆(1) = 1 and
∆(x) = 0 for x 6= 1. Indeed, in (Baaz, 1996) a logic is introduced as “an axioma-
tization consisting of the axiom schemas of intuitionistic propositional logic and of
modal logic S4 for ∆ plus [...] the following schemas:

(A B) ∨ (B  A)
∆A ∨ −∆A

∆(A ∨B) ∆A ∨∆B ”

where − is the intuitionistic negation defined as −0 = 1 and −a = 0 for a 6= 1.
Subsequently, this operator has been introduced from an algebraic standpoint in

the context of BL algebras (see Hájek (1998)), giving rise to the stronger structure
of BL∆ algebras. Let us recall these definitions.

Definition 6.1. A BL algebra is a system 〈A,∧,∨, ∗,⇒, 0, 1〉 such that

4There are also constructive definitions of these sets that are approximated by unions (or inter-

sections)of upper and lower approximations Gehrke and Walker (1992); Banerjee and Chakraborty
(1996). These definitions do not require the axiom of choice.
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(BL1) 〈A,∧,∨, 0, 1〉 is a bounded lattice;
(BL2) 〈A, ∗, 1〉 is a commutative monoid;
(BL3) (∗,⇒) form an adjoint pair, i.e., c ≤ (a⇒ b) iff a ∗ c ≤ b.
(BL4) (a⇒ b) ∨ (b⇒ a) = 1
(BL5) a ∧ b = a ∗ (a⇒ b)
A BL∆ algebra is a BL algebra plus a unary operation ∆ : A 7→ A satisfying:

∆x ∨ −∆x = 1

∆(x ∨ y) ≤ ∆x ∨∆y
∆x ≤ x

∆x ≤ ∆∆x

(∆x) ∗ (∆(x⇒ y)) ≤ ∆y
∆1 = 1

where −x := x⇒ 0.
First of all, we note that in all BL algebras (see Cattaneo et al. (2004a) for

a proof) −x := x ⇒ 0 is a minimal negation according to (Dunn, 1986), i.e., it
satisfies the weak double negation law “x ≤ − − x” and the contraposition law
“x ≤ y implies −y ≤ −x”. Moreover, also the Kleene property (Kl) is satisfied by
−. In general, the double negation law “x = −−x”, the non contradiction principle
“x∧−x = 0” and the excluded middle law “x∨−x = 1”are not satisfied. Hence −
is a very weak form of negation.

Two further important results about BL∆ (Hájek, 1998, pages 57–60) are:
(1) if the underlying lattice A is linearly ordered then the operation ∆ is defined

as

(17) ∆(x) =

{
1 x = 1
0 x 6= 1

and the operator ∼x := ∆(−x) (where −x = x ⇒ 0) has always the
following form

∼x =

{
1 x = 0
0 x 6= 0

Further, it behaves as an intuitionistic Stone negation, in the sense that it
satisfies properties (B1)–(B3) and the Stone condition. Consequently, it is
possible to introduce the possibility as:

∇(x) := ∼∼x = ∆(−∆(−x)) =

{
1 x > 0
0 x = 0

(2) A formula ψ is a tautology for each linearly ordered BL∆ algebra iff it is a
tautology for each BL∆ algebra.

As a consequence of the above two points we have that in any BL∆ algebra, the
operators (∆,∇) satisfy all the properties (N1), (N2), (N3), and (N5) plus (MDν)
introduced in section 2. The property (N4) in general does not hold with respect
to −, but can be substituted by the new identity ∇(x) = ∼∆∼(x) involving the
intuitionistic (Stone) negation ∼.
Now, on the basis of a BL∆ algebra, the structure involving the negation ∼ and
the pair ∆,∇ is not a MDS5 algebra since in general condition (dM1) of Kleene
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lattices does not hold (also if it shares all the other conditions). On the other hand,
if one chooses − as negation in general the condition (dM1) of Kleene lattice is not
verified and (N4) is not true. As a consequence, BL∆ algebras in general do not
induce MDS5 algebras.

Example 6.2. Let us consider the standard [0, 1]–models of BL∆ algebras in which
∗j is a generic continuous t–norm and ⇒j is the implication induced by ∗j . Since
[0, 1] is linearly ordered with respect to the standard ordering on real numbers, the
∆ operation is uniquely given by equation (17).
Now, if we choose the implication x ⇒L y = min{1, 1 − x + y} induced by the
 Lukasiewicz t–norm, then the negation −Lx = 1 − x is Kleene and the structure
〈[0, 1],∧,∨, ν = ∆,−L〉 is a MDS5 algebra.
On the other hand, if we choose the implication induced from the Gödel t–norm
x⇒G y = 1 if x ≤ y, and = y otherwise, then the negation −Gx = 1 iff x = 0 (and
so = 0 otherwise) is not Kleene and the structure 〈[0, 1],∧,∨, ν = ∆,−G〉 is not a
MDS5 algebra. �

Conversely, an adjoint pair (∗,⇒) is not present in MDS5 algebras as primitive
structure. We cannot exclude that, under the constraint ∆ = ν, an adjoint pair is
definable in any MDS5 algebra. However, the resulting structure will be far from
the purposes of MDS5 algebras. What we can prove is that the new structure will
have three different negations. Indeed, the negation − induced from ⇒ should be
different from the original Kleene negation ¬ and the induced negation ∼. Recall
that the ∆ operator must satisfy the property ∆x∨−∆x = 1. However, the MDS5
example of figure 5 shows that for the particular element a it is ν(a)∨ ∼ ν(a) =
c 6= 1 and ν(a) ∨ ¬ν(a) = c 6= 1.

In conclusion,

• when considering only the properties satisfied by ν and ∆, as modal–like
connectives of necessity, we have that ν is weaker, i.e., it satisfies less prop-
erties, than ∆. Indeed, ∆ satisfies (N1)–(N5), (MDν), and also the excluded
middle-like property ∆x ∨ ∼∆x = 1 with respect to the induced negation
∼ a := ∆(−a) (but it must be stressed that this negation is not Kleene),
whereas ν (as shown by the above discussed example of figure 5) in general
satisfies the latter property for none of the negations ¬ and ∼;
• when considering also the underlying algebraic structure, we have that

MDS5 algebras cannot be induced in BL∆ algebras. Of course there are
structures that are, at the same time, a model of BL∆ and MDS5. To
be precise, the following diagram summarizes the relationship among the
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algebras we have met until now:

MDS5 BZ BL∆

BZ(S)

ggNNNNNNNNNNN

88rrrrrrrrrr

SBL¬

OO

::ttttttttttttttttttttttt

HW ≡MV∆

OO

where
– SBL¬ algebras (Esteva et al., 2000) are BL algebras satisfying also

the axiom −(x ∗ y) = −x ∨ −y plus an involutive (de Morgan in our
terminology) negation ¬, such that ∆x := −¬x is a Delta operator;

– MV∆(Hájek, 1998) are BL∆ algebras plus the axiom x = − − x or
equivalently MV algebras plus the Delta operator;

– the relation among SBL¬, MV∆, HW and BZ(S) is discussed in (Cat-
taneo et al., 2004a,b).

Finally, we note that the ∆ operator as well as some of its generalizations
has been considered also in other structures (for instance (Esteva et al.,
2000; Hájek, 2001; Ciabattoni et al., 2005)), but always based on a residu-
ated lattice.

Also the work of Hájek (2001) is of particular interest since it relates our ν
operator to fuzzy truth stressers expressing linguistic hedges such as “very”, “little”,
and so on as discussed by Zadeh (1972). Indeed, the two basic properties required
for the “very true” operator are the following (quoting from Hájek (2001)): “vt(x) ≤
x (if ψ is very true then it is true) and vt(1) must be 1 (1 is absolute true)”, which
are both satisfied by the ν operator. More in detail, the algebra of “very true” is
the BLvt algebra, i.e., a BL algebra plus a unary operator vt satisfying:

vt(1) = 1

vt(x ∨ y) ≤ vt(x) ∨ vt(y)

vt(x) ≤ x
vt(x⇒ y) ≤ (vt(x)⇒ vt(y))

Now, as discussed in section 2, the first three axioms are also required for ν and
the fourth corresponds to the K principle of our lattice setting (see axiom N3 and
equation (4)). That is, ν satisfies all the properties required for vt plus some
more. So, a further interpretation that we can give to the ν operator is a particular
axiomatization of a linguistic hedge of the truth-stresser kind, based on a de Morgan
(Kleene) lattice. It is also possible to construct a dual truth-weakener using a
counterpart of axiom N4, but N5 is unlikely to hold in the general case, and MD
is a strengthening of the second above axiom. The ν operation applied to a fuzzy
set as in section 3.1, that yields its core, can be viewed as an extreme case of
truth-stresser in the above sense.
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7. Conclusions

The MDS5 algebra has been introduced as a de Morgan, not Boolean, lattice
with a further unary operator that satisfies all S5 modal properties and the MD
law. Two non trivial models of this structure (one being a particular case of the
other) are given. Further, the relationship between BZ lattices and MDS5 algebras
is studied and it is shown that from any HW algebra it is possible to induce a MDS5
algebra. Clearly, since HW algebras are equivalent to MV∆ algebras (Hájek, 1998;
Cattaneo et al., 2004b), MDS5 algebras can also be induced by this well known
structure. Moreover, if one takes into account other structures related to MV∆

algebras with modal operators it can be seen that

• MDS5 algebras can be induced in SBL¬ algebras (Esteva et al., 2000), since
as proved in (Cattaneo et al., 2004a) also Stone BZ algebras can be induced
in SBL¬.
• MDS5 algebras cannot be defined in all the BL∆ (Hájek, 1998) algebras.

Indeed, BL∆ algebras are not based on a Kleene lattice. On the other side,
MDS5 algebra has not an adjoint pair as primitive operators. If it would
be possible to residuate it and define BL∆ algebras by any MDS5 algebra,
then the new structure will have three different negations.

The MD axiom enables combinations of approximations of elements to be ex-
pressed in terms of approximations of intrinsic combinations of these elements (i.e.
involving intrinsically defined connectives only), which as discussed above is atypi-
cal, since this is not true for basic approximation settings like rough sets. So, this
result suggests further investigations on the significance of casting rough sets in the
framework of truth-functional many-valued logics.

Another interesting issue is that HW algebras can be viewed as too powerful
enrichment of BZ-algebras, as they involve  Lukasiewicz disjunction (i.e. an addition
operation) while BZ structures are much more qualitative. One idea to define
qualitative counterparts of HW algebras that would still be strengthening of BZ-
algebras is to use the implication of the NM logic (see Godo Esteva and Godo
(2001)) that is the residuation of the nilpotent minimum (see Fodor Fodor (1195)).
This operation can be defined on a Kleene lattice as follows: a ∧0 b = a ∧ b, if
a > ¬b, and 0 otherwise. The corresponding implication is a→0 b = 1 if a ≤ b and
¬a ∨ b otherwise. It holds that ¬a = a →0 0. Moreover, this implication satisfies
all properties (HW5–8) of  Lukasiewicz implication. Thus the obtained structure is
similar to a HW algebra (except that ∨ and ∧ cannot be defined in terms of →0,
and ∧ must be assumed on top of→0 and→G). Moreover, if the underlying scale is
just the chain {0, 1/2, 1}, the nilpotent implication→0 coincides with Lukasiewicz’s
(so the set of orthopairs seem to be an example of HW algebras and the new one).
A full-fledged study of the role of the nilpotent implication in approximation spaces
is thus in order.
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algèbres de Boole monadiques – I. Mathematica Japonicae, 1–23.
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