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Fluctuation-Driven Computing on Number-Conserving
Cellular Automata

Jia Lee∗,a, Katsunobu Imaib, Qing-sheng Zhua

aCollege of Computer Science, Chongqing University, Chongqing, China
bGraduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Japan

Abstract

A number-conserving cellular automaton (NCCA) is a cellular automaton where
the states of cells are denoted by integers, and the sum of all numbers in a config-
uration is conserved throughout its evolution. It has been widely used to model
physical systems ruled by conservation law of mass or energy. Imai et al. (2002)
showed that an NCCA’s local transition function can be effectively translated
into sum of a binary flow function over pairs of neighboring cells. In this paper,
we explore the computability of NCCAs where the pairwise number flows are
performed at fully asynchronous timings. Despite the randomness associated
with asynchronous transition, useful computation still can be accomplished ef-
ficiently in cellular automata, through active exploitation of fluctuations (Lee,
et al., 2008). In particular, certain numbers may flow randomly fluctuating
between forward and backward directions in the cellular space, as if they were
subject to Brownian motion. Since random fluctuation promises a powerful
resource for searching through the computational state space, the Brownian-
like flow of numbers allows efficient embedding of logic circuits into our novel
asynchronous NCCA.

Key words: cellular automaton, number-conserving, Brownian motion,
asynchronous circuit, Petri net, universal computation

1. Introduction

Cellular automata (CAs) are discrete dynamical systems that are widely
used to model complex physical phenomena resulting from simple interactions
at local scale. A number-conserving cellular automaton (NCCA) is a CA where
the states of cells are denoted by integers, and the sum of all states in a config-
uration is conserved throughout its evolution. As number conservation possibly
reflects the fundamental conservative-law of mass in physics, various NCCAs
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have been extensively studied so far as models of highway traffics [14, 29], fluid
dynamics [6], abstract machines [12, 25, 26, 28], and so on.

Boccara and Fukś [3] formalized conditions for 1-dimensional CAs to be
number-conserving, based upon a general theorem on additive conserved quan-
tities [9]. Durand et al. [5] generalized the results for higher dimensions, and
provided a linear time algorithm to decide whether a CA is number-conserving
or not. Moreover, focusing on structural characteristic of transition rules, Imai
et al. [12, 39] showed an effective characterization of 2-dimensional NCCAs with
von Neumann neighborhood, by which the local transition function of an NCCA
is translated into a linear summation of a binary function over pairs of neigh-
boring cells (see Theorem 1). The binary function indicates the number (maybe
negative) flowing into a cell from one of its neighbors, which will result in an
increment as well as a decrement in the states of these two cells, respectively.

The above pairwise flow-based characterization demonstrated that when we
construct NCCAs to conduct some intended work, such as computing, what
we need to do is design an appropriate binary function. Though reduction in
the number of free parameters of the local function often tends to complicate
the design work, Imai et al. [12] succeeded at constructing an NCCA with von
Neumann neighborhood that is capable of universal computation. Their model
uses 26 states per cell and holds permutation symmetry. Furthermore, number
flows between all pairs of neighboring cells must be performed simultaneously
at discrete time steps, thereby their universal NCCA is synchronous.

Relaxing the synchronous requirement of state transitions leads to the use of
various asynchronous schemes [38] to iterate cells, giving rise to models called
asynchronous cellular automata (ACAs). For example, by a stochastic updating
scheme, each pairwise number flow in an NCCA is subject to a positive proba-
bility p (0 < p ≤ 1) at every time step (see also [7]). In this case, a cell’s state
turns out to be a random variable which may possibly follow a binomial distri-
bution with success probability p. No matter what the p is, however, the total
sum of numbers in a configuration after one step iteration remains the same as
that before the iteration, i.e., the resulting model is still number-conserving. In
particular, as p → 0, transitions of cells approach a Poisson process after one
unit of time is remeasured by p, whereby at each time a cell as well as one of
its neighbors are selected randomly from a configuration, after which a number
will flow from the neighbor to the cell in accordance with the binary function.

Though randomizing the timings of pairwise number flows does not disturb
the conservation property of originally synchronous NCCAs, it often brings
difficulty in designing models to carry out computation. In general, a special
timing mechanism is required by ACAs in order to avoid unexpected behavior
during the randomly-timed transitions [30, 18], which in turn usually causes
the increase in the complexities of ACAs as compared to their synchronous
counterpart. Nevertheless, inclusion of fluctuation into ACAs promises models
with less complexity, e.g., the Brownian cellular automata (BCAs) [17, 21, 35].
A BCA is an ACA where certain configurations, as signals, may move randomly
fluctuating between forward and backward directions, as if they were subject
to Brownian motion. Because Brownian motion offers an effective resource for
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searching through the computational state space [2, 4, 15], the BCA [17] requires
much lower complexity than other non-Brownian ACAs with computational
universality achieved thus far [19, 32, 33]. Furthermore, though the number of
each state in a configuration is conserved throughout the iteration, the BCA is
not exactly the same as an NCCA because its transition function is unable to
be translated into the sum of a binary function.

Cellular automata have gained much attentions as a promising architecture
for future nanocomputers, because their regular structures potentially allow
manufacturing techniques based on molecular self-assembly [1, 22, 32, 33]. With
an aim to verify fluctuation-driven computation in more general and physics-like
models (e.g., [23, 25, 41, 42]), this paper focuses on the framework of NCCAs.
For this purpose, we present a novel NCCA where pairwise flows of numbers
are performed at fully asynchronous timings. In this case, Brownian-like be-
havior is emulated by random flow of numbers fluctuating back and forth in
the cellular space. Asynchronous systems, like Petri net [11], usually suffer
from the issue of deadlocks. Since Brownian motion provides a natural way to
backtrack from deadlock situations, the fluctuation-driven computing scheme
promises more effective circuit constructions [34, 20] and offers the potential for
physical implementation by future nano-electronics [37]. As a result, our novel
NCCA model requires merely 11 cell states as well as a simple binary function,
and is able to implement any arbitrary logic circuit in its cellular space, thereby
it is computationally universal.

It is worthy pointing out an alternative efficient and intuitive way to ex-
press number-conservation of CAs, based on the notion of particle automata
(PAs) [27]. By PA, each cell’s state is interpreted as the number of particles
included in it, and a rule is used to decide the motion of each particle in a cell,
which may either move to one of the cell’s neighbors or simply stay in that
cell. In this case, according to the notion of motion representation [3, 27] for
PAs, the binary flow function in our NCCA can be transformed straightforward
into a list of local configurations, each of which consists of two adjacent cells
in a horizontal or vertical direction, associated with an arrow indicating the
movement of particles from one cell to the other cell. Furthermore, one pair of
adjacent cells is randomly selected at every time step, between which a certain
number of particles is allowed to move. Thus, our NCCA model may also be
formalized as an asynchronous PA with a minimal neighborhood.

This paper is organized as follows: Section 2 outlines the basic notion of
NCCAs. More details can be found in [3, 5, 7, 12, 26, 27]. Section 3 describes
a set of simple circuit elements [20, 17] that can actively exploit the fluctuation
of signals. After that, Section 4 introduces an asynchronous NCCA model
and shows its universality for constructing logic circuits. Besides our totally
asynchronous NCCA, Section 5 demonstrates that it is still possible to emulate
Brownian motion in a stochastic updating NCCA, by using a more complicated
flow function. This paper finishes with the conclusion and further discussions
given in Section 6.
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2. Number-Conserving Cellular Automata

Definition 1. A deterministic 2-dimensional cellular automaton with von Neu-
mann neighborhood is defined as (Z2, Q, f, q0), in which Z is the set of all in-
tegers, Q is a finite set of states, and q0 ∈ Q is a special state called quiescent
state. In addition, f : Q5 → Q is a local transition function which satisfies
f(q0, q0, q0, q0, q0) = q0.

Definition 2. Assume a cellular automaton (Z2, Q, f, q0). a configuration over
Q is a mapping c : Z2 → Q. Moreover, the set of all configurations is defined
as Γ(Q) = {c | c : Z2 → Q}.

Assume c, c′ ∈ Γ(Q). When all cells undergo state transitions simultaneously,
we say there is a global transition from c to c′ written as c −→ c′ if

∀(x, y) ∈ Z2, c′(x, y) = f(c(x, y), c(x, y − 1), c(x + 1, y), c(x, y + 1), c(x − 1, y)).

On the other hand, if cells do transitions asynchronously such that one ran-
domly selected cell is updated at a time, c −→ c′ holds if

∃(x′, y′) ∈ Z2,∀(x, y) ∈ Z2 \ (x′, y′), c′(x, y) = c(x, y) ∧
c′(x′, y′) = f(c(x′, y′), c(x′, y′ − 1), c(x′ + 1, y′), c(x′, y′ + 1), c(x′ − 1, y′)).

Definition 3. Assume a CA (Z2, Q, f, q0). The function f satisfies rotation
symmetry iff

∀c, u, r, d, l ∈ Q, f(c, u, r, d, l) = f(c, r, d, l, u).

In addition, function f satisfies permutation symmetry iff it is rotation symme-
try and

∀c, u, r, d, l ∈ Q,
f(c, u, r, d, l) = f(c, u, d, l, r) = f(c, u, l, r, d) = f(c, u, d, r, l) = f(c, u, l, d, r) =
f(c, u, r, l, d).

For convenience, let N denote a finite set of integers, such that N ⊂ Z and
0 ∈ N . Thus, we have the next definition.

Definition 4. A CA (Z2, N, f, 0) is called number-conserving if

∀c, c′ ∈ Γ(N), c −→ c′ =⇒
∑

(x,y)∈Z2

(c(x, y) − c′(x, y)) = 0.

Assume all cells do state transitions simultaneously, the following theorem
provides a sufficient and necessary condition for a von Neumann neighborhood
NCCA.
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Theorem 1. [12] Assume a CA (Z2, N, f, 0) where f : N5 → N satisfies
permutation symmetry. The CA is number-conserving iff

∀c, u, r, d, l ∈ N, f(c, u, r, d, l) = c +
∑

α∈{u,r,d,l}

g(c, α)

where g : Z2 → Z is a binary function satisfying g(b, a) = −g(a, b) for all
(a, b) ∈ Z2.

The binary function g indicates a number (maybe negative) flowing into a
cell from one of its non-diagonal adjacent cells, which will cause an increment
as well as a decrement in the states of these two cells, respectively. Since the
local function f of an NCCA is perfectly described in terms of a binary function
g, it is possible to redefine an NCCA as (Z2, N, g, 0).

Let (Z2, N, g, 0) be an NCCA with von Neumann neighborhood. Suppose
this NCCA is iterated asynchronously, such that flow of numbers takes place
between utmost one pair of neighboring cells at a time, and the pair may be se-
lected randomly from the entire configuration. In this case, for any c, c′ ∈ Γ(N),
c −→ c′ holds if

∃a⃗, b⃗ ∈ Z2, ∀⃗r ∈ Z2 \ {a⃗, b⃗}, |⃗a − b⃗| = 1 ∧
c′(⃗r) = c(⃗r) ∧ c′(a⃗) − c(a⃗) = g(c(a⃗), c(b⃗)) ∧ c′(b⃗) − c(b⃗) = g(c(b⃗), c(a⃗)).

Because g(c(a⃗), c(b⃗)) = −g(c(b⃗), c(a⃗)), we obtain
∑

a⃗∈Z2(c′(a⃗) − c(a⃗)) = 0.
Therefore, according to Definition 4, the CA remains number-conserving even
when cells are updated independently at random timings.

3. Token-Based Circuits and Brownian Operators

Tokens are discrete indivisible units that are represented graphically as black
dots. Logic circuits that are concerned in this paper are token-based, such that
communications between a circuit and the outside world are done via exchang-
ing tokens through the input/output lines. They are also asynchronous in the
sense that their correct operations are unaffected by arbitrary delays involved in
interconnection lines or operators [13, 36, 10]. A well-known semantical model
for the description of token-based systems is the Petri net (e.g., [8]). Below, a
brief overview of Petri nets is given.

Definition 5. A Petri net (or simply net) is defined as (P, T, F ) where P and
T are finite sets of places and transitions (P ∩T = ∅), respectively. In addition,
F ⊆ (P ×T )∪ (T ×P ) denotes the flow relation between places and transitions.

Definition 6. A marking of a net (P, T, F ) is a function µ : P → {0, 1}, which
assigns zero or one token to each place in the net. For simplicity, the marking
can also be defined by M = {p ∈ P | µ(p) = 1}.
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The graphical representation of a Petri net usually uses circles and bars to
denote the places and transitions, respectively. Assume a net (P, T, F ). For
each < α, β > ∈ F with α, β ∈ P ∪ T , this is indicated by an arc from α to β.
Also, Let M be a marking of the net. Suppose a place p ∈ M , i.e., p contains a
token, it is represented by placing a black dot in the corresponding circle.

Definition 7. Assume a net (P, T, F ) and t ∈ T . Let •t = {p ∈ P | < p, t >
∈ F} and t• = {p ∈ P | < t, p > ∈ F} denote the input and output sets of
transition t, respectively.

Definition 8. Let M be a marking of a net (P, T, F ). A transition t ∈ T is
called firable at M , if •t ⊆ M and t • ∩M = ∅. Moreover, firing of transition t
results in a new marking M ′ where M ′ = (M − •t) + t•.

In general, when several transitions are firable simultaneously, any one of
them may fire. That is, the firing in a net is nondeterministic (asynchronous).
In particular, assume t1, t2 ∈ T are both firable in a net (P, T, F ). If •t1 ∩
•t2 ̸= ∅, then the firing of t1 or t2 will disable the other transition temporarily,
which gives rise to a conflict situation. Such situations may arise in token-based
asynchronous circuits, for example, when two tokens try to access a shared
component at the same time. The resulting conflict usually requires a purely
nondeterministic or even stochastic functionality, called arbitration or choice, to
resolve them [13, 36, 10, 31].

A special type of asynchronous circuits is the Brownian circuit [17, 34, 20],
in which the movements of tokens on lines may fluctuate back and forth at ran-
dom. A net representation of a (bi-directional) line where a token may fluctuate
between going leftward and rightward directions is illustrated as follows:

The Brownian movements of tokens enable a circuit to backtrack from the
conflict states, thereby providing the arbitration as part of their nature. This
actually allows for more effective design of primitive operators and circuit con-
structions [17, 34, 20, 21]. As a result, three kinds of simple operators that can
actively exploit the fluctuations of tokens are shown in Fig. 1, each of which has
much less complex functionality than the primitive elements [31] of conventional
asynchronous circuits. Furthermore, any arbitrary asynchronous circuit can be
constructed by these elements, according to the following theorem.

Theorem 2. [17, 20] {CJoin, Hub, Ratchet} is universal for asynchronous cir-
cuits.
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Figure 1: Brownian operators [17, 20] and their net representations. (A) CJoin (Conservative
Join): Two tokens with one arriving on line J (or K) and another one on line J ′ (resp. K′)
are processed and give rise to one token on each of the lines K and K′ (resp. J and J ′),
respectively. (B) Hub: A token arriving on line Wi will be transferred to one of the other
lines Wj , where i, j ∈ {0, 1, 2} and i ̸= j. (C) Ratchet: A token arriving on line I is
transferred to line O. This element works as a diode such that once a token passes it from I
to O, the token cannot go back.
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Figure 2: Sequence of configurations where, due to the randomness in the selection of neigh-
boring cells, the number 6 from a 7-state cell fluctuates between flowing into the cell’s left
neighbor and right neighbor, which possibly resembles the Brownian-like movements of a to-
ken on a line. For simplicity, quiescent cells are denoted by blanks. Following the notation of
motion representation [3, 27], each curved arrow in a configuration indicates that a positive
number (of particles) is ready to flow (move) from a source cell to an adjacent destination
cell, what implies is a global transition from that configuration if these two cells are selected.
Moreover, each time a flow function φ(x, y) (as well as φ(y, x)) is used, it is denoted along
with the straight arrow depicting a global transition.

4. Universality of An Asynchronous Number-Conserving Cellular Au-
tomaton

4.1. Definition
Our novel NCCA with von Neumann neighborhood is defined by A11 =

(Z2, N11, φ, 0), where N11 = {0, 1, · · · , 9}∪{15}. The flow function φ : Z2 → Z
is given as follows:

φ(1, 7) = 6, φ(3, 7) = 6, φ(1, 9) = 6, φ(2, 7) = 6,
φ(3, 8) = 3, φ(2, 6) = 3, φ(3, 5) = 3, φ(5, 6) = 3,
φ(1, 8) = 6, φ(4, 9) = 4, φ(2, 5) = 2, φ(9, 8) = 6,
φ(3, 15) = 12, φ(2, 15) = 6.

For all x, y ∈ Z, if φ(x, y) or φ(y, x) is defined above, then φ(x, y) = −φ(y, x);
otherwise φ(x, y) = 0. Moreover, we apply the random choice [38] scheme to
iterate cells, such that at each time step, one cell together with one of its neigh-
bors are selected randomly with uniform probability from the configuration,
after which a number will flow from the neighbor to the cell in accordance with
φ. The A11, therefore, is asynchronous.

Universal computation in A11 is accomplished through the embedding of
logic circuits into its cellular space. In particular, circuit constructions are
based upon the primitive operators given in Fig. 1.

4.2. Embedding Brownian token and operators into A11

In A11, a line is represented as a linearly continuous sequence of cells in
state 1, on which a token is represented by changing a 1-state cell into state
7, as shown in Fig. 2. Since a token has no distinct head and tail, driven by
the flow function φ(1, 7) = 6, the token will propagate back and forth randomly
on a line, resembling a particle undergoing Brownian motion. In addition, the
layout of crossing lines is represented by the configuration in Fig. 3, through
which a token running on either line can pass properly.

Local configurations each of which behaves like one of the Brownian op-
erators in Fig. 1, are illustrated in Figs. 4–6, respectively. Thus, due to the
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Figure 3: (A) Local configuration of two crossing lines. Sequences of configurations where a
token arriving on either the (B) horizontal line or the (C) vertical line but without another
token on the orthogonal line, passes through the crossing point freely.

Figure 4: (A) Local configuration representing a Hub. (B) Sequence of configurations where
the Hub receives one token from one of its lines, after which it may transfer the token to either
of other lines.

.

Figure 5: (A) Local configuration representing a CJoin. (B) Sequence of configurations where
the CJoin receives one token from each of its lines K′ and K (resp. J ′ and J), after which
it produces one token to each of the lines J and J ′ (resp. K and K′), respectively. Due to
asynchronicity of the CA, several different sequences of configurations are possible.
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Figure 6: (A) Local configuration representing a Ratchet. (B) Sequence of configurations
where the Ratchet receives one token from line I, after which it transfers the token to line
O. Though a token may fluctuate on lines I and O before and after passing the Ratchet, it
cannot go back from line O to line I.

universality of these operators, it is possible to construct any arbitrary asyn-
chronous circuit in the cellular space of A11.

Moreover, Fig. 3 demonstrates that a single token can pass the crossing
point of two orthogonal lines, no matter it propagates on the horizontal line
or the vertical line. But what would happen if one token appears on each of
the orthogonal lines at the same time? Because of the asynchronicity of A11,
collision between tokens at the crossing point may take place (see Fig. 7A).
Previous BCA models [17, 21, 35] simply treat such a collision as deadlock and
do nothing, since the Brownian motion of tokens will eventually move one token
away from the crossing point, so as to allow another token to pass first. In A11,
however, the process to deal with collision tends to be much more complicated,
as demonstrated in Fig. 7B. This is because A11 can access no more than two
adjacent cells at a time, and hence, it is difficult to recognize the collision shown
in Fig. 7A as a deadlock immediately in a straightforward way.

In conclusion, any arbitrary asynchronous circuit can be constructed in A11,
and hence, the following theorem holds.

Theorem 3. A11 is computationally universal.

The next subsection demonstrates the embedding of a well-known logic cir-
cuit, called Half-Adder, in the cellular space of our A11.

4.3. Embedding Half-Adder into A11

A Half-Adder is a logic circuit that performs an additional operation over
two one-bit binary numbers. It has two inputs {x, y} and two outputs {z, c},
along with the truth table given below.

x y z c
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

Conventionally, the output z = x ⊕ y is used to represent the sum of x and y,
as well as c = x · y representing the carry. To implement the Half-Adder in
token-based systems, a robust scheme employs a pair of lines to express each
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Figure 7: (A) Collision between two tokens at a crossing point. (B) Typical sequences of
configurations where one token will pass through the crossing point first, after which another
token becomes able to pass. Due to asynchronicity of the CA, there are so many different
sequences in which this process may occur. For clarity, tokens which passed first at the right
end of each sequence are indicated by circles, respectively. No matter in which sequence the
process takes place (in which order the tokens pass), tokens running on different lines can
always propagate safely and individually without interference from each other.

binary number. This scheme, called dual-rail encoding, encodes the value 1 by
putting a token on one line, and value 0 by putting a token on the other line.

Figure 8A provides the design of a Half-Adder using the Brownian operators
in Fig. 1, in accordance with which configuration representing a Half-Adder is
illustrated in Fig. 8B.

5. More on Brownian Tokens

The configuration representing a token on a line, given in Fig. 2, is really
so simple with rotational symmetry, that there is no preferred direction for
the token to move on the line. The number 6, therefore, from a 7-state cell
(representing a token) takes an equal chance to flow into neighboring cells in
the left and right directions, albeit not at the same time. The choice between the
left and right movements may be done by sorting all pairs of adjacent cells (that
are ready for number flows) in a configuration, in accordance with which cells
are updated sequentially. In this sequence, if the pair composed of the token
(7-state) cell and its left neighbor precedes the other pair of the same token cell
and its right neighbor, the token will move to the left direction, as shown in
Fig. 2; otherwise the toke will move to right. Since the order among all pairs
of neighboring cells will be shuffled randomly at the beginning of each round of
cell transitions, the resulting token will run randomly on the line, fluctuating
between going leftward and rightward.
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What would happen, however, if we loose the fully asynchronous updating
scheme, by allowing the 7-state cell in Fig. 2 to flow numbers to both its left and
right neighbors simultaneously? The following figure shows the result of such
concurrent flows of numbers, where a single token is divided into two, which is
actually prohibited by the indivisible principle of tokens (see Section 3).

As a result, our asynchronous NCCA model will lose its computing ability when
numbers from a single cell may flow into multiple neighbors at the same time.
In other words, to realize a Brownian token in the face of concurrent number
flows, we must design an alternative binary function against the function φ in
our NCCA (Section 4).

For example, an alternative flow function used for Brownian movements of
tokens can be defined as follows: Assume τ : Z2 → Z such that

τ(1, 7) = 6, τ(5, 2) = 1, τ(2, 6) = 5.

Given in Fig. 9, the configuration of a line on which a token is put is the same
as that in Fig. 2. As said before, an effective scheme for emulating concurrent
behavior is to assume that at every time step, each pair of neighboring cells
is subject to a certain probability p (0 < p < 1) to flow a number between
them. Since p > 0, stating from the configuration (a) in Fig. 9, there is always
a positive likelihood at any time that number flows between each pair of adja-
cent cells are performed simultaneously, which implies a successive sequence of
global transitions alternating between from configuration (a) to configuration
(b) and vice versa, where the token will simply stay on the line without move.
Fortunately, such sequence cannot last for long whenever p < 1, and instead,
only a random portion of cells on average will be chosen to undergo number
flows at each time step. In this case, the asynchrony of the updating timings,
together with the randomness in the selections of cells, will eventually result in
Brownian-like movements of a token on a line, as illustrated in Fig. 9.

Furthermore, in Fig. 9, the token (7-state) cell in configuration (a) takes a
possibility p2 (or (1 − p)2) to flow a number into both (resp. neither) of its left
and right neighbors, whereas the possibility to flow into either of its neighbors
is 2p(1− p). The case for configuration (b) is similar. It turns out that to move
a token one cell in either direction of a straight line, would take about 1

2p(1−p)

time steps on average. In particular, such expected time steps get minimal
when p = 0.5. That is, a token tends to move most intensely on a line in a
Brownian fashion, when the occurrence of actual number flow between any pair
of neighboring cells becomes completely unpredictable.

6. Conclusions and Discussions

Although by intuition the pure asynchronism in updates of individual cells
seems incompatible with the conservation law of sum of all cells’ states, Fukś [7]
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Figure 8: (A) Construction of a dual-rail encoded Half-Adder using Brownian operators in
Fig. 1, and (B) its net representation. For each α ∈ {x, y, z, c}, a token appearing on line
α1 (resp. α0) represents α = 1 (resp. α = 0). For convenience, traces of tokens in response
to an input coming from each of the lines x1 and y1 (i.e., x = 1 and y = 1) are depicted
by dashed lines. Roughly speaking, after a token from line x1 (or y1) is received, it may
move around in a random walk manner on the line between the CJoins J1 (resp. J3) and J2,
searching alternately for the CJoin at either end of the line which gets ready to process tokens
(see Fig. 1A). Thus, the Brownian behavior of tokens allows a natural way to realize the
arbitration function. Moreover, the Brownian motion will eventually move both the tokens to
reach the J2 simultaneously, whereby the tokens are able to activate the operation of J2 and
finally result in one token appearing on each of the output lines z0 and c1 (i.e., z = 0 and
c = 1). In addition, the placement of Ratchets on lines is crucial to restrict the movements
of tokens to one direction, which will substantially speed up the circuit’s operation. (C)
Construction of a dual-rail encoded Half-Adder in A11 in accordance with the circuit scheme
in (A). Within the configuration, each region where a CJoin operator is placed is surrounded
by a dashed-box. (A simulation of the dual-rail encoded Half-Adder can be found in the
attached movie file: half-adder.wmv, starting by one signal being put on each of the lines x1

and y1.)
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Figure 9: Propagation sequence of a token on a line where number flows may take place
between multiple pairs of cells simultaneously at a time. For convenience, a bold arrow
expresses that more than one pair of cells are chosen to perform number flows at the same
time, whereas a thin arrow indicates that at most one pair of cells is selected out from all
candidates to undergo number flow. In particular, both configurations (a) and (b) contain two
pairs of cells that are ready for number flows, due to the flow function τ . Hence, simultaneous
flows of numbers between the two pairs result in a global transition from configuration (a) (or
(b)) to configuration (b) (resp. (a)). On the other hand, whenever a time lag occurs between
the pairs, i.e., one pair precedes the other in flowing a number, the token will eventually move
one cell and the direction depends on which pair is chosen first.

pointed out that the sufficient and necessary condition for synchronous CAs
to be number-conserving can be naturally extended for probabilistic cellular
automata. Likewise, the characterization of synchronous NCCAs (Theorem 1)
by Imai et al. [12] ensures the conservation of CAs even when the pairwise
number flows take place independently at random times. This paper explored
the computability of asynchronous NCCAs, via a novel model which employs
11 states per cell and a simple binary flow function. Universal computation in
our asynchronous NCCA was achieved through embedding of logic circuits, like
the Half-Adder, into the cellular space. Circuit constructions were based upon
primitive operators [20, 17] that can actively exploit the fluctuations of tokens.

Random fluctuation provides an effective and powerful resource for biological
systems [40]. The BCA models designed in [17, 21, 35] demonstrated that they
can be incorporated efficiently into the searching process associated with com-
putation. In particular, the Brownian-like behavior of tokens allows a natural
realization of arbitration and choice, a functionality that is essential for asyn-
chronous systems but usually hard to implement without the use of Brownian
motion [32, 34, 20, 17]. The effectiveness of Brownian motion, for example, may
be well explained by the extremely simple representation of a token as well as a
simple function used to drive its propagation (see Fig. 2). This characteristic,
which seems having no counterpart in other models [12, 39], actually contributed
to the small number of states and the simplicity of transition function in our
asynchronous NCCA.

Our model uses a fully asynchronous scheme to iterate cells, by which all
pairs of neighboring cells undergo transitions sequentially in a random order. As
mentioned in the Introduction, a more general scheme assumes that each pair of
neighboring cells is subject to a positive probability. Though it is still possible,
as shown in Fig. 9, to emulate Brownian motion even when a number may

14



possibly flow into both the leftward and rightward directions simultaneously,
a more complicated binary function (Section 5) seems needed as compared to
the function of our NCCA model. Thus, how to compute efficiently on the
stochastic updating NCCAs, especially how to realize those Brownian operators
in Fig. 1, still needs further investigation.

Moreover, the pairwise flow-based characterization requires the NCCA mod-
els to satisfy permutation symmetry [12], which is so strong as the outer-
totalistic ones. Relaxing the symmetry condition results in an additional binary
function used to describe the local function of an NCCA [39]. In this case, the
number flowing into a cell not only comes directly from one of its non-diagonal
neighbors, but also is affected by the interaction between two neighbors in a
diagonal direction. Though the additional function may contribute to reduce
the complexity of synchronous NCCAs [39], it is yet unknown how to guarantee
the total sum of numbers in a CA never change in the face of such indirect
influence, when time lags between the transitions of cells may be involved.
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