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R. Álvarez Mariño

Health Centre “Nuñez Morgado”
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Abstract

One of the most important uses of Biometrics is the identification and authenti-
cation of individuals using one or several of their physiognomical or behavioral
features. Moreover, Biometrics offers a good option to assist Cryptography for
confidentiality, encryption, and decryption of messages by using some biomet-
ric traits. In this paper, a crypto-biometric scheme, based on fuzzy extractors,
by using iris templates, is proposed, i.e., we propose a new system in order to
permit a user to retrieve a secret or a previously saved key by using her own
biometric template. The properties and efficiency for selecting the most use-
ful parameters to provide a high level of security in the scheme are thoroughly
analyzed.
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1. Introduction

It is well known that Cryptography provides secrecy and authentication of
data and ensures privacy in the communication by means of different cryptosys-
tems [28, 36].

The most important application of symmetric and asymmetric cryptography
consists of encrypting and decrypting messages or plaintexts by means of specific
cryptosystems and keys. In the case of symmetric cryptography, the sender
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encrypts a plaintext by using a secret key, which is only shared with the receiver;
for decrypting the ciphertext, the receiver uses the same secret key used by the
sender. In the case of asymmetric cryptography, the sender encrypts the message
by using the receiver’s public key; to decrypt the ciphertext, the receiver uses
her private key, only known to herself.

Another very extended application of cryptography is as a tool for the identi-
fication and authentication of users to be used in generating and verifying digital
signatures [22, 25, 41], voting process [8], key agreement and digital signature
protocols based on the identity [13, 40], accessing personal data [23], etc.

Nevertheless, the use of cryptosystems and keys in cryptography presents,
currently, two important drawbacks, namely:

• Key management problem. It is already known that the security of the
standard cryptosystems, such as the TDEA, AES, RSA, and so on [29, 30,
33], relies on the assumption that both keys, the secret and the private
one, are unknown to anyone but the lawful users. If the secret key or
the private key is compromised, the security of the scheme is completely
broken.

• Key bitlength problem. As the keys used are large (128-256 bits for sym-
metric cryptosystems and 1024-2048 for the asymmetric ones), it is impos-
sible to be memorized. So, they are often stored in a password-protected
place. As passwords can be easily stolen, forgotten or guessed using dif-
ferent attacks, it can be stated that a cryptosystem is as secure as it is
the password used to store its secret key [31].

For this reason it is important to develop new systems with higher level of
security, so that the storing algorithms will be improved in order to avoid the
above mentioned drawbacks.

Biometric authentication [17, 27] consists of verifying individuals based on
their physiognomical and behavioral traits such as face [9], fingerprints [19],
palmprints [26], iris [34], tongue shape [16], etc. Biometric systems offer obvious
advantages over other authentication systems. They are inherently more reliable
than password-based authentication, as biometric characteristics cannot be lost
or forgotten. Moreover, biometric traits are extremely difficult to copy, forge,
share, and distribute, and it is unlikely for a user to deny having accessed a
particular content. Thus, biometrics-based authentication can be used instead
of password-based authentication to assist cryptosystems to encrypt and decrypt
messages by using biometric key templates.

In general, the process to identify a user by means of her biometric templates
consists of two phases:

1. In the enrollment phase, the biometric templates are processed and stored
into the database.

2. In the verification phase, a new biometric template (called the query tem-
plate) is extracted from the user who wants to be identified, and it is com-
pared with the data already stored (reference template). If the comparison
matches, the user is identified, otherwise, her identification is rejected.
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The most straightforward way to secure a biometric system, including the
template, is to store all the system modules and the interfaces between them
on a smart card. These systems are known as match-on-card systems and their
advantage is that the biometric information never leaves the card. The drawback
is that these systems are not appropriate for large-scale applications and it is
possible to retrieve the template from a lost card. So, both the system and the
template must be more securely protected.

Thus, to assist cryptosystems for encrypting and decrypting, biometrics-
based authentication schemes, which use biometric key templates, can be con-
sidered instead of passwords-based authentication schemes. The systems ob-
tained from the blend of both technologies, Cryptography and Biometrics, are
known as biometric cryptosystems or crypto-biometric systems.

In this paper, we present a crypto-biometric scheme based on a fuzzy ex-
tractor scheme, in order to permit a user to retrieve a secret or a key, which has
been previously stored, by using her own biometric templates, in particular, her
iris templates. Moreover, we carry out a complete study about the behavior of
that scheme by using the whole iris database CASIA [2], and by considering the
standard key bitlengths for symmetric cryptosystems, i.e., from 64 to 256 bits.

The main objective of this work is to extend and to complete a preliminary
study [15] in order to calculate in a more accurate way the values of the False
Acceptance Rate and False Rejection Rate. The novelty of the proposed scheme
stems mainly from the use of the fuzzy extractor method to perform a secure
link between a secret, chosen by a user, and the iris template of the same
user in secure way. The objectives to be achieved by this process are: Avoid
compromising the user-extracted iris template, and assure that the correct user
is the only who retrieves the secret (the one whose iris template was previously
linked to the secret).

As the results show, this scheme could be considered as a good option to an
in-depth study of its properties and applications in forth-coming works.

The rest of this work is organized as follows. In Section 2 an overview about
the different template protection schemes is presented, explaining their main
categories. The detailed description of the proposed biometric fuzzy extractor
is carried out in Section 3. Section 4 deals with the explanation of the different
experiments performed with the scheme, together with their results. A study
about the intra-user variability using the Hamming distance among templates
of the same users is carried out in Section 5; and finally, the conclusions are
presented in Section 6.

2. Definitions and related work

The intra-user variability measures the differences between two biometric
templates extracted from the same user, while the inter-user variability mea-
sures the similarities between two biometric templates extracted from different
users. If the former measure is high or the latter one is low, they can lead,
respectively, to reject a valid user of the system or to accept an attacker as a
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legal user. So, in order to characterize both variabilities, two ratios are used:
False Rejection Rate (FRR) and False Acceptance Ratio (FAR), respectively.

It is well known that the most clear advantage of authentication systems
based on passwords over those based on biometric templates is that the former
permit canceling and changing the password, whereas in the latter, it is impos-
sible to cancel a biometric trait. As a result, whenever a biometric template is
compromised, it cannot be used anymore.

Cancelable biometrics is a way to import into biometrics the cancellation
and replacement characteristics present in passwords-based systems [32]. The
main objectives of these new biometrics template schemes are [18]:

• Diversity. Cross-matching between databases should not be allowed in
order to ensure user’s privacy.

• Revocability. A compromised biometric template should be easily revoked
and replaced by a new one, based on the same biometric trait.

• Security. Obtaining the original biometric template from a secure-stored
template should need a great computational effort. In this way physical
spoof creation is prevented.

• Performance. The recognition performance (FRR and FAR) of the bio-
metric system should not be degraded even if the biometric templates are
distorted.

The way to provide these properties consists of distorting the biometric tem-
plates before the matching process. The variability in the distortion parameters
allows the existence of different schemes. Several approaches, known as biomet-
ric template protection schemes [18], have been proposed. These schemes can
be mainly classified into two categories: feature transformation approach and
biometric cryptosystem.

A feature transformation approach scheme basically consists of the applica-
tion of a transformation function to the biometric template and, subsequently,
store the transformed template into a database. In the matching phase, the
same function is first applied to the query templates and, then, the transformed
query is directly matched with the transformed template in the transformed
domain [18]. Depending on the properties of the transformation function, the
feature transformation schemes can be divided into invertible (salting) and non-
invertible transformation.

The basic idea for biometric cryptosystems [39] is either securing a crypto-
graphic key using biometric templates or directly generating a cryptographic
key from biometric templates. The main characteristic of these systems is that
they need to generate public information related to the biometric template in
order to perform the verification phase. This public information is called helper
data and it should not reveal any important information about the biometric
template.

Biometric cryptosystems can be further classified into different models:
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• Key release: The biometric template and the key are stored as different
entities in such a way that the key is to be released only after a successful
biometric verification. Therefore the biometric verification phase and the
key release mechanism are completely decoupled.

• Key binding : The biometric template is secured by binding it and a key
within a cryptographic framework. Therefore they constitute a single
entity depending on the biometric template, B, and the key, K.

• Key generation: A key is derived directly from the biometric template and
it is stored in the database instead of the biometric template itself [18].

In a key binding cryptosystem, the biometric template is secured by binding
it and a key in a cryptographic framework, and both are stored in the database
as a single entity as the helper data. This system has the advantage that it is
tolerant to intra-user variability, depending on the error correcting capability.
But at the same time, the fact of using error correction schemes makes it neces-
sary the use of sophisticated matchers. Several template protection technologies
can be considered as key binding approaches, for example, fuzzy vault schemes
[20], fuzzy commitment schemes [21], etc.

Along this work, the term fuzziness is used to denote the fact that two
samples extracted from the same user at two distinct moments are similar but
not completely equal due to the intra-user variability. In this sense, we use
fuzziness as an indicator of intra-user variability and it is not related to the
fuzzy set theory. An application of this theory, in particular fuzzy inference
systems, to multimodal biometry is presented in [14].

A fuzzy vault scheme [20] is a cryptographic framework that binds a bio-
metric template and a secret key to build a secure sketch of that template. In
this way, the sketch can be stored in the database with no risk, because it is
computationally hard to retrieve either the template or the key without knowing
anything about the user’s biometric data.

A fuzzy extractor scheme is a biometric tool whose basic aim [12] is to
authenticate a user using her own biometric template, B, as the key. To do
so, it makes use of another process, known as secure sketch, to allow precise
reconstruction of a noisy input. The correctness of the whole procedure depends
on the differences between B, used in the enrollment phase, and the query
template, B̄, used in the verification phase.

In general, a fuzzy extractor determines a uniformly random string S from
its input B in a noise-tolerant way. If the input changes to some B̄ but re-
mains close to B, the string S can still be exactly reproduced. As in any other
biometric system, the fuzzy extractor is first used in enrollment mode, thus gen-
erating a helper string H, which can be safely made public without impairing
the security of S.

The main goal of both fuzzy vault and fuzzy extractor schemes is to mitigate
the fuzziness of the biometric traits. In the following paragraphs, some of the
principal applications of these schemes are presented. One of them consists in
using the string obtained after applying the fuzzy extractor as the secret key for
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an authentication system [11]. Nevertheless its main problem is the variability
of the data, because it is difficult to generate keys with both high stability and
high entropy at the same time [18]. Chang et al. propose a framework in [7]
to generate stable cryptographic keys from biometric data. Their basic idea
is to generate more distinguishable features by extending traditional two-class
classifiers.

Another application is to associate and retrieve a committed value. In this
way, Tong et al. [38] propose a method based on fingerprints, which consists
of a fuzzy extractor and of a secure sketch [11]. The technique used to extract
features of the fingerprints was FingerCode. It is an original technique which
creates a stable and ordered representation of the fingerprints.

The problem of generating fuzzy extractors from continuous distributions
was addressed by Buhan et al. in [5]. Secure sketches related to fuzzy extractors
for fingerprints [1], face [42], and multimodal systems [37] have been proposed.
Finally, protocols for secure authentication in remote applications [4, 6] have
also been published.

A modified fuzzy extractor scheme was proposed in [3] where a fixed permu-
tation is applied to the iriscode bits before hashing. It is also shown how to use
a biometric secret in a remote error-tolerant authentication protocol that does
not require any storage on the client side.

3. A crypto-biometric scheme based on iris-templates with fuzzy ex-
tractors

In this section, we propose a crypto-biometric fuzzy extractor for iris tem-
plates. The target of this scheme is to associate a secret or a key, S, to a user in
such a way that S will be returned to the user if and only if the user’s identity is
correctly verified. This verification is carried out using the user’s iris templates.

Our scheme resembles partially the schemes proposed by Lee et al. [24] and
by Tong et al. [38]. The main difference with respect to the first is that the
IrisCode is generated from a set of iris features by clustering, a technique not
used in our scheme; and the scheme proposed in [38] uses fingerprints whereas
we use iris templates.

As most of these class of schemes, the proposed by us is divided into two
phases: The enrollment phase and the verification phase.

The secret, S, is hidden in the coefficients of a polynomial of degree d during
the enrollment phase, so that for recovering this secret, that polynomial must be
re-constructed in the verification phase. This re-construction is made by using
Lagrange interpolation process.

3.1. Enrollment phase

The inputs for this phase are the user’s iris template, B, and the secret,
S, chosen by the user herself. In general, B is a binary sequence and S is a
symmetric key. The outputs are two sets of values, H and ∆, which can be
stored in the database without impairing the security of S and B.

The different stages of this phase are the following:
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1. The secret S is represented in a numerical base, b; for example, 10, 16,
256, 512, etc. If S has d+1 digits in that base, these digits are considered
as the coefficients of a polynomial p(x) of degree d:

S = (s0, s1, . . . , sd)b  p(x) = s0 + s1x+ s2x
2 + . . .+ sdx

d.

2. Next, n random integer numbers, xi ∈ Z, are generated in order to com-
pute n pairs of points, (xi, yi), verifying p(x), i.e., yi = p(xi), 0 ≤ i ≤ n−1.
The parameter n determines the level of fuzziness of the system, so n must
be greater than d.

3. The points are encoded into n codewords, in order to mitigate the intra-
user variability, by using a Reed-Solomon code:

C = {c0, c1, . . . , cn−1}.

4. A hash function, h, is applied to the elements of C to obtain a new set

H = {h(c0), h(c1), . . . , h(cn−1)}.

5. The iris template of each user, B, is divided into n parts, so that bi,
0 ≤ i ≤ n− 1 is a subsequence of B:

B = b0 ∥ b1 ∥ . . . ∥ bn−1.

6. Then, computing δi = ci − bi a new set is obtained:

∆ = {δ0, δ1, . . . , δn−1}.

Finally, once the helper data (H and ∆) are determined, they are stored in
the database. Moreover, the control parameters are made public to be able to
perform the verification phase, namely: The base in which S is represented, b;
the degree of p(x), d; the number of considered points, n; the Reed-Solomon
code parameters, and the hash function used, h.

The computation complexity of the whole enrollment phase is polynomial,
as all operations performed in this phase (representation of a number in a base,
computation of pairs of points verifying a polynomial, calculation of a hash
value, codification by an error correction code, and substraction of bits) have
polynomial time.

3.2. Verification phase

Since all the parameters and the helper data are made public, the retrieval of
the secret S is strongly conditioned by the correct verification and authentication
of the user. So, recovering the secret directly depends on the matching phase
where the stored and the query template are compared.

The first task of this phase is to obtain the control parameters previously
stored in the enrollment phase. Then, the following stages are performed:
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1. The query iris template, B̄, is divided into n parts, as it was done in the
enrollment phase:

B̄ = b̄0 ∥ b̄1 ∥ . . . ∥ b̄n−1.

2. From ∆ and B̄, the set values c̄i = δi + b̄i is computed:

C̄ = {c̄0, c̄1, . . . , c̄n−1}.

Note that each value c̄i is supposed to be similar to the corresponding
value ci ∈ C, but with some differences due to the intra-user variability
between B and B̄.

3. The same hash function, h, is applied to the elements of the C̄, obtaining
the set H̄, which is compared with the set H.
In this comparison, at least d + 1 coincidences are necessary to continue
with the process, due to the fact that Lagrange interpolation method is
used to rebuild the polynomial p(x) of degree d. These comparisons shows
the importance of the parameter n, because it will determine the rate of
errors admitted in the system due to the intra-user variability.

4. The coincident values are decoded by means of the Reed-Solomon code
and d+ 1 points, (xi, yi), at least, are obtained.

5. The Lagrange interpolation method used with the points obtained deter-
mines the polynomial p(x).

6. Finally, from the coefficients of p(x), the secret S is directly determined
and returned to the user.

As all operations performed in the verification phase, including the Lagrange
interpolation method [35], are similar to those performed in the enrollment
phase, the verification phase has a polynomial computation complexity.

A possible drawback of the proposed scheme could happen if the bitlength of
bi is small due to fact that the sets H and ∆ are public. In fact, by using a trial
and error procedure, a possible attacker could determine d + 1 random values
of bi, which could lead to compute the necessary correct values for ci = δi + bi,
and consequently to obtain the secret value S. This drawback could be avoided
just by adjusting the bitlength of each bi to make unfeasible their calculation.

4. Experimental results

Two experiments have been performed on the crypto-biometric scheme de-
scribed, in order to measure its behavior with respect to the inter- and intra-user
variability.

The first experiment measures the intra-user variability of the iris templates
in order to calculate the False Rejection Rate, FRR, of the system, i.e., the
probability of a known user to be rejected by the system.

The second experiment measures the inter-user variability of the iris tem-
plates in the scheme, in order to compute the False Acceptance Rate, FAR, i.e.,
the probability of an attacker to be mistakenly accepted as a known user by the
system.
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As these ratios are being calculated, the efficiency degree of the scheme is
being measured. In this way it will be possible to select the best values of some
of the control parameters to improve the security level of the scheme. Most of
these parameters depend on the bitlength of the secret or key S, denoted by
|S|. Note that as the base b is fixed, the value of the degree d of the polynomial
p(x) will be different each time |S| is changed.

We consider b = 29 = 512 as the fixed value for the base. The bitlengths
selected for S are |S| ∈ {64, 128, 192, 256} since they are the standard sizes for
cryptographic symmetric keys currently in use [28]. For each value of |S|, a
corresponding value of d is obtained. Such values are shown in Table 1.

Table 1: Values of d depending on the bitlength of S.

bitlength of S: |S| 64 128 192 256

Value of d 7 14 21 28

In this way, when the comparison is carried out in the verification phase,
the number of coincidences between H and H̄ necessary to validate the user’s
iris template differs as the value of d does. In this sense, d can be deemed as an
indicator of how “easy” would be to recognize a known user or an attacker.

The rest of the control parameters will be the same (or similar for the Reed-
Solomon codes) in every experiment in order to do a trustworthy comparison.
We consider h = SHA-512 and the fuzziness parameter n = 384.

The results of this experiment have been obtained by using the whole CASIA
database of iris images for 106 users. Each one of these users has 7 different
images of her irises and the corresponding templates of all these 742 images
have been extracted by using the algorithm presented in [10], which provides
templates with 384 bytes each. The extraction of the templates in this case
follows the following stages:

• Pupil border detection. The property used to detect the pupil border is
the characteristic color of the pupil, since it is the part of the iris image
with more level of black color.

• Iris and sclerotic border detection. To do this tasks, an integro-differential
operator adapted to detect circles in images is defined and used.

• Eyelid detection. The same operator used in the previous stage is applied
to locate the upper and bottom parts of the eyelid.

• Normalization of the image obtained. This process is a sampling of the
image depending on the polar coordinates centered in the pupil, with the
angle formed by the iris’ centre and the pupil’s centre as the initial angle.

4.1. Intra-user variability analysis

The experiment is carried out in the following way: Each one of the 7 tem-
plates of the 106 users is considered as the input of the verification phase and it
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is compared against the stored data, H, of the rest of the templates of the same
user. The result of these comparisons will show the level of similarity between
all the templates of a single user. These coincidences determine whether the
secret can be retrieved or not, and the results of this experiment will be used
to measure the False Rejection Rate of the scheme.

Table 2 shows the number of success, Ei, 1 ≤ i ≤ 106, for each user Ui,
compared to herself, when |S| = 192 (and d = 21). Here a “success” represents
a comparison with at least 22 coincidences. Note that the maximum of such
comparisons for each user is 28, that is, the number of distinct combinations
of 2 items selected from a pool of 7 with replacement. It can be seen that the
number of success appearing more often is, in fact, 28.

The fact that no all users have 28 successes reveals the problems that the
intra-user variability can cause.

Table 2: Number of intra-user successes for the set of users when |S| = 192 and d = 21.

Number of success, Ei Number of users

28 42
27 14
26 9
25 11
24 5
23 6
22 2
21 6
20 3
19 1
18 3
17 1
16 1
13 1
11 1

TOTAL 106

From the values Ei given in Table 2, the False Rejection Rate of the scheme
can be computed for the case |S| = 192. To do this, the rate of coincidences
is calculated first, which will determine the Genuine Acceptance Rate (GAR =
1− FRR):

GAR192 =

106∑
i=1

Ei

28 · 106
=

2681

2968
= 0.90330 ≃ 90.33%

FRR192 = 1−GAR = 1− 0.90330 = 0.09669 ≃ 9.67%.

Similar computations as those ones shown in Table 2 were carried out for
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each one of the different values of |S|. Table 3 shows the values of Genuine
Acceptance Rate and False Rejection Rate for each value of |S|.

Table 3: Values of GAR and FRR for each value of |S|.
|S| 64 128 192 256

GAR 98.72% 96.26% 90.33% 81.87%
FRR 1.28% 3.74% 9.67% 18.13%

From these results, it can be said that the lower the value of d, the fewer the
number of necessary coincidences, and consequently more comparisons verify
the Lagrange interpolation request for each user, therefore FRR is lower.

4.2. Inter-user variability analysis

In this second experiment we compare each one of the 7 templates of each
user with the rest of the templates of the other users and mark each time the
number of coincidences which is greater than the bound determined by the
degree, d, of the polynomial under consideration.

The results of this experiment will be used to measure the False Acceptance
Rate of the scheme. This measurement is crucial for the security of the scheme
because it hints the chances that an attacker could be accepted by the system
as a real legal user. Should this happen, the secret value of the legal user would
be compromised.

Table 4 shows the number of success for |S| = 192 and d = 21 for each one
of the users compared with the rest of the users. The experiment compares each
one of the 7 templates of each user with all the templates of the rest of 105 users,
so there are 105 · 7 = 735 comparisons for each template. Hence, the number of
comparisons for each user is 735 · 7 = 5, 145. Finally, the total comparisons is
735 · 7 · 106 as there are 106 users.

Once all these data is collected, the next step is the calculation of FAR,
which is for the case |S| = 192:

FAR192 =

∑106
i=1 Di

735 · 7 · 106
= 0.04416 ≃ 4.42%.

Table 5 shows the values of False Acceptance Rate for each value of |S|.
From the results obtained, it can be stated that the chosen parameters seem

to be appropriated from a biometric point of view for practical applications.
Nevertheless, a commitment between the security parameters of the scheme
and the biometric efficiency should be studied in a near future.

In this sense, if for example n = 32 is taken, the same values of d considered in
our experiments (see Table 1) could be still used since n > d. At the same time,
this value of n would lead, considering the same extraction template procedure,
to a bitlength of each bi of 96. As it was mentioned, to break the proposed
scheme it is necessary to determine d + 1 correct values of bi, and in this case
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Table 4: Number of inter-user successes, Di, for each user Ui, with at least d + 1 = 22
coincidences and |S| = 192.

Ui # 1 # 2 # 3 # 4 # 5 # 6 # 7
Di 276 218 271 38 67 133 265

Ui # 8 # 9 # 10 # 11 # 12 # 13 # 14
Di 90 78 86 73 398 293 140

Ui # 15 # 16 # 17 # 18 # 19 # 20 # 21
Di 387 515 274 777 94 29 54

Ui # 22 # 23 # 24 # 25 # 26 # 27 # 28
Di 625 295 54 380 385 348 188

Ui # 29 # 30 # 31 # 32 # 33 # 34 # 35
Di 99 52 62 244 102 36 174

Ui # 36 # 37 # 38 # 39 # 40 # 41 # 42
Di 177 260 73 154 62 72 473

Ui # 43 # 44 # 45 # 46 # 47 # 48 # 49
Di 272 26 115 471 108 171 788

Ui # 50 # 51 # 52 # 53 # 54 # 55 # 56
Di 75 18 123 351 589 141 31

Ui # 57 # 58 # 59 # 60 # 61 # 62 # 63
Di 224 17 83 441 285 55 52

Ui # 64 # 65 # 66 # 67 # 68 # 69 # 70
Di 49 82 379 93 420 100 443

Ui # 71 # 72 # 73 # 74 # 75 # 76 # 77
Di 413 281 331 547 789 204 63

Ui # 78 # 79 # 80 # 81 # 82 # 83 # 84
Di 53 803 215 595 621 154 335

Ui # 85 # 86 # 87 # 88 # 89 # 90 # 91
Di 437 289 21 630 50 47 159

Ui # 92 # 93 # 94 # 95 # 96 # 97 # 98
Di 18 21 127 83 173 105 61

Ui # 99 # 100 # 101 # 102 # 103 # 104 # 105
Di 49 97 418 122 171 540 41

Ui # 106
Di 149

Table 5: Values of FAR for each value of |S|.
bitlength of S: |S| 64 128 192 256

FAR 70.38% 22.9% 4.42% 0.97%

the probability to obtain any of such values is 2−96. In other words, finding only
one of the d + 1 values of bi is equivalent to break a symmetric cryptosystem
with a key of 96 bits length.

5. The Hamming distance and the variability

It is important to find a way to eliminate or mitigate the intra-user variability
and consequently the inter-user variability, because if the different templates of
the same user are very similar, it would be easier to recognize her as a legal user
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and not as an attacker. At the same time, it would be more difficult to mix up
two different users.

In order to explain the similarities and differences of users, a Hamming
distance study of the extracted templates has been performed [12]. To do this,
one user is selected and each one of her templates is compared with the rest,
measuring the Hamming distance between them. In this way 21 comparisons
were done for each user. Table 6 shows the average of the Hamming distance
for each user.

Table 6: Average of Hamming distances, Hi, for the templates of each user, Ui.
Ui # 1 # 2 # 3 # 4 # 5 # 6 # 7
Hi 821.80 1056.00 839.14 997.23 1024.47 1024.19 1133.90

Ui # 8 # 9 # 10 # 11 # 12 # 13 # 14
Hi 1169.23 1097.42 1027.71 1028.57 1128.47 1146.28 986.47

Ui # 15 # 16 # 17 # 18 # 19 # 20 # 21
Hi 1037.23 1010.09 792.19 1148.19 994.66 1034.57 925.80

Ui # 22 # 23 # 24 # 25 # 26 # 27 # 28
Hi 911.52 1216.38 1064.19 1060.76 1008.57 897.61 788.38

Ui # 29 # 30 # 31 # 32 # 33 # 34 # 35
Hi 1145.61 1009.04 872.28 836.85 976.38 868.66 1041.61

Ui # 36 # 37 # 38 # 39 # 40 # 41 # 42
Hi 1136.00 1110.85 865.42 1168.19 1458.66 1077.90 880.09

Ui # 43 # 44 # 45 # 46 # 47 # 48 # 49
Hi 1203.90 933.80 910.47 1004.09 1113.71 1278.19 892.76

Ui # 50 # 51 # 52 # 53 # 54 # 55 # 56
Hi 926.09 973.61 1056.47 977.71 1004.76 1001.42 1053.33

Ui # 57 # 58 # 59 # 60 # 61 # 62 # 63
Hi 956.47 1223.42 832.09 899.23 962.00 774.00 1064.38

Ui # 64 # 65 # 66 # 67 # 68 # 69 # 70
Hi 1078.76 1227.04 1144.38 1039.90 1094.00 1005.33 1074.09

Ui # 71 # 72 # 73 # 74 # 75 # 76 # 77
Hi 1003.04 894.66 931.71 1031.71 1071.80 876.00 1160.67

Ui # 78 # 79 # 80 # 81 # 82 # 83 # 84
Hi 1099.90 913.23 929.14 934.28 842.57 955.71 790.95

Ui # 85 # 86 # 87 # 88 # 89 # 90 # 91
Hi 899.33 912.19 1060.76 920.19 1310.76 922.38 698.47

Ui # 92 # 93 # 94 # 95 # 96 # 97 # 98
Hi 1072.95 915.52 1016.19 934.47 1060.47 992.66 894.00

Ui # 99 # 100 # 101 # 102 # 103 # 104 # 105
Hi 1220.85 1127.33 915.33 1190.85 1124.00 1004.66 1084.28

Ui # 106
Hi 966.19

This study permits one to establish a relationship between the number of
corrected comparisons and the Hamming distances of each user (Table 6) for
the different values of |S|. Subsequently, the correlation coefficients for every
value of |S| were computed and can be seen in Table 7.

From these coefficients, it can be stated that, in all cases, the Hamming
distance is inversely related to the success in the comparison of the templates
of the users, and consequently to their intra-user variability. This fact is not
surprising because if two templates of a given user are far enough (measured
with the Hamming distance), her templates will have many differences. In this
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Table 7: Correlation coefficients between the number of comparisons and Hamming distances,
for each value of |S|.

bitlength of S: |S| 64 128 192 256

Correlation coefficients -0.459 -0.638 -0.783 -0.862

Figure 1: Scatter plot between user’s number of coincidences and Hamming distance with
|S| = 64.

situation it turns difficult to identify such a user.
Another fact that can be seen from the performed analysis is that the rela-

tionship between the Hamming distance and the success in the comparison of
the templates of the users increases as |S| does. The event happens due to the
different values of the degree d.

If d is small, as is the case with |S| = 64, where d = 7, the Hamming distance
is not critical in the comparisons, since the user would be identified with only
d+1 = 8 coincidences. However, the Hamming distance becomes more relevant
as d increases, due to the corresponding increase in the number of necessary
coincidences to successfully identify a user.

Figures 1-4 show the relation of the users, represented by the number of
their coincidences, with the average of the Hamming distance of each user for
the different values of |S|.
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Figure 2: Scatter plot between user’s number of coincidences and Hamming distance with
|S| = 128.

Figure 3: Scatter plot between user’s number of coincidences and Hamming distance with
|S| = 192.
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Figure 4: Scatter plot between user’s number of coincidences and Hamming distance with
|S| = 256.

6. Conclusions

We have presented a crypto-biometric scheme for hiding and retrieving a
secret (or a key) by using the iris template of a user and a fuzzy extractor.
The scheme has two phases: The enrollment and the verification phase. In the
first one, the secret is hidden by using an iris template of the user; whereas in
the verification phase, the secret is returned to the user if her query template
is considered similar enough to the reference template used in the enrollment
phase.

We have used different sets of parameters in order to study and decide which
one of them provides better results in relation to the inter- and intra-user vari-
ability. The study was carried out using the whole CASIA iris data base.

Regarding to the efficiency of the scheme, it can be stated that the lower the
bitlength of the secret, the easier to recognize a known user; but, at the same
time, the lower the bitlength of the secret, the easier to accept an attacker as a
legitimate user, as the values of FAR show.

From the experimental results, considering the four different values of the
bitlength of the analyzed secret, two different results can be obtained depending
on the point of view:

• According to the inter-user variability, the best result is obtained when
the bitlength of the secret is |S| = 256. In this case, the False Acceptance
Rate is FAR = 0.97%,
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• According to the intra-user variability, the best result is obtained when
the bitlength of the secret is |S| = 64. In this case, the value obtained for
the ratio of False Rejection Rate is FRR = 1.28%

Hence, there is no “optimal” length for the secret, rather it must be selected
according to the security requirements of the application where the scheme will
be used. In any case, the most balanced bitlength for the secret or the key,
taking into account the values of FAR and FRR is |S| = 192, which provides
the following values:

FAR = 4.42%, FRR = 9.67%, GAR = 90.33%.

When the Hamming distance has been considered in order to clarify the
values of FAR and FRR, it can be stated that the Hamming distance is inversely
related to the intra-user variability. Moreover, Hamming distance and success
in the comparison of the templates of the users are more strongly related as the
bitlength of the secret grows.

The results obtained and the possible drawback mentioned previously open
two new future lines of research: The development of new methods for extracting
iris templates with more precision or more bitlength than those used nowadays,
and a deeper study of a commitment between the security parameters and the
biometric efficiency.
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