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Abstract

The analysis of execution paths (also known as software traces) collected from a given software
product can help in a number of areas including software testing, software maintenance and program
comprehension. The lack of a scalable matching algorithm operating on detailed execution paths
motivates the search for an alternative solution.

This paper proposes the use of word entropies for the classification of software traces. Using a
well-studied defective software as an example, we investigate the application of both Shannon and
extended entropies (Landsberg-Vedral, Rényi and Tsallis) to the classification of traces related to
various software defects. Our study shows that using entropy measures for comparisons gives an
efficient and scalable method for comparing traces. The three extended entropies, with parameters

chosen to emphasize rare events, all perform similarly and are superior to the Shannon entropy.
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I. INTRODUCTION

A software execution trace is a log of information captured during a given execution run
of a computer program. For example, the trace depicted in Figure [Il shows the program
flow entering function f1; calling f2 from f1; 2 recursively calling itself, and eventually
exiting these functions. In order to capture this information, each function in the software

is instrumented to log both: entry to it and exit from it.

1 f1 entry

2 | £f2 entry

3 | | £2 entry
4 | | £2 exit
5 | £2 exit

6 f1 exit

FIG. 1. An example of a trace

The comparison of program execution traces is important for a number of problem areas
in software development and use. In the area of testing trace comparisons can be used to: 1)
determine how well user execution paths (traces collected in the field) are covered in testing
15,11, 125]; 2) detect anomalous behavior arising during a component’s upgrade or reuse [22];
3) map and classify defects [15,128,137]; 4) determine redundant test cases executed by one or
more test teams [30]; and 5) prioritize test cases (to maximize execution path coverage with
a minimum number of test cases) [12, 23]. Trace comparisons are also used in operational
profiling (for instance, in mapping the frequency of execution paths used by different user
classes) [25] and intrusion analysis (e.g., detecting deviations of field execution paths from
expectations) [20].

For some problems such as test case prioritization, traces gathered in a condensed form
(such as a vector of executed function names or caller-callee pairs) are adequate [12]. However
for others, such as the detection of missing coverage and anomalous behavior using state
machines, detailed execution paths are necessary |5, 22]. The time required for analyzing
traces can be critical. Examples of the use of trace analysis in practice include: 1) a customer
support analyst may use traces to map a reported defect onto an existing set of defects in

order to identify the problem’s root cause; 2) a development analyst working with the testing
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team may use trace analysis to identify missing test coverage that resulted in a user-observed
defect.

Research Problem and Practical Motivation: To be compared and analyzed, traces must
be converted into an abstract format. Existing work has progressed by representing traces
as signals [18], finite automata [22], and complex networks [3]. Unfortunately, many trace
comparison techniques are not scalable |6, [24]. For example the finite-state automata based
kTail algorithm, when applied to representative traces, did not terminate even after 24 hours
of execution [5]; similar issues have been experienced with another finite-state automata
algorithm, kBehavior [24]. These observations highlight the need for fast trace matching
solutions.

Based on our experience, support personnel of a large-scale industrial application with
hundreds of thousands of installations can collect tens of thousands of traces per year.
Moreover, a single trace collected on a production system is populated at a rate of millions
of records per minute. Thus, there is a clear need for scalable trace comparison techniques.

Solution Approach: The need to compare traces, together with a lack of reliable and
scalable tools for doing this, motivated us to investigate alternate solutions. To speed up
trace comparisons, we propose that a given set of traces first be filtered, rejecting those that
are not going to match with the test cases, allowing just the remaining few to be compared
for target purposes. The underlying assumption (based on our practical experience) is that
most traces are very different, just a few are even similar, and only a very few are identical.

This strategy is implemented and validated in the Scalable Iterative-unFolding Technique
(SIFT) |24]. The collected traces are first compressed into several levels prior to compar-
ison. Each level of compression uses a unique signature or “ﬁngerprint”. Starting with
the highest compression level, the traces are compared, and unmatched ones are rejected.
[terating through the lower levels until the comparison process is complete leaves only traces
that match at the lowest (uncompressed) level. The SIFT objective ends here. The traces
so matched can then be passed on to external tools, such as the ones presented here, for
further analysis such as defect or security breach identification.

The process of creating a fingerprint can be interpreted as a map from the very high

dimensional space of traces to a low (ideally one) dimensional space. Simple examples of

L The fingerprint of the next iteration always contains more information than the fingerprint of the previous

iteration, hence the term unfolding.



such fingerprints are 1) the total number of unique function names in a trace; and 2) the
number of elements in a trace. However, while these fingerprints may be useful for our
purposes, neither are sufficient. The “number of unique function names” fingerprint does
not discriminate enough — many quite dissimilar traces can share the same function names
called. At the other extreme, the number of elements in the trace discriminates too much —
traces which are essentially similar may nonetheless have varying numbers of elements. The
mapping should be such that projections of traces of different types should be positioned
far apart in the resulting small space.

Using the frequency of the function names called is the next step in selecting useful
traces. A natural one dimensional representation of this data is the Shannon information
[32], mathematically identical to the entropy of statistical mechanics. Other forms of en-
tropy/information, obeying slightly less restrictive axiom lists, have been defined [1]. These
extended entropies (as reviewed in [7]) are indexed by a parameter g which, when ¢ = 1
reduces them to the traditional Shannon entropy and which can be set to make them more
(¢ < 1) or less (¢ > 1) sensitive to the frequency of rare events, improving the classifica-
tion power of algorithms. Indeed, an extended Rényi entropy [29] with ¢ = 0 (known as
the Hartley entropy of information theory) applied in the context of this paper returns the
“number of unique function names” fingerprint.

The entropy concept can also be extended in another way. Traces differ not only in
which functions they call but in the pattern linking the call of one function with the call of
another. As such it makes sense to collect not only the frequency of function calls, but also
the frequency of calling given pairs, triplets, and in general [-tuples of calls. The frequency
information assembled for these “I-words” can be converted into “word entropies” for further
discriminatory power. In addition each record in a trace can be encoded in different ways
(denoted by ¢) by incorporating various information such as a record’s function name or
type.

Research Question: In this paper we study the applicability of the Shannon entropy [32]
and the Landsberg-Vedral [19], Rényi [29], and Tsallis [34] entropies to the comparison and
classification of traces related to various software defects. We also study the effect of ¢, [,
and ¢ values on the classification power of the entropies.

Note that the idea of using word entropies for general classification problems is not new

to this paper. Similar work has been done to apply word entropy classification techniques

4



to problems arising in biology [8, 35], chemistry [8], analysis of natural languages [10], and
image processing [2]. In the context of software traces, the Shannon entropy has been used to
measure trace complexity |[14]. However, no one has yet applied word entropies to compare
software traces.

The structure of the paper is as follows: in Section [[Il we define entropies and explain the
process of trace entropy calculation. The way in which entropies are used to classify traces
is shown in Section [Tl Section IV] provides a case study which describes and validates the

application of entropies for trace classification, and Section [V] summarizes the paper.

II. ENTROPIES AND TRACES: DEFINITIONS

In this section we describe techniques for extracting the probability of various events

from traces (Section [TAl) and the way we use this information to calculate trace entropy

(Section [TH).

A. Extraction of probability of events from traces

A trace can be represented as a string, in which each trace record is encoded by a unique

character. We concentrate on the following three character types c:

1. Record’s function name (F'),
2. Record’s type (F'T),

3. Record’s function names, type, and depth in the call tree (FTD).

In addition, we can generate consecutive and overlapping substring of length [ from
a string. We call such substrings [-words. For example, a string “ABCA” contains the
following 2-words: “AB”; “BC”; and “CA”.

One can consider a trace as a message generated by a source with source dictionary
A = {ay,as,...,a,} consisting of n l-words a;, © = 1,2,...,n, and discrete probability

distribution P = {py,pa,...,pn}, where p; is the probability a; is observed. To illustrate

2 The substring can start at any character i, where i <n — [ + 1.



TABLE 1. Dictionaries of a trace given in Figure [II

C l n A P

F 1 2 f1, 2 1/3,2/3

F 2 3 f1-f2, f2-£2, f2-f1 1/5,3/5, 1/5

F 3 3 f1-£2-£2, f2-f2-f2, f2-f2-f1 1/4,1/2, 1/4

FT 1 4 fl-entry, fl-exit, f2-entry, f2-exit 1/6,1/6,1/3,1/3

FTD 1 6 fl-entry-depthl, fl-exit-depthl, f2-entry-depth2, 1/6, 1/6, 1/6,
f2-exit-depth2, f2-entry-depth3, f2-exit-depth3 1/6,1/6,1/6

these ideas, the dictionaries A and their respective probability distributions P for various
values of ¢ and [ are summarized in Table [ for the trace shown in Figure [l
Define a function « that, given a trace t, will return a discrete probability distribution P

for [-words of length [ and characters of type c:
P+ a(t;l,c). (1)

The above empirical probability distribution P can now be used to calculate the entropy
of a given trace for a specific [-word with type-c characters. For notation convenience we
suppress the dependence of P (and the individual p;’s) on the ¢, [, and ¢. We now define

entropies and discuss how we can utilize P to compute them.

B. Entropies and traces

The Shannon entropy [32] is defined as

Hs(P) ==Y pilog,p:, (2)
=1

where P is the vector containing probabilities of the n states, and p; is the probability of
i-th state. The logarithm base b controls the units of entropy. In this paper we set b = 2,
to measure entropy in bits.

Three extended entropies, Landsberg-Vedral [19], Rényi [29], and Tsallis [34] are defined

HL(P;q) = Lo yeta) 11/52(;; q>,
Ha(psg) = 2220 g ®)
Hy(P;q) = 762(]?_([)(1_ L



respectively, where ¢ > 0 is the entropy index, and
Q(Piq)=> pl. (4)
i=1

These extended entropies reduce to the Shannon entropy (by L’Hopital’s rule) when g = 1.
The extended entropies are more sensitive to states with small probability of occurrence
than the Shannon entropy for 0 < ¢ < 1. Setting ¢ > 1 leads to increased sensitivity of the
extended entropies to states with high probability of occurrence.

The entropy Z of a trace t for a given [, ¢, and ¢ is calculated by inserting the output of

Equation ([Il) into one of the entropies described in Equations (2)) and (3):
Z < Hgla(t;1,¢); q] (5)

where E' € {L, R, T,S}. Note that if E' = S then ¢ is ignored, since in fact it must be that
qg=1.

III. USING ENTROPIES FOR CLASSIFICATION OF TRACES

A typical scenario for trace comparison is the following. A software service analyst
receives a phone call from a customer reporting software failure. The analyst must quickly
determine the root cause of this failure and identify if 1) this is a rediscovery of a known
defect exposed by some other customer in the past or 2) this is a newly discovered defect.
If the first case is correct then the analyst will be able to provide the customer with a
fix-patch or describe a workaround for the problem. If the second hypothesis is correct the
analyst must alert the maintenance team and start a full scale investigation to identify the
root-cause of this new problem. In both cases time is of the essence — the faster the root
cause is identified, the faster the customer will receive a fix to the problem.

In order to validate the first hypothesis, the analyst asks the customer to reproduce the
problem with a trace capturing facility enabled. The analyst can then compare the newly
collected trace against a library of existing traces collected in the past (with known root-
causes of the problems) and identify potential candidates for rediscovery. To identify a set
of traces relating to similar functionality the library traces are usually filtered by names of
functions present in the trace of interest. After that the filtered subset of the library traces

is examined manually to identify common patterns with the trace of interest.
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If the analyst finds an existing trace with common patterns then the trace corresponds
to a rediscovered defect. Otherwise the analyst can concludd? that this failure relates to a
newly discovered defect. This process is similar in nature to an Internet search engine. A
user provides keywords of interest and the engine’s algorithm returns a list of web pages
ranked according to their relevance. The user examines the returned pages to identify her
most relevant ones.

To automate this approach using entropies as fingerprints, we need an algorithm that
would compare a trace against a set of traces, rank this set based on the relevance to a trace
of interest, and then return the top X closest traces for manual examination to the analyst.
In order to implement this algorithm we need the measure of distance between a pair of
traces described in Section [[ITAl and the ranking algorithm described in Section [[IIBl The
algorithm’s efficiency is analyzed in Section [ITCl

A. Measure of distance between a pair of traces

We can obtain multiple entropy-based fingerprints for a trace by varying values of F, ¢, [

and c¢. Denote a complete set of 4-tuples of [E, ¢, [, c| as M. We define the distance between

w\ /w
) : (6)

where m is the number of elements in M, w controlsH the type of “norm”, max { Hg, [o(t; I, cx); qx] }

a pair of traces t; and t; as:

m

k=1

Hpg, [a(ti; e, cx); qx) — He, [o(t; Uy cr); Qi
max {Hpg, [o(t; U, cr): qr) b

denotes the maximum value of Hp, for the complete set of traces under study for a given
0k, Ik, and ¢x; k indexes the 4-tuple [Ey, gk, Ik, ¢x] in M with Ej, qx, lx, and ¢, indicating the
entropy, ¢, l-word length and character type for the k-th 4-tuple, k =1,...,m.

This denominator is used as a normalization factor to set equal weights to fingerprints

related to different 4-tuples in M.

3 This is a simplified description of the analysis process. In practice the analyst will examine defects with

similar symptoms, consult with her peers, search the database with descriptions of existing problems, etc.

4 We do not have a theoretical rationale for selecting an optimal value of w; experimental analysis shows

that our results are robust to the value of w (c.f., Appendix [Al for more details).



Formula [6] satisfies three of the four usual conditions of a metric:

D(t;, t;; M) = D(t;,ti; M), (7)
D(ti,tk; M) < D(ti,tk; M) + D(tk,t]’; M)

However, the fourth metric condition, D(t;,t;; M) = 0 < t; = t; (identity of indis-
cernibles), holds true only for the fingerprints of traces; the actual traces may be different
even if their entropies are the same. In other words, the identity of indiscernibles axiom
only “half” holds: t; = t; = D(t;,t;; M) = 0, but D(t;,t;; M) = 0 # ¢, = t;. As such,
D represents a pseudo-metric. Note that D(¢;,t;; M) € [0,00) and our hypothesis is the
following: the larger the value of D, the further apart are the traces.

Note that for a single pair of entropy-based fingerprints the normalization factor in Equa-

tion (@) can be omitted and we define D as
D(tM tj;Ea q, l> C) = |HE [a(tu l> C)a q] - HE [a(tj; l> C)a q” . (8)

Entropies have the drawback that they cannot differentiate dictionaries of events, since
entropy formulas operate only with probabilities of events. Therefore, the entropies of the
strings “f1-f2-f3-f17 and “f4-f5-f6-f4” will be exactly the same for any value of F, [, ¢, and
g. The simplest solution is to do a pre-filtering of traces in T in the spirit of the SIFT
framework described in Section [l For example, one can filter out all the traces that do
not contain “characters” (e.g., function names) present in the trace of interest before using
entropy-based fingerprints.

We now define an algorithm for ranking a set of traces with respect to the trace of interest.

B. Traces ranking algorithm

Given a task of identifying the top X closest classes of traces from a set of traces T closest

to trace t we employ the following algorithm:

1. Calculate the distance between ¢t and each trace in T

2. Sort the traces in T' by their distance to trace t in ascending order;



3. Replace the vector of sorted traces with the vector of classes (e.g., defect IDs) to which

these traces map;

4. Keep the first occurrence (i.e., the closest trace) of each class in the vector and discard

the rest;

5. Calculate the ranking of classes taking into account ties using the “modified competi-

tion ranking” H approach;

6. Return a list of classes with ranking smaller than or equal to X.

The “modified competition ranking” can be interpreted as a worst case scenario approach.
The ordering of traces of equal ranks is arbitrary; therefore we examine the case when the
most relevant trace will always reside at the bottom of the returned list. To be conservative,
we consider the outcome in which our method returns a trace in the top X positions as
being in the X-th position.

Now consider an example of the algorithm.

1. Traces ranking algorithm: example

Assume we have five traces t;, i = 1..5 related to four software defects d;, j = 1..4 as
shown in Table [[It trace t5 relates to defect d;; traces t; and t3 relate to defect dy; trace t,

to defect ds; and trace ty to defect dy.

TABLE II. Example: Relation between traces and defects

Defect Trace
d1 t5

dy t1,t3
d3 12

d4 to

5 The “modified competition ranking” assigns the same rank to items deemed equal and leaves the ranking
gap before the equally ranked items. For example, if A is ranked ahead of B and C (considered equal),
which in turn are ranked ahead of D then the ranks are: A gets rank 1, B and C get rank 3, and D gets

rank 4.
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Suppose that we calculate distances between traces using some distance measure. The
distances between (a potentially new) trace ¢ and each trace in T = {t1,...,t5} and the
defects’ ranks obtained using these hypothetical calculations are given in Table [Tl Trace t,
is the closest to ¢, hence dy (to which ¢, is related) gets ranking number 1. Traces ¢; and t4
have the same distance to t, therefore, dy and d3 get the same rank. Based on the modified
competition ranking schema algorithm we leave a gap before the set of items with the same
rank and assign rank 3 to both traces. Traces t3 and t5 also have the same distance to t;
however t3 should be ignored since it relates to the already ranked defect do. This assigns

rank 4 to d;. The resulting sets of top X traces for different values of X are shown in Table

TABLE III. Example: Traces sorted by distance and ranked

t; Distance between Class (defect ID) Rank
t and ¢; of trace t;

12 0 dy 1

t 7 ds 3

ta 7 ds 3

t3 9 do -

l5 9 dy 4

TABLE IV. Example: Top 1-4 defects

Top X Set of defects in Top X
Top 1 dy

Top 2 dy

TOp 3 d4, dg, dg

Top 4 dy, dg, ds, dy

11



C. Traces ranking algorithm: efficiency

The number of operations C' needed by the ranking algorithm is given by

¢ = aO(M||T])+&O0(|T|log|T]) + &O(|T|)
Step 1 Step 2 Step 3
+  aO(|T)) +&0(|T) + &60(1)
————— N — N —
Step 4 Step 5 Step 6
|T| o0,
€1>{€3,64,C5} _ N
£ 5, 0(M||T)) + &0(1T log | 7)), (9)
Step 1 Step 2
where ¢ is a constant number of operations associated with i-th step, and | - | represents

the number of elements in a given set. In practice, the coefficients ¢3, ¢4 and ¢5 are of much
smaller order than ¢; and hence terms corresponding to Steps 3, 4 and 5 do not contribute
significantly to C. The pairwise distance calculation via Equation (@) requires O(|M|)
operations. Therefore, calculating all distances between traces (Step 1) requires O(|M||T)
operations, so for fixed | M| the number of operations grows linearly with |T|. The average
sorting algorithm, required by Step 2 (sorting of traces by their distance to trace t), needs
O(|T'|log|T'|) operations [4]. Usually, ¢ > ¢é; this implies that a user may expect to see a
linear relation between C' and |T'| (even for large |T'|), in spite of the loglinear complexity of
the second term in Equation (3.

The amount of storage needed for entropy-based fingerprints data (used by Equation ([@]))

is proportional to

OIMI|T|+ ¢ M| = | M|(|T| + 1), (10)
T

where ¢ is the number of bytes needed to store a single fingerprint value. Term a is the
amount of storage needed for entropy-based fingerprints for all traces in T, and term b is
the amount of storage needed for the values of max { Hg, [a(t; lx, ¢x); qx] } from Equation ([@l).
Assuming that | M| remains constant, the data size grows linearly with |T'|. Now we will

compare the complexity of our algorithm with an existing technique.

1. Comparison with existing algorithm

Note that a general approach for selecting a subset of closest traces to a given trace can

be summarized as follows: (a) calculate the distance between ¢ and each trace in T'; and (b)
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select a subset of closest traces. The principal difference between various approaches lies in
the technique for calculating the distance between pairs of traces.

Suppose that the distance between a pair of traces is calculated using the Levenshtein
distancd? [21]. This distance can be calculated using the difference algorithm [27]. The worst
case complexity for comparing a pair of strings using this algorithm is O(N Dy) [27], where
N is the combined length of a pair strings and Dy, is the Levenshtein distance between these
two strings. Therefore, the complexity of step (a) using this technique is O(NDy,).

Let us compare O(NDy) with the complexity of calculating the distance using the en-
tropy based algorithm, namely O(|M]). The former depends linearly on the length of the
string representation of a trace ranging between 10 and 10% “characters” [24]. However,
when strings are completely different, Dy, = N and O(NDy) — O(N?), implying quadratic
dependency on the trace length. Conversely, |M| (representing the quantity of scalar en-
tropy values) should range between 10° and 10?. The computations are independent of trace
size and require four mathematical function calls per scalar (see Equation (6l)) when effi-
ciently implemented on modern hardware. Therefore, our algorithm requires several orders
of magnitude fewer operations than the existing algorithms.

In order to implement the Levenshtein distance algorithm we must preserve the original
traces, requiring storage space for 10° to 10® “characters” of each trace [24]. An entropy
based fingerprint, on the other hand, will need to store |M| real numbers (|M| ranging
from 10° to 10%). This represents a reduction of several orders of magnitude in storage

requirements.

IV. VALIDATION CASE STUDY

Our hypothesis is that the predictive classification power will vary with changes in F,
[, ¢, and g. In order to study the classification power of Hg [a(t;1,c); q] we will analyze

Cartesian products of the following sets of variables:
1. Ee€(S,L,RT),

2. 1e(1,2,...,7),

6 The Levenshtein distance between two strings is given by the minimum number of operations (insertion,

deletion, and substitution) needed to transform one string into another.
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3. ¢ € (0,1075,107%,. .., 10", 102),
4. c€ (F,FT,FTD).

We denote by A the complete set of parameters obtained by the Cartesian product of the
above sets.

For our validation case study we use the Siemens test suite, developed by Hutchins et al.
[16]. This suite was further augmented and made available to the public at the Software-
artifact Infrastructure Repository |9, 133]. This software suite has been used in many defect
analysis studies over the last decade (see [17, [26] for literature review) and hence provides
an example on which to test our algorithm.

The Siemens suite [16] contains seven programs. Each program has one original version
and a number of faulty versions. Hutchins et al. [16] created these faulty versions by making
a single manual source code alteration to the original version. A fault can span multiple lines
of source code and multiple functions. Every such fault was created to cause logical rather
than execution errors. Thus, the faulty programs in the suite do not terminate prematurely
after the execution of faulty code, they simply return incorrect output. Each program comes
with a collection of test cases, applicable to all faulty versions and the original program. A
fault can be identified if the output of a test case on the original version differs from the
output of the same test case on a faulty version of the program.

In this study, we experimented with the largest program (“Replace”) of the Siemens suite.
It has 517 lines of code, 21 functions, and 31 different faulty versions. There were 5542 test
cases shared across all the versions. Out of these 31 x 5542 test cases, 4266 (= 2.5% of the
total number of test cases) caused a program failure when exposed to the faulty program,
i.e., were able to catch a defect. The remaining test cases were probably unrelated to the 31
defects. The traces for failed test cases were collected using a tool called Etrace [13]. The
tool captures sequences of function-calls for a particular software execution such as the one
shown in Figure [l In other words, we collected 4266 function-call level failed traces for 31
faults (faulty versions) of the “Replace” programl].

The distribution of the number of traces mapped to a particular defect (version) is given

in Figure 2. Descriptive statistics of trace length are given in Table [Vl The length ranges

7 The “Replace” program had 32 faults, but the tool “Etrace” was unable to capture the traces of segmen-
tation fault in one of the faulty versions of the “Replace” program. This problem was also reported by

other researchers |17].
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between 11 and 101400 records per trace; with an average length of 623 records per trace.
Average dictionary sizes for various values of ¢ are given in Figure Bl Note that as [ gets

larger the dictionary sizes for all ¢ start to converge.

TABLE V. Descriptive statistics of length of traces

Min. 15t Qu. Median Mean 37 Qu. Max.
11 218 380 623.3 678 101400
ﬁ —
8 -
g © 7
g
@ © -
3
[
a L
~
o

[ [ [ [ [ [ [ 1
0 50 100 150 200 250 300 350

Traces count

FIG. 2. Distribution of the number of traces per defect(version)

All of the traces contain at least one common function. Therefore, we skip the pre-
filtering step. Note that direct comparison with existing trace comparison techniques is not
possible since 1) the authors focus on identification of faulty functions [17, 26] instead of
identification of defect IDs and 2) the authors [17] analyze a complete set of programs in
the Siemens suite while we focus only on one program (Replace).

The case study is divided as follows: the individual classification power of each Hg [a(t;1, ¢); ¢]
is analyzed in Section [V Al while Section analyzes the classification power of the com-
plete set of entropies. Timing analysis of the algorithm is given in Section [V.C|, and threats

to validity are discussed in Section [[V DI
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FIG. 3. Dictionary size for various values of [ and c.
A. Analysis of individual entropies

Analysis of the classification power of individual entropies is performed using 10-fold
cross-validation. In this approach the sample set is partitioned into 10 disjoint subsets of
equal size. A single subset is used as validation data for testing and the remaining nine
subsets are used as training data. The process is repeated tenfold (ten times) using each
data subset as the validation data just once. The results of the validation from each fold are
averaged to produce a single estimate. This 10-fold repetition guards against the sampling
bias which can be introduced through the use of the more traditional 1-fold validation in
which 70% of the data is used for training and the remaining 30% is used for testing. The

validation process is designed as follows:

1. Randomly partition 4266 traces into 10 bins
2. For each set of parameters E, [, c,q

(a) For each bin

i. Tag traces in a given bin as a validating set of data and traces in the remaining

nine bins as a training set
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ii. For each trace t in the validating set calculate the rank of ¢’s class (defect ID)

in the training set using the algorithm in Section [IIBf with Equation () as
the measure of distance and with the set of parameters E, [, c,q
(b) Compute summary statistics about ranks of the “true” classes and store this data

for further analysis

Our findings show that the best results are obtained for H with E € (L, R,T), | = 3,
q € (1075,10™), and ¢ = FTD. Based on 10-fold cross validation, the entropies with
these parameters were able to correctly classify =~ 21.6% =+ l.l%H of the Top 1 defects and
~ 57.6% + 1.5% of the Top 5 defects (see Table [VI and Figure ). Based on the standard
deviation data in Table[VI] all six entropies show robust results. However, the results become

slightly more volatile for high ranks (see Figure[H)). We now analyze these findings in details.
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FIG. 4. Interpolated average fractions of correctly classified traces in the Top 5 (based on 10-fold

cross validation) for E = L, =3, ¢ =107, and ¢ = FTD for different values of [ and q.

The 3-words (I = 3) provide the best results based on the fraction of correctly classified

traces in the Top 5 (see Figure[l]), suggesting that chains of three events provide an optimal

8 Technically, in order to identify the true ranking one must tweak Step 6 of the algorithm and return a

vector of 2-tuples [class, rank].
9 95% confidence interval, calculated as +¢(0.975,9)/v/10 x standard deviation, where ¢(z, df) represents

quantile function of the ¢-distribution, = is the probability, and df is the degrees of freedom.
17
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FIG. 5. Fraction of correctly classified traces in the Top 5 for £ = L and ¢ = FTD. The solid
line shows the average fraction of correctly classified traces in 10 folds; the dotted line shows the

pointwise 95% confidence interval (95% CI) of the average.

balance between the amount of information in a given /l-word and the total number of words.
As [ gets larger, the amount of data becomes insufficient to obtain a good estimate of the

probabilities.

Examining the classification performance of ¢ (see Table [VII)) we see essentially no differ-
ences across the three levels of ¢ (F, F'T, and F'T' D) considered here (with £ = L,l = 3, and
q € {107*,107°}). This is true across all values of X in the percentage of correctly classified
traces in the Top X. This is somewhat surprising since ¢ = F'T'D contains more information
than ¢ = F'T" which, in turn, contains more information than ¢ = F. This suggests that
for this data set and parameters (F = [, [ = 3, and ¢ € {107*,107°}) the function names
contain the relevant classification information, the function type (entry or exit) and depth
providing no additional relevant information. Note that even though more time is needed
to calculate the F'T'D-based entropies (since the dictionary of F'T'Ds will contain twice as
many entries as the dictionary of F'T's) the comparison time remains the same (since the

probabilities of [-words, P, map to a scalar value via the entropy function for all values of
c).
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FIG. 6. The average fraction of traces correctly classified in the Top 5 for various values of [;

E=1L,qec(0,107°5,10°,10%), c = FTD.

Our findings show that the extended entropies outperform the Shannon entrop for
g < 1and g > 1 (see Figure[7). However, performance of extended entropies with ¢ < 1 is
significantly better than with ¢ > 1, suggesting that rare events are more important than

frequent events for classification of defects in this dataset. The best results are obtained for

g=10"*and ¢ = 107°.

It is interesting to note that classification performance is almost identical for H with
E € (L,R,T), 1=3, ¢ € (107°,107%), and ¢ = FTD. We believe that this fact can be
explained as follows: the key contribution to the ordering of similar traces (with similar
dictionaries) for entropies with ¢ — 0 is affected mainly by a function of probabilities of
traces’ events. This function is independent of E and ¢ and depends only on [ and ¢, see

Appendix [Bl for details.

10 We do not explicitly mention entropy values on the figures. However, extended entropy values with ¢ = 1

correspond to values of the Shannon entropy.
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B. Analysis of the complete set of entropies

Analysis of the classification power for the complete set of entropies is performed using
10-fold cross-validation in a similar manner to the process described in Section [V Al How-
ever, instead of calculating distances for each H independently, we now calculate distances
between traces by utilizing values of H for all parameter sets in A simultaneously. The

validation process is designed as follows

1. Randomly partition 4266 traces into 10 bins

(a) For each bin

i. Tag traces in a given bin as a validating set of data and traces in the remaining
nine bins as a training set
ii. For each trace t in the validating set calculate the rank of t’s class (defect
ID) in the training set using the algorithm in Section [IIB]with Equation (@)
and al 4-tuples of parameters in A. (Based on the experiments described
11 We had to exclude a subset of entropies with £ = L, ¢ = 102 for all [ and ¢ from A. The values of
entropies obtained with these parameters are very large (> 10'%9) which leads to numerical instability of

Equation (@). We keep just one of the various named ¢ = 1 entropies to avoid redundancy.
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TABLE VI. Fraction of correctly classified traces in Top X for 1) Hg [a(t;l,¢);q] with E €
(L,R,T), g€ (1075,107%), I = 3, and ¢ = FTD, and 2) set of entropies A; based on 10-fold cross
validation. The average fraction of correctly classified traces in 10 folds is denoted by “Avg.”;

plus-minus 95% confidence interval is denoted by “95% CI”.

E=L E=R E=T A
Top X q=10"*% g=10"5 q=10"*% g=10"5 q=10"*% q=10"°
Avg. |95% CI| Avg. |95% CI| Avg. [95% CI| Avg. [95% CI| Avg. [95% C1| Avg. [95% CI| Avg. [95% CI

1 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2159 0.0114 0.2982 0.0160
2 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3624 0.0180 0.3621 0.0180 0.3621 0.0180 0.4669 0.0181
3 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.4761 0.0219 0.5769 0.0194
4 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0164 0.5478 0.0165 0.5478 0.0165 0.6020 0.0178
5 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5764 0.0149 0.5766 0.0151 0.5766 0.0151 0.6214 0.0183
6 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5961 0.0174 0.5956 0.0177 0.5956 0.0177 0.6291 0.0176
7 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0174 0.6076 0.0173 0.6076 0.0173 0.6352 0.0177
8 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6165 0.0166 0.6169 0.0165 0.6169 0.0165 0.6399 0.0180
9 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6212 0.0162 0.6228 0.0158 0.6228 0.0158 0.6444 0.0177
10 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6266 0.0167 0.6280 0.0163 0.6280 0.0162 0.6467 0.0180
11 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6310 0.0172 0.6331 0.0167 0.6331 0.0168 0.6481 0.0179
12 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6341 0.0177 0.6357 0.0175 0.6357 0.0175 0.6488 0.0177
13 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6357 0.0170 0.6381 0.0169 0.6381 0.0170 0.6491 0.0176
14 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6383 0.0173 0.6406 0.0170 0.6406 0.0169 0.6493 0.0176
15 0.6416 0.0164 0.6416 0.0164 0.6420 0.0162 0.6416 0.0164 0.6432 0.0162 0.6432 0.0162 0.6500 0.0174
16 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6441 0.0167 0.6453 0.0166 0.6453 0.0166 0.6505 0.0173
17 0.6463 0.0157 0.6465 0.0157 0.6463 0.0157 0.6465 0.0157 0.6474 0.0156 0.6477 0.0155 0.6516 0.0168
18 0.6495 0.0147 0.6498 0.0146 0.6495 0.0147 0.6498 0.0146 0.6509 0.0144 0.6512 0.0144 0.6542 0.0161
19 0.6563 0.0150 0.6566 0.0149 0.6563 0.0150 0.6566 0.0149 0.6577 0.0147 0.6580 0.0147 0.6570 0.0156
20 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6641 0.0163 0.6655 0.0161 0.6655 0.0160 0.6641 0.0159
21 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6863 0.0142 0.6873 0.0141 0.6873 0.0142 0.6725 0.0176
22 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7070 0.0106 0.7079 0.0104 0.7079 0.0104 0.6971 0.0171
23 0.7342 0.0117 0.7342 0.0117 0.7339 0.0117 0.7339 0.0117 0.7342 0.0114 0.7342 0.0112 0.7178 0.0158
24 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7623 0.0092 0.7628 0.0089 0.7628 0.0088 0.7527 0.0124
25 0.7853 0.0076 0.7853 0.0076 0.7855 0.0074 0.7855 0.0074 0.7865 0.0072 0.7865 0.0072 0.7834 0.0134
26 0.8345 0.0082 0.8345 0.0082 0.8347 0.0077 0.8347 0.0077 0.8352 0.0082 0.8352 0.0082 0.8141 0.0078
27 0.8769 0.0097 0.8769 0.0097 0.8772 0.0097 0.8772 0.0097 0.8776 0.0097 0.8776 0.0097 0.8591 0.0109
28 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9119 0.0082 0.9142 0.0083 0.9142 0.0083 0.9140 0.0126
29 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9538 0.0054 0.9550 0.0054 0.9550 0.0059 0.9618 0.0068
30 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9878 0.0027 0.9887 0.0027 0.9887 0.0027 0.9988 0.0014
31 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
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TABLE VII. Percent of correctly classified traces in Top X for Hg [a(t;l,c);q], E = L, 1 =3, and

q={107%,107°}.

Top X c=F c=FT c=FTD
Top 1 21.7% 20.9% 21.6%
Top 2 37.2% 35.3% 36.2%
Top 3 49.5% 46.7% 47.6%
Top 4 54.0% 53.5% 54.8%
Top 5 56.2% 56.6% 57.6%

in Appendix [Al we set w = 1.)
(b) Compute summary statistics about ranks of the “true” classes and store this data

for further analysis

The results, in the two right-most columns of Table [VI], show the increase of predictive
power: in the case of the Top 1 the results improved from 21.6% (for individual entropies)
to 29.8% (for all entropies combined); for the Top 5 from 57.6% to 62.1%. However, the
503-fold increase in computational effort (the number of entropy fingerprints rise from 1
to 504) yielded only an 8% increase in the power to predict Top 5 matches. We leave the

resulting balance between cost and benefit for each individual analyst to make.

C. Timing

We compared the theoretical efficiency of our algorithm with existing algorithms in Sec-
tion [II.CIl These findings may be validated against experimental timing dat. We mea-
sured the time needed to compare a reference trace against a complete set of traces using
difference [27] and entropy-based algorithms. The experiment is repeated three times for
three reference traces: small (498 characters), medium (2339 characters), and large (20767
Characters). The results are given in Table [VIII. As expected, the difference-based algo-
rithm comparison time increases in proportion to the length of the reference trace, while

the comparison time of the entropy-based algorithms remains constant across trace sizes.

12 Computations were performed on a computer with Intel Core 2 Duo E6320 CPU.

13 The reference traces were chosen arbitrarily.
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Moreover, the comparison time of entropy-based algorithms is several orders of magnitude
faster than of the difference-based approach. Note that, even though the computational
efforts for measuring distance based on the complete set of fingerprints increases by two
orders of magnitude as compared to individual entropies, the results are obtained in less
than a second. Therefore, from a practical perspective, we can still use a complete set of

entropies for our analysis.

TABLE VIII. Timing results (in seconds) for comparison of a single reference trace against a set

of traces using difference and entropy algorithms.

Reference trace
Algorithm Small Medium Large
(498 characters) (2339 characters) (20767 characters)
Difference 2.7E1 4.2E1 1.9E2
Individual entropy 1.3E-4 1.3E-4 1.3E-4
Complete set of entropies 6.8E-2 6.8E-2 6.8E-2

D. Threats to Validity

A number of tests are used to determine the quality of case studies. In this section
we discuss four core tests: construct, internal, statistical, and external validity [36]. The
discussion highlights potential threats to validity of our case study and tactics that we used
to mitigate the threats.

Construct validity: to overcome potential construct validity issues we use two measures
of classification performance (Top 1 and Top 5 correctly classified traces). Internal validity:
to prevent data gathering issues all data collection was automated and a complete corpus
of test cases was analyzed. Statistical validity: to prevent sampling bias, 10-fold cross
validation was used. FEzxternal validity: This case study shows that the method can be
successfully applied to a particular, well-studied, data set. Following the paradigm of the
“representative” or “typical” case advanced in [36], this suggests that the method may also

be useful in more situations.
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V. SUMMARY

In this work we analyze the applicability of a technique which uses entropies to per-
form predictive classification of traces related to software defects. Our validating case
study shows promising performance of extended entropies with emphasis on rare events
(g € {107°,107*}). The events are based on triplets (3-words) of “characters” incorporating
information about function name, depth of function call, and type of probe point (¢ = FTD).

In the future, we are planning to increase the number of datasets under study, derive
additional measures of distance (e.g., using tree classification algorithms) and identify an

optimal set of parameter combinations.

Appendix A: Selection of w for Equation ([@))

We do not have a theoretical rationale for selection of the optimal value of w in Equa-
tion ([@). When |M| = 1, Equation () simplifies to Equation (§)), becoming independent
of w. However, in the general case of |[M| > 1, w will affect performance of the distance
metrics. In order to select an optimal value of w we performed the analysis of the complete
set of entropies discussed in Section [V Bl for w = 1,2,...,5. Table [X] gives the percentage
of correctly classified traces in the Top 1 and the Top 5. The quality of classification does
not change significantly with w. It degrades with increased w, but the small magnitude of

this change makes us unwilling to consider it a result of the paper.

TABLE IX. Percent of correctly classified traces in Top X for the complete set of entropies A and

w=1,2,...,5.

w 1 2 3 4 5
Top 1 29.8% 29.7% 29.6% 29.3% 29.2%
Top 5 62.1% 61.5% 61.5% 61.3% 61.4%

Appendix B: Approximation of Equation (8]

We have observed that the classification power of the Hg [a(t;, ¢); q] metric is highest

when ¢ — 0. In order to explain this phenomenon we expand Hg [a(t;l, c);q] (given in
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Equation (@) in a Taylor series:

1 A; i — 1
Hﬂﬂ%h@wf“ﬁ———+q(2+"

) i )

) +0(¢%),
Hp ot 1, ¢); ¢ "= logy (ny) (B1)

A; 9
+ q Ln@)ni +log2(ni)} + O(q%), and

Hr [a(t; 1, ¢); q] 20— 1+ q(Ai+n—1)+0(¢),

where A; = i In(py). By plugging (BI) into Equation (§) and assuming that for similar
k=1
traces n ~ n; ~ n;, we get:

D(tivtj;L7Q7lvc) ~ ni |A _Aj‘7

D(t;, tj; R, q,1,c) = |A; — 4], and (B2)

ln( n
D(tiatj;T>qal>C) ~ q|AZ _A]| :

Equation (B2)) can be interpreted as follows. In the case in which ¢ — 0 and the dictio-
naries for each trace in the pair are similar, the key contribution to the measure of distance
is coming from the Y, In(ps) term (which depends only on [ and ¢) making the rest of
the variables irrelevant (¢ and n become parts of scaling factors). This can be highlighted
by solving a system of equations to identify conditions that generate the same ordering for

three traces t;,t;, 1 for all extended entropies (using approximations from (B2)):

q q
$|A,-—Aj| < —|Ai—Ak|

q
; <
In(2)n A = Al < ln( m

qlAi — Ajl < qlAi — Ak|

|A; — Ay| = (B3)

In information theory In(py) measures the “surprise” (in bits) in receiving symbol k& which
is received with probability py. Thus > ", px In(py) is the expected surprise or information

(Shannon entropy). What about just > ;" In(py)? It scales with the total number of bits
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needed to specify each symbol. This is related to the problem of simulating processes in the

presence of rare events, see [31] for details.
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