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Abstract

Movement data, that is, trajectories of mobile objects, are automatically collected
in huge quantities by technologies such as GPS, GSM or RFID, among others.
Publishing and exploiting such data is essential to improve transportation, to un-
derstand the dynamics of the economy in a region, etc. However, there are obvious
threats to the privacy of individuals if their trajectories are published in a way
which allows re-identification of the individual behind a trajectory. We contribute
to the literature on privacy-preserving publication of trajectories by presenting a
distance measure for trajectories which naturally considers both spatial and tem-
poral aspects of trajectories, is computable in polynomial time, and can cluster
trajectories not defined over the same time span. Our distance measure can be nat-
urally instantiated using other existing similarity measures for trajectories that are
appropriate for anonymization purposes. Then, we propose two heuristics for tra-
jectory anonymization which yield anonymized trajectories formed by fully accurate
true original locations. The first heuristic is based on trajectory microaggregation
using the above distance and on location permutation; it effectively achieves tra-
jectory k-anonymity. The second heuristic is based only on location permutation; it
gives up trajectory k-anonymity and aims at location k-diversity. The strong point
of the second heuristic is that it takes into account reachability constraints when
computing anonymized trajectories. Experimental results on a synthetic data set
and a real-life data set are presented; for similar privacy protection levels and most
reasonable parameter choices, our two methods offer better utility than comparable
previous proposals in the literature.
Keywords: Movement data; Trajectories; Data privacy; Anonymization; Mi-

croaggregation; Permutation.
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1 Introduction

Various technologies such as GPS, RFID, GSM, etc., can sense and track the
whereabouts of objects (cars, parcels, people, etc.). On the other hand, the
current storage capacities allow collecting such object movement data in huge
spatio-temporal databases. Analyzing this kind of databases containing the
trajectories of objects can lead to useful and previously unknown knowledge.
Therefore, it is beneficial to share and publish such databases and let the
analysts derive useful knowledge from them —knowledge that can be applied,
for example, to intelligent transportation, traffic monitoring, urban and road
planning, supply chain management, sightseeing improvement, etc.

However, the privacy of individuals may be affected by the publication or the
outsourcing of databases of trajectories. Several kinds of privacy threats exist.
Simple de-identification realized by removing identifying attributes is insuffi-
cient to protect the privacy of individuals. The biggest threat with trajectories
is the “sensitive location disclosure”. In this scenario, knowing the times at
which an individual visited a few locations can help an adversary to identify
the individual’s trajectory in the published database, and therefore learn the
individual’s other locations at other times. Privacy preservation in this context
means that no sensitive location ought to be linkable to an individual.

The risk of sensitive location disclosure is also affected by how much the adver-
sary knows. The adversary may have access to auxiliary information [27], also
sometimes called side knowledge, background knowledge or external knowl-
edge. The adversary can link such background knowledge obtained from other
sources to information in the published database. Estimating the amount and
extent of auxiliary information available to the adversary is a challenging task.

There are quite a few differences between spatio-temporal data and microdata,
i.e., records describing individuals in a standard database with no movement
data. One real difference becomes apparent when considering privacy. Unfor-
tunately, the traditional anonymization and sanitization methods for micro-
data [18] cannot be directly applied to spatio-temporal data without consider-
able expense in computation time and information loss. Hence, there is a need
for specific anonymization methods to thwart privacy attacks and therefore
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reduce privacy risks associated with publishing trajectories.

Trajectories can be modeled and represented in many ways [17]. Without loss
of generality, we consider a trajectory to be a timestamped path in a plane. By
assuming movements on the surface of the Earth, the altitude of each location
visited by a trajectory stays implicit; it could be explicitly restored if the need
arose. More formally, let timestamped location be a triple (t, x, y) with t being
a timestamp and (x, y) a location in R2. Intuitively, the timestamped location
denotes that at time t an object is at location (x, y).

Definition 1 (Trajectory) A trajectory is an ordered set of timestamped
locations

T = {(t1, x1, y1), . . . , (tn, xn, yn)} , (1)

where ti < ti+1 for all 1 ≤ i < n.

Definition 2 (Sub-trajectory) A trajectory S = {(t′1, x′
1, y

′
1), . . . , (t

′
m, x

′
m, y

′
m)}

is a sub-trajectory of T in Expression (1), denoted S ≼ T , if there exist in-
tegers 1 ≤ i1 < . . . < im ≤ n such that (t′j, x

′
j, y

′
j) = (tij , xij , yij) for all

1 ≤ j ≤ m.

Hereinafter, we will use triple as a synonym for timestamped location. When
there is no risk of ambiguity, we also say just “location” to denote a times-
tamped location.

1.1 Contribution and plan of this article

We present two heuristic methods for preserving the privacy of individuals
when releasing trajectories. Both of them exactly preserve original locations
in the sense that the anonymized trajectories contain no fake, perturbed or
generalized trajectories. The first heuristic is based on microaggregation [11]
of trajectories and permutation of locations. Microaggregation has been suc-
cessfully used in microdata anonymization to achieve k-anonymity [39,41,13].
We use it here for trajectory k-anonymity (whereby an adversary cannot de-
cide which of k anonymized trajectories corresponds to an original trajectory
which she partly knows), first by grouping the trajectories into clusters of size
at least k based on their similarity and then transforming via location per-
mutation the trajectories inside each cluster to preserve privacy. The second
heuristic aims no longer at trajectory k-anonymity, but at location k-diversity
(whereby knowing a sub-trajectory S of a certain original trajectory T allows
an adversary to discover a location in T \ S with probability no greater than
1/k); this second heuristic is based on location permutation and its strong
point is that it takes reachability constraints into account: movement between
locations must follow the edges of an underlying graph (e.g., urban pattern) so
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that not all locations are reachable from any given location. Experimental re-
sults show that achieving trajectory k-anonymity with reachability constraints
may not be possible without discarding a substantial fraction of locations, typ-
ically those which are rather isolated. This is the motivation for our second
heuristic: it still considers reachability but it reduces the number of discarded
locations by replacing k-anonymity at the trajectory level by k-diversity at
the location level.

For clustering purposes, we propose a new distance for trajectories which
naturally considers both spatial and temporal coordinates. Our distance is
able to compare trajectories that are not defined over the same time span,
without resorting to time generalization. Our distance function can compare
trajectories that are timewise overlapping only partially or not at all. It may
seem at first sight that the distance computation is exponential in terms of all
considered trajectories, but we show that it is in fact computable in polynomial
time.

We present empirical results for the two proposed heuristics using synthetic
data and also real-life data. We theoretically and experimentally compare our
first heuristic with a recent trajectory anonymization method called (k, δ)-
anonymity [1] also aimed at trajectory k-anonymity without reachability con-
straints. Theoretical results show that the privacy preservation of our first
method is the same as that of (k, δ)-anonymity but dealing with trajectories
not having the same time span. For the second heuristic involving reachability
constraints, no comparable counterparts seem to exist in the literature.

In summary, our contributions are:

• A distance measure for trajectories which naturally considers both spatial
and temporal aspects of trajectories, is computable in polynomial time, and
can cluster trajectories not defined over the same time span;
• Two methods for trajectory anonymization which yield anonymized trajec-
tories formed by fully accurate true original locations and whose distinctive
features are:
· The first method aims at trajectory k-anonymity.
· The second method takes reachability constraints into account, and it
tries to reduce the fraction of discarded locations by replacing trajectory
k-anonymity with location k-diversity;

• Empirical results on synthetic and real-life data portraying the performance
of the two above methods. Both methods are confronted with (k, δ)-anonymity [1],
which has some comparable features.

This paper extends the workshop paper [12], which presented an anonymiza-
tion method aimed at forming anonymized trajectories with true original lo-
cations and providing high utility properties but without a proven privacy
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level. Here, we leverage the idea presented in [12] of trajectory anonymization
by means of location permutation, and we propose two new methods that ef-
fectively achieve proven privacy levels. Furthermore, in [12] empirical results
were obtained only on synthetic data, while in this paper we extend empirical
results by using a real-life data set of trajectories.

The rest of this article is organized as follows. Section 2 reviews related work.
Section 3 describes the utility features, the adversarial model being considered
and the target privacy properties. Our new distance between trajectories is
described in Section 4. Our two new anonymization methods are specified
in Section 5. Their privacy guarantees are examined in Section 6. Section 7
reports on empirical results. Conclusions are drawn in Section 8.

2 Related work

Most trajectory anonymization methods in the literature rest on ideas inspired
by microdata anonymization. We first recall two key microdata anonymization
concepts: k-anonymity and microaggregation. We then review the trajectory
anonymization literature. We end this section by reviewing similarity distance
measures and clustering algorithms for trajectories.

2.1 k-Anonymity and microaggregation

A lot of work has been done in anonymizing microdata and relational/transactional
databases [39,41,45,30,46,28,35,15,48]; see also the recent survey [18]. A usual
goal in anonymization is to achieve k-anonymity [39,41], which is the “safety
in numbers” notion.

Anonymizing a microdata set by mere suppression of direct identifiers (e.g.,
names, passport numbers) is not enough to prevent privacy disclosure. Indeed,
other attributes, called quasi-identifier attributes, are often available in the
data set such that their combination allows re-identifying the individual to
whom a record corresponds: for example, Sweeney [42] found that “87% of
the US population is uniquely identified by {date of birth, gender, 5-digit
ZIP}”. Re-identification allows linking the confidential attributes in a record
(e.g., salary or health condition) with a specific individual, and this constitutes
a disclosure.

An anonymized microdata set is said to satisfy k-anonymity if each com-
bination of quasi-identifier attribute values is shared by at least k records.
Therefore, this property guarantees that an adversary is unable to identify

5



the individual to whom an anonymized record corresponds with probability
higher than 1/k.

k-Anonymity cannot be directly achieved with spatio-temporal data, because
any point or time can be regarded as a quasi-identifier attribute [1]. Direct
k-anonymization would require a set of original trajectories to be transformed
into a set of anonymized trajectories such that each of the latter is identical
to at least k − 1 other anonymized trajectories. This would obviously cause a
huge information loss.

Generalization was the computational approach originally proposed to achieve
k-anonymity [39,41]. Later, Zhang et al. introduced the permutation-based
approach [48], that has the advantage of not being constrained by domain
generalization hierarchies. In [13] it was shown that k-anonymity could also be
achieved through microaggregation of quasi-identifiers. Microaggregation [11]
works in two stages:

(1) Clustering. The original records are partitioned into clusters based on
some similarity measure (some kind of distance) among the records with
the restriction that each cluster must contain at least k records. Several
microaggregation heuristics are available in the literature, some yielding
fixed-size clusters all of size k, except perhaps one (e.g. the MDAV heuris-
tic [13]), and some yielding variable-size clusters, of sizes between k and
2k − 1 (e.g. µ-Approx [14]). We will use fixed-size microaggregation.

(2) Anonymization. Each cluster is anonymized individually. Anonymization
of a cluster may be based on an aggregation operator like the average [11]
or the median [13], which is used to compute the cluster centroid; each
record in the cluster is then replaced by the cluster centroid. Anonymiza-
tion of a cluster can also be achieved by replacing the records in the
cluster with synthetic or partially synthetic data; this is called hybrid
data microaggregation [10] or condensation [3].

To use microaggregation on trajectories, we need a distance measure to com-
pute the similarity between trajectories. We deal with possible distances later
in this paper.

2.2 Trajectory anonymization

Just like in microdata records, suppressing direct identifiers from trajectories
is not enough for privacy [26]. Consequently, several anonymity notions and
methods for trajectories have been proposed [21,20,22,7,37,6,1,33,43,31,34,47,32,2,23,24].
Among those works, we next review the ones that are most similar to our ap-
proach, and we highlight our comparative advantages. Other comparisons of
several trajectory anonymization methods can be found in [6,2].
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Closest to our approach is the notion of (k, δ)-anonymity [1,2]. In the original
method –Never Walk Alone (NWA) [1]–, the set of trajectories is partitioned
into disjoint subsets in which trajectories begin and end at roughly the same
time; then trajectories within each set are clustered using the Euclidean dis-
tance. In the follow-up method –Wait For Me (W4M) [2]–, the original tra-
jectories are clustered using the edit distance on real sequences (EDR) [9].
Both approaches proceed by anonymizing each cluster separately. Two tra-
jectories T1 and T2 are said to be co-localized with respect to δ in a certain
time interval [t1, tn] if for each triple (t, x1, y1) in T1 and each triple (t, x2, y2)
in T2 with t ∈ [t1, tn], it holds that the spatial Euclidean distance between
both triples is not greater than δ. Anonymity in this context means that each
trajectory is co-localized with at least k−1 other trajectories. Anonymization
is achieved by spatial translation of trajectories inside a cluster of at least k
trajectories having the same time span. In the special case when δ = 0, the
method produces one centroid/average trajectory that represents each and all
trajectories in the cluster. Ad hoc preprocessing and outlier removal facilitate
the process. Utility is evaluated in terms of trajectory distortion and impact
on the results of range queries. The problem with the NWA method is that
partitioning the set of all trajectories into subsets sharing the same time span
may produce too many subsets with too few trajectories inside each of them;
clearly, a subset with less than k trajectories cannot be k-anonymized. Also,
setting a value for δ may be awkward in many applications, e.g. trajecto-
ries recorded using RFID technology. In Section 7 we present an empirical
comparison between this method and our two heuristics. Our heuristics avoid
the above subset problem by considering all trajectories together whatever
their time span; they also achieve co-localization without requiring a δ radius.
The W4M method is similar in clustering to our clustering, although it uses
the EDR distance between trajectories, which has the shortcomings discussed
further below.

Another k-anonymity based notion for trajectories consisting of ranges of
points and ranges of times has been proposed in [33] and [34]. It uses cluster-
ing to minimize the “log cost metric”; this balances the spatial and tempo-
ral translations with user-provided weights. Minimizing the log cost therefore
maximizes utility. The clusters are anonymized by matching points of the tra-
jectories and generalizing them into minimum bounding boxes. Unmatched
points are suppressed and so are some trajectories. The anonymized data are
not released; instead, synthetic “atomic” trajectories (having unit x-range, y-
range and time range) are generated by sampling the bounding boxes. This
approach does not release standard trajectories but only trajectories with unit
ranges. In comparison, we are able to produce synthetic trajectories, with the
advantage that we obtain anonymized trajectories formed by true original
locations.

In [32], k-anonymity means that an original trajectory T is generalized into a
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trajectory g(T ) (without the time information) in such a way that g(T ) is a
sub-trajectory of the generalizations of at least k − 1 other original trajecto-
ries. Ignoring the time information during anonymization and complex plane
tessellations used to achieve the k-anonymity are the main drawbacks of this
method. Utility is measured by comparing clustering results. In our approach,
we avoid complex tessellations and our main advantage in comparison to this
anonymization scheme is that we do not ignore temporal information.

Another proposal for achieving k-anonymity of trajectories by means of gener-
alization is [24]. The difference lies in the way generalization is performed: the
authors propose a technique called local enlargement, guaranteeing that user
locations are enlarged just enough to reach k-anonymity, which improves util-
ity of the anonymized trajectories. In contrast, we preserve original locations,
without generalizing them; our notion of trajectory k-anonymity is, however,
reformulated as discussed below.

The adapted k-anonymity notion for trajectories in [47] is stated in terms of
a bipartite attack graph relating original and anonymized trajectories such
that the graph is symmetric and the degree of each vertex representing an
anonymized trajectory is at least k. The quasi-identifiers used to define iden-
tities are the times of the positions in a trajectory, and the anonymity is
achieved by generalizing points of trajectories into areas on the grid. An in-
formation loss metric defined for such areas is used to evaluate the utility of
the anonymized data.

Some approaches assume that the data owner anonymizing the database knows
exactly what the adversary’s knowledge is. If the adversary is assumed to
know different parts of trajectories, then those are removed from the pub-
lished data [43]. However, this work only considers sequential place visitation
without real timestamps. If the adversary is assumed to use some predic-
tion of continuation of a trajectory based on previous path and speed, then
uncertainty-aware path cloaking [22,23] can suppress these trajectories; this
however results in high information loss.

In contrast to these methods, we perform traditional microaggregation over all
original trajectories —we do not specially and separately consider trajectories
having the same time span and we consider trajectories over locations, not
ranges, without stripping the time information. We publish synthetic trajec-
tories which are analogous to condensed or hybrid microdata [3,10]. However,
our synthetic trajectories are formed by locations covered by the original tra-
jectories. This means that the location points of our anonymized trajectories
remain on the underlying network map.

Additional related work about anonymization of spatio-temporal data can be
found in the literature about location privacy, focused on applications such
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as privacy-aware location-based services (LBS) or privacy-aware monitoring
of continuously moving objects. Location privacy in the LBS-setting was first
proposed in [19]. See [36,25] for recent papers on location privacy, in which
mobile objects protect the privacy of their continuous movement. Location
privacy is enforced on individual sensitive locations or unlinked locations in
an on-line mode; often, data are anonymized on a per-request basis and in the
context of obtaining a location-based service. In this article, we focus on off-
line publishing whole spatio-temporal databases rather than protecting specific
individuals from LBS providers or on-line movement monitoring. In general,
a solution to location privacy is not a solution for publishing anonymized
trajectories, and vice versa.

2.3 Trajectory similarity measures

As argued in Section 2.1 above, using microaggregation for trajectory k-
anonymization requires a distance function to measure the similarity between
trajectories. Such a distance function must consider both space and time.
Although most spatial distances can be extended into spatio-temporal dis-
tances by adding a time co-ordinate to spatial points, it is not obvious how
to balance the weight of spatial and temporal dimensions. Furthermore, not
all similarity measures for trajectories are suitable for comparing trajectories
for anonymization purposes. The requirement for anonymization is not just
similarity regarding shape, but also spatial and temporal closeness. Some typ-
ical distances for trajectories include the Euclidean distance, the Hausdorff
distance [40], the Fréchet distance [4], the turning point distance [5], and dis-
tances based on time series [29] —e.g., dynamic time warping (DTW), short
time series (STS)— and on edit distance [9] —e.g, edit distance with real
penalty (ERP), longest common sub-sequence (LCSS), and the edit distance
on real sequences (EDR) discussed next.

The edit distance on real sequences (EDR) [9] is the number of insert, delete,
or replace operations that are needed to change one sequence into another.
If P and Q are two sequences of m and n triples, respectively, where each
triple λ has three attributes – x-position λ.x, y-position λ.y and time λ.t –
the distance EDR(P,Q) is defined as:


max{m,n} if m = 0 or n = 0

min{match(p1, q1) + EDR(Rest(P ), Rest(Q)), otherwise

1 + EDR(Rest(P ), Q), 1 + EDR(P,Rest(Q))}

where p1 and q1 are the first elements of a given sequence, Rest(·) is a func-
tion that returns the input sequence without the first element, and where
match(p, q) := 0 if p and q are “close”, that is, they satisfy either |p.x −
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q.x| ≤ ϵ and |p.y − q.y| ≤ ϵ for some parameter ϵ [9] or |p.x − q.x| ≤ ∆.x,
|p.y− q.y| ≤ ∆.y, and |p.t− q.t| ≤ ∆.t for a triple of parameters ∆ [2]; other-
wise, match(p, q) := 1. This definition of match means that the cost for one
insert, delete, or replace operation in EDR is 1 if p and q are not “close”.

EDR has been employed for anonymization in [2]. However, the edit distance
and variations thereof are not suitable to guide clustering for anonymization
purposes. Indeed, Figure 1 shows trajectories with different degrees of “close-
ness” to trajectory A, but whose EDR distance from A is the same in all cases.
When timestamps are considered, the situation is even worse.

In Section 4, we define a distance measure which is better suited for anonymiza-
tion clustering: it can compare trajectories defined over different time spans
and even trajectories that are time-wise non-overlapping.

B

C

D

E

A

1

Fig. 1. Trajectories B,C,D,E are placed at varying “closeness” from A, yet their
EDR distance from A is 3 in all cases. We assume that the first point of A matches
the first point of each of B,C,D,E; also, second points are assumed to match each
other, and the same for third points.

3 Utility and privacy requirements

Every trajectory anonymization algorithm must combine utility and privacy.
However, utility and privacy are two largely antagonistic concepts. What is
useful in a set of trajectories is application-dependent, so for each utility fea-
ture probably a different anonymization algorithm is needed.

3.1 Desirable utility features

The utility features that are usually considered in trajectory anonymization
are: (i) trajectory length preservation, (ii) trajectory shape preservation, (iii)
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trajectory time preservation, and (iv) minimization of the number of discarded
locations. We include two additional utility features that are particularly
meaningful in urban scenarios:

• Location preservation. This essentially means that no fake or inaccurate
locations are used to replace original locations; otherwise put, locations
in the anonymized trajectories should be locations visited by the original
trajectories, without any generalization or accuracy loss. Preserving orig-
inal locations helps answering several queries that may not be responded
by generalization methods [32] or some microaggregation methods [1,2]: i)
what is the ranking of original (non-removed) locations, from most visited
to least visited?; ii) in which original (non-removed) locations did two or
more mobile objects meet?, etc. On the other hand, if trajectory anonymiza-
tion rests on replacing true locations with fake locations, an adversary can
distinguish the latter from the former and discard fake locations. Hence,
location preservation is desirable for both utility and privacy reasons.
• Reachability. In the second proposed heuristic, easy reachability between
two successive locations in each anonymized trajectory is enforced. This
means that the distance from the i-th location to the i + 1-th location on
an anonymized location following the underlying network of streets and/or
roads should be at most Rs, where Rs is a preset parameter. Like location
preservation, this is as good for utility as it is for privacy: if the adversary
sees that reaching the i+1-th location from the i-th takes a long trip across
streets and roads, she will guess that the section between those two locations
was not present in any original trajectory.

3.2 Specific utility measures

Basic utility measures are the number of removed trajectories and the num-
ber of removed locations, whether during pre-processing, clustering or cluster
anonymization.

The distortion of the trajectory shape is another utility measure, which can
be captured with the space distortion metric [1, Sec.VI.B]. This metric also
allows accumulating the total space distortion of all anonymized trajectories
from original ones.

Definition 3 (Space distortion metric [1]) The space distortion of an a-
nonymized trajectory T ⋆ with respect to its original trajectory T at time t when
T has triple (t, x, y) and T ⋆ has possible triple (t, x⋆, y⋆), is

SDt(T, T
⋆) =

∆((x, y), (x⋆, y⋆)) if (x⋆, y⋆) is defined at t

Ω otherwise
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where ∆ is a distance (e.g., Euclidean), and Ω a constant that penalizes for
removed locations. The space distortion of an anonymized trajectory T ⋆ from
its original T is then

SD(T, T ⋆) =
∑
t∈TS

SDt(T, T
⋆) ,

where TS are all the timestamps where T is defined. In particular, if T is
discarded during anonymization, T ⋆ is empty, and so SD(T, T ⋆) = nΩ, where
n = |TS| is the number of locations of T . In this way, the space distortion of
a set of trajectories T from its anonymized set T ⋆ is easily defined as

TotalSD(T , T ⋆) =
∑
T∈T

SD(T, T ⋆) ,

where T ⋆ ∈ T ⋆ (which may be empty) corresponds to T ∈ T .

Another way to measure utility is by comparing the results between queries
performed on both the original data set T and the anonymized data setT ⋆.
Intuitively, when results on both data sets are similar for a large and diverse
number of queries, the anonymized data set can be regarded as preserving
the utility of the original data set. The challenge of this utility measure is
the selection of queries, which is usually application-dependent or even user-
dependent, i.e. two different users are likely to perform different queries on
the same trajectory data set.

In [44] six types of spatio-temporal range queries were introduced, aimed at
evaluating the relative position of a moving object with respect to a region
R in a time interval [tb, te]. We have used these queries in our experimental
work, even though they were designed for use on uncertain trajectories (see
Definition 4) rather than synthetic trajectories.

Definition 4 (Uncertain trajectory) Given a trajectory T and an uncer-
tainty space threshold σ, an uncertain trajectory U(T, σ) is defined as the pair
< T, σ >, where (t, x, y) ∈ U(T, σ) if and only if ∃x′, y′ such that (t, x′, y′) ∈ T
and the Euclidean distance between (x, y) and (x′, y′) is not greater than σ.

Definition 5 (Possible motion curve) A possible motion curve PMCT of
an uncertain trajectory U(T, σ) is an ordered set of timestamped locations

PMCT = {(t1, x1, y1), . . . , (tn, xn, yn)} , (2)

such that (ti, xi, yi) ∈ U(T, σ) for all 1 ≤ i ≤ n.

In short, a possible motion curve defines one of the possible trajectories that
an object moving along an uncertain trajectory could follow. Unlike in [44],
our anonymized trajectories are not uncertain; hence, we will only use the two
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spatio-temporal range queries proposed in that paper that can be adapted to
non-uncertain trajectories:

• Sometime Definitely Inside(T , R, tb, te) is true if and only if there exists a
time t ∈ [tb, te] at which every possible motion curve PMCT of an uncertain
trajectory U(T, σ) is inside region R. For a non-uncertain T , the previous
condition can be adapted as: if and only if there exists a time t ∈ [tb, te] at
which T is inside R.
• Always Definitely Inside(T , R, tb, te) is true if and only if at every time
t ∈ [tb, te], every possible motion curve PMCT of an uncertain trajectory
U(T, σ) is inside region R. For a non-uncertain T , the previous condition
becomes: if and only if at every time t ∈ [tb, te], trajectory T is inside R.

3.3 Adversarial model and target privacy properties

In our adversarial model, the adversary has access to the published anonymized
set of trajectories T ⋆. Furthermore, the adversary also knows that every lo-
cation λ ∈ T ⋆ must be in the original set ot trajectories T . Note that this
adversary’s knowledge makes an important difference from previous adversar-
ial models [1,34,32,47], because in our model the linkage of some location with
some user reveals the exact location of this user rather than a generalized or
perturbed location.

Further, the method used for transforming the original set of trajectories T
into T ⋆ is assumed known by the adversary. However, this does not include
the method parameters or the seeds for pseudo-random number generators,
which are considered secret. Indeed, the two methods we are proposing rely
on random permutations of locations and random selection of trajectories
during the clustering process, and such randomness is in practice implemented
using pseudo-random number generators. If an adversary knew the seeds of
the generators, she could easily reconstruct the original trajectories from the
anonymized trajectories.

Finally, the adversary also knows a sub-trajectory S of some original target
trajectory T ∈ T (S ≼ T ) and knows that the anonymized version of T is in
T ⋆. As in previous works, we consider that every location in T is sensitive,
i.e. for any location, learning that a specific user visited it represents useful
knowledge for the adversary.

Then, we identify two attacks:

(1) Find a trajectory T ⋆ ∈ T ⋆ that is the anonymized version of T .
(2) Given a location λ ̸∈ S, determine whether λ ∈ T .
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If the adversary succeeds in the first attack of linking a trajectory T ⋆ with the
target T , the second is not trivial, because in general the locations in T ⋆ will
not be those in T , but it is indeed easier. This means that both attacks are
not independent. However, the second attack can trivially succeed even if the
first attack does not: if all anonymized trajectories cross the same location λ
and λ ̸∈ S, the adversary knows that λ ∈ T . As we show below, both attacks
are related to the two well-known privacy notions of k-anonymity [39,41] and
ℓ-diversity [30], respectively.

Definition 6 (Trajectory p-privacy) Let PrT ⋆ [T |S] denote the probability
of the adversary’s correctly linking the anonymized trajectory T ⋆ ∈ T ⋆ with
T given the adversary’s knowledge S ≼ T . Then, trajectory p-privacy is met
when PrT ⋆ [T |S] ≤ p for every trajectory T ∈ T and every subset S ≼ T .

Definition 7 (Trajectory k-anonymity) Trajectory k-anonymity is achieved
if and only if trajectory 1

k
-privacy is met.

Definition 8 (Location p-privacy) Let Prλ[T |S] denote the probability of
the adversary’s success in correctly determining a location λ ∈ T \ S, given
the adversary’s knowledge S ≼ T . Then, location p-privacy is met when
Prλ[T |S] ≤ p for every triple (T, S, λ) such that T ∈ T , S ≼ T and λ ̸∈ S.

Definition 9 (Location k-diversity) Location k-diversity is achieved if and
only if location 1

k
-privacy is met.

3.4 Discussion on privacy models

Achieving straightforward trajectory k-anonymity, where each anonymized
trajectory would be identical to k − 1 other anonymized trajectories, would
in general cause a huge information loss. This is why some other trajectory
k-anonymity definitions under different assumptions have been proposed.

The (k, δ)-anonymity definition [1,2] relies on the uncertainty inherent to tra-
jectory data recorded by technologies like GPS. However, it may be hardly ap-
plied when accurate data sets of trajectories are needed. Furthermore, in order
to achieve (k, δ)-anonymity, the k identical anonymized trajectories should be
defined roughly in the same interval of time and they must contain the same
number of locations. Such constraints are indeed hard to meet.

Another trajectory k-anonymity definition can be found in [37]. In this work,
trajectory k-anonymity is achieved when there are at least k anonymized tra-
jectories in T ⋆ having an anonymized version of T as a sub-trajectory. Al-
though this definition ignores the time dimension, it does not require the length
of the k anonymized trajectories to be equal. However, suppose that the adver-
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sary has a trajectory T consisting of only one location, an individual’s home;
whatever the anonymization method, the anonymized version of T is likely to
be very similar to T . This means that there will be k anonymized trajectories
containing the single location of T . However, not all these anonymized trajec-
tories start at the single location of T . Since an individual’s home is likely to
be the first location of any individual’s original trajectory, those anonymized
trajectories that do not start at the single location of T (just pass through
it) can be filtered out by an adversary and only the remaining trajectories
are considered. The same filtering process can be performed if the adversary
knows locations where the individual has never been. In this way, using side
knowledge the adversary identifies less than k anonymized trajectories com-
patible with the original trajectory T . Hence, this definition may not actually
guarantee k-anonymity in the sense of Definition 7.

In conclusion, different levels of privacy can be provided according to different
assumptions on the original data, the anonymized data, and the adversary’s
capabilities. We defined above trajectory p-privacy (Definition 6) and location
p-privacy (Definition 8) in order to capture two different privacy notions when
the original locations are preserved.

4 Distance between trajectories

Clustering trajectories requires defining a similarity measure —a distance be-
tween two trajectories. Because trajectories are distributed over space and
time, a distance that considers both spatial and temporal aspects of trajec-
tories is needed. Many distance measures have been proposed in the past for
both trajectories of moving objects and for time series but, as discussed in Sec-
tion 2, most of them are ill-suited to compare trajectories for anonymization
purposes. Therefore we define a new distance which can compare trajectories
that are only partially or not at all timewise overlapping. We believe this is
necessary to cluster trajectories for anonymization. We need some preliminary
notions.

4.1 Contemporary and synchronized trajectories

Definition 10 (p%-contemporary trajectories) Two trajectories

Ti = {(ti1, xi
1, y

i
1), . . . , (t

i
n, x

i
n, y

i
n)}

and

Tj = {(tj1, x
j
1, y

j
1), . . . , (t

j
m, x

j
m, y

j
m)}

15



are said to be p%-contemporary if

p = 100 ·min(
I

tin − ti1
,

I

tjm − tj1
)

with I = max(min(tin, t
j
m)−max(ti1, t

j
1), 0).

Intuitively, two trajectories are 100%-contemporary if and only if they start at
the same time and end at the same time; two trajectories are 0%-contemporary
if and only if they occur during non-overlapping time intervals. Denote the
overlap time of two trajectories Ti and Tj as ot(Ti, Tj).

Definition 11 (Synchronized trajectories) Given two p%-contemporary
trajectories Ti and Tj for some p > 0, both trajectories are said to be synchro-
nized if they have the same number of locations timestamped within ot(Ti, Tj)
and these correspond to the same timestamps. A set of trajectories is said to
be synchronized if all pairs of p%-contemporary trajectories in it are synchro-
nized, where p > 0 may be different for each pair.

If we assume that between two locations of a trajectory, the object is moving
along a straight line between the locations at a constant speed, then interpolat-
ing new locations is straightforward. Trajectories can be then synchronized in
the sense that if one trajectory has a location at time t, then other trajectories
defined at that time will also have a (possibly interpolated) location at time t.
This transformation guarantees that the set of new locations interpolated in
order to synchronize trajectories is of minimum cardinality. Algorithm 1 de-
scribes this process. The time complexity of this algorithm is O(|TS|2) where
|TS| is the number of different timestamps in the data set.

Algorithm 1 Trajectory synchronization

Require: T = {T1, . . . , TN} a set of trajectories to be synchronized, where
each Ti ∈ T is of the form:

Ti = {(ti1, xi
1, y

i
1), . . . , (t

i
ni , xi

ni , yini)};

1: Let TS = {tij | (tij, xi
j, y

i
j) ∈ Ti : Ti ∈ T } be all timestamps from all

locations of all trajectories;
2: for all Ti ∈ T do
3: for all ts ∈ TS with ti1 < ts < tini do
4: if location having timestamp ts is not in Ti then
5: insert new location to Ti having the timestamp ts and coordinates

interpolated from the two timewise-neighboring locations;
6: end if
7: end for
8: end for

16



4.2 Definition and computation of the distance

Definition 12 (Distance between trajectories) Consider a set of synchro-
nized trajectories T = {T1, . . . , TN} where each trajectory is written as

Ti = {(ti1, xi
1, y

i
1), . . . , (t

i
ni , xi

ni , yini)} .

The distance between trajectories is defined as follows. If Ti, Tj ∈ T are p%-
contemporary with p > 0, then

d(Ti, Tj) =
1

p

√√√√√ ∑
tℓ∈ot(Ti,Tj)

(xi
ℓ − xj

ℓ)
2 + (yiℓ − yjℓ)

2

|ot(Ti, Tj)|2
.

If Ti, Tj ∈ T are 0%-contemporary but there is at least one subset of T

T k(ij) = {T ijk
1 , T ijk

2 , . . . , T ijk
nijk} ⊆ T

such that T ijk
1 = Ti, T

ijk
nijk = Tj and T ijk

ℓ and T ijk
ℓ+1 are pℓ%-contemporary with

pℓ > 0 for ℓ = 1 to nijk − 1, then

d(Ti, Tj) = min
T k(ij)

nijk−1∑
ℓ=1

d(T ijk
ℓ , T ijk

ℓ+1)


Otherwise d(Ti, Tj) is not defined.

The computation of the distance between every pair of trajectories is not
exponential as it could seem from the definition. Polynomial-time computation
of a distance graph containing the distances between all pairs of trajectories
can be done as follows.

Definition 13 (Distance graph) A distance graph is a weighted graph where

(i) Nodes represent trajectories,
(ii) two nodes Ti and Tj are adjacent if the corresponding trajectories are

p%-contemporary for some p > 0, and
(iii) the weight of the edge (Ti, Tj) is the distance between the trajectories Ti

and Tj.

Now, given the distance graph for T = {T1, . . . , TN}, the distance d(Ti, Tj)
for two trajectories is easily computed as the minimum cost path between the
nodes Ti and Tj, if such path exists. The inability to compute the distance
for all possible trajectories (the last case of Definition 12) naturally splits the
distance graph into connected components. The connected component that
has the majority of the trajectories must be kept, while the remaining com-
ponents represent outlier trajectories that are discarded in order to preserve
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privacy. Finally, given the connected component of the distance graph having
the majority of the trajectories of T , the distance d(Ti, Tj) for any two trajec-
tories on this connected component is easily computed as the minimum cost
path between the nodes Ti and Tj. The minimum cost path between every
pair of nodes can be computed using the Floyd-Warshall algorithm [16] with
computational cost O(N3), i.e., in polynomial time.

4.3 Intuition and rationale of the distance

In order to deal with the time dimension, our distance measure applies a linear
penalty of 1

p
to those trajectories that are p%-contemporary. This means that,

the closer in time are two trajectories, the shorter is our distance between both.
It should be remarked that we choose a linear penalty because the Euclidean
distance is also linear in terms of the spatial coordinates and the Euclidean
distance is the spatial distance measure we consider by default in this work.
Other distances and other penalties might be chosen, e.g. 1

p2
.

A problem appears when considering 0%-contemporary trajectories. How can
two non-overlapping trajectories be penalized? A well-known strategy is to give
a weight to the time dimension and another weight to the spatial dimension.
By doing so, the time distance and the spatial distance can be computed
separately, and later be merged using their weights. However, determining
proper values for these weights is a challenging task.

Anyway, the following lemma guarantees that, whenever we consider two tra-
jectories at minimum distance for clustering, they do have some overlap.

Lemma 1 Any two trajectories in data set T at minimum distance are p%-
contemporary with p > 0.

Proof: Consider a trajectory Ti ∈ T and another trajectory Tj ∈ T at mini-
mum distance from Ti. Assume that Ti and Tj are not p%-contemporary with
p > 0. Then, since the distance between Ti and Tj is defined, according to Defi-
nition 12 a subset of distinct trajectories T (ij) = {T ij

1 , T ij
2 , . . . , T ij

nij} ⊆ T must

exist such that T ij
1 = Ti, T

ij
nij = Tj and T ij

ℓ and T ij
ℓ+1 are pℓ%-contemporary

with pℓ > 0 for ℓ = 1 to nij − 1, and

d(Ti, Tj) =
nij−1∑
ℓ=1

d(T ij
ℓ , T ij

ℓ+1)

Then d(Ti, Tj) > d(T ij
ℓ , T ij

ℓ+1) for all ℓ from 1 to nij − 1 (strict inequality holds
because all trajectories in T (ij) are distinct). Thus, we reach the contradiction
that d(Ti, Tj) is not minimum. Hence, the lemma must hold. 2
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5 Anonymization methods

We present two anonymization methods, called SwapLocations and ReachLo-
cations, respectively, both of which yield anonymized trajectories formed by
original locations. The first of them is partially based on microaggregation [11]
of trajectories and partially based on permutation of locations. The second
method is based on permutation of locations. The main difference between
the SwapTriples method [12] and the two new methods we propose here is
that the latter effectively guarantee trajectory k-anonymity (SwapLocations)
or location k-diversity (ReachLocations). To that end, an original triple is dis-
carded if it cannot be swapped randomly with another triple drawn from a
set of k − 1 other original triples.

Our two methods differ from each other in several aspects. The first method
assumes an unconstrained environment, while the second one considers an
environment with mobility constraints, like an underlying street or road net-
work. SwapLocations effectively achieves trajectory k-anonymity. ReachLoca-
tions provides higher utility by design, but regarding privacy, it offers location
k-diversity instead of trajectory k-anonymity. A common feature of both meth-
ods is that locations in the resulting anonymized trajectories are true, fully
accurate original locations, i.e. no fake, generalized or perturbed locations are
given in the anonymized data set of trajectories.

5.1 The SwapLocations method

Algorithm 2 describes the process followed by the SwapLocations method
in order to anonymize a set of trajectories. First, the set of trajectories is
partitioned into several clusters. Then, each cluster is anonymized using the
SwapLocations function in Algorithm 3. We should remark here that we only
consider trajectories for which the distance to other trajectories can be com-
puted using the distance in Definition 12. Otherwise said, given the distance
graph G (Definition 13), our distance measure can only be used within one
of the connected components of G; obviously, we take the trajectories in the
largest connected component ofG. It should also be remarked that Algorithm 1
is only used for computing the distance between trajectories. Once a cluster
C is created, the anonymization algorithm works over the original triples of
the trajectories in C, and not over the triples created during synchronization.

We limit ourselves to clustering algorithms which try to minimize the sum
of the intra-cluster distances or approximate the minimum and such that the
cardinality of each cluster is k, with k an input parameter; if the number of
trajectories is not a multiple of k, one or more clusters must absorb the up
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to k − 1 remaining trajectories, hence those clusters will have cardinalities
between k + 1 and 2k − 1. This type of clustering is precisely the one used
in microaggregation [11]. The purpose of minimizing the sum of the intra-
cluster distances is to obtain clusters as homogeneous as possible, so that the
subsequent independent treatment of clusters does not cause much information
loss. The purpose of setting k as the cluster size is to fulfill trajectory k-
anonymity, as shown in Section 6.1. We employ any microaggregation heuristic
for clustering purposes (see Section 2 and details in Section 5.3 below).

Algorithm 2 Cluster-based trajectory anonymization(T , Rt, Rs, k)

Require: i) T = {T1, . . . , TN} a set of original trajectories such that d(Ti, Tj)
is defined for all Ti, Tj ∈ T , ii) Rt a time threshold and Rs a space thresh-
old;

1: Use any clustering algorithm to cluster the trajectories of T , while min-
imizing the sum of intra-cluster distances measured with the distance of
Definition 12 and ensuring that minimum cluster size is k;

2: Let C1, C2, . . . , CnT be the resulting clusters;
3: for all clusters Ci do
4: C⋆

i = SwapLocations(Ci, R
t, Rs); // Algorithm 3

5: end for
6: Let T ⋆ = C⋆

1 ∪ · · · ∪ C⋆
nT

be the set of anonymized trajectories.

The SwapLocations function (Algorithm 3) begins with a random trajectory
T in C. The function attempts to cluster each unswapped triple λ in T with
another k− 1 unswapped triples belonging to different trajectories such that:
i) the timestamps of these triples differ by no more than a time threshold Rt

from the timestamp of λ; ii) the spatial coordinates differ by no more than
a space threshold Rs. If no k − 1 suitable triples can be found that can be
clustered with λ, then λ is removed; otherwise, random swaps of triples are
performed within the formed cluster. Randomly swapping this cluster of triples
guarantees that any of these triples has the same probability of remaining in
its original trajectory or becoming a new triple in any of the other k − 1
trajectories. Note that Algorithm 3 guarantees that every triple λ of every
trajectory T ∈ C will be swapped or removed.

The SwapLocations function specified by Algorithm 3 swaps entire triples,
that is, time and space coordinates. The following example illustrates the
advantages of swapping time together with space.

Example 1 Imagine John attended one day the political protests in Tahrir
Square, Cairo, Egypt, but he would not like his political views to become
broadly known. Assume John’s trajectory is anonymized and published. As-
sume further that an adversary knows the precise time John left his hotel in
the morning, say 6:36 AM, e.g. because the adversary has bribed the hotel
concierge into recording John’s arrival and departure times. Now:
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Algorithm 3 SwapLocations(C,Rt, Rs)

Require: i) C a cluster of trajectories to be transformed, ii) Rt a time thresh-
old and Rs a space threshold;

1: Mark all triples in trajectories in C as “unswapped”;
2: Let T be a random trajectory in C;
3: for all “unswapped” triples λ = (tλ, xλ, yλ) in T do
4: Let U = {λ}; // Initializing U with {λ}
5: for all trajectories T ′ in C with T ′ ̸= T do
6: Look for an “unswapped” triple λ′ = (tλ′ , xλ′ , yλ′) in T ′ minimizing

the intra-cluster distance in U ∪ {λ′} and such that:

|tλ′ − tλ| ≤ Rt

0 ≤
√
(xλ′ − xλ)2 + (yλ′ − yλ)2 ≤ Rs ;

7: if λ′ exists then
8: U ← U ∪ {λ′};
9: else

10: Remove λ from T ;
11: Goto line 3 in order to analyze the next triple λ;
12: end if
13: end for
14: Randomly swap all triples in U ;
15: Mark all triples in U as “swapped”;
16: end for
17: Remove all “unswapped” triples in C;
18: return C.

• If SwapLocations swapped only spatial coordinates, the adversary could
re-identify John’s trajectory as one starting with a triple (6:36 AM, x′

h,
y′h). Furthermore, (x′

h, y
′
h) must be a location within a distance Rs from the

hotel coordinates (xh, yh), although the adversary does not know the precise
value of Rs. The re-identified trajectory would contain all true timestamps
of John’s original trajectory (because they would not have been swapped),
and spatial coordinates within distance Rs of John’s really visited spatial
coordinates. Hence, it would be easy to check whether John was near Tahrir
Square during that day. Without swapping times, privacy protection can
only be obtained by taking Rs large enough so that within distance Rs of
the original locations visited by John there are several semantically different
spatial coordinates. To explain what we mean by semantic difference, assume
(x, y) is Tahrir Square and the trajectory anonymizer guarantees that he has
taken Rs large enough so that (x, y) could be swapped with some spatial
coordinates (x′, y′) off Tahrir Square; even if (x′, y′) turned out to be still
within Tahrir Square, John could claim to have been off Tahrir Square; the
adversary could not disprove such a claim, because in fact (x, y) could be at
a distance Rs from (x′, y′) and hence outside the Square. However, a large
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Rs means a large total space distortion.
• If entire triples are swapped, as actually done by SwapLocations, the adver-
sary can indeed locate an anonymized trajectory containing (not necessarily
starting with) triple (6:36 AM, xh, yh). However, there is only a chance 1/k
that this triple was not swapped from another of the k−1 original trajecto-
ries with which John’s original trajectory was clustered. Similarly, the other
triples in the anonymized trajectory containing (6:36 AM, xh, yh) have also
most likely “landed” in that anonymized trajectory as a result of a swap
with some location in some of the k − 1 original trajectories clustered with
John’s. Hence, John’s trajectory is cloaked with k−1 other trajectories. We
will prove in Section 6.1 that this guarantees trajectory k-anonymity in the
sense of Definition 7. In particular, the triple (t, x, y) corresponding to John
at Tahrir Square will appear in one of the k anonymized trajectories, unless
that triple has been removed by the SwapLocations function because it was
unswappable (the smaller Rt and Rs, the more likely it is for the triple to
be removed).

5.2 The ReachLocations method

The ReachLocations method, described in Algorithm 4, takes reachability con-
straints into account: from a given location, only those locations at a distance
below a threshold following a path in an underlying graph (e.g., urban pattern
or road network) are considered to be directly reachable. Enforcing such reach-
ability constraints while requiring full trajectory k-anonymity would result in a
lot of original locations being discarded. To avoid this, trajectory k-anonymity
is changed by another useful privacy definition: location k-diversity.

Computationally, this means that trajectories are not microaggregated into
clusters of size k. Instead, each location is k-anonymized independently us-
ing the entire set of locations of all trajectories. To do so, a cluster Cλ of
“unswapped” locations is created around a given location λ, i.e. λ ∈ Cλ. The
cluster Cλ is constrained as follows: i) it must have the lowest intra-cluster
distance among those clusters of k “unswapped” locations that contain the
location λ; ii) it must have locations belonging to k different trajectories; and
iii) it must contain only locations at a path from λ at most Rs long and
with timestamps differing from tλ at most Rt. Then, the spatial coordinates
(xλ, yλ) are swapped with the spatial coordinates of some random location
in Cλ and both locations are marked as “swapped”. If no cluster Cλ can be
found, the location λ is removed from the data set and will not be considered
anymore in the subsequent anonymization. This process continues until no
more “unswapped” locations appear in the data set.

It should be remarked that, according to Algorithm 4, two successive locations
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λi
j and λi

j+1 of an original trajectory Ti may be cloaked with respective sets
of k− 1 locations belonging to different sets of k− 1 original trajectories; this
is why we cannot speak of trajectory k-anonymity, see the example below.

Example 2 Consider k−1 trajectories within city A, k−1 trajectories within
city B and one trajectory TAB crossing from A to B. When applying ReachLo-
cations, the initial locations of TAB are swapped with locations of trajectories
within A, whereas the final locations of TAB are swapped with locations of
trajectories within B. Imagine that an adversary knows a sub-trajectory S
of TAB containing one location λA in A and one location λB in B. Assume
λA and λB are not removed by ReachLocations anonymization. Now, the ad-
versary will know that the anonymized trajectory T ⋆

AB corresponding to TAB

is the only anonymized trajectory crossing from A to B. Thus, there is no
trajectory k-anonymity, even if the adversary will be unable to determine the
exact locations of TAB \ S, because each of them has been swapped within a
set of k locations.

Algorithm 4 swaps only spatial coordinates instead of full triples. We show
in the example below that this is enough for ReachLocations to achieve lo-
cation k-diversity (we have shown above that it cannot achieve trajectory
k-anonymity anyway). If swapping time coordinates is not beneficial in terms
of privacy guarantees, they should not be swapped, because the fact that
anonymized trajectories preserve the original sequence of timestamps of orig-
inal trajectories increases their utility.

Example 3 Let us resume Example 1, but now assume that ReachLocations
is used instead of SwapLocations to anonymize trajectories. In this case, the
adversary will find an anonymized trajectory starting with (6:36 AM,x′

h,y
′
h)

This anonymized trajectory will contain all true timestamps of John’s original
trajectory. However, the spatial coordinates appearing in any location of this
re-identified trajectory are John’s original spatial coordinates with a proba-
bility at most 1/k. We will prove in Section 6.2 below that this guarantees
location k-diversity in the sense of Definition 9. If we want to prevent the
adversary from making sure that John visited Tahrir Square, we should take
Rs large enough (the discussion in Example 1 about the protection afforded
by a large Rs when time is not swapped is valid here).

5.3 Complexity of SwapLocations and ReachLocations

We first give a complexity assessment of SwapLocations and ReachLocations
assuming that the distance graph mentioned in Section 4.2 has been precom-
puted and is available. This is reasonable, because the distance graph needs
to be computed only once, while the anonymization methods may need to be
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Algorithm 4 ReachLocations(T , G,Rt, Rs, k)

Require: i) T = {T1, . . . , TN} a set of original trajectories, ii) G a graph
describing the paths between locations, iii) Rt is a time threshold and Rs

is a space threshold;
1: Let TL = {λi

j ∈ Ti : Ti ∈ T } contain all locations from all trajectories,
where λi

j = (tij, x
i
j, y

i
j) and the spatial coordinates (xi

j, y
i
j) are called a

point;
2: Mark all locations in TL as “unswapped”;
3: Let T ⋆ = ∅ be an empty set of anonymized trajectories;
4: while there exist trajectories in T do
5: Let Ti be a trajectory randomly chosen in T ;
6: for j = 1 to j = |Ti| do
7: if λi

j is “unswapped” then
8: Let Ci

j = {λ1, · · · , λk−1} be a cluster of locations in TL such that:
(1) All locations in Ci

j are “unswapped”, with points different from
(xi

j, y
i
j) and no two equal points;

(2) Points in Ci
j belong to trajectories in T \ {Ti} and no two

points belong to the same trajectory;
(3) For any λ ∈ Ci

j, it holds that:
(a) |tλ − tij| ≤ Rt;
(b) If j > 1 there is a path in G between (xi

j−1, y
i
j−1) and

(xλ, yλ);
(c) If j < |Ti| there is a path in G between (xλ, yλ) and

(xi
j+1, y

i
j+1);

(d) The length of each path above is no more than Rs;
(4) The sum of intra-cluster distances (following paths in G) in

Ci
j ∪ {λi

j} is minimum among clusters of cardinality k − 1
meeting the previous conditions;

9: if such a cluster Ci
j does not exist then

10: Remove λi
j from Ti;

11: else
12: Mark λi

j as “swapped”;

13: With probability k−1
k
:

(1) Pick a random location λ ∈ Ci
j and mark it as “swapped”;

(2) Swap the spatial coordinates (xi
j, y

i
j) of λ

i
j with the spatial

coordinates (xλ, yλ) of λ;
14: end if
15: end if
16: end for
17: T ⋆ = T ⋆ ∪ {Ti};
18: Remove Ti from T ;
19: end while
20: return T ⋆.
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run several times (e.g. with different parameters). Regarding SwapLocations,
we have:

• Algorithm 2 can use any fixed-size microaggregation heuristic for cluster-
ing (e.g. MDAV in [13]). Most microaggregation heuristics have quadratic
complexity, that is O(N2), where N is the number of trajectories.
• Algorithm 2 calls the procedure SwapLocations once for each resulting clus-
ter, that is, O(N/k) times.
• In the worst case, the complexity of procedure SwapLocations (Algorithm 3)
is proportional to the number of locations of the longest trajectory in C,
say O(nmax). For each location, a search of another location for swapping
is performed among the other k− 1 trajectories. The number of candidates
for swapping is O((k− 1)nmax). Hence, the complexity of SwapLocations is
O((k − 1)n2

max).
• The total complexity of the method is thus

O(N2) +O(N/k) ·O((k − 1)n2
max) = O(N2) +O(Nn2

max) (3)

Regarding the complexity of ReachLocations, we have

• Algorithm 4 has an external loop which is called N times, where N is the
number of trajectories in T . For each trajectory, a swap is attempted for
each of its unswapped locations. Hence the algorithm performs O(Nnmax)
swaps, where nmax is the number of locations in the longest trajectory.
• Each swap involves forming a cluster which k − 1 locations selected from
TL, which takes time proportional to the total number of locations in TL,
that is, O(Nnmax).
• Hence, the total complexity of the method is O(N2n2

max).

By comparing the last expression and Expression (3), we see that both SwapLo-
cations and ReachLocations are quadratic in N and quadratic in nmax, but
ReachLocations is slower. Such complexity motivates the following two com-
ments related to scalability:

• If the number of trajectoriesN in the original data set is very large, quadratic
complexity may be very time consuming. In this case, a good strategy is
to use some blocking technique to split the original data set into several
subsets of trajectories, each of which should be anonymized separately.
• nmax being large may be less problematic than N being large, provided that
only a small fraction of trajectories have nmax or close to nmax locations. If
a lot of trajectories are very long, a good strategy would be to split each of
these into two or more trajectories and anonymize them independently.

Finally, in case we add the time complexity of the computation of the distance
graph mentioned in Section 4.2 (which is O(N3) using the Floyd-Warshall
algorithm), the time complexities of both SwapLocations and ReachLocations
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become O(N3) +O(Nn2
max) and O(N3) +O(N2n2

max), respectively.

6 Privacy guarantees

6.1 Privacy guarantees of SwapLocations

The main difference between the SwapTriples method in [12] and the SwapLo-
cations method here is that, in the latter, no original location survives unswapped
in an anonymized trajectory.

Proposition 1 Let S ≼ TS be the adversary’s knowledge of a target original
trajectory TS and λ1, λ2, · · · , λ|S| be all triples in S. For every trajectory Ti,
the probability that the triple λ in S appears in the anonymized version T ⋆

i of
Ti produced by SwapLocations is:

Pr(λ ∈ T ⋆
i |λ ∈ S) =


1
k

if TS and Ti lie in the same cluster

0 otherwise.

Proof: By construction of Algorithm 3, if TS and Ti do not lie in the same
cluster, there is no possibility of swapping triples between them. Hence, in this
case, Pr(λ ∈ T ⋆

i |λ ∈ S) = 0.

Let T1, T2, · · · , Tk ∈ T be k trajectories that are anonymized together in
the same cluster by the SwapLocations method. Without loss of generality,
let us assume that TS = T1. By construction of Algorithm 3, for every 1 ≤
i ≤ k, Pr(λ ∈ T ⋆

i |λ ∈ T1) is 0 if λ was removed, 1
k
otherwise. Note that a

swapping option is to swap a triple with itself, that is, not to swap it. Since
it does not make sense to consider removed triples in S, we conclude that
Pr(λj ∈ T ⋆

i |λj ∈ T1) = 1
k
, ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k and, in consequence,

Pr(λj ∈ T ⋆
i |λj ∈ S) = 1

k
, ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k. 2

Theorem 1 The SwapLocations method achieves trajectory k-anonymity.

Proof: By Proposition 1, any sub-trajectory S ′ ≼ S ≼ T1 has the same
probability of being a sub-trajectory of T ⋆

1 than of being a sub-trajectory of
any of the k−1 trajectories T ⋆

2 , · · · , T ⋆
k . Thus, given S, an adversary is not able

to link T1 with T ⋆
1 with probability higher than 1

k
. Therefore, SwapLocations

satisfies 1
k
-privacy according to Definition 6; according to Definition 7, it also

satisfies trajectory k-anonymity. 2
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6.2 Privacy guarantees of ReachLocations

We show below that ReachLocations provides location k-diversity.

Proposition 2 Any triple λ in an original trajectory T appears in the anonymized
trajectory T ⋆ corresponding to T obtained with ReachLocations if and only if λ
was not removed and was swapped with itself, which happens with probability
at most 1

k
.

Proof: Let us prove the necessity implication. By construction of Algorithm 4,
any triple λ whose spatial coordinates (point) cannot be swapped within a clus-
ter C∪{λ} containing k different points belonging to k different trajectories is
removed and does not appear in the set of anonymized trajectories. Further,
the only way for a non-removed triple λ ∈ T to survive unaltered in T ⋆ is
precisely that its point is swapped with itself, which happens with probability
1
k
. Therefore, to survive unaltered in T ⋆, a triple in T needs to avoid removal

and to have its point swapped with itself, which happens with probability at
most 1

k
.

Now let us prove the sufficiency implication. Assume that λ = (t, x, y) ∈ T
appears in T ⋆ without having been swapped with itself. Then, by construction
of ReachLocations, λ ∈ T ⋆ must have been formed as the result of swapping
a triple (t, x′, y′) ∈ T with a triple (t′, x, y) from another original trajectory,
where (x′, y′) ̸= (x, y). Buth then T would contain two triples with the same
timestamp t and different spatial locations, which is a contradiction. 2

Theorem 2 The ReachLocations method achieves location k-diversity.

Proof: Assume the adversary knows a sub-trajectory S of an original trajec-
tory T . The sequence of timestamps in S allows the adversary to re-identify
the anonymized trajectory T ⋆ corresponding to T (because the timestamp
sequence is preserved). By Proposition 2, any triple λ ∈ T ⋆ \ S belongs to
T \S with probability at most 1

k
. Now, consider a triple λ = (t, x, y) ∈ T ⋆⋆ \S,

where T ⋆⋆ is an anonymized trajectory different from T ⋆. The probability that
λ came to T ⋆⋆ \S from T \S is the probability that λ was swapped and swap-
ping did not alter it. This probability is zero, because swaps preserve time
coordinates but take place only between triples having different space coordi-
nates. Hence, in terms of Definition 6, Prλ[T |S] ≤ 1

k
for every triple (T, S, λ)

such that T ∈ T , S ≼ T and λ ̸∈ S. 2

Note that the previous proof also implies that, even if a triple λ = (t, x, y) ̸∈ S
is shared by M > 1 anonymized trajectories, the probability of λ ∈ T \
S remains at most 1

k
. What can be inferred by the adversary, however, is

that M original trajectories (in general not the ones corresponding to the M
anonymized trajectories) visited spatial coordinates (x, y) at possibly different

27



times. Indeed, (t, x, y) can be obtained by swapping (t′, x, y) and (t, x′, y′) for
any t′ such that |t′ − t| ≤ Rt and for any (x′, y′) ̸= (x, y) at path distance
at most Rs. If M is the total number of anonymized trajectories, then the
adversary can be sure that original trajectory T visited spatial coordinates
(x, y) at some time t′ such that |t′ − t| ≤ Rt. Such inference by the adversary
does not violate location k-diversity: violation would require guessing both the
spatial and temporal coordinates of a triple in T \ S. Of course, the time
threshold Rt must be taken large enough so that the time coordinate t is
sufficiently protected.

7 Experimental results

We implemented SwapLocations and ReachLocations. SwapLocations per-
forms clustering of trajectories using the partitioning step of the MDAV mi-
croaggregation heuristic [13]. We used two data sets in our experiments:

• Synthetic data set. We used Brinkhoff’s generator [8] to generate 1,000 syn-
thetic trajectories which altogether visit 45,505 locations in the German
city of Oldenburg. Synthetic trajectories generated with Brinkhoff’s gener-
ator have also been used in [1,33,34,47]. We used this data set mainly for
comparing our methods with (k, δ)-anonymity [1]. The number of trajecto-
ries being moderate, we were able to run in reasonable time the methods
to be compared with a large number of different parameter choices. An-
other advantage is that the street graph of Oldenburg was available, which
is necessary to run ReachLocations. The downside of this data set having
a moderate number of trajectories is that these are rather sparse, which
causes the relative distortion in the anonymized data set to be substan-
tial, no matter the method used. Anyway, this is not a serious problem to
compare methods with each other.
• Real-life data set. We also used a real-life data set of cab mobility traces that
were collected in the city of San Francisco [38]. This data set consists of 536
files, each of them containing the GPS coordinates of a cab during a period of
time. After a filtering process, we obtained 4582 trajectories and 94 locations
per trajectory on average. The advantage of this data set over the synthetic
one is that it contains a larger number of trajectories and that these are
real ones. Then, we show through a real example how appropriate is our
distance metric for trajectory clustering. Also, we present utility measures
on the SwapLocations method for this real-life data set using different space
thresholds. The weakness of this data set is that it cannot be used for
ReachLocations, because it does not include the underlying street graph of
San Francisco.
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7.1 Results on synthetic data

For the sake of reproducibility, we indicate the parameters we used in Brinkhoff’s
generator to generate our Oldenburg synthetic data set: 6 moving object
classes and 3 external object classes; 10 moving objects and 1 external ob-
ject generated per timestamp; 100 timestamps; speed 250; and “probability”
1,000. This resulted in 1,000 trajectories containing 45,405 locations. The max-
imum trajectory length was 100 points, the average length was 45.4 locations,
and the median length was 44 locations.

7.1.1 Implementation details of our methods

We have introduced a new distance measure between trajectories used by
the SwapLocations proposal during the clustering process. As mentioned in
Section 5.1 above, our distance function can only be used within one of the
connected components of the distance graph G. During the construction of
the distance graph for the synthetic data we found 11 connected components,
10 of them of size 1. Therefore, we removed these 10 trajectories in order to
obtain a new distance graph with just one connected component. In this way,
we preserved 99% percent of all trajectories before the anonymization process.
The removed trajectories were in fact trajectories of length one, i.e., with just
one location in each one.

The SwapLocations method has been implemented using the following simple
microaggregation method for trajectories: first, create clusters of size k with
minimum intra-cluster distance and then disperse the up to k− 1 unclustered
trajectories to existing clusters while minimizing the intra-cluster distance.
This algorithm incurs no additional discarding of trajectories.

On the other hand, the ReachLocations method does not remove trajectories,
unlike the SwapLocations method. It does, however, remove non-swappable lo-
cations, which causes the removal of any trajectory consisting of non-swappable
locations only.

7.1.2 Implementing (k, δ)-anonymity for comparison with our method

We compared our proposals with (k, δ)-anonymity [1]. Since (k, δ)-anonymity
only works over trajectories having the same time span, first a pre-processing
step to partition the trajectories is needed. Superimposing the begin and end
times of the trajectories through reduction of the time coordinate modulo a
parameter π does not always yield at least k trajectories having the same
time span; it may also happen that a trajectory disappears because the new
reduced end time lies before the new reduced begin time.
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We have used π = 3 which kept the maximum (and so discarded the minimum)
trajectories. From the 1,000 synthetic trajectories, 40 were discarded because
the end time was less than the begin time and 187 were discarded because there
were at most 4 trajectories having the same time span. In total, 227 (22.7%)
trajectories were discarded just in the pre-processing step. The remaining 773
trajectories were in 32 sets having the same time span, each set containing a
minimum of 15 trajectories and 24 on average.

We performed (k, δ)-anonymization for k = 2, 4, 6, 8, 10, and 15 and δ = 0,
1000, 2000, 3000, 4000 and 5000. Because of the pre-processing step, using a
higher k was impossible without causing a significant number of additional
trajectories to be discarded.

7.1.3 Utility comparison

The performance of our proposals strongly depends on the values of the time
and space threshold parameters, denoted as Rt and Rs, respectively. In prac-
tice, these values must be chosen to maximize utility while affording sufficient
privacy protection. Too large thresholds reduce utility (large space distortion
if Rs is too high and large time distortion is Rt is too high), but too small
thresholds reduce utility because of removal of many unswappable locations.
As a rule of thumb, as illustrated in Example 1, the space threshold Rs must
be sufficiently large so that within a radius Rs of any spatial location there are
sufficiently distinct locations (e.g. if (x, y) lies in Tahrir Square, Cairo, there
should be points outside the Square within a radius Rs of (x, y)).

In order to compute the total space distortion, a value for Ω must be chosen
and this can be a challenging task. Note that the value of Ω is application-
dependent, e.g. for applications where the distortion should measure the ac-
curacy of trajectories Ω should be zero (only non-removed triples contribute
to TotalSD), while for applications that should avoid removing any triples,
Ω should be very high. That is why we propose to compare separately the
following three utility properties: i) total space distortion; ii) percentage of
removed trajectories; and iii) percentage of removed locations. To do so, we
set Ω = 0 when computing the total space distortion. Consequently, the per-
centage of removed triples as well as the percentage of removed trajectories
are considered separately from the total space distortion.

It should be remarked that the computation of the total space distortion of the
ReachLocations method is done using the Euclidean distance between loca-
tions rather than the distance defined by the reachability constraints (distance
on the underlying network). Note that reachability constraints should be con-
sidered during the anonymization process but not necessarily when computing
the total space distortion.
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For successive anonymizations aimed at comparing the SwapLocations and
ReachLocations methods with (k, δ)-anonymity, we set Rt and Rs in a way to
obtain roughly the same total space distortion values as in (k, δ)-anonymity
(see Table 1) with Ω = 0. The idea is that, after making sure the three methods
achieve roughly the same total space distortion, we will be able to focus on
other utility properties like the percentage of removed trajectories and the
percentage of removed locations. It should be remarked that our comparison
is not entirely fair for any of the three methods because all of them are aimed
at achieving different privacy notions. However, we believe that our results are
indicative of the weaknesses and the strengths of our proposals.

Table 1
Total space distortion (TotalSD) of (k, δ)-anonymity for several parameter values
(e6 stands for ×106)

δ \ k 2 4 6 8 10 15

0 48e6 93e6 120e6 143e6 165e6 199e6

1,000 19e6 60e6 86e6 109e6 131e6 165e6

2,000 4e6 32e6 56e6 78e6 99e6 133e6

3,000 .9e6 14e6 32e6 52e6 71e6 104e6

4,000 .2e6 5e6 16e6 32e6 48e6 79e6

5,000 .03e6 2e6 7e6 18e6 31e6 58e6

The above principle of equating the space distortions with (k, δ)-anonymity
yields a value for the space thresholdRs in each of SwapLocations and ReachLo-
cations; however, it does not constrain the time threshold, which we set at
Rt = 100. Regarding Rs, we set it to achieve the total space distortions of
(k, δ)-anonymity for cluster size k = {2, 4, 6, 8, 10, 15} and

δ = {0, 1000, 2000, 3000, 4000, 5000}

(parameter values considered in Table 1). In order to find such space thresholds
efficiently, we assume that the total space distortions of our methods define
a monotonically increasing function on input the space threshold, i.e. the
higher the space threshold, the higher the total space distortion. Under this
assumption, we perform a logarithmic search over the set of space thresholds
defined by the interval [0, 106]. The reason behind defining the maximum value
for the space threshold as 106 is that it is high enough to achieve low numbers
of removed trajectories. Indeed, as shown in Figure 2, for both methods there
exists a value Rs

cutoff < 106 such that, for every space threshold Rs > Rs
cutoff ,

neither the total space distortion nor the percentage of removed locations
and removed trajectories significantly change. Table 2 and Table 3 show the
values of space thresholds used in each configuration of (k, δ)-anonymity for
SwapLocations and ReachLocations, respectively.
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Fig. 2. Top, percentage of removed trajectories and locations with k = 10, Rt = 100
and several values of Rs for SwapLocations (SL) and ReachLocations (RL). Bot-
tom, total space distortion with k = 10, Rt = 100 and several values of Rs for
SwapLocations and ReachLocations

As it can be seen in Tables 2 and 3, we use the maximum value (106) of the
space threshold for several configurations. This is because in those configura-
tions the total space distortion caused by the (k, δ)-anonymity could not be
reached by our methods no matter how much we increased the space threshold.
Figure 3 explains this behavior by showing the values of total space distor-
tion SwapLocations and ReachLocations minus the total space distortion of
(k, δ)-anonymity. With almost every configuration, our methods have a total
space distortion lower than the total space distortion of (k, δ)-anonymity. In
the case of SwapLocations, the total space distortion is even much lower.
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Table 2
Space thresholds used in SwapLocations to match the total space distortion of each
configuration of (k, δ)-anonymity

δ \ k 2 4 6 8 10 15

0 106 106 106 106 106 106

1,000 106 106 106 106 106 106

2,000 899 106 106 106 106 106

3,000 257 106 106 106 106 106

4,000 86 1390 106 106 106 106

5,000 19 681 2507 106 106 106

Table 3
Space thresholds used in ReachLocations to match the total space distortion of each
configuration of (k, δ)-anonymity

δ \ k 2 4 6 8 10 15

0 499875 106 106 106 106 106

1,000 25090 106126 270157 106 106 106

2,000 4780 52468 93717 151915 249999 106

3,000 749 37124 64801 95585 132857 238884

4,000 136 25540 51089 73088 94465 152862

5,000 57 18059 39061 58584 79101 113280

In general, SwapLocations does not reach high values of the total space dis-
tortion because it removes more locations than ReachLocations in order to
achieve trajectory k-anonymity. Note that removing locations does not in-
crease the total space distortion because we are considering Ω = 0. Tables 4
and 5 show in detail the percentage of removed trajectories and the percent-
age of removed locations for different values of k = {2, 4, 6, 8, 10, 15} and
δ = {0, 1000, 2000, 3000, 4000, 5000}, for SwapLocations and ReachLocations,
respectively.

As it can be seen in Table 4, in general SwapLocations removes less trajecto-
ries than (k, δ)-anonymity because SwapLocations can cluster non-overlapping
trajectories. Indeed, with (k, δ)-anonymity 227 trajectories were discarded in
the pre-processing step alone because their time span could not match the
time span of other trajectories, and additional outlier trajectories were dis-
carded during clustering, up to a total 24% of discarded trajectories. However,
SwapLocations removed up to 84% of all locations in the worst cases and thus,
it may not be suitable for applications where preserving the number of loca-
tions really matters. SwapLocations removes any location whose swapping set
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Fig. 3. Top: total space distortion of SwapLocations minus total space distortion of
(k, δ)-anonymity for several parameter configurations. Bottom: total space distor-
tion of ReachLocations minus total space distortion of (k, δ)-anonymity for several
parameter configurations. The space thresholds defined in Tables 2 and 3 have been
used, respectively.

.

U contains less than k locations, which is a relatively frequent event when k
trajectories with different lengths are clustered together. As the cluster size
k increases, the length diversity tends to increase and the removal percent-
age increases. A simple way around the location removal problem is to create
clusters that contain trajectories with roughly the same length, even though
this may result in a higher total space distortion; higher space distortion is a
natural consequence of clustering based on the trajectory length rather than
the trajectory distance.
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Table 4
Percentage of trajectories (columns labeled with T) and locations (columns labeled
L) removed by SwapLocations when using time threshold 100, k = {2, 4, 6, 8, 10, 15}
and space thresholds that match the space distortion caused by (k, δ)-anonymity
with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. Percentages have
been rounded to integers for compactness.

δ \ k
2 4 6 8 10 15

T L T L T L T L T L T L

0 0 34 0 58 0 69 1 75 0 79 0 84

1000 0 34 0 58 0 69 1 75 0 79 0 84

2000 4 45 0 58 0 69 1 75 0 79 0 84

3000 11 62 0 58 0 69 1 75 0 79 0 84

4000 19 68 5 66 0 69 1 75 0 79 0 84

5000 32 78 20 73 4 72 1 75 0 79 0 84

Table 5 shows that ReachLocations removes few trajectories when δ is small
and k is large. The reason is that, for those parameterizations, (k, δ)-anonymity
introduces so much total space distortion that ReachLocations can afford tak-
ing the maximum space threshold Rs = 106 without reaching that much distor-
tion. Such a high space threshold allows ReachLocations to easily swap spatial
coordinates, so that very few locations need to be removed. Furthermore, the
trajectories output by ReachLocations are consistent with the underlying city
topology. As said above, the only drawback of this method is that in gen-
eral it does not provide trajectory k-anonymity; rather, it provides location
k-diversity.

7.1.4 Spatio-temporal range queries

As stated in Section 3.2, a typical use of trajectory data is to perform spatio-
temporal range queries on them. That is why we report empirical results when
performing the two query types described and motivated in Section 3.2: Some-
time Definitely Inside (SI) and Always Definitely Inside (AI). We accumulate
the number of trajectories in a set of trajectories T that satisfy the SI or AI
range queries using the SQL style code below.

• Query Q1(T , R, tb, te):
SELECT COUNT (*) FROM T WHERE SI(T .traj, R, tb, te)

• Query Q2(T , R, tb, te):
SELECT COUNT (*) FROM T WHERE AI(T .traj, R, tb, te)

Then, we define two different range query distortions :
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Table 5
Percentage of trajectories (columns labeled with T) and locations (columns labeled
L) removed by ReachLocations when using time threshold 100, k = {2, 4, 6, 8, 10, 15}
and space thresholds that match the space distortion caused by (k, δ)-anonymity
with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. Percentages have
been rounded to integers for compactness.

δ \ k
2 4 6 8 10 15

T L T L T L T L T L T L

0 0 1 0 3 0 3 0 4 0 4 0 3

1000 0 2 0 3 0 3 0 4 0 5 0 3

2000 36 27 9 18 3 11 0 5 0 6 0 4

3000 74 38 33 39 18 28 6 21 2 13 0 7

4000 82 43 65 49 41 40 20 34 10 27 2 16

5000 84 60 84 53 60 52 40 44 27 35 10 27

• SID(T , T ⋆) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q1(T ,R,tb,te)−Q1(T ⋆,R,tb,te)|
max (Q1(T ,R,tb,te),Q1(T ⋆,R,tb,te))

where ξ is a set of

SI queries as defined in Section 3.2 (definition of SI adapted to non-uncertain
trajectories).

• AID(T , T ⋆) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q2(T ,R,tb,te)−Q2(T ⋆,R,tb,te)|
max (Q2(T ,R,tb,te),Q2(T ⋆,R,tb,te))

where ξ is a set

of AI queries as defined in Section 3.2 (definition of AI adapted to non-
uncertain trajectories).

For our experiments with the synthetic data set, we chose random time in-
tervals [tb, te] such that 0 ≤ te − tb ≤ 10. Also, we chose random uncertain
trajectories with a randomly chosen radius 0 ≤ σ ≤ 750 as regions R. Actu-
ally, 10 and 750 are, respectively, roughly a quarter of the average duration
and distance of all trajectories. Note that we used uncertain trajectories only
as regions R; however, the methods we are considering in this paper all release
non-uncertain trajectories.

Armed with these settings, we ran 100, 000 times both queries Q1 and Q2 on
the original data set and the anonymized data sets provided by SwapLocations,
ReachLocations, and (k, δ)-anonymity; that is, we took a set ξ with |ξ| =
100, 000. The ideal range query distortion would be zero, which means that
query Qi for i ∈ 1, 2 yields the same result for both the original and the
anonymized data sets; in practice, zero distortion is hard to obtain. Therefore,
in order to compare our methods against (k, δ)-anonymity, we use the same
parameters of the previous experiments (Tables 1, 2, and 3). We show in
Tables 6 and 7 a comparison of SwapLocations, respectively ReachLocations,
against (k, δ)-anonymity in terms of SID and AID.
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Table 6
Range query distortion of SwapLocations compared to (k, δ)-anonymity for SID
(columns labeled with S) and AID (columns labeled with A) when using k =
{2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused by
(k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. In
this table, a range query distortion x obtained with SwapLocations and a range
query distortion y obtained with (k, δ)-anonymity are represented as the integer
rounding of (y − x) ∗ 100. Hence, values in the table are positive if and only if
SwapLocations outperforms (k, δ)-anonymity.

δ \ k
2 4 6 8 10 15

S A S A S A S A S A S A

0 34 29 31 14 36 16 36 13 37 13 43 14

1000 24 20 24 8 28 10 27 8 28 9 41 14

2000 18 14 18 4 20 3 20 2 27 6 39 10

3000 8 3 11 −2 13 0 16 −1 21 4 36 10

4000 −6 −7 6 −6 9 −5 11 −4 17 2 30 5

5000 −22 −19 1 −9 3 −9 7 −7 14 −2 27 2

Table 7
Range query distortion of ReachLocations compared to (k, δ)-anonymity for SID
(columns labeled with S) and AID (columns labeled with A) when using k =
{2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused by
(k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}. In
this table, a range query distortion x obtained with ReachLocations and a range
query distortion y obtained with (k, δ)-anonymity are represented as the integer
rounding of (y − x) ∗ 100. Hence, values in the table are positive if and only if
ReachLocations outperforms (k, δ)-anonymity.

δ \ k
2 4 6 8 10 15

S A S A S A S A S A S A

0 34 25 28 12 33 10 32 5 31 5 37 6

1000 25 19 21 6 24 4 23 1 25 2 35 5

2000 10 10 8 −7 17 −3 19 −3 23 −3 33 4

3000 −4 2 0 −12 9 −12 13 −5 19 −4 29 1

4000 −11 −6 −6 −18 −2 −17 3 −16 13 −6 26 −3

5000 −14 −5 −10 −22 −8 −25 −4 −21 8 −14 20 −5
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It can be seen from Table 6 that SwapLocations performs significantly better
than (k, δ)-anonymity for every cluster size and δ ≤ 3000. On the other hand,
Table 7 shows that ReachLocations outperforms (k, δ)-anonymity only for δ
up to roughly 2000. It is not surprisingly that SwapLocations offers better per-
formance than ReachLocations, because the latter must deal with reachability
constraints. It is also remarkable that ReachLocations performs much better
in terms of SID than in terms of AID. The explanation is that, while (k, δ)-
anonymity and SwapLocations operate at the trajectory level, ReachLocations
works at the location level.

We conclude that, according to these experiments, our methods perform bet-
ter than (k, δ)-anonymity regarding range query distortion for values of δ up
to 2000. The performance for larger values of δ is less and less relevant: in-
deed, when δ → ∞, (k, δ)-anonymity means that no trajectory needs to be
anonymized and hence the anonymized trajectories are the same as the original
ones.

7.2 Results on real-life data

The San Francisco cab data set [38] we used consists of several files each of
them containing the GPS information of a specific cab during May 2008. Each
line within a file contains the space coordinates (latitude and longitude) of
the cab at a given time. However, the mobility trace of a cab during an entire
month can hardly be considered a single trajectory. We used big time gaps
between two consecutive locations in a cab mobility trace to split that trace
into several trajectories. All trajectory visualizations shown in this Section
were obtained using Google Earth.

For our experiments we considered just one day of the entire month given in
the real-life data set, but the empirical methodology described below could
be extended to several days. In particular, we chose the day between May
25 at 12:04 hours and May 26 at 12:04 hours because during this 24-hour
period there was the highest concentration of locations in the data set. We also
defined the maximum time gap in a trajectory as 3 minutes; above 3 minutes,
we assumed that the current trajectory ended and that the next location
belonged to a different trajectory. This choice was based on the average time
gap between consecutive locations in the data set, which was 88 seconds;
hence, 3 minutes was roughly twice the average. In this way, we obtained 4582
trajectories and 94 locations per trajectory on average.

The next step was to filter out trajectories with strange features (outliers).
These outliers could be detected based on several aspects like velocity, city
topology, etc. We focused on velocity and defined 240 km/h as the maximum
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speed that could be reached by a cab. Consequently, the distance between two
consecutive locations could not be greater than 12 km because the maximum
within-trajectory time gap was 3 minutes. This allowed us to detect and re-
move trajectories containing obviously erroneous locations; Figure 4 shows one
of these removed outliers where a cab appeared to have jumped far into the
sea probably due to some error in recording its GPS coordinates. Altogether,
we removed 45 outlier trajectories and we were left with a data set of 4547
trajectories with an average of 93 locations per trajectory. Figure 5 shows the
ten longest trajectories (in number of locations) in the final data set that we
used.

Fig. 4. Example of an outlier trajectory in
the original real-life data set

Fig. 5. Ten longest trajectories in the fil-
tered real-life data set

7.2.1 Experiments with the distance metric

We propose in this paper a new distance metric designed specifically for clus-
tering trajectories. Our distance metric considers both space and time, dealing
even with non-overlapping or partially-overlapping trajectories. Contrary to
the synthetic data where 10 trajectories had to be removed because the dis-
tances to them could not be computed, in this real-life data set our distance
function could be computed for every pair of trajectories.

Figure 6 shows two trajectories identified by our distance metric as the two
closest ones in the data set. The two cabs moved around a parking lot and
therefore stayed very close to one another in space. Also in time both tra-
jectories were very close: one of them was recorded between 12:00:49 hours
and 13:50:47 hours, while the other was recorded between 12:00:25 hours and
13:52:30 hours. Therefore, both trajectories were correctly identified by our
distance metric as being close in time and space; they could be clustered to-
gether with minimum utility loss for anonymization purposes.

To compare, Figure 7 shows two trajectories identified by the Euclidean dis-
tance as the two closest ones in the data set. These trajectories are located
in a parking lot inside San Francisco Airport and, spatially, they are closer
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Fig. 6. The two closest trajectories in the real-life data set according to our distance
metric

than the two trajectories shown in Figure 6. However, one of these trajectories
was recorded between 24:42:55 hours and 24:55:59 hours, while the other was
recorded between 19:05:29 hours and 19:06:15 hours. Hence, they should not
be in the same cluster, because an adversary with time knowledge can easily
distinguish them.

Fig. 7. The two closest trajectories in the real-life data set according to the Euclidean
distance
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7.2.2 Experiments with the SwapLocations method

The ReachLocations method cannot be used when the graph of the city is not
provided. Hence, in the experiments with the San Francisco real data we just
considered the SwapLocations method. As in the experiments with synthetic
data, we set Ω = 0 during the computation of the total space distortion.
Figure 8 shows the values of total space distortion given by the SwapLocations
for different space thresholds and different cluster sizes.
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Fig. 8. Total space distortion (km) for SwapLocations using several different space
thresholds and cluster sizes on the real-life data set

Two other utility properties we are considering in this work are: percentage of
removed trajectories and percentage of removed locations. Table 8 shows the
values obtained with the SwapLocations method for both utility properties.

Finally, Table 9 reports the performance of SwapLocations regarding spatio-
temporal range queries. We picked random time intervals of length at most
20 minutes. Also, random uncertain trajectories with uncertainty threshold of
size at most 7 km were chosen as the regions. Analogously to the experiments
with the synthetic data set, 20 and 7 are roughly a quarter of the average
duration and distance of all trajectories, respectively. It can be seen that the
SwapLocations method provides low range query distortion for every value of
k when the space threshold is small, i.e. when the total space distortion is
also small. However, the smaller the space threshold, the larger the number of
removed trajectories and locations (see Table 8). This illustrates the trade-off
between the utility properties considered.
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Table 8
Percentage of trajectories (columns labeled with T) and locations (columns labeled
with L) removed by SwapLocations for several values of k and several space thresh-
olds Rs on the real-life data set. Percentages have been rounded to integers for
compactness.

Rs \ k
2 4 6 8 10 15

T L T L T L T L T L T L

1 23 43 40 64 49 71 58 74 62 77 71 81

2 19 29 34 47 42 54 50 58 54 60 50 66

4 14 17 27 29 35 35 40 40 45 41 54 49

8 9 10 19 19 25 25 31 29 34 31 42 38

16 5 7 11 16 17 22 20 27 23 30 32 38

32 1 7 2 15 3 22 4 27 5 30 8 38

64 0 6 0 15 0 22 0 27 0 30 0 38

128 0 6 0 15 0 22 0 27 0 30 0 38

Table 9
Range query distortion caused by SwapLocations on the real-life data set for SID
(columns labeled with S) and AID (columns labeled with A), for several values
of k and several space thresholds Rs. In this table, a range query distortion x is
represented as the integer rounding of x ∗ 100 for compactness.

Rs \ k
2 4 6 8 10 15

S A S A S A S A S A S A

1 13 22 18 27 20 29 19 29 24 31 25 34

2 16 24 25 34 26 35 24 35 27 37 27 37

4 18 25 30 37 33 41 34 42 38 46 38 45

8 21 27 34 40 38 44 40 46 44 50 48 54

16 20 26 36 42 42 47 45 50 50 54 53 58

32 21 26 39 44 45 49 48 53 53 57 58 62

64 20 25 39 44 46 50 51 54 54 57 61 64

128 21 26 39 44 48 50 51 56 54 58 61 64
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8 Conclusions and future work

We have presented two permutation-based heuristic methods to anonymize
trajectories with the common features that: i) places and times in the anonymized
trajectories are true original places and times with full accuracy; ii) both meth-
ods can deal with trajectories with partial or no time overlap, thanks to a new
distance also introduced in this paper. The first method aims at trajectory
k-anonymity while the second method takes reachability constraints into ac-
count, that is, it assumes a territory constrained by a network of streets or
roads; to avoid removing too many locations, it changes its privacy ambitions
from trajectory k-anonymity to location k-diversity.

Both methods use permutation of locations, and the first method uses also tra-
jectory microaggregation. There are few counterparts in the literature com-
parable to the first method, and virtually none comparable to the second
method. Experimental results show that, for most parameter choices and for
similar privacy levels, our methods offer better utility than (k, δ)-anonymity.

Future work will be directed towards designing trajectory anonymization meth-
ods aimed at achieving trajectory p-privacy (see Definition 6), but discard-
ing less locations than the SwapLocations method. Also, finding trajectory
anonymization methods for constrained territories with better utility than
ReachLocations is an open challenge.
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