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Abstract

Although some information-theoretic measures of uncetyair granularity have been proposed in rough set theory,
these measures are only dependent on the underlying pauditid the cardinality of the universe, independent of the
lower and upper approximations. It seems somewhat unrabfogince the basic idea of rough set theory aims at
describing vague concepts by the lower and upper approxingat In this paper, we thus define new information-
theoretic entropy and co-entropy functions associatetigégtrtition and the approximations to measure the uncer-
tainty and granularity of an approximation space. Afterddticing the novel notions of entropy and co-entropy, we
then examine their properties. In particular, we discusgéationship of co-entropies betweelffelient universes.
The theoretical development is accompanied by illusteativmerical examples.
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1. Introduction

To handle inexact, uncertain or vague knowledge in somerimdition systems, Pawlak developed rough set theory
in the early 1980< [14, 15]. Since then we have witnessedtarsgsic, world-wide growth of interest in rough set
theory and its applications in a number of fields, such asudaarmomputing, data mining, decision analysis, pattern
recognition, and approximate reasoning [12,/17| 18, 3035},

The starting point of rough set theory in [14] 15] is the ideat £lements of a universe having the same description
are indiscernible with respect to the available informatiorhe indiscernibility was described by an equivalence
relation in the way that two elements are related by theioglat and only if they are indiscernible from each other.
As is well known, any equivalence relation defined on a usigbr determines a partition dff into a collection of
equivalence classes (blocks): each class contains all@gdiee elements that are mutually equivalent among them.
Any partitions of U represents a piece of knowledge about the elements foffming a classification and so any
equivalence class induced bys interpreted as a granule of knowledge contained in (opstipd by)r.

According to Pawlak’s terminology expressed lin![16], ankpsat X of the universel is called a concept in
U. If the conceptX is a union of equivalence classes framthen X is precise inr, otherwiseX is vague. The
basic idea of rough set theory consists in replacing vagmeeqats with a pair of precise concepts, its lower and
upper approximations [16], and thus, a basic problem infthimework is to reason about the accessible granules of
knowledge. To this end, various knowledge granulatiorso(@hformation granulations or granulation measures), as
an average measure of knowledge granules, have been pdogrude@ddressed inl[1,13,18, 11) 13, 121,123,24, 25, 26,
28,132]. Among them, there are several information-théoraeasures of uncertainty or granularity for rough sets
[1,13,18,(10) 10, 13, 21, 28, P5], which are based upon the itapbnotion of entropy introduced by Shannonl [22];
for more details, we refer the reader to the excellent supapers|[2, 27].

It is worth noting that the information-theoretic measunesntioned above are only dependent on the sizes of
equivalence classes (essentially, the underlying pam)itind the cardinality of the universe, independent ofdlet
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and upper approximation operators. For example, lin [6| E328] the information entropy(x) of the partition

7 =1{Uy, Uy, ...,Uy} is defined as
k

n; n;
H(r) = —; ~log .,
wheren; is the cardinality olU; andn = Zik=1 n;. As a result, it often yields that some partitions lik&}, {2}} and
{{1, 2}, {3, 4}} have the same entropy (or co-entropy). This seems somewredsonable since the basic idea of rough
set theory aims at describing vague concepts by the loweuppelr approximations. In other words, the result of this
description relies on both the partition and the approxiomst In light of this, we should pay more attention to the
lower and upper approximation operators.

The previous observation motivates us to propose anotf@mniation-theoretic entropy function to measure the
uncertainty associated to the partition and the approximaiperators in this paper. More concretely, given a usiser
U with n elements and a partition of U, we take count of the subsets dfdescribed by every pair of lower and
upper approximations. Assume thigtl < i < m, is the number of subsets described by the rough set appatirim
(A, AY) and every subset & appears with the same probability. It follows that the roaghapproximation4;, A')
appears with the accumulative probabilify2" since the amount of all subsetsdfis precisely 2. In this way, we
obtain a probability distribution

r r I'm
P(ﬂ) = (%,5,,%)
It gives rise to an information entropy, s&f(rr), according to Shannon’s information thedry|[22]. On theesthand,
we can get by the probability distribution a co-entr@gyr). It turns out thatH () + G(r) = n. After exploring some
properties of the entropy and co-entropy, we discuss ttagioekhips of co-entropies betweerftdient universes.
Roughly speaking, the co-entropy monotonically increaglesn the partition becomes coarser. For example, the
co-entropy ofi{1, 2}, {3, 4}} is greater than that df1}, {2}}.

The remainder of the paper is structured as follows. In e we briefly review some basics of Pawlak’s
rough set theory and the information-theoretic measuresoértainty and granularity for rough sets in the literatur
Section 3 is devoted to our novel notions of entropy and doepl and their properties. We address the relationship
of co-entropies betweenftierent universes in Section 4 and conclude the paper in ®€estiaith a brief discussion
on the future research.

2. Preliminaries

This section consists of two subsections. We briefly rebaldefinition of Pawlak’s rough sets in the first sub-
section and then review two information-theoretic measofaincertainty and granularity in rough set theory in the
second subsection.

2.1. Rough sets

We start by recalling some basic notions in Pawlak’s rouglthery [14] 15].

LetU be a finite and nonempty universal set, andi&t U x U be an equivalence relation @h Denote byJ/R
the set of all equivalence classes inducedRkbpuch equivalence classes are also catlethentary set®very union
(not necessarily nonempty) of elementary sets is cali@efimable set

For anyX € U, one can characteri2¢ by a pair of lower and upper approximations. Tioeer approximation
app X of X is defined as the greatest definable set containet] iwhile theupper approximatiorappsX of X is
defined as the least definable set contaitingormally,

m)RX=U{CeU/R|CgX} andapmkX =U{C e U/RICN X+ 0).

The pair(ﬂ)RX, me) is referred to as theough set approximatioof X. It follows immediately from definition
thatﬂ)RX c X cappXforanyX c U.

The ordered paitU, R) is said to be ampproximation spaceA rough setin (U, R) is the family of all subsets of
U having the same lower and upper approximations. Thus, thergenotion of rough set can be simply identified
with the rough approximation of any given set.



Recall that gartition of U is a collection of nonempty subsetsldfsuch that every elememtof U is in exactly
one of these subsets; such subsets making up the partid@abedblocks We writeTTI(U) for the set of all partitions
of U and £2(U) for the power set ofJ. It is well-known that the notions of partition and equivate relation are
essentially equivalent, that is, for any equivalence i@teR on U, the setJ/Ris a partition ofU, and conversely, from
any partitionr of U, one can define an equivalence relatinon U such thalU/R, = x in the obvious way. Thus,
we sometimes say that the ordered ghiirr) is an approximation space and Wr@”x andapp, X for app, X and

apps X, respectively. More generally, we will use equivalencatieh and partition indiscriminately.

If a universéJ has more than one element, it is always possible to introduleast two canonical partitions: One
is the trivial partition, denoted by, tonsisting of a unique block, and the other is the discratétipn, denoted byt,”
consisting of all singletons frotd. Formally,

7 ={U}andr = {{x} | xe€ U}.

We now define a partial ordex” on I1(U): For anyr, o € TI(U), o < & if and only if for anyC € o, there exists
D € n such thaC C D. For instancer < n < x for anyx € TI(U). We say thatr is finerthanz and thatr is coarser
thano if o < 7. Wheno < x, that is,o < # ando # &, we say thatr is strictly finerthans and thatr is strictly
coarserthano. Informally, this means that is a further fragmentation of.

2.2. Information-theoretic measures

In this subsection, we review two information-theoreticasigres associated with rough sets in the literature.
These measures are concerned with the uncertainty or grétguaf knowledge provided by a partition.

In [6, 13,123, 26], Shannon entropy [22] has been used as aumea$ information for rough set theory as
follows. For subsequent need, we fix a notational conventidiroughout the paper, all logarithms are to base 2
unless otherwise specified.

Definition 2.1 ([6, 113,128/ 28]) Let(U, ) be an approximation space, where the partiteonsists of blocks {J
1 <i <k, each having cardinality;n Theinformation entropyH () of partition r is defined by

K k
H(n):—z ' Iog%, where n:Zni. (1)

i=1 i=1

S5

Whenrn = 7, the entropy functiotd achieves the minimum value 0, and wheg 7, it achieves the maximum
value logn. Moreover, it has been shown (n [23] that for any two panti§ie ando of U, if o < &, thenH(o) > H(n).
The equation{1) can be rewritten as follows:

k
H(r) = logn - Z d logn;. (2)

Recall that the Hartley measure [7] of uncertainty for a isietX is
H(X) = log|X],

where 1X|" denotes the cardinality of the sit It measures the amount of uncertainty associated with te feit of
possible alternatives, the nonspecificity inherent in tite s

The first term logn (i.e., log|U|) in Eq. (2) is exactly the Hartley measureldf which is a constant independent of
any partition. The second term of the equation is basicallgxpectation of granularity with respect to all blocks in
a partition. This quantity has been used by Yao to measurgririlarity of a partition in [26] and has been defined
by Liang and Shi as the rough entropy of knowledge in an appration space in [11]. This quantity has also been
referred to as co-entropy by some scholars (see, for exaf@ple).

Definition 2.2 ([2, 13,111, 26]) Let(U, ) be an approximation space, where the partitioiconsists of blocks {J
1 <i <k, each having cardinality;n Theco-entropyG(r) of partitionr is defined by

K K
G(r) = Z % logn;, where n= Z n. )
i

i=1
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It follows immediately from definition that
H(r) + G(x) = logn.

Contrary to the uncertainty measute the co-entropy functiofs achieves the maximum value lagvhenr = 7 and
the minimum value 0 whem = 7; moreover, it has been known [11] that for any two partitisedo of U, if o= < x,
thenG(o) < G(n).

As argued inl[2, 3], the entropl(7) can be interpreted as the uncertainty measure of theipartit while the
co-entropyG(r) can be regarded as the granularity measure of [21], Sen and Pal introduced two other entropy
measures for crisp sets and fuzzy sets with (crisp or fuzgyivalence relations or (crisp or fuzzy) tolerance relagio
which are based upon the roughness measursaofd of the complement of in the universe and have been used
to analyze the grayness and spatial ambiguities in imagedetthe same name, there are sonfkeknt concepts of
entropy in the literature of rough set theory (see, for examnig, 20]).

3. A novel pair of entropy and co-entropy

In this section, we first introduce a novel entropy and theasponding co-entropy and then explore their proper-
ties.

Let us begin with some notations. Throughout this secti@wwite (U, 7) for an approximation space and assume
that|U| = n. Given aU, ), we useA(U, ) to denote the set of rough set approximations of all sulfdts More
formally, we set

AU = {(app X &PRX) [X U} (4)

It follows from Eq. [4) thatA(U, x) has at least two elementd), §) and U, U). If n = 1, thenA(U, n) exactly
consists of the two elements;rif> 1 andr = 7, thenA(U, 7) contains one more elemerft J); for anyn > 1, if
7 = 7, then we see thafi(U, 7) = {(X, X) | X € U}, which consists of 2elements. Note that the s@l(U, ) is not a
multiset, that is, the same element cannot appear more tiaminA(U, 7). In general, we have thg#(U, r)| < 2"
since the subsef of U in Eg. (4) has only 2alternatives.

For simplicity, we usento stand folA(U, 7)|. For any &, A) € A(U,7), 1 <i <m, we set

A = {x c U |(app X.3PR,X) = (A A{)} and| A = ;. 5)

In other wordsy; is the number of subsets &f that have the rough set approximatioR,®). It turns out that
{A, Ay, ..., Am} gives rise to a partition af?(U). Therefore, we get by Eq.](4) that

m
Z r = 2",
i=1
To illustrate the above concepts, let us see an example.

Example 3.1. Consider U= {1, 2, 3,4} andr = {{1, 2}, {3,4}}. In this case, U had6 subsets. For each subset X of
U, we compute the rough set approximation of X; the resulidiated in Tabl&1L.
Hence, we see that

AU, 7) ={(0,0),(0.{1,2}),(0.{3,4}), ({1, 2},{1,2}), (0, U) . (3,4}, {3,4}) . ({1, 2}, U) , ({3, 4}, U) , (U, U)}.

As an example, let us calculatg By definition,

rp = '{XgU’(@”X,WQ,XF(@,{LZ})}'

{1}, (21
= 2

This is exactly the number of subsets of U that have the roaghpproximation(0, {1, 2}), which can be counted
from the table. In light of this, we may get Table 2 by rearriagglable[1. It follows immediately from Taljle 2 that
M=rs=reg=rg=1ro=rz3=r;=rg=2,and s = 4.



Table 1: The subsets and corresponding rough set approgiman Exampl€_3]1.

subset approximation subset approximation subset approximation subset approximation
0 (0.0) {1} (0,{1,2}) {2} (0,{1,2}) {3} (0,{3,4})
{4} 0,{3,4}) {12 (1,2,{1,2) | {1.3} (0,V) {1, 4} (0,U)
2,3 (0,V) 2.4 (0,U) 3.4 ({3.41,{3.4) | {123 (1,24 V)
{1,2,4} (11,2}, U) {1, 3,4} (13,4}, V) {2,3,4} (13,4}, V) U (U,U)
Table 2: The rough set approximations and correspondingessiin ExamplE=3] 1.
approximation subsets approximation subsets approximation subsets
(0,0) 0 (0,{1,2)) {14.{2) (0,{3,4}) {35 {4)
(11.2},{1,2)) {12 (0,U) {1,31,{1,4},{2,3},{2,4} | ({3,4},{3.4}) {34}
({1,2},U) {1,2,3},{1,2,4} (13,4}, U) {1,3,4},{2,3,4} (U, V) U

Because we are concerned with the partition granulatigof) with respect to the approximation operatagp
andapp we may assume that every subsetboéppears with the same probability2l'. As a result, the rough set
approximation 4, A') appears with the accumulative probabilify2" and we thus obtain a probability distribution

Plr) = (2n’ on ) ©)

According to Shannon’s information theory [22], the Shamantropy function of the probability distributid®(rr)
is defined as follows.

'm

rp ra

.....

Definition 3.1. Keep the notations as above. Tihéormation entropyH () of (U, ) (with respect to the approxima-
tion operators ap@ndapp) is defined by

H(m = HP@) = - ) 7109 2. @)

i=1
In the above definition, for simplicity we have used the riotaf(r) instead ofH (U, ). Following the explana-
tion of Shannon entropy in information theory, the quarfiffr) measures the uncertainty associated to the partition
7 with respect to the approximation operatagspandapp For instance, the probability distribution correspordin
to the partitionr = {{1, 2}, {3, 4}} in Exampld_3.1 is

1221412 21

It follows from Definition[3.1 that

H ()

- 4 24
i=
: 1I 1 2I 2 2I 2 1I 1 4| 4
= 7|2!09 * 221095 * 5710955 + %100 5 + 53109 5
1I 1 2I 2 2I 2 1I 1
2210953 + 5710053 + 3100 2 + 57109 5



Similar to other entropy functions in rough set theory, tifeimation entropy in Definition 311 has the following
properties.

Theorem 3.1.

(1) Foranyr, o € II(V), if o < &, thenH (o) > H(r).
(2) The entropy functiofH reaches the maximum value n for the finest partifion

3) The entropy functiofH reaches the minimum valuenZ52 log(2" — 2) for the coarsest partitiott.
2

Proof. (1) Without loss of generality, we may assume that (U1, Uy, ..., Uy} ando = {U,, Up, Uy, ..., Uy}, where
Ua U Up = Uz. Suppose thgA(U, )| = mand for any A, AY) € A(U, ), 1 <i < m, we writer; for

[{xc U] (@ppxaPRX) = (A, A
Based on the partition, the power setx?(U) is partitioned intom blocks and thé-th block has the cardinality;.
Similarly, we denote by; the cardinality of thej-th block of #2(U) associated to the partitian. We now consider
the elements ofA(U, o). For any B;, B)) € A(U, o), there are two possibilities: One is th&;(B;) € A(U, n), say
(B, B)) = (Aij,Ai’j) for someij. Inthis case, itis clear thaf = r;;. The other case is thaB(, B) € A(U, o)\ A(U, n),
where the symboA\B denotes the set of all elements which are membe#staft not members oB. It follows that
for someij;,

{X c U|(app x.aPR,X) = (B), B})} c {X c U|(app X aPRX) = (A, A»',.)},

because the partitian is strictly finer thane. In this case, we also see that ifieh block provided byr is partitioned
into smaller blocks and thug = 3; s; > s;. In summary, we getthat eithgr= s; orr; = 3 5, > s;, and moreover,
the latter case must exist as< 7. We thus assume that= s, fori € Iy andr; = 3; 5, > s, fori € I, wherel, # 0
andl; Ul, ={1,2...,m}. Let us comparé (o) with H(r).

m
T I
H(r) = —Zz—'nlogz—'n
i=1
I | ri fi | i
= L7 Lm0
iely i€l
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namely,H (o) > H(r). Therefore, the clause (1) holds.
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(2) It follows from (1) thatH reaches the maximum value whe 7. In this case, we get by definition that
2I‘|
N 1 1
H(w) = —Zﬁlog% =n.
i=1

This proves (2).

(3) By (1), we see thatf reaches the minimum value when= 7. In this case, the empty subgebf U has the
rough set approximatiod(0) andU itself has the rough set approximatids (J). For any proper subset tf, if any,
it has the rough set approximatioh U). Hencer; = r, = 1 andrz = 2" — 2. We thus obtain by definition that

1 1 1 1 2"-2 2"-2

7‘((;1’) = —5 |Og % - % |Og % - T |Og on
= 22042 -2
= n- o og(2" - 2).
Whence, (3) holds, finishing the proof of the proposition. O

Note that in the clause (3) of Theorém]3.1nif 1, the value of the corresponding summand 0log O is taken to be
0, which is consistent with the limit:

lim xlogx = 0.
x—0+

For later need, let us recall the following definition frand]3

Definition 3.2. Let(U, ) and(V, o) be two approximation spaces, and suppose that/ff— V is a mapping.

(1) The mapping f is called homomorphisnirom (U, ) to (V, o) if for any C € &, there exists De o such that
f(C) ¢ D, where {C) = {f(u)|ue C}.

(2) Ahomomorphism f is calledrmonomorphisnif f is an injective mapping.

(3) A monomorphism f is calleskrictly monomorphidf either there exist C= = and D € ¢ such that {C) C D,
namely, {C) c D and f(C) # D, or |V| > |U].

(4) The mapping f is called aisomorphismif the mapping f: U — V is bijective, and moreover, both f and its
inverse mapping - are homomorphisms.

We can now state the following facts.

Proposition 3.1. Let(U, 7) and(V, o-) be two approximation spaces with| = |V|, and let f: U — V be a mapping.
(1) If f is a monomorphism frorlJ, 7) to (V, o), in particular, = < o, thenH (n) > H (o).

(2) If f is a strict monomorphism froU, ) to (V, o), in particular, # < o, thenH (r) > H(o).

(3) If f is an isomorphism froniU, 7) to (V, o), thenH (n) = H (o).

Proof. It follows immediately from Definition 311 and TheorémB.1. O

To measure the granularity with respect to the approximatjferatorappandappcarried by the partition, we
introduce the concept of co-entropy, which correspondséartformation entropy in Definition 3.1.

Definition 3.3. Keep the notations as in Definition B.1. Té®entropyG(r) of (U, ) (with respect to the approxima-
tion operators ap@ndapp) is defined by

G(x) = G(P() = . 7 logr: ®)
i=1

The quantityg(r) furnishes a measure of the average granularity carrietidopartitionr as a whole. It follows
immediately from definition that
H(r) + G(r) =n. 9)
It means that the two measures complement each other wjiheet® the constant quantity= |U|, which is invariant
with respect to the choice of the partitiarof U.
The co-entropy functiogy is of the following properties.

7



Theorem 3.2.

(1) Foranym, o € TI(V), if o < 7, thenG(o) < G(r).
(2) The co-entropy functiog reaches the minimum vall@<or the finest partitiorf.
(3) The co-entropy functiog reaches the maximum Va|l§-n§—2 log(2" — 2) for the coarsest partitioft.

Proof. All the clauses follow directly from Theorelm 3.1 and Hg. (9). O
Similar to Propositiof3]1, we have the following observati

Proposition 3.2. Let(U, n) and(U, o) be two approximation spaces witth| = |V|, and let f: U — V be a mapping.

(1) If f is a monomorphism frorl, 7) to (V, o), in particular, = < o, thenG(r) < G(o).
(2) If f is a strict monomorphism frorU, ) to (V, o), in particular, & < o, theng(r) < G(o).
(3) If f is an isomorphism fronfU, ) to (V, o), thenG(r) = G(o).

Proof. It follows immediately from Proposition 3.1 and Ef] (9). O

As a corollary of Theoreri 3.2 and Proposition] 3.2, we seeghat a partition measure od in the sense of
[31, Definition 3.4], that isG is nonnegative and satisfies the following two conditiog§o) < G(rn) if o < ;
G(r) = G(o) if there exists an isomorphism frofW, ) to (V, o).

Note that our information entropy and co-entropy are naatly based on the blocks of a partition. Therefore, in
general they do not satisfy the definition of expected granitylproposed in [28].

4. Relationship of co-entropies between flierent universes

In the last section, we have seen thdt i§ a strict monomorphism frofU, =) to (U, o), in particularyr < o, then
H(n) > H(o) andG(n) < G(o). In this section, we consider the monotonicitiestéfandg for different universes.
In other words, we comparg{(r) with H (o) andG(r) with G(o-) when there exists a strict monomorphism from
(U, ) to (V, o), where|V| > |U|. For convenience, we writdJ, 7) — (V, o) if |[V| > |U| and there exists a strict
monomorphism frondU, 7y to (V, o).

We start with the following observation on the entropy fumetH and the co-entropy functio® reviewed in
Section 2.2. ConsidefUs, 1) = ({1}, {{1}}), (U2, m2) = ({1,2}, {{1},{2}}), and(Usz, 73) = ({1, 2,3}, {{1,3},{2}}).
Clearly,

(Ug, 1) = (U, m2) = (Ugz, m3).

It is easy to check by Definition 2.1 that(r1) = 0, H(r2) = 1, andH(r3) = log3 - £ < 1. This means that the
entropy functiorH is not monotonic. By the way, we can get by a direct computatiatG(r1) = 0, G(2) = 0, and
Glns) = 3.

Let us continue to discuss the monotonicity of co-entromcfionG. ConsideRUq, 1) = ({1}, {{1}}), (U2, m2) =
(1,24 {{1,2}}), and(Us, m3) = ({1, 2,3}, {{1, 2}, {3}}). Again, we see that

(Ug, 1) = (U, m2) = (Ugz, m3).

It is easy to check by Definition 2.2 th&(r;) = 0, G(r2) = 1, andG(r3) = % This shows that the co-entropy
functionG is not monotonic either. In this case, we can obtain by a doemputation thag (1) = 0, G(r2) = % and
Glrs) = 3.

Finally, we address the monotonicity of entropy functith ConsiderUy, 1) = ({1, 2}, {{1, 2}}), (Uz, 1) =
{1,2,3},{{1, 2}, {3}}), and(U3, m3) = ({1, 2, 3,4}, {{1, 2, 4}, {3}}). Obviously, we have that

(Ug, 1) = (U, m2) — (Ugz, m3).

By a routine computation we can get tifd(r1) = 3, H(r2) = 3, andH(n3) = 2 - 2log 3 < 3. Consequently, the

entropy functior# is not monotonic either. On the other hand, it follows from §8) thatG(r1) = 1, G(r2) = 1,
andG(ns) = 3 + 3 log 3.



As a result, in all the above three cases we always have that

G(m1) < G(m2) < G(r3).

We thus conjecture th@(r) < G(o) whenevekU, ) — (V, o). Indeed, it holds true, as we will see later.
To prove the conjecture, it is convenient to introduce thiefang notion and a key lemma.

Definition 4.1. Let(U, r) be an approximation space andzdJ. The approximation spagé) U{a}, rU{{a}}) is called
theone-point extensioaf (U, ) by a. We say thal, o) is a one-point extension @), ) if (V, o) = (Uu{a}, rU{{a}})
for some a.

For example{Uo,, m2) = ({1, 2, 3}, {{1, 2}, {3}}) is the one-point extension §8)1, 1) = ({1, 2}, {{1, 2}}) by 3.
The following lemma shows that one-point extension doexhahge co-entropy.

Lemma 4.1. Let(V, o) be a one-point extension @f, 7). ThenG(o) = G(r).
Proof. Suppose thatr = {U3,U,,...,Uy} ando = {Uy,U,, ..., U {a}}, wherea ¢ U; assume thatA(U,x) =
{(ALA)1<i<mjandA = {X cu '(ﬂ)ﬂx,wp,x) = (Ai,Ai’)} with |Ai| = r;. It thus follows that

ANV, 0) = AU, ) U{(Aufa,Aufa)) |1<i<m).

For any @;,B)) € A(V,0), we write B; for {X - V'(@UX,WQTX) = (B, Bi’)} ands for |Bi|. If (B, B)) =
(A, A) € A(U,7), then we see thaB = A and thuss = r; in this case. If B, B) = (A U{a},AUfal) €

{(Ai ufal, AU {a}) [1<i< m}, then we have thaB; = {X U {a}| X € A;} ands = r; still holds in this case. There-
fore, we get by Definitiof 3]3 that

m ri m ri
Glo) = Z 2nl+l logr; + Z 2n_l+l logr;
i=1 i=1
= d logr
= n [
= 2
finishing the proof of the lemma. O

For subsequent need, we would like to generalize Definiti@irad follows.

Definition 4.2. Let(U, r) and(V, o) be two approximation spaces. We say t4t-) is a multi-one-point extension
of (U, ) if there are approximation spacél;, n;), 0 < i < I, with (Ug, o) = (U, ) and(U,, ) = (V, o) such that
each(U, ), 1 <i <1, is a one-point extension @;_y, _1).

For example¢V, o) = ({1, 2, 3,4}, {{1, 2}, {3}, {4}}) is a multi-one-point extension b, 7) = ({1, 2}, {{1,2}}). In
fact, we may takeUo, o) = (U, 7), (U1, m1) = ({1, 2,3}, {{1, 2}, {3}}), and(U2, m2) = (V, o).
The following fact follows immediately from Lemnia4.1.

Corollary 4.1. If (V, o) is a multi-one-point extension ¢f), 7y, thenG(o) = G(r).

In light of the above corollary, let us refer to multi-oneipioextensions as one-point extensions for simplicity.
Further, we have the following observation.

Theorem 4.1. Suppose that there is a monomorphism fidinr) to (V, o). If there existgU’, n’) that satisfies the
following two conditions:

(a) either(U’,n") = (U, ) or (U’, =’y is a one-point extension ¢, ),

(b) (U’, ")y is isomorphic taV, o),



theng(n) = G(o); otherwise G(r) < G(o).
Proof. We first consider the case that there exi&ls, n’) that satisfies the conditions (a) and (b). In this case, if
(U’, 7"y = (U, )y and{U’, 7’y is isomorphic t(V, o), then|V| = |U| and we see by Propositign 8.2 thatr) = G(o).
If (U’,n’) is a one-point extension d@tJ, 7y and(U’, n’) is isomorphic txV, o), then we get thag(r) = G(=’) by
Corollaryl4.1 and7(n’) = G(o) by Propositio 3]2. Consequentfy(r) = G(o).

We now consider the case that there does not ékistr’) such that the conditions are satisfied. It forces that
the monomorphism, saf, from (U, 7} to (V, o) is strict. Two cases need to consider. One is fWat= |U|. In
this case, it follows from Propositidn 3.2 th@f{r) < G(o). The other case is th@¥| > |U|. In this case, let us set
(M1, 01) = (f(U), (), wheref(U) is the image ofJ underf andf(r) = {f(U’)|U’ € xn}. In fact, f gives rise to an
isomorphism betweetU, 7y and(V1, o1). ThereforeG(r) = G(o1). Note thatv; = f(U) C V. We now takgVy, o2)
as follows:

Vo=V, op =01V {{a}|ae V\Vi}.

It follows that(V>, o) is a one-point extension @¥,, o1). HenceG(o1) = G(o2). Becausé is a strict monomor-
phism, we see thaU, ) — (V,,0%) ando, < o. Whence, we ge§(o,) < G(o) by Theoreni.3]2. As a result,
G(r) < G(0). This completes the proof of the theorem. O

Let us provide an informal explanation of Theorlen 4.1. Thediliesis that there is a monomorphism fréar)
to (V, o) means thatU, ) is finer than(V, o). In the special case that the monomorphism is not strict, ave lthat
(U, ry and(V, o) are isomorphic, and thus, they have the same co-entropye ifnfbnomorphism is strict, then after
renaming the elements bf, we can get a finer partition thaN, o) by using one-point extensions. Theorem 4.1 says
thatG(n) < G(o) if nis finer tharo.

We end this section with several examples.

Example 4.1. A trivial example is thatU, 7) = ({1, 2, 3}, {{1, 2}, {3}}) and(V, o) = ({a, b, c}, {{a, b}, {c}}). The map-
ping f that mapsl, 2, and3to a, b, and c respectively is a monomorphism. In fact, f isssmiorphism. Hence,
G(r) = G(0). A direct computation shows thg(r) = 0.5 = G(0).

ConsiderU, 7y = ({1, 2}, {{1, 2}}) and(V, o) = ({a, b, ¢, d}, {{a, b}, {c}, {d}}). The mapping f that magsand2 to
a and b respectively is a monomorphism, which yieldsqat) is isomorphic taVi, o-1) = ({a, b}, {{a, b}}). Clearly,
we can getV, o) by one-point extensions ¢¥;, o1). ThereforeG(n) = G(o). On the other hand, we can get by a
computation thag(r) = 0.5 = G(0).

Finally, consider(U,n) = ({1,2},{{1,2}}) and(V,o) = ({{a,b,c,d}, {{a, b}, {c,d}}). As mentioned earlier, the
mapping f that map$ and2 to a and b respectively is a monomorphism, which gives andgpinism betwee(U, rr)
and(Vi, o1) = {{a, b}, {{a, b}}). We can getV,, 02) = ({a, b, c,d}, {{a, b}, {c}, {d}}) by one-point extensions 01, o1 ).
Clearly,o» < 0. As aresultG(r) < G(o). On the other hand, we can obtain by a direct computation@{aj = 0.5
andG(o) = 0.75.

5. Conclusion

In this paper, we have proposed the novel notions of entropyca-entropy by taking both partitions and the
lower and upper approximations into account. Some desinatperties of the entropy and co-entropy have been
presented. Furthermore, we have investigated the refdtipof co-entropies betweenfidirent universes.

There are several problems which are worth further studykicggstly, the present work focuses on the classical
rough sets based on partitions. It would be interesting teg#ize the notions of entropy and co-entropy here
into the framework of covering rough sets [4; 19, 29] or furaygh sets/[5]. It is also interesting to compare the
entropies (co-entropies) under some special homomorgtgsich as neighborhood-consistent functions introduced
in [33]. Secondly, it remains to develop the correspondimgghness measure based on the entropy or co-entropy
for measuring numerically the roughness of an approximatibinally, the conditioned entropy and conditioned
co-entropy|[?2] are yet to be addressed in our framework.
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