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Abstract

Although some information-theoretic measures of uncertainty or granularity have been proposed in rough set theory,
these measures are only dependent on the underlying partition and the cardinality of the universe, independent of the
lower and upper approximations. It seems somewhat unreasonable since the basic idea of rough set theory aims at
describing vague concepts by the lower and upper approximations. In this paper, we thus define new information-
theoretic entropy and co-entropy functions associated to the partition and the approximations to measure the uncer-
tainty and granularity of an approximation space. After introducing the novel notions of entropy and co-entropy, we
then examine their properties. In particular, we discuss the relationship of co-entropies between different universes.
The theoretical development is accompanied by illustrative numerical examples.
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1. Introduction

To handle inexact, uncertain or vague knowledge in some information systems, Pawlak developed rough set theory
in the early 1980s [14, 15]. Since then we have witnessed a systematic, world-wide growth of interest in rough set
theory and its applications in a number of fields, such as granular computing, data mining, decision analysis, pattern
recognition, and approximate reasoning [12, 17, 18, 30, 34,35].

The starting point of rough set theory in [14, 15] is the idea that elements of a universe having the same description
are indiscernible with respect to the available information. The indiscernibility was described by an equivalence
relation in the way that two elements are related by the relation if and only if they are indiscernible from each other.
As is well known, any equivalence relation defined on a universeU determines a partition ofU into a collection of
equivalence classes (blocks): each class contains all and only the elements that are mutually equivalent among them.
Any partitionπ of U represents a piece of knowledge about the elements ofU forming a classification and so any
equivalence class induced byπ is interpreted as a granule of knowledge contained in (or supported by)π.

According to Pawlak’s terminology expressed in [16], any subsetX of the universeU is called a concept in
U. If the conceptX is a union of equivalence classes fromπ, thenX is precise inπ, otherwiseX is vague. The
basic idea of rough set theory consists in replacing vague concepts with a pair of precise concepts, its lower and
upper approximations [16], and thus, a basic problem in thisframework is to reason about the accessible granules of
knowledge. To this end, various knowledge granulations (also, information granulations or granulation measures), as
an average measure of knowledge granules, have been proposed and addressed in [1, 3, 8, 11, 13, 21, 23, 24, 25, 26,
28, 32]. Among them, there are several information-theoretic measures of uncertainty or granularity for rough sets
[1, 3, 8, 10, 11, 13, 21, 23, 25], which are based upon the important notion of entropy introduced by Shannon [22];
for more details, we refer the reader to the excellent surveypapers [2, 27].

It is worth noting that the information-theoretic measuresmentioned above are only dependent on the sizes of
equivalence classes (essentially, the underlying partition) and the cardinality of the universe, independent of the lower
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and upper approximation operators. For example, in [6, 13, 23, 26] the information entropyH(π) of the partition
π = {U1,U2, . . . ,Uk} is defined as

H(π) = −
k

∑

i=1

ni

n
log

ni

n
,

whereni is the cardinality ofUi andn =
∑k

i=1 ni . As a result, it often yields that some partitions like{{1}, {2}} and
{{1, 2}, {3, 4}} have the same entropy (or co-entropy). This seems somewhat unreasonable since the basic idea of rough
set theory aims at describing vague concepts by the lower andupper approximations. In other words, the result of this
description relies on both the partition and the approximations. In light of this, we should pay more attention to the
lower and upper approximation operators.

The previous observation motivates us to propose another information-theoretic entropy function to measure the
uncertainty associated to the partition and the approximation operators in this paper. More concretely, given a universe
U with n elements and a partitionπ of U, we take count of the subsets ofU described by every pair of lower and
upper approximations. Assume thatr i , 1 ≤ i ≤ m, is the number of subsets described by the rough set approximation
(Ai,A′i ) and every subset ofU appears with the same probability. It follows that the roughset approximation (Ai ,A′i )
appears with the accumulative probabilityr i/2n since the amount of all subsets ofU is precisely 2n. In this way, we
obtain a probability distribution

P(π) =
( r1

2n
,

r2

2n
, . . . ,

rm

2n

)

.

It gives rise to an information entropy, sayH(π), according to Shannon’s information theory [22]. On the other hand,
we can get by the probability distribution a co-entropyG(π). It turns out thatH(π) + G(π) = n. After exploring some
properties of the entropy and co-entropy, we discuss the relationships of co-entropies between different universes.
Roughly speaking, the co-entropy monotonically increaseswhen the partition becomes coarser. For example, the
co-entropy of{{1, 2}, {3, 4}} is greater than that of{{1}, {2}}.

The remainder of the paper is structured as follows. In Section 2, we briefly review some basics of Pawlak’s
rough set theory and the information-theoretic measures ofuncertainty and granularity for rough sets in the literature.
Section 3 is devoted to our novel notions of entropy and co-entropy and their properties. We address the relationship
of co-entropies between different universes in Section 4 and conclude the paper in Section 5 with a brief discussion
on the future research.

2. Preliminaries

This section consists of two subsections. We briefly recall the definition of Pawlak’s rough sets in the first sub-
section and then review two information-theoretic measures of uncertainty and granularity in rough set theory in the
second subsection.

2.1. Rough sets
We start by recalling some basic notions in Pawlak’s rough set theory [14, 15].
Let U be a finite and nonempty universal set, and letR⊆ U × U be an equivalence relation onU. Denote byU/R

the set of all equivalence classes induced byR. Such equivalence classes are also calledelementary sets; every union
(not necessarily nonempty) of elementary sets is called adefinable set.

For anyX ⊆ U, one can characterizeX by a pair of lower and upper approximations. Thelower approximation
app

R
X of X is defined as the greatest definable set contained inX, while theupper approximationappRX of X is

defined as the least definable set containingX. Formally,

app
R
X = ∪{C ∈ U/R |C ⊆ X} and appRX = ∪{C ∈ U/R |C ∩ X , ∅}.

The pair
(

app
R
X, appRX

)

is referred to as therough set approximationof X. It follows immediately from definition
thatapp

R
X ⊆ X ⊆ appRX for anyX ⊆ U.

The ordered pair〈U,R〉 is said to be anapproximation space. A rough setin 〈U,R〉 is the family of all subsets of
U having the same lower and upper approximations. Thus, the general notion of rough set can be simply identified
with the rough approximation of any given set.
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Recall that apartition of U is a collection of nonempty subsets ofU such that every elementx of U is in exactly
one of these subsets; such subsets making up the partition are calledblocks. We writeΠ(U) for the set of all partitions
of U andP(U) for the power set ofU. It is well-known that the notions of partition and equivalence relation are
essentially equivalent, that is, for any equivalence relation RonU, the setU/R is a partition ofU, and conversely, from
any partitionπ of U, one can define an equivalence relationRπ on U such thatU/Rπ = π in the obvious way. Thus,
we sometimes say that the ordered pair〈U, π〉 is an approximation space and writeapp

π
X andappπX for app

Rπ
X and

appRπX, respectively. More generally, we will use equivalence relation and partition indiscriminately.
If a universeU has more than one element, it is always possible to introduceat least two canonical partitions: One

is the trivial partition, denoted by ˇπ, consisting of a unique block, and the other is the discrete partition, denoted by ˆπ,
consisting of all singletons fromU. Formally,

π̌ = {U} andπ̂ = {{x} | x ∈ U}.

We now define a partial order “�” on Π(U): For anyπ, σ ∈ Π(U), σ � π if and only if for anyC ∈ σ, there exists
D ∈ π such thatC ⊆ D. For instance, ˆπ � π � π̌ for anyπ ∈ Π(U). We say thatσ is finer thanπ and thatπ is coarser
thanσ if σ � π. Whenσ ≺ π, that is,σ � π andσ , π, we say thatσ is strictly finer thanπ and thatπ is strictly
coarserthanσ. Informally, this means thatσ is a further fragmentation ofπ.

2.2. Information-theoretic measures
In this subsection, we review two information-theoretic measures associated with rough sets in the literature.

These measures are concerned with the uncertainty or granularity of knowledge provided by a partition.
In [6, 13, 23, 26], Shannon entropy [22] has been used as a measure of information for rough set theory as

follows. For subsequent need, we fix a notational convention: Throughout the paper, all logarithms are to base 2
unless otherwise specified.

Definition 2.1 ([6, 13, 23, 26]). Let 〈U, π〉 be an approximation space, where the partitionπ consists of blocks Ui ,
1 ≤ i ≤ k, each having cardinality ni . Theinformation entropyH(π) of partitionπ is defined by

H(π) = −
k

∑

i=1

ni

n
log

ni

n
, where n=

k
∑

i=1

ni. (1)

Whenπ = π̌, the entropy functionH achieves the minimum value 0, and whenπ = π̂, it achieves the maximum
value logn. Moreover, it has been shown in [23] that for any two partitionsπ andσ of U, if σ ≺ π, thenH(σ) > H(π).

The equation (1) can be rewritten as follows:

H(π) = logn−
k

∑

i=1

ni

n
logni . (2)

Recall that the Hartley measure [7] of uncertainty for a finite setX is

H(X) = log |X|,

where “|X|” denotes the cardinality of the setX. It measures the amount of uncertainty associated with a finite set of
possible alternatives, the nonspecificity inherent in the set.

The first term logn (i.e., log|U |) in Eq. (2) is exactly the Hartley measure ofU, which is a constant independent of
any partition. The second term of the equation is basically an expectation of granularity with respect to all blocks in
a partition. This quantity has been used by Yao to measure thegranularity of a partition in [26] and has been defined
by Liang and Shi as the rough entropy of knowledge in an approximation space in [11]. This quantity has also been
referred to as co-entropy by some scholars (see, for example, [2, 3]).

Definition 2.2 ([2, 3, 11, 26]). Let 〈U, π〉 be an approximation space, where the partitionπ consists of blocks Ui ,
1 ≤ i ≤ k, each having cardinality ni . Theco-entropyG(π) of partitionπ is defined by

G(π) =
k

∑

i=1

ni

n
logni, where n=

k
∑

i=1

ni . (3)
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It follows immediately from definition that

H(π) +G(π) = logn.

Contrary to the uncertainty measureH, the co-entropy functionG achieves the maximum value logn whenπ = π̌ and
the minimum value 0 whenπ = π̂; moreover, it has been known [11] that for any two partitionsπ andσ of U, if σ ≺ π,
thenG(σ) < G(π).

As argued in [2, 3], the entropyH(π) can be interpreted as the uncertainty measure of the partition π, while the
co-entropyG(π) can be regarded as the granularity measure ofπ. In [21], Sen and Pal introduced two other entropy
measures for crisp sets and fuzzy sets with (crisp or fuzzy) equivalence relations or (crisp or fuzzy) tolerance relations,
which are based upon the roughness measures ofX and of the complement ofX in the universe and have been used
to analyze the grayness and spatial ambiguities in images. Under the same name, there are some different concepts of
entropy in the literature of rough set theory (see, for example, [9, 20]).

3. A novel pair of entropy and co-entropy

In this section, we first introduce a novel entropy and the corresponding co-entropy and then explore their proper-
ties.

Let us begin with some notations. Throughout this section, we write〈U, π〉 for an approximation space and assume
that |U | = n. Given a〈U, π〉, we useA(U, π) to denote the set of rough set approximations of all subsetsof U. More
formally, we set

A(U, π) =
{

(

app
π
X, appπX

)

∣

∣

∣

∣
X ⊆ U

}

. (4)

It follows from Eq. (4) thatA(U, π) has at least two elements: (∅, ∅) and (U,U). If n = 1, thenA(U, π) exactly
consists of the two elements; ifn > 1 andπ = π̌, thenA(U, π) contains one more element (∅,U); for anyn ≥ 1, if
π = π̂, then we see thatA(U, π) = {(X,X) |X ⊆ U}, which consists of 2n elements. Note that the setA(U, π) is not a
multiset, that is, the same element cannot appear more than once inA(U, π). In general, we have that|A(U, π)| ≤ 2n

since the subsetX of U in Eq. (4) has only 2n alternatives.
For simplicity, we usem to stand for|A(U, π)|. For any (Ai ,A′i ) ∈ A(U, π), 1 ≤ i ≤ m, we set

Ai =

{

X ⊆ U
∣

∣

∣

∣

(

app
π
X, appπX

)

= (Ai ,A
′
i )
}

and|Ai | = r i . (5)

In other words,r i is the number of subsets ofU that have the rough set approximation (Ai ,A′i ). It turns out that
{A1,A2, . . . ,Am} gives rise to a partition ofP(U). Therefore, we get by Eq. (4) that

m
∑

i=1

r i = 2n.

To illustrate the above concepts, let us see an example.

Example 3.1. Consider U= {1, 2, 3, 4} andπ = {{1, 2}, {3, 4}}. In this case, U has16 subsets. For each subset X of
U, we compute the rough set approximation of X; the results are listed in Table 1.

Hence, we see that

A(U, π) = {(∅, ∅) , (∅, {1, 2}) , (∅, {3, 4}) , ({1, 2}, {1, 2}) , (∅,U) , ({3, 4}, {3, 4}) , ({1, 2},U) , ({3, 4},U) , (U,U)} .

As an example, let us calculate r2. By definition,

r2 =

∣

∣

∣

∣

∣

{

X ⊆ U
∣

∣

∣

∣

(

app
π
X, appπX

)

= (∅, {1, 2})
}

∣

∣

∣

∣

∣

= |{{1}, {2}}|

= 2.

This is exactly the number of subsets of U that have the rough set approximation(∅, {1, 2}), which can be counted
from the table. In light of this, we may get Table 2 by rearranging Table 1. It follows immediately from Table 2 that
r1 = r4 = r6 = r9 = 1, r2 = r3 = r7 = r8 = 2, and r5 = 4.
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Table 1: The subsets and corresponding rough set approximations in Example 3.1.

subset approximation subset approximation subset approximation subset approximation

∅ (∅, ∅) {1} (∅, {1, 2}) {2} (∅, {1, 2}) {3} (∅, {3, 4})

{4} (∅, {3, 4}) {1, 2} ({1, 2}, {1, 2}) {1, 3} (∅,U) {1, 4} (∅,U)

{2, 3} (∅,U) {2, 4} (∅,U) {3, 4} ({3, 4}, {3, 4}) {1, 2, 3} ({1, 2},U)

{1, 2, 4} ({1, 2},U) {1, 3, 4} ({3, 4},U) {2, 3, 4} ({3, 4},U) U (U,U)

Table 2: The rough set approximations and corresponding subsets in Example 3.1.

approximation subsets approximation subsets approximation subsets

(∅, ∅) ∅ (∅, {1, 2}) {1}, {2} (∅, {3, 4}) {3}, {4}

({1, 2}, {1, 2}) {1, 2} (∅,U) {1, 3}, {1, 4}, {2, 3}, {2, 4} ({3, 4}, {3, 4}) {3, 4}

({1, 2},U) {1, 2, 3}, {1, 2, 4} ({3, 4},U) {1, 3, 4}, {2, 3, 4} (U,U) U

Because we are concerned with the partition granulation of〈U, π〉with respect to the approximation operatorsapp
andapp, we may assume that every subset ofU appears with the same probability 1/2n. As a result, the rough set
approximation (Ai,A′i ) appears with the accumulative probabilityr i/2n and we thus obtain a probability distribution

P(π) =
( r1

2n
,

r2

2n
, . . . ,

rm

2n

)

. (6)

According to Shannon’s information theory [22], the Shannon entropy function of the probability distributionP(π)
is defined as follows.

Definition 3.1. Keep the notations as above. Theinformation entropyH(π) of 〈U, π〉 (with respect to the approxima-
tion operators appandapp) is defined by

H(π) = H(P(π)) = −
m

∑

i=1

r i

2n
log

r i

2n
. (7)

In the above definition, for simplicity we have used the notationH(π) instead ofH(U, π). Following the explana-
tion of Shannon entropy in information theory, the quantityH(π) measures the uncertainty associated to the partition
π with respect to the approximation operatorsappandapp. For instance, the probability distribution corresponding
to the partitionπ = {{1, 2}, {3, 4}} in Example 3.1 is

P(π) =

(

1
24
,

2
24
,

2
24
,

1
24
,

4
24
,

1
24
,

2
24
,

2
24
,

1
24

)

.

It follows from Definition 3.1 that

H(π) = −

9
∑

i=1

r i

24
log

r i

24

= −

[

1
24

log
1
24
+

2
24

log
2
24
+

2
24

log
2
24
+

1
24

log
1
24
+

4
24

log
4
24

+
1
24

log
1
24
+

2
24

log
2
24
+

2
24

log
2
24
+

1
24

log
1
24

]

= 3.
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Similar to other entropy functions in rough set theory, the information entropy in Definition 3.1 has the following
properties.

Theorem 3.1.

(1) For anyπ, σ ∈ Π(U), if σ ≺ π, thenH(σ) > H(π).
(2) The entropy functionH reaches the maximum value n for the finest partitionπ̂.
(3) The entropy functionH reaches the minimum value n− 2n−2

2n log(2n − 2) for the coarsest partitioňπ.

Proof. (1) Without loss of generality, we may assume thatπ = {U1,U2, . . . ,Uk} andσ = {Ua,Ub,U2, . . . ,Uk}, where
Ua ∪ Ub = U1. Suppose that|A(U, π)| = m and for any (Ai,A′i ) ∈ A(U, π), 1 ≤ i ≤ m, we writer i for

∣

∣

∣

∣

∣

{

X ⊆ U
∣

∣

∣

∣

(

app
π
X, appπX

)

= (Ai ,A
′
i )
}

∣

∣

∣

∣

∣

.

Based on the partitionπ, the power setP(U) is partitioned intom blocks and thei-th block has the cardinalityr i .
Similarly, we denote bysj the cardinality of thej-th block ofP(U) associated to the partitionσ. We now consider
the elements ofA(U, σ). For any (B j, B′j) ∈ A(U, σ), there are two possibilities: One is that (B j, B′j) ∈ A(U, π), say
(B j, B′j) = (Ai j ,A

′
i j
) for somei j . In this case, it is clear thatsj = r i j . The other case is that (B j, B′j) ∈ A(U, σ)\A(U, π),

where the symbolA\B denotes the set of all elements which are members ofA but not members ofB. It follows that
for somei j ,

{

X ⊆ U
∣

∣

∣

∣

(

app
σ
X, appσX

)

= (B j, B
′
j)
}

(

{

X ⊆ U
∣

∣

∣

∣

(

app
π
X, appπX

)

= (Ai j ,A
′
i j
)
}

,

because the partitionσ is strictly finer thanπ. In this case, we also see that thei j-th block provided byπ is partitioned
into smaller blocks and thusr i j =

∑

j sj > sj . In summary, we get that eitherr i = sj or r i =
∑

j si j > si j , and moreover,
the latter case must exist asσ ≺ π. We thus assume thatr i = si j for i ∈ I1 andr i =

∑

j si j > si j for i ∈ I2, whereI2 , ∅

andI1 ∪ I2 = {1, 2 . . . ,m}. Let us compareH(σ) withH(π).

H(π) = −

m
∑

i=1

r i

2n
log

r i

2n

= −
∑

i∈I1

r i

2n
log

r i

2n
−

∑

i∈I2

r i

2n
log

r i

2n

= −
∑

i∈I1

si j

2n
log

si j

2n
−

∑

i∈I2

∑

j si j

2n
log

∑

j si j

2n

= −
∑

i∈I1

si j

2n
log

si j

2n
−

1
2n

∑

i∈I2

















∑

j

si j

































log

















∑

j

si j

















− n

















= −
∑

i∈I1

si j

2n
log

si j

2n
−

1
2n

∑

i∈I2





















log

















∑

j

si j

















(

∑

j si j

)

− n

















∑

j

si j





































< −
∑

i∈I1

si j

2n
log

si j

2n
−

1
2n

∑

i∈I2

















log

















∏

j

s
si j

i j

















− n

















∑

j

si j

































= −
∑

i∈I1

si j

2n
log

si j

2n
−

1
2n

∑

i∈I2

















∑

j

si j log si j − n

















∑

j

si j

































= −
∑

i∈I1

si j

2n
log

si j

2n
−

∑

i∈I2

∑

j

si j

2n
log

si j

2n

= H(σ),

namely,H(σ) > H(π). Therefore, the clause (1) holds.
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(2) It follows from (1) thatH reaches the maximum value whenπ = π̂. In this case, we get by definition that

H(π̂) = −
2n
∑

i=1

1
2n

log
1
2n
= n.

This proves (2).
(3) By (1), we see thatH reaches the minimum value whenπ = π̌. In this case, the empty subset∅ of U has the

rough set approximation (∅, ∅) andU itself has the rough set approximation (U,U). For any proper subset ofU, if any,
it has the rough set approximation (∅,U). Hence,r1 = r2 = 1 andr3 = 2n − 2. We thus obtain by definition that

H(π̌) = −
1
2n

log
1
2n
−

1
2n

log
1
2n
−

2n − 2
2n

log
2n − 2

2n

= n−
2n − 2

2n
log(2n − 2).

Whence, (3) holds, finishing the proof of the proposition.

Note that in the clause (3) of Theorem 3.1, ifn = 1, the value of the corresponding summand 0 log 0 is taken to be
0, which is consistent with the limit:

lim
x→0+

x log x = 0.

For later need, let us recall the following definition from [31].

Definition 3.2. Let 〈U, π〉 and〈V, σ〉 be two approximation spaces, and suppose that f: U −→ V is a mapping.

(1) The mapping f is called ahomomorphismfrom 〈U, π〉 to 〈V, σ〉 if for any C ∈ π, there exists D∈ σ such that
f (C) ⊆ D, where f(C) = { f (u) | u ∈ C}.

(2) A homomorphism f is called amonomorphismif f is an injective mapping.
(3) A monomorphism f is calledstrictly monomorphicif either there exist C∈ π and D ∈ σ such that f(C) ( D,

namely, f(C) ⊆ D and f(C) , D, or |V| > |U |.
(4) The mapping f is called anisomorphismif the mapping f: U −→ V is bijective, and moreover, both f and its

inverse mapping f−1 are homomorphisms.

We can now state the following facts.

Proposition 3.1. Let〈U, π〉 and〈V, σ〉 be two approximation spaces with|U | = |V|, and let f : U −→ V be a mapping.

(1) If f is a monomorphism from〈U, π〉 to 〈V, σ〉, in particular,π � σ, thenH(π) ≥ H(σ).
(2) If f is a strict monomorphism from〈U, π〉 to 〈V, σ〉, in particular,π ≺ σ, thenH(π) > H(σ).
(3) If f is an isomorphism from〈U, π〉 to 〈V, σ〉, thenH(π) = H(σ).

Proof. It follows immediately from Definition 3.1 and Theorem 3.1.

To measure the granularity with respect to the approximation operatorsappandappcarried by the partitionπ, we
introduce the concept of co-entropy, which corresponds to the information entropy in Definition 3.1.

Definition 3.3. Keep the notations as in Definition 3.1. Theco-entropyG(π) of 〈U, π〉 (with respect to the approxima-
tion operators appandapp) is defined by

G(π) = G(P(π)) =
m

∑

i=1

r i

2n
log r i . (8)

The quantityG(π) furnishes a measure of the average granularity carried by the partitionπ as a whole. It follows
immediately from definition that

H(π) + G(π) = n. (9)

It means that the two measures complement each other with respect to the constant quantityn = |U |, which is invariant
with respect to the choice of the partitionπ of U.

The co-entropy functionG is of the following properties.
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Theorem 3.2.

(1) For anyπ, σ ∈ Π(U), if σ ≺ π, thenG(σ) < G(π).
(2) The co-entropy functionG reaches the minimum value0 for the finest partition̂π.
(3) The co-entropy functionG reaches the maximum value2n−2

2n log(2n − 2) for the coarsest partitioňπ.

Proof. All the clauses follow directly from Theorem 3.1 and Eq. (9).

Similar to Proposition 3.1, we have the following observation.

Proposition 3.2. Let〈U, π〉 and〈U, σ〉 be two approximation spaces with|U | = |V|, and let f : U −→ V be a mapping.

(1) If f is a monomorphism from〈U, π〉 to 〈V, σ〉, in particular,π � σ, thenG(π) ≤ G(σ).
(2) If f is a strict monomorphism from〈U, π〉 to 〈V, σ〉, in particular,π ≺ σ, thenG(π) < G(σ).
(3) If f is an isomorphism from〈U, π〉 to 〈V, σ〉, thenG(π) = G(σ).

Proof. It follows immediately from Proposition 3.1 and Eq. (9).

As a corollary of Theorem 3.2 and Proposition 3.2, we see thatG is a partition measure onU in the sense of
[31, Definition 3.4], that is,G is nonnegative and satisfies the following two conditions:G(σ) < G(π) if σ ≺ π;
G(π) = G(σ) if there exists an isomorphism from〈U, π〉 to 〈V, σ〉.

Note that our information entropy and co-entropy are not directly based on the blocks of a partition. Therefore, in
general they do not satisfy the definition of expected granularity proposed in [28].

4. Relationship of co-entropies between different universes

In the last section, we have seen that iff is a strict monomorphism from〈U, π〉 to 〈U, σ〉, in particular,π ≺ σ, then
H(π) > H(σ) andG(π) < G(σ). In this section, we consider the monotonicities ofH andG for different universes.
In other words, we compareH(π) with H(σ) andG(π) with G(σ) when there exists a strict monomorphism from
〈U, π〉 to 〈V, σ〉, where|V| > |U |. For convenience, we write〈U, π〉 →֒ 〈V, σ〉 if |V| > |U | and there exists a strict
monomorphism from〈U, π〉 to 〈V, σ〉.

We start with the following observation on the entropy function H and the co-entropy functionG reviewed in
Section 2.2. Consider〈U1, π1〉 = 〈{1}, {{1}}〉, 〈U2, π2〉 = 〈{1, 2}, {{1}, {2}}〉, and 〈U3, π3〉 = 〈{1, 2, 3}, {{1, 3}, {2}}〉.
Clearly,

〈U1, π1〉 →֒ 〈U2, π2〉 →֒ 〈U3, π3〉.

It is easy to check by Definition 2.1 thatH(π1) = 0, H(π2) = 1, andH(π3) = log 3− 2
3 < 1. This means that the

entropy functionH is not monotonic. By the way, we can get by a direct computation thatG(π1) = 0,G(π2) = 0, and
G(π3) = 1

2.
Let us continue to discuss the monotonicity of co-entropy functionG. Consider〈U1, π1〉 = 〈{1}, {{1}}〉, 〈U2, π2〉 =

〈{1, 2}, {{1, 2}}〉, and〈U3, π3〉 = 〈{1, 2, 3}, {{1, 2}, {3}}〉. Again, we see that

〈U1, π1〉 →֒ 〈U2, π2〉 →֒ 〈U3, π3〉.

It is easy to check by Definition 2.2 thatG(π1) = 0, G(π2) = 1, andG(π3) = 2
3. This shows that the co-entropy

functionG is not monotonic either. In this case, we can obtain by a direct computation thatG(π1) = 0,G(π2) = 1
2, and

G(π3) = 1
2.

Finally, we address the monotonicity of entropy functionH . Consider〈U1, π1〉 = 〈{1, 2}, {{1, 2}}〉, 〈U2, π2〉 =

〈{1, 2, 3}, {{1, 2}, {3}}〉, and〈U3, π3〉 = 〈{1, 2, 3, 4}, {{1, 2, 4}, {3}}〉. Obviously, we have that

〈U1, π1〉 →֒ 〈U2, π2〉 →֒ 〈U3, π3〉.

By a routine computation we can get thatH(π1) = 3
2,H(π2) = 5

2, andH(π3) = 13
4 −

3
4 log 3 < 5

2. Consequently, the
entropy functionH is not monotonic either. On the other hand, it follows from Eq. (9) thatG(π1) = 1

2, G(π2) = 1
2,

andG(π3) = 3
4 +

3
4 log 3.
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As a result, in all the above three cases we always have that

G(π1) ≤ G(π2) ≤ G(π3).

We thus conjecture thatG(π) ≤ G(σ) whenever〈U, π〉 →֒ 〈V, σ〉. Indeed, it holds true, as we will see later.
To prove the conjecture, it is convenient to introduce the following notion and a key lemma.

Definition 4.1. Let〈U, π〉 be an approximation space and a< U. The approximation space〈U∪{a}, π∪{{a}}〉 is called
theone-point extensionof 〈U, π〉 by a. We say that〈V, σ〉 is a one-point extension of〈U, π〉 if 〈V, σ〉 = 〈U∪{a}, π∪{{a}}〉
for some a.

For example,〈U2, π2〉 = 〈{1, 2, 3}, {{1, 2}, {3}}〉 is the one-point extension of〈U1, π1〉 = 〈{1, 2}, {{1, 2}}〉 by 3.
The following lemma shows that one-point extension does notchange co-entropy.

Lemma 4.1. Let 〈V, σ〉 be a one-point extension of〈U, π〉. ThenG(σ) = G(π).

Proof. Suppose thatπ = {U1,U2, . . . ,Uk} andσ = {U1,U2, . . . ,Uk, {a}}, wherea < U; assume thatA(U, π) =

{(Ai ,A′i ) | 1 ≤ i ≤ m} andAi =

{

X ⊆ U
∣

∣

∣

∣

(

app
π
X, appπX

)

= (Ai ,A′i )
}

with |Ai | = r i . It thus follows that

A(V, σ) = A(U, π) ∪
{(

Ai ∪ {a},A
′
i ∪ {a}

)

| 1 ≤ i ≤ m
}

.

For any (Bi, B′i ) ∈ A(V, σ), we write Bi for
{

X ⊆ V
∣

∣

∣

∣

(

app
σ
X, appσX

)

= (Bi, B′i )
}

and si for |Bi |. If (Bi, B′i ) =

(Ai,A′i ) ∈ A(U, π), then we see thatBi = Ai and thussi = r i in this case. If (Bi, B′i ) =
(

Ai ∪ {a},A′i ∪ {a}
)

∈
{(

Ai ∪ {a},A′i ∪ {a}
)

| 1 ≤ i ≤ m
}

, then we have thatBi = {X ∪ {a} |X ∈ Ai} andsi = r i still holds in this case. There-
fore, we get by Definition 3.3 that

G(σ) =

m
∑

i=1

r i

2n+1
log r i +

m
∑

i=1

r i

2n+1
log r i

=

m
∑

i=1

r i

2n
log r i

= G(π),

finishing the proof of the lemma.

For subsequent need, we would like to generalize Definition 4.1 as follows.

Definition 4.2. Let 〈U, π〉 and〈V, σ〉 be two approximation spaces. We say that〈V, σ〉 is a multi-one-point extension
of 〈U, π〉 if there are approximation spaces〈Ui , πi〉, 0 ≤ i ≤ l, with 〈U0, π0〉 = 〈U, π〉 and 〈Ul , πl〉 = 〈V, σ〉 such that
each〈Ui , πi〉, 1 ≤ i ≤ l, is a one-point extension of〈Ui−1, πi−1〉.

For example,〈V, σ〉 = 〈{1, 2, 3, 4}, {{1, 2}, {3}, {4}}〉 is a multi-one-point extension of〈U, π〉 = 〈{1, 2}, {{1, 2}}〉. In
fact, we may take〈U0, π0〉 = 〈U, π〉, 〈U1, π1〉 = 〈{1, 2, 3}, {{1, 2}, {3}}〉, and〈U2, π2〉 = 〈V, σ〉.

The following fact follows immediately from Lemma 4.1.

Corollary 4.1. If 〈V, σ〉 is a multi-one-point extension of〈U, π〉, thenG(σ) = G(π).

In light of the above corollary, let us refer to multi-one-point extensions as one-point extensions for simplicity.
Further, we have the following observation.

Theorem 4.1. Suppose that there is a monomorphism from〈U, π〉 to 〈V, σ〉. If there exists〈U′, π′〉 that satisfies the
following two conditions:

(a) either〈U′, π′〉 = 〈U, π〉 or 〈U′, π′〉 is a one-point extension of〈U, π〉,
(b) 〈U′, π′〉 is isomorphic to〈V, σ〉,
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thenG(π) = G(σ); otherwise,G(π) < G(σ).

Proof. We first consider the case that there exists〈U′, π′〉 that satisfies the conditions (a) and (b). In this case, if
〈U′, π′〉 = 〈U, π〉 and〈U′, π′〉 is isomorphic to〈V, σ〉, then|V| = |U | and we see by Proposition 3.2 thatG(π) = G(σ).
If 〈U′, π′〉 is a one-point extension of〈U, π〉 and〈U ′, π′〉 is isomorphic to〈V, σ〉, then we get thatG(π) = G(π′) by
Corollary 4.1 andG(π′) = G(σ) by Proposition 3.2. Consequently,G(π) = G(σ).

We now consider the case that there does not exist〈U′, π′〉 such that the conditions are satisfied. It forces that
the monomorphism, sayf , from 〈U, π〉 to 〈V, σ〉 is strict. Two cases need to consider. One is that|V| = |U |. In
this case, it follows from Proposition 3.2 thatG(π) < G(σ). The other case is that|V| > |U |. In this case, let us set
〈V1, σ1〉 = 〈 f (U), f (π)〉, wheref (U) is the image ofU under f and f (π) = { f (U′) |U′ ∈ π}. In fact, f gives rise to an
isomorphism between〈U, π〉 and〈V1, σ1〉. Therefore,G(π) = G(σ1). Note thatV1 = f (U) ⊆ V. We now take〈V2, σ2〉

as follows:
V2 = V, σ2 = σ1 ∪ {{a} | a ∈ V\V1} .

It follows that〈V2, σ2〉 is a one-point extension of〈V1, σ1〉. Hence,G(σ1) = G(σ2). Becausef is a strict monomor-
phism, we see that〈U, π〉 →֒ 〈V2, σ2〉 andσ2 ≺ σ. Whence, we getG(σ2) < G(σ) by Theorem 3.2. As a result,
G(π) < G(σ). This completes the proof of the theorem.

Let us provide an informal explanation of Theorem 4.1. The hypothesis that there is a monomorphism from〈U, π〉
to 〈V, σ〉 means that〈U, π〉 is finer than〈V, σ〉. In the special case that the monomorphism is not strict, we have that
〈U, π〉 and〈V, σ〉 are isomorphic, and thus, they have the same co-entropy. If the monomorphism is strict, then after
renaming the elements ofU, we can get a finer partition than〈V, σ〉 by using one-point extensions. Theorem 4.1 says
thatG(π) < G(σ) if π is finer thanσ.

We end this section with several examples.

Example 4.1. A trivial example is that〈U, π〉 = 〈{1, 2, 3}, {{1, 2}, {3}}〉 and 〈V, σ〉 = 〈{a, b, c}, {{a, b}, {c}}〉. The map-
ping f that maps1, 2, and3 to a, b, and c respectively is a monomorphism. In fact, f is an isomorphism. Hence,
G(π) = G(σ). A direct computation shows thatG(π) = 0.5 = G(σ).

Consider〈U, π〉 = 〈{1, 2}, {{1, 2}}〉 and〈V, σ〉 = 〈{a, b, c, d}, {{a, b}, {c}, {d}}〉. The mapping f that maps1 and2 to
a and b respectively is a monomorphism, which yields that〈U, π〉 is isomorphic to〈V1, σ1〉 = 〈{a, b}, {{a, b}}〉. Clearly,
we can get〈V, σ〉 by one-point extensions of〈V1, σ1〉. Therefore,G(π) = G(σ). On the other hand, we can get by a
computation thatG(π) = 0.5 = G(σ).

Finally, consider〈U, π〉 = 〈{1, 2}, {{1, 2}}〉 and 〈V, σ〉 = 〈{a, b, c, d}, {{a, b}, {c, d}}〉. As mentioned earlier, the
mapping f that maps1 and2 to a and b respectively is a monomorphism, which gives an isomorphism between〈U, π〉
and〈V1, σ1〉 = 〈{a, b}, {{a, b}}〉. We can get〈V2, σ2〉 = 〈{a, b, c, d}, {{a, b}, {c}, {d}}〉 by one-point extensions of〈V1, σ1〉.
Clearly,σ2 ≺ σ. As a result,G(π) < G(σ). On the other hand, we can obtain by a direct computation thatG(π) = 0.5
andG(σ) = 0.75.

5. Conclusion

In this paper, we have proposed the novel notions of entropy and co-entropy by taking both partitions and the
lower and upper approximations into account. Some desirable properties of the entropy and co-entropy have been
presented. Furthermore, we have investigated the relationship of co-entropies between different universes.

There are several problems which are worth further studying. Firstly, the present work focuses on the classical
rough sets based on partitions. It would be interesting to generalize the notions of entropy and co-entropy here
into the framework of covering rough sets [4, 19, 29] or fuzzyrough sets [5]. It is also interesting to compare the
entropies (co-entropies) under some special homomorphisms such as neighborhood-consistent functions introduced
in [33]. Secondly, it remains to develop the corresponding roughness measure based on the entropy or co-entropy
for measuring numerically the roughness of an approximation. Finally, the conditioned entropy and conditioned
co-entropy [2] are yet to be addressed in our framework.
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