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Abstract

Clustering has become an increasingly important and highly complicated research area for targeting useful and rel-
evant information in modern application domains such as the World Wide Web. Recent studies have shown that
the most commonly used partitioning-based clustering algorithm, the K-means algorithm, is more suitable for large
datasets. However, the K-means algorithm may generate a local optimal clustering. In this paper, we present novel
document clustering algorithms based on the Harmony Search (HS) optimization method. By modeling clustering
as an optimization problem, we first propose a pure HS based clustering algorithm that finds near-optimal clusters
within a reasonable time. Then, harmony clustering is integrated with the K-means algorithm in three ways to achieve
better clustering by combining the explorative power of HS with the refining power of the K-means. Contrary to the
localized searching property of K-means algorithm, the proposed algorithms perform a globalized search in the entire
solution space. Additionally, the proposed algorithms improve K-means by making it less dependent on the initial
parameters such as randomly chosen initial cluster centers, therefore, making it more stable. The behavior of the pro-
posed algorithm is theoretically analyzed by modeling its population variance as a Markov chain. We also conduct an
empirical study to determine the impacts of various parameters on the quality of clusters and convergence behavior of
the algorithms. In the experiments, we apply the proposed algorithms along with K-means and a Genetic Algorithm
(GA) based clustering algorithm on five different document datasets. Experimental results reveal that the proposed
algorithms can find better clusters and the quality of clusters is comparable based on F-measure, Entropy, Purity, and
Average Distance of Documents to the Cluster Centroid (ADDC).

Keywords:
document clustering, stochastic optimization, harmony search, K-means, hybridization

1. Introduction

The continued growth of the Internet has made available an ever-growing collection of full-text digital documents
and new opportunities to obtain useful information from them [3, 16, 45]. At the same time, acquiring useful infor-
mation from such immense quantities of documents presents new challenges which has led to increasing interest in
research areas such as information retrieval, information filtering and text clustering. Clustering is one of the cru-
cial unsupervised techniques for dealing with massive amounts of heterogeneous information on the web [25], , with
applications in organizing information, improving search engines results, enhancing web crawling, and information
retrieval or filtering. Clustering is the process of grouping a set of data objects into a set of meaningful partitions,
called clusters, such that data objects within the same cluster are highly similar in comparison with one another and
are very highly dissimilar to objects in other clusters.

Some of the most conventional clustering algorithms can be broadly classified into two main categories, hierar-
chical and partitioning algorithms [23, 26]. Hierarchical clustering algorithms [22, 28, 38, 52] create a hierarchical
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decomposition of the given dataset which forms dendrograma tree by splitting the dataset recursively into smaller
subsets, representing the documents in a multi-level structure [14, 21]. The hierarchical algorithms can be further
divided into either agglomerative or divisive algorithms [51]. In agglomerative algorithms, each document is initially
assigned to a different cluster. The algorithm then repeatedly merges pairs of clusters until a certain stopping criterion
is met [51]. Conversely, divisive algorithms repeatedly divide the whole documents into a certain number of clusters,
increasing the number of clusters at each step. Partition clustering, the second major category of algorithms, is the
most practical approach for clustering large data sets [6, 7]. They cluster the data in a single level rather than a hi-
erarchical structure such as a dendrogram. Partitioning methods try to divide a collection of documents into a set of
groups, so as to maximize a pre-defined objective value.

It is worth mentioning that although the hierarchical clustering methods are often said to have better quality, they
generally do not provide the reallocation of documents, which could have been poorly classified in the early stages of
the clustering[26]. Moreover, the time complexity of hierarchical methods is quadratic in the number of data objects
[49]. Recently, it has been shown that the partitioning methods are more advantageous in applications involving large
datasets due to their relatively low computational complexity [8, 29, 49, 55]. The time complexity of partitioning
techniques are almost linear, which makes them appealing for large scale clustering. The best known method in
partitioning clustering is K-means algorithm [34].

Although K-means algorithm is straightforward, easy to implement, and works fast in most situations, it suffers
from some major drawbacks that make it unsuitable for many applications. The first disadvantage is that the number
of clusters K must be specified in advance. In addition, since the summary statistic that is maintained for each cluster
by K-means algorithm is simply the mean of samples assigned to that cluster, the individual members of the cluster
can have a high variance and hence the mean may not be a good representative for the cluster members. Further, as the
number of clusters grows into the thousands, K-means clustering becomes untenable, approaching O(m2) comparisons
where m is the number of documents. However, for relatively few clusters and a reduced set of pre-selected features,
K-means performs well [50]. Another major drawback of the K-means algorithm is its sensitivity to initialization.
Lastly, the K-means algorithm converges to local optima, potentially leading to clusters that are not globally optimal.

To alleviate the limitations of traditional partition based clustering methods discussed above, particularly the K-
means algorithm, different techniques have been introduced in recent years. One of these techniques involves the
use of optimization methods that optimize a pre-defined clustering objective function. Specifically, optimization
based methods define a global objective function over the quality of clustering algorithm and traverse the search
space trying to optimize its value. Any general purpose optimization method can serve as the basis of this approach
such as Genetic Algorithms (GAs) [10, 26, 40], Ant Colony Optimization [43, 46] and Particle Swarm Optimization
[11, 12, 53], which have been used for web page and image clustering. Since stochastic optimization approaches
are good at avoiding convergence to a locally optimal solution, these approaches could be used to find a global near-
optimal solution [35, 30, 48]. However the stochastic approaches take a long time to converge to a globally optimal
partition.

Harmony Search (HS) [18, 32] is a new meta-heuristic optimization method imitating the music improvisation
process where musicians improvise the pitches of their instruments searching for a perfect state of harmony. HS
has been very successful in a wide variety of optimization problems [17, 18, 19, 32], presenting several advantages
over traditional optimization techniques such as: (a) HS algorithm imposes fewer mathematical requirements and
does not require initial value settings for decision variables, (b) as the HS algorithm uses stochastic random searches,
derivative information is also unnecessary, and (c) the HS algorithm generates a new vector, after considering all of
the existing vectors, whereas methods such as GA only consider the two parent vectors. These three features increase
the flexibility of the HS algorithm.

The behavior of the K-means algorithm is mostly influenced by the number of specified clusters and the random
choice of initial cluster centers. In this study we concentrate on tackling the latter issue, trying to develop efficient
algorithms generating results which are less dependent on the chosen initial cluster centers, and hence are more
stabilized. The first algorithm, called Harmony Search CLUSTtering (HSCLUST), is good at finding promising areas
of the search space but not as good as K-means at fine-tuning within those areas. To improve the basic algorithm, we
propose different hybrid algorithms using both K-means and HSCLUST, that differ on the stage in which we carry
out the K-means algorithm. The hybrid methods improve the K-means algorithm by making it less dependent on the
initial parameters such as randomly chosen initial cluster centers, and hence, are more stable. These methods combine
the power of the HSCLUST with the speed of K-means. By combining these two algorithms into a hybrid algorithm,
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we hope to create an algorithm that outperforms either of its constituent parts. The advantage of these algorithms
over K-means is that the influence of the improperly chosen initial cluster centers will be diminished by enabling the
algorithm to explore the entire decision space over a number of iterations and simultaneously increasing its fine-tuning
capability around the final decision. Therefore, it will be more stabilized and less dependent on the initial parameters
such as randomly chosen initial cluster centers, while it is more likely to find the global solution rather than a local one.
To demonstrate the effectiveness and speed of HSCLUST and hybrid algorithms, we have applied these algorithms to
various standard datasets and achieved very good results compared to K-means and a GA based clustering algorithm
[4]. The evaluation of the experimental results shows considerable improvements and demonstrate the robustness of
the proposed algorithms.

The remainder of this paper is organized as follows. Section 2 provides a brief overreview of the vector-space
model for document representation, particularly the aspects necessary to understand document clustering. Section 3
provides a general overview of K-means and HS algorithm. Section 4 introduces our HS-based clustering algorithm
named HSCLUST, as well astheoretical analysis of its convergency and time complexity. The hybrid algorithms are
explained in section 5. The time complexity of each proposed hybrid algorithm is included after the algorithm. Section
6 presents the document sets used in our experiments, quality measures we used for comparing algorithms, empirical
study of HS parameters on the convergence of HSCLUST, and finally the performance evaluation of the proposed
algorithms compared to K-means and a GA based clustering algorithm. Finally, section 7 concludes the paper.

2. Preliminaries

In this section we discuss some aspects that almost all clustering algorithms share.

2.1. Document representation
In document clustering, the vector-space model is usually used to represent documents and to measure the simi-

larity among them. In the vector-space model, each document i is represented by a weight vector of n features (words,
terms, or N-grams) as follows:

di = (wi1,wi2, . . . ,win), (1)

where the weight wi j is the weight of feature j in document i and n is the total number of the unique features. The
most widely used weighting schema is the combination of term frequency and inverse document frequency (TF-IDF)
[16, 45], which can be computed by the following formula [44] :

wi j = tf(i, j) × idf(i, j) = tf(i, j) × log
m

df( j)
, (2)

where tf(i, j) is the term frequency, i.e. the number of occurrences of feature j in a document di, and idf(i, j) is the
inverse document frequency. idf(i, j) is a factor which enhances the terms which appear in fewer documents, while
downgrades the terms occurring in many documents and is defined as idf(i, j) = log (m/df( j)) , where m is the number
of documents in the whole collection, and df( j) is the number of documents where feature j appears.

One of the major problems in text mining is that a document can contain a very large number of words. If each
of these words is represented as a vector coordinate, the number of dimensions would be too high for the text mining
algorithm. Hence, it is crucial to apply preprocessing methods that greatly reduce the number of dimensions (words)
to be given to the text mining algorithm. As an example, the very common words (e.g. function words: a, the, in,
to; pronouns: I, he, she, it) are removed completely and different forms of a word are reduced to one canonical form
using Porters algorithm [29] .

2.2. Similarity measures
In clustering, the similarity between two documents needs to be measured. There are two prominent methods to

compute the similarity between two documents d1 and d2. The first method is based on Minkowski distances [6],
given two vectors, d1 = (w11,w12, . . . ,w1n) and d2 = (w21,w22, . . . ,w2n) , their Minkowski distance is defined as:

Dp(d1,d2) =
( n∑

i=1

|w1i − w2i|
p
) 1

p
, (3)
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Algorithm 1 K-means algorithm
1: Input: a collection of training documentsD = {d1,d2, . . . ,dm}, number of clusters K
2: Output: an assignment matrix A of documents to set of K clusters
3: Randomly select K documents as the initial cluster centers
4: repeat
5: Randomly choose C = (c1, c2, . . . , cK) as initial centroids
6: Initialize A as zero
7: for all di inD do
8: let j = arg mink∈{1,2,...,K} D(di, ck)
9: assign di to the cluster j, i.e. A[i][ j] = 1

10: end for
11: Update the cluster means as ck =

∑m
i=1

(∑K
k=1 A[i][k]di

)∑n
i=1

∑K
k=1 A[i][k]

for k = 1, 2, . . . ,K
12: until meeting a given criterion function
13:

which is converted to Euclidean distance for p = 2. The other commonly used similarity measure in document
clustering is the cosine correlation measure [45], given by:

cos(d1,d2) =
d1 · d2

‖d1‖ × ‖d2‖
, (4)

where · denotes the dot product of two vectors, and ‖ · ‖ denotes the length of a vector. This measure becomes 1 if
the documents are identical and zero if they have nothing in common (i.e., the vectors are orthogonal to each other).
Both metrics are widely used in literatures on text document clustering. However, it seems that in cases where the
number of dimensions of two vectors differs greatly, the cosine is more useful. Conversely, where vectors have nearly
equal dimensions, Minkowski distance can be useful. For another measure which is designed specifically for high
dimensional vector spaces such as documents, we refer interested readers to [15].

3. Basic algorithms

3.1. The K-means algorithm
The K-means algorithm, first introduced in [34] is an unsupervised clustering algorithm which partitions a set of

object into a predefined number of clusters. The K-means algorithm is based on the minimization of an objective
function which is defined as the sum of the squared distances from all points in a cluster to the cluster center [33].
The K-means algorithm with its many variants is the most popular clustering method, gaining popularity because of
its simplicity and intuition. Formally, the K-means clustering algorithm using matrix notation is defined as follows.
Let X be the m × n data matrix associated with documentsD = {d1,d2, . . . ,dm}. The goal of K-means algorithm is to
find optimal m × K indicator matrix A∗ such that

A∗ = arg min
A∈Ω
||X − AAT X||2F , (5)

where Ω is the set of all m × K indicator matrices and K denotes the number of clusters. To solve (5), K-means
starts with randomly selected initial cluster centroids and iteratively reassigns the data objects to clusters based on
the similarity between the data object and the cluster centroid. The reassignment procedure will not stop until a
convergence criterion is met (e.g., the fixed iteration number is reached, or the cluster result does not change after a
certain number of iterations). This procedure is detailed in Algorithm 1.

The K-means algorithm tends to find local minima rather that the global minimum since it is heavily influenced
by the selection of the initial cluster centers and the distribution of data. Most of the time, the results become more
acceptable when initial cluster centers are chosen relatively far apart since the main clusters in a given data are usually
distinguished in that way. The initialization of the cluster centroids affects the main processing of the K-means as
well as the quality of the final partitioning of the dataset. Therefore the quality of the result is dependent on the
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initial points. If the main clusters in a given data are close in characteristics, the K-means algorithm fails to recognize
them when it is left unsupervised. For its improvement, the K-means algorithm needs to be associated with some
optimization procedures in order to be less dependent on a given data and initialization. Notably, if good initial
clustering centroids can be obtained using an alternative technique, K-means will work well in refining the clustering
centroids to find the optimal clustering centers [2]. Our intuition for hybrid algorithms stems from this observation
about K-means algorithm as discussed later.

3.2. The harmony search algorithm
Harmony Search (HS) [32] is a new meta-heuristic optimization method imitating the music improvisation process

where musicians improvise their instruments pitches searching for a perfect state of harmony. The superior perfor-
mance of the HS algorithm has been demonstrated through its application to different problems. The main reason for
this success is the explorative power of the HS algorithm which expresses its capability to explore the entire search
space. The evolution of the expected population variance over generations provides a measure of the explorative
power of the algorithm. Here, we provide a brief introduction to the main algorithm and the interested reader can
refer to [13] for theoretical analysis of the exploratory power of the HS algorithm. The main steps of algorithm are
described in the next five subsections.

3.2.1. Initialize the problem and algorithm parameters
In Step 1, the optimization problem is specified as follows:

Minimize f (x) subject to:

gi(x) ≥ 0 i = 1, 2, . . . ,m,
h j(x) = 0 j = 1, 2, . . . , p, (6)
LBk ≤ xk ≤ UBk k = 1, 2, . . . , n,

where f (x) is the objective function, m is the number of inequality constraints and p is the number of equality con-
straints and n is the number of decision variables. The lower and upper bounds for each decision variable k are LBk

and UBk respectively. The HS parameters are also specified in this step. These are the harmony memory size (HMS),
or the number of solution vectors in the harmony memory, the probability of memory considering (HMCR), the prob-
ability of pitch adjusting (PAR), and the number of improvisations (NI), or stopping criterion. The harmony memory
(HM) is a memory location where all the solution vectors (sets of decision variables) are stored. This HM is similar
to the genetic pool in the GA. The HMCR, which varies between 0 and 1, is the rate of choosing one value from the
historical values stored in the HM, while 1−HMCR is the rate of randomly selecting one value from the possible range
of values.

3.2.2. Initialize the harmony memory
In Step 2, the HM matrix is filled with as many randomly generated solution vectors as the HMS allows:

HM =



x1
1 x1

2 . . . x1
n−1 x1

n f (x1)
x1

1 x1
2 . . . x1

n−1 x1
n f (x2)

...
...

...
...

...
...

xHMS−1
1 xHMS−1

2 . . . xHMS−1
n−1 xHMS−1

n f (xHMS−1)
xHMS

1 xHMS
2 . . . xHMS

n−1 xHMS
n f (xHMS )


.

The initial harmony memory is generated from a uniform distribution in the ranges [LBi,UBi], where 1 ≤ i ≤ n.
This is done as follows:

x j
i = LBi + r × (UBi − LBi), j = 1, 2, . . . ,HMS , (7)

where r ∼ U(0, 1) and U is a uniform random number generator.
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Algorithm 2 Improvise a new harmony
1: Input: current solutions in harmony memory HM
2: Output: new harmony vector x′ = (x′1, x

′
2, . . . , x

′
n)

3: for each i ∈ [1, n] do
4: if U(0, 1) ≤HMCR then
5: x′i = HM[ j][i] where j ∼ U(1, 2, . . . ,HMS )
6: if U(0, 1) ≤ PAR then
7: x′i = x′i ± r × bw, where r ∼ U(0, 1) and bw is an arbitrary distance bandwidth
8: end if
9: else

10: x′i = LBi + r × (UBi − LBi)
11: end if
12: end for

3.2.3. Improvise a new harmony
Generating a new harmony is called improvisation. A new harmony vector, x′ = (x′1, x

′
2, . . . , x

′
n) , is generated

based on three rules: memory consideration, pitch adjustment, and random selection. In the memory consideration,
the value for a decision variable is randomly chosen from the historical values stored in the HM with the probability
of HMCR. Every component obtained by the memory consideration is examined to determine whether it should be
pitch-adjusted. This operation uses the PAR parameter, which is the probability of pitch adjustment. Variables which
are not selected for memory consideration will be randomly chosen from the entire possible range with a probability
equal to 1− HMCR. The pseudo code shown in Algorithm 2 describes how these rules are utilized by the HS.

3.2.4. Update harmony memory
If the new harmony vector, x′ = (x′1, x

′
2, . . . , x

′
n) , has better fitness value than the worst harmony in the HM, the

new harmony is included in the HM and the existing worst harmony is excluded from it.

3.2.5. Check stopping criterion
The HS is terminated when the stopping criterion (e.g., maximum number of improvisations) has been met. Oth-

erwise, Steps 3 and 4 are repeated.
We note that in recent years, some researchers have improved the original HS algorithm. [35] proposed an im-

proved variant of HS by using varying parameters. The intuition behind this algorithms is as follows. Although the
HMCR and PAR parameters of HS help the method in searching for globally and locally improved solutions, respec-
tively, however PAR and bw parameters have a profound effect on the performance of the HS. Thus, fine tuning these
two parameters is very important. Of the two parameters, bw is more difficult to tune because it can take any value
from (0,∞). To address these shortcomings of HS, a new variant of HS, called the Improved Harmony Search (IHS),
is proposed in [35]. IHS dynamically updates PAR according to the following equation,

PAR(t) = PARmin +
PARmax − PARmin

NI
× t, (8)

where PAR(t) is the pitch adjusting rate for generation t, PARmin is the minimum adjusting rate, PARmax is the maxi-
mum adjusting rate and NI is the maximum number of generations. In addition, bw is dynamically updated as follows:

bw(t) = bwmax exp
( ln ( bwmin

bwmax
)

NI
× t

)
, (9)

where bw(t) is the bandwidth for generation t, bwmin is the minimum bandwidth and bwmax is the maximum bandwidth.
In order to overcome the parameter setting problem of HS, which is very tedious and could be another daunting

optimization problem, Geem et al. [53] introduced a variant of HS which eliminates tedious and difficult parameter
assigning efforts.
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4. HSCLUST: the basic Harmony Search based algorithm for document CLUSTtering

In this section we first propose our pure harmony search based clustering algorithm which is called HSCLUST.
Then by modelling HSCLUST population variance as a Markov chain, its behaviour is theoretically analyzed. The
time complexity of HSCLUST will be analyzed in subsection 4.3.

4.1. HSCLUST algorithm
All proposed algorithms represent documents using the vector-space model discussed before. In this model,

each term represents one dimension of multidimensional document space, each document di = (wi1,wi2, . . . ,win) is
considered to be a vector in the term space with n different terms, and each possible solution for clustering is a vector
of centroids.

Clustering problem is casted as an optimization task in which the objective is to locate the optimal cluster centroids
rather than finding an optimal partition. To this end, we chose the clustering quality as the objective function and
utilize the HS algorithm to optimize the objective. The principal advantage of this approach is that the objective of the
clustering is explicit, enabling us to better understand the performance of the clustering algorithm on particular types
of data and to also allowing us use task-specific clustering objectives. It is also possible to consider several objectives
simultaneously, as recently explored in [24].

When a general purpose optimization meta-heuristic is used for clustering, a number of important design choices
have to be made. Predominantly, these are the problem representation and the objective function. Both of these
have a significant effect on optimization performance and clustering quality. The following subsections describe the
HSCLUST algorithm.

4.1.1. Representation of solutions
The proposed algorithm uses representations which codify the whole partition P of the document set in a vector of

length m, where m is the number of the documents. Each element of this vector is the label where the single document
belongs to; in particular if the number of clusters is K, each element of the solution vector is an integer value in the
range [K] = {1, . . . ,K}. An assignment that represents K non-empty clusters is a legal assignment. Each assignment
corresponds to a set of K centroids.

Accordingly, the search space is the space of all permutations of size m from the set {1, . . . ,K} that satisfies the
constraint that enforces the algorithm to allocate each document to exactly one cluster and no cluster is empty. This
problem is well known to be NP-hard even for K = 2. A natural way of encoding such permutations is to consider
each row of the HM as an integer vector of m positions where the ith position represents the cluster which the ith
document is assigned to. An example of representation of solutions is shown in Fig. 1. In this case, five documents
{1, 2, 7, 10, 12} are from the cluster with label 2. The cluster with label 1 has two documents {3, 8}, and so on.

4.1.2. Initialization
In this step, harmony memory is filled with randomly generated feasible solution vectors. Each row of harmony

memory corresponds to a specific cluster of documents in which, the value of the ith element in each row is randomly
selected from the uniform distribution over the set {1, . . . ,K}. Such a randomly generated solution may not be legal
since it is possible that no document is allocated to some of the clusters. This is avoided by assigning randomly
chosen documents to each cluster and the rest of the documents to randomly chosen clusters. In contrast to K-means
algorithm, the HS-based clustering algorithm is not sensitive to initialization of the HM but an intelligent initialization
would slightly increase the convergence time of the algorithm.

4.1.3. Improvisation step
In the improvising step a new solution vector, namely NHV, is generated from the solution vectors stored in HM.

The newly generated harmony vector must inherit as much information as possible from the solution vectors in HM.
If the generated vector, which corresponds to a new clustering, consists mostly or entirely of assignments found in the
vectors in HM, it provides good heritability.

In this algorithm each decision variable corresponds to a document and a value for a decision variable shows its
cluster label. The selection of a value for the cluster of a document is as follows: the cluster number of each document
in the new solution vector is selected from HM with probability HMCR and with probability 1−HMCR is randomly
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selected from the set {1, 2, . . . ,K}. After generating the new solution, the pitch adjustment process is applied. The
PAR parameter is the rate of allocating a different cluster to a document. PAR controls the fine-tuning of optimized
solution vectors, thus influenc the convergence rate of the algorithm to an optimal solution.

In contrast to original HS and most of its variants where originally developed for continuous variable optimization
problems, our algorithm uses a discrete representation of solutions and, consequently, we need to modify the pitch
adjusting process for this type of optimization. To best lead the algorithm during improvising step we define two
different PAR parameters ( i.e., PAR1 = 0.6 × PAR and PAR2 = 0.3 × PAR ). For each document di, whose cluster
label is selected from HM, with probability of PAR1 the current cluster of di is replaced with a new cluster for which
di has the minimum distance to it according to :

NHV[i] = arg min
j∈[K]

D(di, c j) (10)

and with probability PAR2 the current cluster of di is replaced with a new cluster chosen randomly from the following
distribution:

p j = Pr{cluster j is selected as new cluster} =
Dmax − D(di, c j)

NF
(1 −

gn
NI

), (11)

where NF = KDmax −
∑K

j=1 D(di, c j), Dmax = maxi D(NHV, ci) , NI is the total number of iterations, and gn is the
number of current iteration.

It should be noted that in Eq. 11 the probabilities of assignments change dynamically with generation number.
In contrast to fixed probability adjusting, an adaptive probability produces a high value in the earlier generations
widening the search space. In the initial stagesthe degree of distribution is small, helping to maintain the diversity of
the population. As the search proceeds, the degree of distribution is increased, which speeds up the convergence of
the algorithm. This ensures that most of the search space will be explored in the initial stages whereas the final stages
will focus on fine tuning the solution.

4.1.4. Evaluation of solutions
As mentioned before, each row in HM corresponds to a clustering of documents. Let C = (c1, c2, . . . , cK) be the

set of K centroids corresponding to a row in HM. The centroid of the kth cluster is ck = (ck1, . . . , ckn) and is computed
as follows:

ck j =

∑m
i=1 akidi j∑n

l=1 aki
. (12)

The objective function is to determine the locus of the cluster centroids in order to maximize intra-cluster similarity
(minimizing the intra-cluster distance) while minimizing the inter-cluster similarity (maximizing the distance between
clusters). The fitness value of each row, corresponding to a potential solution, is determined by the Average Distance
of Documents to the cluster Centroid (ADDC) represented by that row. ADDC is expressed as:

f =

[ K∑
i=1

1
ni

mi∑
j=1

D(ci,d j)
]
/K, (13)

where K is the number of clusters, mi is the numbers of documents in cluster i (e.g., ni =
∑n

j=1 ai j), D(·, ·) is the
similarity function, and di j is the jth document of cluster i. The newly generated solution is replaced with a row in
HM if the locally optimized vector has better fitness value than the solutions in HM.

4.1.5. Stopping criterion
The HSCLUST stops when either the average fitness does not change by a predefined value ε after a number of

iterations or the maximum number of generations is reached.
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4.2. Theoretical analysis of HSCLUST behavior

By modeling the changes of HM as the result of HSCLUST operations as a Markov chain, we theoretically
analyze the behaviour of HSCLUST for successive generations. First, a lemma is proved for better analysis of binary
HSCLUST and then it will be extended to general HSCLUST.

Let the correct assignment for a clustering be defined as the assignment which assigns a document to the correct
cluster in HSCLUST. So the eligibility of an algorithm is the number of correct assignments obtained. Lemma 1
shows the impact of fitness function on the explorative power of the algorithm.

Lemma 1. For binary clustering the probability of increasing correct assignments in HM is tightly dependent on the
fitness ration between clusters.

Proof. We limit the algorithms to binary clustering as clusters 0 and 1. So each document will be allocated to one
of the two clusters. Consider the HM size of HMS. To simplify the analysis, we further assume that the impact of
each decision variable on overall fitness is independent from other variables. Such a limitation allows for an intuitive
numbering of states. Given a fixed population of size HMS, we define the state of HM as follows: state i is the
population in which exactly i documents are assigned to cluster 1 and m − i documents are assigned to cluster 0. We
model the changes between HM’s different populations as a finite state Markov chain with transition matrix P between
states. Matrix P is a (HMS + 1) by (HMS + 1) matrix where (i, j)th entry indicates the probability of going from state
i to state j.

Now we compute the transition probabilities in the Markov chain. Suppose the current state has i 1s. We want to
compute the probability for having j 1s after improvisation step of HSCLUST. First, we compute the probability that
improvisation step generates 1 and denote it by p1 . Considering the steps of the algorithm, the NHV is obtained as:

NHV =

{ xr with probability HMCR × (1 − PAR)
xPAR with probability HMCR × PAR
xnew with probability 1 − HMCR

(14)

where xr is memory consideration without pitch adjusting, xPAR is memory consideration with pitch adjusting, and
xnew ∈ {0, 1} is random assignment of the cluster number. Then the probability of choosing cluster 1 as the document
cluster for NHV is :

p1 = HMCR × (1 − PAR) ×
i

HMS
+

1
2

(1 − HMCR) + HMCR × PAR ×
f1
f0
, (15)

where f1 is the fitness of the solution which is assigned to cluster 1 and f0 is the fitness of solution assigned to cluster
0. The probability of assigning cluster 0 to document in the improvisation step can be similarly calculated as:

p0 = HMCR × (1 − PAR) ×
HMS − i

HMS
+

1
2

(1 − HMCR) + HMCR × PAR ×
f0
f1
. (16)

Having both probabilities of p0 and p1, the probability of going from a state in which the number of documents which
are assigned to cluster 1 is i to any other state j is computed by :

pi j =

(
HMS

j

)
p j

1 pHMS− j
0 . (17)

We note that (17) defines a complete (HMS + 1) by (HMS + 1) transition matrix for any population with size HMS.

From Lemma 1, one can easily observe that the probabilities are tightly dependent on the fitness ratio (i.e., f0 and
f1). Since a key characteristic of many partition-based clustering algorithms is that they use a global criterion function
whose optimization drives the entire clustering process, the role of fitness function is of most importance. In Lemma
1, by assuming independent impact of documents cluster on the fitness function, it is clear that the fitness function has
a major role in the explorative power of the algorithm and will become more important if we skip this assumption.
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So, choosing a good fitness function will lead the algorithm to the optimal solution. The ADDC exactly models the
correlation between the final clustering of the documents as the quality of the algorithm.

In the following theorem, we analyze the behavior of the HSCLUST in a general case and relate the quality of the
solutions in successive generations.

Theorem 1. Let X be the current solutions in HM. The expected number of following generations until Γ percentage
of solutions in HM has fitness greater than the fitness of elitist solution in X is

g = γ log γ + γ log(
1
Γ

), (18)

where

γ =
HMS

HMCR × 1 − PAR
.

Proof. In the current population residing in HM, suppose the elitist solution is x with the fitness of f (x), we call an
individual x′ fit if it has fitness of at least f (x). We now estimate the number of improvising steps to find only fit
individuals in the HM. Since the introduced PAR method can always improve the fitness of NHV , the resulting NHV
vector without applying PAR process, will be considered here and our analysis is sound regardless of PAR process been
applied on NHV or not. We model HM changes in different generations as a Markov chain. Let sk, k = 0, 1, · · · ,HMS
represents the state where k fit individuals reside in HM.

Since the updating step of HS only replaces NHV with a solution in HM which has the worst fitness in HM,
the number of fit individuals is an increasing function of generation number. Let pi j, 0 ≤ i, j ≤ HMS denote the
probability of going from state i with i fit individuals to state j with j individuals. It is obvious from the previous
discussion that pi j for all j < i is zero. pii is the probability of no changes in the number of fit individuals in HM.

Each element of NHV is selected from HM with probability HMCR(1− PAR) and from the set {1, 2, · · · ,K} with
probability 1 − HMCR without considering PAR process as justified before. So the probability that improvisation
step creates a clone of fit individual in state i of HM equals to HMCR(1 − PAR) × i

HMS . It is worth mentioning
that this probability is a lower bound for the probability of increasing the number of fit individuals in state si after
improvisation step. So, the transition probabilities between states of HM are as:

pi,i ≥
i

HMS
HMCR(1 − PAR), (19)

pi,i+1 ≤ 1 −
( i
HMS

HMCR(1 − PAR)
)
. (20)

To simplify our analysis, we consider the equal cases for probabilities and the final result will be an upper bound on
the expected number of generations. Having transition probability matrix P for Markov chain we follow the method
in [39] to compute the n-step transition probabilities. One can easily obtain the eigenvalues λk for k = 1, 2, · · · ,HMS
by solving the characteristic equation det(P − λI) = 0. Then for each λk obtain the {x(k)

i } and {y(k)
i } vector components

from
N∑

j=1

pi jx
(k)
j = λk x(k)

i (21)

and
N∑

j=1

y(k)
i pi j = λky(k)

i , (22)

and then n-step transition probabilities are computable by

p(n)
i j =

N∑
k=1

ckλ
n
k x(k)

i y(k)
i , (23)
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where

ck =
1∑N

i=1 x(k)
i y(k)

i

. (24)

Let α equals HMCR(1 − PAR). From (19) and (20) we have pii = iα/HMS and pi,i+1 = HMS−iα
HMS and so that (21)

reduces to

piix
(k)
i + pi,i+1x(k)

i+1 = λk x(k)
i , (25a)

iα
HMS

x(k)
i +

HMS − iα
HMS

x(k)
i+1 = λk x(k)

i , (25b)

(HMS − iα)x(k)
i+1 = (λkHMS − iα)x(k)

i . (25c)

For λk = 1 the (25) gives xi = 1 for all i. Since the eigenvectors are not identically zero vectors, so there must exist an
integer k such that xk+1 = 0 but xk , 0. In that case from (25) the eigenvalues are given by:

λk =
kα

HMS
. (26)

The corresponding solution for (25) are given by

(HMS − iα)x(k)
i+1 = (kα − iα)x(k)

i

or

x(k)
i =

kα − iα + α

HMS − iα + α
x(k)

i−1 (27a)

=
α(k − i + 1)
HMS
α
− i + 1

x(k)
i−1 (27b)

=

(HMS
α
− i

)
!

HMS !
k!

(k − 1)!
(27c)

=

{ (k
i)

(
HMS
α
i )

i ≤ k

0 i > k
. (27d)

Similarity for λk = kα
HMS , the system of equations in (22) reduces to

p j−1, jy
(k)
j−1 + p j jy

(k)
j = λky(k)

j ,

HMS − (i − 1)α
HMS

y(k)
j−1 +

jα
HMS

y(k)
j =

kα
HMS

y(k)
j ,

(HMS − iα + α)y(k)
j−1 = (kα − jα)y(k)

j ,

(
HMS
α
− i + 1)y(k)

j−1 = (k − j)y(k)
j .

Thus

y(k)
j =

{
(−1) j−k

( HMS
α −k
j−k

)
j ≥ k

0 j < k
. (28)
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Since for x(k)
i = 0 for i > k and y(k)

i = 0 for i < k , from (24) we get

ck =
1

x(k)
i y(k)

i

=
1

(−1) j−k

(
k
i

)
( HMS

α

i

) × ( HMS
α −k
i−k

) =

(HMS
α

k

)
. (29)

Substitution of (27), (28) and (29) into (23) we have:

p(n)
i j =

j∑
k=i

ck x(k)
i y(k)

j = αn
( HMS

α
− i

HMS
α
− j

) j∑
k=i

(−1) j−k
(

kα
HMS

)n( j − i
n − i

)
. (30)

For j < i we have p(n)
i j = 0. Substituting 0 for i in (30) we obtain:

p(n)
0, j = α2n

( HMS
α

HMS
α
− j

) j∑
k=i

(−1) j−k
(

k
HMS

)n( j
k

)
. (31)

Approximating p(n)
0, j with p(n)

1, j, p(n)
0, j represents the probability of having j fit individuals after n generations on a HM

with one fit individual. Computing the limiting form of (31) with n→ ∞ we have

n =
HMS
α

log
(HMS

α

)
+

HMS
α

log(
1
Γ

), (32)

which completes the proof.

4.3. Time complexity analysis
In this subsection, we determine the time complexity of the HSCLUST algorithm.

Lemma 2. The time complexity of K-means algorithm is O(nmKI).

Proof. The computation complexity of K-means is determined by the number of documents (m), the number of terms
in vector-space modeling of documents (n), the desired number of clusters (K), and the number of necessary itera-
tions to achieve convergence (I). At each iteration, the computation complexity of the calculation step is dominated
by the clustering similarity function which has time complexity of O(n) for cosine similarity. For the update step,
recalculating the centroids needs O(nK) operations. Thus, the time complexity of the whole K-means algorithm is
TK−means = O(mnK) for a single iteration. For a fixed number of iterations I, the overall complexity is therefore
O(nmIK).

Lemma 3. The time complexity of the improvisation step is O(βnK) where β = HMCR × PAR.

Proof. In the improvisation step a new clustering solution is generated by choosing a vector of n integers from the set
[K] = {1, 2, · · · ,K} using harmony operations. Each entry of the new solution is selected independently from other
entries based on two operations for considering the computational intelligence or randomness as follows: The value of
entry i, 1 ≤ i ≤ m can be randomly selected from [K] with a probability of 1−HMCR which takes O(1) times or it can
be selected from the currently selected elements in the HM with a probability of HMCR. After selecting the entry from
HM it is the subject of applying PAR process. In harmony memory operations, the computational cost is dominated
by PAR process. The PAR process is applied after selection from memory with probability PAR = PAR1 + PAR2.
In this step the current cluster number of each document can be slightly adjusted by replacing it with another cluster
label. The time complexity of PAR process is as computing cluster centroids from a solution takes about O(nm) which
is computed once for all entries and so is not considered here. The time complexity of computing the similarity of
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document with all of the clusters is O(nK). So the time complexity of applying PAR process on one entry supposing
that cluster centroids are computed is O(βn×K) where β = HMCR× PAR. So the overall complexity of PAR process
for all entries is O(nm + nmK). It is worth mentioning that the centroids are computed once for all entries and will
be considered in the time complexity of HSCLUST. In conclusion the time complexity of whole improvisation step is
O(βnK) .The time complexity depends on the memory consideration rate and probability of the PAR process which
will be discussed in the empirical study.

Theorem 2. The time complexity of HSCLUST is O(βnmKI) where β = HMCR × PAR.

Proof. Each generation of HSCLUST consists of two steps: improvisation of a new solution and computation of its
fitness. After generation of NHV, the PAR process is applied on NHV. Considering the time complexity of computing
centroids from NHV for applying PAR process and Lemma 2, the whole time of improvisation step takes O(βnmK).
After the new solution is generated, its fitness value must be computed to check that whether it can be swapped
with the worst one in the HM. The fitness of each HSCLUST according to Eq. 20 is computed in O(nmK). Since
the improvising and fitness evaluation steps run sequentially, the time complexity of HSCLUST for I generations is
O(βnmKI).

5. The hybrid algorithms

The algorithm discussed above performs a globalize search for solution, whereas K-means clustering procedure
performs a localized search. In localized search, the solution obtained is usually located in the proximity of the
solution obtained in the previous step. As mentioned previously, the K-means clustering algorithm uses the randomly
generated seeds as the centroids of initial clusters and refines the position of the centroids at each iteration. The
refinement process of the K-means algorithm indicates that the algorithm often explores the very narrow proximity,
surrounding the initial randomly generated centroids and its final solution depends on these initially selected centroids
[11]. Moreover, it has been shown that K-means may fail by converging to a local minimum [47]. K-means algorithm
is good for fine-tuning, but lack a global perspective. On the other hand, the proposed algorithm HSCLUST is good
at finding promising areas of the search space, but not as good as K-means at fine-tuning within those areas, so it may
take more time to converge. It seems that a hybrid algorithm that combines two ideas can result in an algorithm that
can outperform either one individually. To improve the algorithm, we propose three different versions of the hybrid
clustering, depending on the stage when we carry out the K-means algorithm.

5.1. The sequential hybridization

In this subsection, we present a hybrid clustering approach that uses K-means algorithm to replace the refining
stage in the HSCLUST algorithm. Hybrid algorithm combines the explorative power of the HSCLUST with the speed
of a K-means algorithm in refining solutions. In the hybrid HS algorithm, the algorithm includes two modules, the
HSCLUST module and the K-means module. The HSCLUST finds the optimum region, and then the K-means takes
over to find the optimum centroids.

We need to find the right balance between local exploitation and global exploration. The global searching stage
and local refining stage are accomplished by those two modules, respectively. In the initial stage, the HSCLUST
module is executed for a short period (50 to 100 iterations) to discover the vicinity of the optimal solution by a global
search and at the same time to avoid consuming high computation. The result from the HSCLUST module is used as
the initial seed of the K-means module. The K-means algorithm will be applied for refining and generating the final
result.

The following Lemma which is the direct application of Lemma 2 and Theorem 2 shows the time complexity of
sequential hybridization.

Lemma 4. The time complexity of Sequential Hybridization is O(βnmKI1) + O(nmKI2).
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5.2. The interleaved hybridization
In this hybrid algorithm the local method is integrated into the HSCLUST. In particular, after every predetermined

I1 iterations, the K-means uses the best vector from the harmony memory (HM) as its starting point. HM is updated if
the locally optimized vectors have better fitness value than those in HM and this procedure is repeated until stopping
condition.

Lemma 5. Let I1 and I2 denote the number of iterations for HSCLUST and K-means respectively. The time complexity
of Interleaved Hybridization is I

I1+I2

(
O(βnmKI1) + O(nmKI2)

)
.

Proof. In each interleaved step K-means and HSCLUST are executed I1 and I2 times respectively. So each interleaved
step takes O(βnmKI1) + O(nmKI2). Considering I/(I1 + I2) interleaved steps the total time is clear.

5.3. Hybridizing K-means as one step of HSCLUST
To improve the algorithm a one-step K-means algorithm is introduced. After that a new clustering solution is

generated by applying harmony operations, and the following process is applied on the new solution.
The time complexity of one step HS+K-means is evident from Lemma 1 and Theorem 2. In this algorithm the

explorative power of HSCLUST and the fine tuning power of K-means algorithms are interleaved in every iteration to
obtain high quality clusters.

6. Experimental results and discussions

In this section we compare the proposed algorithms according to their quality, execution time, and speed of
convergence using a number of different document sets.

6.1. Document collections
To fairly compare the performance of the algorithms, we used five different datasets with different characteristics

in our experiments. The first data set, Politics, contains 176 randomly selected web documents on political topics.
This data set was collected in 2006. The second data set, derived from the San Jose Mercury newspaper articles
that are distributed as part of the TREC collection (TIPSTER). This dataset was constructed by selecting documents
that are part of certain topics in which the various articles were categorized (based on the DESCRIPT tag). This
dataset contains documents about computers, electronics, health, medical, research, and technology. In selecting these
documents we ensured that no two documents share the same DESCRIPT tag (which can contain multiple categories).
The third data set is selected from DMOZ collection and contains 697 documents that are selected from 14 topics.
From each topic some web pages are selected and are included in data set. In this case, the clusters produced by the
algorithm were compared with the original DMOZ categories. The 20-newsgroups data 1 is used for constructing the
final data set. The fourth dataset is a collection of 10,000 messages, collected from 10 different Usenet newsgroups,
1000 messages from each. After preprocessing, there are a total of 9,249 documents in this data set. In addition,
20-newsgroups dataset is selected to evaluate the performance of algorithms on large data sets. The last dataset is
from the WebACE project (WAP) [6, 37]. Each document corresponds to a web page listed in the subject hierarchy of
Yahoo!. Description of the test datasets is given in Table 1.

6.2. Experimental setup
In the next step, the K-means, HSCLUST and hybrid algorithms are applied to the above mentioned data sets. The

cosine correlation measure is used as the similarity measure in each algorithm. It should be emphasized at this point
that the results shown in the rest of paper are the average of over 20 runs of the algorithms (to make a fair comparison).
Also, for easy comparison, the algorithms run 1,000 iterations in each run since the 1,000 generations are enough for
convergence of algorithms. No parameter needs to be set up for the K-means algorithm. For HSCLUST, for each data
set the HMS is set to two times the number of cluster in the data set, HMCR is set to 0.6, and PAR is set to 0.45-0.9. In
the hybrid K-means approach, it first executes the HSCLUST algorithm for 75 percent of total iterations and uses the
HSCLUST result as the initial seed for the K-means module which executes for the remaining 25 percent of iterations
to generate the final result.

1http://kdd.ics.uci.edu/databases/20newsgroup.html
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6.3. Empirical study of the impact of different HS parameters on convergence behavior
The aim of this section is to study the solution evolution of the algorithms over generations under different settings

of three important parameters. These are the pitch adjusting rate (PAR), harmony memory size (HMS), and harmony
memory considering rate (HMCR). Keeping that in mind, we will now show the effects of single parameter changes.
Particularly, we tested the following seven different scenarios as shown in Table 2. Each scenario was tested over 30
runs and the maximum number of iterations is fixed to 10,000 for all runs. The ADDC value of solution is the value
of fitness function. The algorithm that we use to evaluate is HSCLUST which was described in section 4. In Figs. 2-4
the average ADDC for the Politics data set is shown over the number of iterations.

relies on the values stored in HM which potentially leads ? grammar –¿relies on the values stored in HM which
potentially lead

The effects of variation of the HMCR are demonstrated in Fig. 2. As mentioned earlier, the HMCR determines the
rate of choosing one value from the historical values stored in the HM. Larger HMCR leads to less exploration and the
algorithm relies on the values stored in HM which potentially lead to the algorithm to get stuck in a local optimum.
On the other hand, choosing very small HMCR will decrease the algorithm efficiency and will increase its diversity
which prevents the algorithm from converging to the optimal solution. In this condition the HS algorithm behaves like
a pure random search. According to Fig. 2, by increasing HMCR from 0.1 to 0.6, the results improve and the best
result is achieved at 0.6. A similar behavior can also be seen when HMCR increase from 0.9 to 0.98. Therefore, no
single choice is superior to the others indicating the relevance to increment or decrement of HMCR.

In Fig. 3 the evolution of solution for different values of HMS is shown. We can see that decreasing the HMS
leads to premature convergence and increasing the HMS leads to significant improvements in the initial phase of a
run. Note that when the time or the number of iterations is finite, increasing the HMS may deteriorate the quality of
the clustering. In general we can say, the larger HMS, the more time (or iterations) is needed for algorithm to find
the optimal solution, but usually higher quality is achieved. In general, using a mild HMS seems to be a good and
logical choice with the advantages of converging to the best result as well as reducing space requirements. In addition,
empirical studies demonstrate that with a linear relation between HMS and the number of clusters, better results are
reached. Specifically setting HMS, two times the number of clusters (12 in this data set) leads to the best result.

Finally, Fig. 4 shows the evolution of solution quality over generations for different PARs. In final generations,
which algorithm converged to the optimal solution vector, large PAR values usually cause the improvement of best
solutions. As seen in the standard scenario and scenario 13 that have large PAR, the best result obtained by the
algorithm is better than those obtained with scenario 11 which have small PAR. Although the standard scenario and
scenario 13 produce the same results, the standard scenario is preferable due to smoother convergence.

6.4. Performance measures for clustering
Certain measures are required to evaluate the performance of different clustering algorithms. The performance

of a clustering algorithm can be analyzed with external, internal, or relative measures [27]. External measures use
statistical tests in order to quantify how well a clustering matches the underlying structure of the data. An external
quality measure evaluates the clustering by comparing the groups produced by clustering technique to the known
ground-truth clusters. The most important external measures are Entropy [54], F-measure [5] and Purity [42] which
are used to measure the quality of the produced clusters of different algorithms. In absence of an external judgment,
internal clustering quality measures must be used to quantify the validity of a clustering. Relative measures can
be derived from internal measures by evaluating different clusterings and comparing their scores. However, if one
clustering algorithm performs better than the others on many of these measures, then we can have some confidence
that it is the best clustering algorithm for the situation being evaluated.

The F-measure tries to capture how well the groups of the investigated partition are at the best match of the
groups of the reference partition. In other words, the F-measure quantifies how well a clustering matches a reference
partitioning of the same data; it is hence an external validity measure. The F-measure combines the precision and recall
ideas from information retrieval [31] and evaluates whether the clustering can remove the noisy pages and generates
clusters with high quality and constitutes a well-accepted and commonly used quality measure for automatically
generated document clustering. Precision (P) and recall (R) are common measures used in information retrieval for
evaluation. The precision, P(i, j), is the fraction of the documents in the cluster i that are also in the class j. Whereas
the recall, R(i, j), is the fraction of the documents in the class j that are in the cluster i. Precision and recall are defined
as follows:
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P(i, j) =
ni j

ni
and R(i, j) =

ni j

n j
, (33)

where ni j is the number of members of class j in cluster i (the number of the overlapping member), ni is the number
of members of cluster i and n j is the number of members in class j. P(i, j) and R(i, j) take values between 0 and
1 and, P(i, j) intuitively measures the accuracy with which cluster i reproduces class j, while R(i, j) measures the
completeness with which i reproduces class j. The F-measure for a cluster i and class j combines precision and recall
with equal weight on each as follows:

F(i, j) =
2P(i, j)R(i, j)

P(i, j) + R(i, j)
. (34)

The F-measure of the whole clustering is:

F =
∑

j

n j

n
max

i
F(i, j). (35)

The F-measure tries to capture how well the groups of the investigated partition best match the groups of the
reference. A perfect clustering exactly matches the given partitioning and leads to an F-measure value of 1.

The second evaluation measure is Entropy measure, which analyzes the distribution of categories in each cluster.
The entropy measure looks at how various classes of documents are distributed within each cluster. First, the class
distribution is calculated for each cluster and then this class distribution is used to calculate the entropy for each
cluster. The entropy of a cluster ci, E(ci) is defined as:

E(ci) = −
∑

j

pi j log pi j, (36)

where pi j is the probability that a member of cluster j belongs to class i and then the summation of all classes is taken.
After the entropy is calculated, the summation of entropy for each cluster is calculated using the size of each cluster as
weight. In other words, the entropy of all produced clusters is calculated as the sum of the individual cluster entropies
weighted according to the cluster size, i.e.,

E = −

K∑
i=1

ni

n
E(ci), (37)

where ni is the size of cluster i, n is the total number of documents, and K is the number of clusters. The best
clustering solution will be the one that leads to clusters which contain documents from only a single class, in this case
the entropy will be zero. As the entropy measures the amount of disorder in a system, the smaller the entropy, the
better the clustering solution [55].

The Purity measure evaluates the degree to which each cluster contains documents from primarily one class. In
other words, it measures the largest class for each cluster. Purity tries to capture on average how well the groups
match the reference. In general, the larger the value of purity, the better the clustering solution. Note that each cluster
may contain documents from different classes. The purity gives the ratio of the dominant class size in the cluster to
the cluster size itself. The value of the purity is always in the interval [ 1

K+ , 1]. A large purity value implies that the
cluster is a pure subset of the dominant class. The purity of each cluster ci is calculated as:

P(ci) =
1
ni

max
j

ni j. (38)

The purity of all produced clusters is computed as a weighted sum of the individual cluster purities and is defined as:

P =

K∑
i=1

ni

n
P(ci). (39)

While entropy and the precision measures compare flat partitions (which may be a single level of a hierarchy) with
another flat partition, the F-measure compares an entire hierarchy with a flat partition.
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6.5. Results and discussions

6.5.1. Quality of clustering
In this part of experiments we compare the proposed algorithms according to their quality of generated clusters

with K-mean and a GA based clustering algorithms [4]. For evaluation of the clustering results quality, we use four
metrics, namely F-measure, Purity, Entropy, and ADDC where the first three measures have been chosen from external
quality measures and ADDD has been selected from internal measures. F-measure, Purity, and Entropy expresses
the clustering results from an external expert view, while ADDC examines how much the clustering satisfies the
optimization constraints.

ADDC

Table 3 demonstrates the normalized ADDC of algorithms for cosine and Euclidian similarity measures applied to
the mentioned document sets and Fig. 5 shows the ADDC values for cosine similarity for five datasets. The smaller
the ADDC value, the more compact the clustering solution is. Looking at the Fig. 5, we can see that the results
obtained by Hybrid HS+K-means algorithm are comparable to those obtained by K-means. It is clear from Table
3 that for datasets with low dimension both similarity measures have comparable result but for datasets with high
dimension Euclidean measure seems to be a good choice.

F-measure

In order to make a better evaluation of clustering, as a primary measure of quality, we used the widely adopted
F-measure [5]; the harmonic means of precision and recall from information retrieval. We treat each cluster as if it
were the result of a query and each class as if it is the desired set of documents for a query. We then calculate the
recall and precision of that cluster for each given class. For a given cluster of documents C, to evaluate the quality of
C with respect to an ideal cluster C∗(categorization by human) we first compute precision and recall as usual:

P(C,C∗) =
|C ∩C∗|
|C|

and R(C,C∗) =
|C ∩C∗|
|C∗|

. (40)

Then we define:

F(C,C∗) =
2 ∗ P ∗ R

P + R
. (41)

The performances of the algorithms in the document collections considering F-measure are shown in Fig. 6. In
comparison, the results for different algorithms, it is seen that Hybrid HS+K-means has the best F-measure among the
other algorithms from Fig. 6. This issue is due to the high quality of produced clusters by this algorithm. HSCLUST
outperforms K-means algorithm in all of datasets and the lowest value between all algorithms is for K-means. The
reason is that it converges to the nearest local maximum having the values of K centroids. As can be noticed, the
accuracy obtained using our proposed algorithm is in all the datasets comparable with that obtained from the other
investigated methods in all data sets. Another important point in Fig. 6 is that Hybrid HS+K-means outperforms
the other two hybrid algorithms. HS+K-means efficiently utilizes the HSCLUST and K-means strong points in each
generation whereas other hybrid algorithms apply K-means after a large number of generations of HSCLUST. In other
words, in HS+K-means, K-means fine-tunes the result of HSCLUST at each generation. The number of times that
fine-tuning process is applied will have an effect on both the execution time and quality of clustering. More fine-
tuning increases the execution runtime and accuracy and this is the reason why HS+K-means has larger execution
time but the best quality compared to the other algorithms. As it is clear form Table 4 HSCLUST outperforms the GA
clustering algorithm in all datasets.
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Entropy

The second external quality measure which is used to compare the quality of the proposed clustering algorithms
is Entropy. The best clustering solution will be the one that leads to clusters that contain documents from only a
single class, in which case the entropy will be zero. In general, the smaller the entropy values, the better the clustering
solution is. Fig. 7 presents the Entropy of clusters obtained by applying algorithms on different datasets. The
most important observation from the experimental results is that Hybrid HS+K-means performed better than other
algorithms. Although the K-means is examined with various random initializations in different runs, it has the worst
quality based on Entropy. High Entropy for clusters obtained by K-means reveals that documents in generated clusters
belong to different classes of documents. It should be mentioned here that the results, shown in Fig. 7, are specifically
for the mentioned datasets and it is possible that results would change slightly for other datasets. This is a major
drawback of all document clustering algorithms where they are very sensitive to datasets and their performance varies
from dataset to dataset. The results of Fig. 7 also demonstrate that the quality of hybrid algorithms lies between K-
means and Hybrid HS+K-means. The Entropy of clusters obtained by HSCLUST is significantly better than K-means
and it is due to its explorative power. HSCLUST avoids premature convergence in the successive generations and its
stochastic behavior ensures that most of the regions in the search space have been explored.

Purity

Our last measure to evaluate the algorithms is Purity. Purity measures to what extend each cluster contained
documents from a single class. In other words, it measures the largest class for each cluster. In general, the larger
the value of purity, the better the clustering solution is. Fig. 8 summarizes the Purity of clusters for different datasets
applying proposed algorithms. It is noticeable from Table 4 that GA algorithm outperforms the HSCLUST algorithm
for dataset Message but in other datasets HSCLUST has better Purity than GA.

6.5.2. Comparison of the time performance
Next we compare the execution time of the clusters that are created using the six algorithms with different doc-

uments. Fig. 9 shows the average execution time of all algorithms using the dataset DMOZ. The evaluations were
conducted for the document numbers varying from 500 to approximately 10,000. For each given document number,
10 test runs were conducted on different randomly chosen documents, and the final performance scores were obtained
by averaging the scores from all tests. In Fig. 9, it can be seen that the HSCLUST and GA algorithms yield com-
petitive execution times. In general, the execution time of HSCLUST and GA are approximately the same especially
when the number of documents is less than 6,000. According to Fig. 9 , by increasing the number of documents, the
execution time of GA becomes slightly better than HSCLUST, but as it is clear in Fig. 9 the average performance of
HSCLUST algorithm in comparison with other algorithms differs tremendously. Also, it is evident from Fig. 9 that
the K-means algorithm has the worst runtime and also the running time of K-means increases linearly as the number
of documents increases. The reason for K-means algorithm running slower than HSCLUST+K-means is that it may
get stuck in local optimum solution and should be restarted several times. Therefore, multi-run of K-means is slower
than the other algorithms.

6.5.3. Convergence analysis
We present experiments in this section to demonstrate the effectiveness of the different algorithms. The criterion

for evaluating algorithms is their convergence rate to optimal solution. Fig. 10 illustrates the convergence behaviors
of HSCLUST and K-means algorithms on the document dataset DMOZ. For each data set we have conducted 20
independent trials with randomly generated initialization and the average value is recorded to account for the stochastic
nature of the algorithm. It is obvious from Fig. 10 that HSCLUST took more time to reach the optimal solution and K-
means converges more quickly. This is because the K-means algorithm may be trapped in local optima. Although the
K-means algorithm is more efficient than HSCLUST with respect to execution time, the HSCLUST generates much
better clustering than the K-means algorithm. In Fig.11 performance of HSCLUST and hybridized algorithms are
compared using document dataset DMOZ. Fig. 10 illustrates that the reduction of ADDC value in HSCLUST follows
a smooth curve from its initial vectors to final optimum solution with no sharp moves. Another noteworthy point in
Fig.11 is that ADDC has the lowest final value for hybrid HS+K-means among the other algorithms. The sequence
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of other algorithms with respect to their ADDC values are: Interleaved Hybridization, Sequential Hybridization and
HSCLUST. This issue shows that the cluster produced by Hybrid HS+K-means has best quality and results produced
by hybrid algorithms have higher quality than HSCLUST. It can be inferred from Fig. 11 that hybrid algorithms
overcome HSCLUST disadvantage by incorporating two-step hybrid algorithms. In the first step, the algorithm uses
harmony search to get close to optimal solution, but since it does not fine-tune this result, the obtained result is
passed as the initial vector to K-means algorithm and then, K-means fine tunes that. The results show that the hybrid
approaches outperform the component algorithms (K-means and harmony search) in terms of cluster quality.

7. Conclusion

In this paper we have considered the problem of finding a near optimal partition, optimum with respect to ADDC
criterion, of a given set of documents into a specified number of clusters. We have proposed four algorithms for this
problem by modeling the partitioning problem as an optimization problem. First an algorithm based on HS, namely
HSCLUST, have been developed aimed at optimizing the objective function associated with optimal clustering. Then
the harmony search based algorithm has been extended using the K-means algorithm to devise three different hy-
brid methods. Furthermore, we have theoretically analyzed the behavior of the proposed algorithm by modeling its
population variance as a Markov chain. We have validated our theoretical results by conducting experiments on five
datasets with varying characteristics to evaluate the performance of the hybrid algorithms compared with the other
algorithms. Results shows that the proposed hybrid algorithms are better than K-means, GA based clustering, and
HSCLUST based on the resulting clusters at the cost of increased time complexity.
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