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Abstract

This work proposes a new pseudo-metric based on fuzzy partitions (FPs).
This pseudo-metric allows for the introduction of expert knowledge into dis-
tance computations performed on numerical data and can be used in various
types of statistical clustering or other applications. The knowledge is formal-
ized by a FP, in which each fuzzy set represents a linguistic concept. The
pseudo-metric is designed to respect the FP semantics. The univariate case
is first studied, and the pseudo-metric behavior is discussed using synthetic
experiments. Then, a multivariate version is proposed as a Minkowski-like
combination of univariate distances or semi-distances. The value of the pro-
posal is illustrated with two real-world case studies in the fields of Biology
and Precision Agriculture.

Keywords: semi-supervised, metric, expert knowledge, clustering,
segmentation

1. Introduction

Clustering procedures are common statistical data analysis techniques
used in many fields. Clustering can be of various types, mainly hierarchical
algorithms and partitional algorithms. Different types of data are candidates
for clustering, including numerical data, categorical data and more complex
types of data, such as graphs and multimedia data. The clustering of nu-
merical data is frequently addressed in the literature, with well-established
methods such as k-means for partitioning. However, these methods do not

Email address: serge.guillaume@irstea.fr (Serge Guillaume)

Preprint submitted to International Journal of Information Sciences June 12, 2012

Author-produced version of the article published in Information Sciences, 2013, 245, 76-95. 

The original publication is available at http://www.sciencedirect.com 

DOI :  10.1016/j.ins.2012.07.045



allow for the incorporation of expert knowledge. Although challenging, the
use of conjointly numerical data and expert knowledge may be a good way to
guide clustering procedures using a semi-supervised approach and to improve
clustering results.

Zadeh proposed the concept of the linguistic variable [30] to implement
approximate concepts and reasoning. The goal was to ease the contribution of
domain experts to system modeling. A fuzzy set, defined by its membership
function, determines a symbol, called a linguistic concept, in the numerical
space. The FP is then composed of the fuzzy sets corresponding to each of
the linguistic labels. Other approaches, based on ontologies, can be used to
formalize domain knowledge, as described, for instance, in [20]. However,
these approaches essentially use symbolic information, and the numerical
aspects are difficult to introduce.

The fuzzy set representation framework combines numerical and symbolic
aspects and cannot be reduced to either of these paradigms.

Our objective in this paper is to take advantage of the linguistic variable
concepts to use numerical and symbolic information related to the same
variable together in the same clustering procedures, which is not typical
in clustering. Clustering methods are designed to address several types of
variables, e.g., numerical or symbolic variables, without combining different
types of information for a given variable.

Most clustering or classification techniques are based on a function d,
which determines how the dissimilarity of two elements is calculated, as
follows: between individuals, between individual and group or between groups.
Clustering results are sensitive to the choice of the dissimilarity function
[1, 14].

The combination of numerical and symbolic information and its introduc-
tion into the dissimilarity function would allow for its use in any clustering
method or, more generally, in any dissimilarity-dependent algorithm.

The dissimilarity function must have the properties of non-negativity and
symmetry and satisfy the triangle inequality, and it can be proper (identity
of indiscernibles) or semi-proper. In the first case, the dissimilarity function
is a metric or distance. In the second case, the dissimilarity function is a
pseudo-metric or semi-distance.

The most common metrics for numerical values are defined by the Lp

norms:
‖x‖p = (|x1|p + . . .+ |xn|p)

1

p
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where x is a multidimensional vector (x1, x2 . . . xn). The classical case of the
Euclidean norm is obtained for p = 2.

Other distances can be used in multivariate problems in which variables
are not independent, for instance, the Mahalanobis distance or the Cho-
quetMahalanobis operator [26].

Dissimilarity functions have also been defined for non-ordered categorical
data, e.g., material={plastic, metal, wood}. The definition of a dissimilarity
function is mainly based on the presence or absence of a given attribute. In
[3], several similarity measures are compared. Some of these similarity mea-
sures consider the sample size, the number of values taken by the attribute
and the frequencies of these values in the data set. The Lorentz curve allows
for the ranking of multi-attribute categorical data [9]. To our knowledge,
scant attention has been paid to similarity measures for ordered categorical
data, such as price={cheap, average, expensive}. In this case, the distance
between cheap and expensive must be higher than the distance between cheap
and average and the distance between average and expensive. Ordered cat-
egorical data can be represented by linguistic variables, based on fuzzy sets,
with each concept corresponding to a given fuzzy set.

Like many other concepts, the concept of distance has been generalized
to fuzzy sets. In a survey [2], Bloch recalls the three types of fuzzy distances
already defined: between two points in a fuzzy set, from a point to a fuzzy
set and between two fuzzy sets. Many studies tackle this problem, including
[8, 6, 19, 10, 5]. Certain proposals pay attention to the fulfillment of the
triangle inequality [4]. Recent developments consider distance and similarity
measures suited for new types of fuzzy sets, including interval-valued [31],
intuitionistic [28] or hesitant [29] fuzzy sets, or try to define a new family of
metrics for compact and convex fuzzy sets [27], which is useful for imprecise
data analysis. Distances in rough set theory [18] and evidence theory [16]
have also recently been analyzed in surveys.

Bloch [2] does not mention the distance between individuals within a
FP. Such a distance has been little studied. Based on the membership de-
grees, such a distance would be valid for numerical measurements while also
containing a symbolic component related to the granularity of information.

A FP carries semantics and knowledge about variable behavior. For the
semantics attached to the partition-related concepts to be valid, the distance
between two non-distinguishable elements must be equal to zero, which is
the case for all of the elements within a given fuzzy set kernel. Furthermore,
elements belonging to different concepts must always have a distance higher
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than elements belonging to the same concept.
In [11], a first attempt at designing this type of distance has been proposed

to build a hierarchy of FPs. The initial partition was defined as a strong
fuzzy partition (SFP) with as many fuzzy sets as distinct values for the
given variable. Then, at each step, two adjacent fuzzy sets were merged into
one new fuzzy set. The selected pair was the pair that yielded the minimum
variation in the sum of distances for the entire training set. The objective of
this process was to preserve the structure of the previous step.

The objective of the present work is different. The distance is not used to
build a FP, but the FP is used to introduce expert knowledge into distance
calculations.

Beginning with the preliminary study presented in [13], this paper pro-
poses to take advantage of fuzzy set formalism to add a semi-supervised
aspect to distance-based statistical procedures such as clustering. The semi-
supervision is performed by using available expert knowledge to superimpose
linguistic concepts onto numerical data. This pretreatment is followed by the
design of a pseudo-metric based on the FPs corresponding to the concepts
and its use in clustering procedures. The procedure is thus an approach to
combine numerical data and imperfect data resulting from human judgment.

The paper is organized as follows. Section 2 introduces a function based
on FPs to calculate the dissimilarities between univariate points. Various
areas are considered in the FP, and the function is designed accordingly to
constitute a system of embedded functions. Then, the pseudo-metric prop-
erties are demonstrated. Section 3 discusses the particular case of SFPs.
Section 4 studies the pseudo-metric behavior in depth and includes a com-
parison with the Euclidean distance, synthetic experiments and a real-world
case study. A multivariate pseudo-metric is proposed in Section 5 that illus-
trates a real-world case study using partitioning methods. Section 6 provides
conclusions.

2. The proposed function and its properties

The proposal applies to data in the unit interval U = [0, 1] and relies on
FPs.

2.1. Notations and constraints on the fuzzy partition

Denote by P the FP composed of f fuzzy sets, defined by their respective
membership functions (MFs) labeled 1, 2 . . . f .
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Figure 1: Example of FP and data points x,y,z

Denote by d∗(x, y) the proposed function for FP P .
Denote by µi(x) the membership degree of x in the MF i.
Denote by Si = [Si, Si] the support of MF i, defined by {x|µi(x) > 0}.
Denote by Ki = [Ki, Ki] the kernel of MF i, defined by {x|µi(x) = 1}.
By convention, K0 = K0 = S0 = 0, Kf+1 = Kf+1 = Sf+1 = 1 and

∀x ∈ U, µ0(x) = µf+1(x) = 0.
The FP must respect the following constraints:

• it is composed of linear triangle or trapezoid MFs,

• any point belongs to two MFs at most, and

• ∀i ∈ [1, f ], ∃ x such as µi(x) > 0 and µj(x) = 0, ∀j 6= i.

Rationale: The whole set of constraints is related to the MF distinguisha-
bility considerations, which is necessary for semantic reasons because the MFs
represent linguistic concepts.

The linear triangle or trapezoid MFs are chosen for the sake of simplicity
and because they have a bounded support. The limitation for any point to
have at most non-null memberships in 2 MFs corresponds to the semantics of
the FP. Each MF represents a concept, which is part of an ordered sequence.
Therefore, any point should be either a prototype of a concept or a transition
between two concepts. The last constraint requires that the kernel have at
least one exclusive prototype, which prevents the support of a given MF from
going beyond the kernel of the following MFs.
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An example of a partition satisfying the constraints is shown in Figure 1,
and the notations are illustrated in Figure 2.

Figure 2: Notations for a FP

2.2. Desirable behavior

The proposed FP-based function combines numerical and symbolic el-
ements. The numerical elements allow for the function to handle multiple
memberships in transition zones, whereas the symbolic elements consider the
granularity of the concepts associated with the fuzzy sets.

To ensure a smooth transition between concepts and a smooth behavior
within a given MF, the proposed function d∗(x, y) must be continuous and
non-decreasing when x and y move away from each other. The MFs must
provide a structure to the distance calculation so that all points within a
kernel have a null distance and so that d∗(x, y) = |j − i| for x ∈ Ki, y ∈ Kj.

Semi-distance properties, which will be detailed in Section 2.5, are re-
quired for the proposed function. Thus, the function can be introduced into
a wide range of applications including clustering and segmentation.

Many possible combinations of numerical and symbolic elements may be
studied, but it is difficult to design a function that behaves like a semi-
distance. To explain our choice, we first study the case of data pairs lying
within overlapping MF areas and then provide the general formula for the
proposed function.
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Figure 3: Various types of overlapping areas Restricted (R1), Embedded (E1), eXtended
(X1)
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2.3. Decomposition into areas

We define three types of overlapping areas, examples of which are shown
in Figure 3:

Definition 2.1. (i) Let Xi = [Ki, Ki+1[, for 0 ≤ i ≤ f , the eXtended over-
lapping area.

(ii) Let Ei ⊂ Xi, the Embedded overlapping area: Ei = [Ki, Ki+1[.
(iii) Let Ri ⊂ Ei, the Restricted overlapping area, defined by:

Ri = cl{x ∈ Ei|µi(x) > 0, µi+1(x) > 0}
where cl is the closure operator.

To summarize, we have Ri ⊂ Ei ⊂ Xi and Xi = Ei ∪Ki, ∀i ∈ [1, f ].
In the example given in Figure 3, we have R1 = [K1, S1], but this is not
always true, depending on the support and kernel locations.

For each overlapping area and the total area, we propose distinct func-
tions that, as we will demonstrate in Section 2.6, constitute a system of

embedded pseudo-metrics.

2.3.1. Within restricted overlapping areas

To obtain a smooth behavior, the function is reduced to a numerical
component dn that is based on the four membership degrees in the two MFs
present within the restricted area:

Definition 2.2. Let x, y ∈ [0, 1] be any two points within the restricted over-
lapping area Ri. The numerical component dn is given by:

∀x ≤ y ∈ Ri, dn(x, y) = µi(x)µi+1(y)− µi+1(x)µi(y)

∀x > y ∈ Ri, dn(x, y) = dn(y, x)
(1)

From Definition 2.2, we deduce the following property:

Proposition 2.1. The dn value satisfies dn(x, y) > 0 if x 6= y.

Proof: easily deduced from µi(x) > µi(y), µi+1(y) > µi+1(x). �
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2.3.2. Within embedded overlapping areas

The embedded overlapping area is composed of a core, defined previously
as the restricted overlapping area, surrounded (or not) by two subareas in
which only one MF is present. Because the number of non-null membership
degrees to consider varies depending on the location of the fuzzy set bounds,
it is easier to define the d0 function, which is valid within the embedded
overlapping areas, as a sum of three terms, each of which corresponds to one
of these subareas.

Definition 2.3. Let x, y ∈ [0, 1] be any two points within the embedded over-
lapping area Ei. The numerical component d0 is given for all x ≤ y ∈ Ei,:

d0(x, y) =
1

Ni

[µi(x)− µi(min(y,max(x, Si+1)))

+ dn(max(x, Si+1),min(y, Si))

+ µi+1(y)− µi+1(max(x,min(y, Si)))]

(2)

with Ni = 1−µi(Si+1) + dn(Si+1, Si) + 1− µi+1(Si), 1 ≤ i ≤ f − 1

N0 = Nf = 1

and for all x > y ∈ Ei, d0(x, y) = d0(y, x).

Remarks:

1. Definition 2.2 is extended to data points x, y /∈ Ri, so that, in this case,
dn(x, y) = 0.

2. In Equation (2), min and max are introduced to comply with the va-
rious possible locations of the data points within the Ri and Ei − Ri

subareas.

3. The normalization coefficientNi guarantees that ∀x, y, d0(x, y) ∈ [0, 1].

Example: Let us consider the values x, y shown in Figure 3. In this case,
the first element of do(x, y) is equal to zero, the second element is equal to
dn(x, S1) and the last element is equal to µ2(y)− µ2(S1).

2.3.3. Within extended overlapping areas

By convention, all points that belong to a given MF kernel, such as z1
and z2 in Figure 3, are considered to have a null distance. This convention
is necessary to respect the fuzzy set semantics. Thus,

9

Author-produced version of the article published in Information Sciences, 2013, 245, 76-95. 

The original publication is available at http://www.sciencedirect.com 

DOI :  10.1016/j.ins.2012.07.045



∀i ∈ [1, f ], ∀x, y ∈ [Ki, Ki] ⇒ d∗(x, y) = 0

Therefore, d∗(Ki, Ki) = 0. Hence, in extended overlapping areas, we
define the d1 function using the d0 function in embedded overlapping areas:

Definition 2.4. Let x, y ∈ [0, 1] any two points within the extended overlap-
ping area Xi. The numerical component d1 is given by:

∀x, y ∈ Xi, d1(x, y) = d0(max(x,Ki),max(y,Ki)) (3)

2.4. Proposed function in the whole domain

When the data points do not lie within the same overlapping area, as
is the case for points x and z in Figure 4, the formula is more complex and
contains a numerical component d1, which reflects the relative location within
the extended area to which each point belongs, and a symbolic component,
which accounts for the number of MFs between the points.

Figure 4: FP-based univariate function calculation; arrows represent the partial distances
to be combined

We denote by I(x) the function such that:

∀i ∈ [0, f ], x ∈ Xi ⇔ I(x) = i

The function d2(x, z) is calculated as a sum of partial elements associated
with various areas: the area from x to the kernel of the (I(x)+1)th MF, the
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area between the kernels of the (I(x)+1)th and the I(z)th MF and the area
from the kernel of the I(z)th MF to z.

For semantic considerations, the distance between the two kernels of MFs
I(x) and I(z) is assumed to be the distance between the two corresponding
linguistic concepts. It is a symbolic element, equal to ds(I(x), I(z)) = |I(z)−
I(x)|, which does not depend on the MF bounds. The following formula is
proposed:

Definition 2.5. Let x, z ∈ [0, 1] be any two points. For all x ≤ z,

d∗(x, z) =

{

d1(x, z) if I(x) = I(z)

d1(x,KI(x)+1) + ds(I(x) + 1, I(z)) + d1(KI(z), z) if I(x) < I(z)

(4)

where ds(i, j) = |j − i|, ∀i, j ∈ [1, f − 1].

For all x > z, d∗(x, z) = d∗(z, x).

If f is large, the term using ds becomes predominant, while the terms
involving d1 have a relatively limited influence, with d1 being between 0 and
1. This is expected to reflect the expert knowledge.

The various parts of the sum in Equation (4) are illustrated by the arrows
in Figure 4. In this case, we have I(x) = 1 and I(z) = 3.

According to Equation (4), the symbolic component is zero when I(z) =
I(x) + 1. In this case, x and z are located on both sides of a given fuzzy set
kernel.

The d∗ distance could be used as such. The upper bound of the distance
may take the following values, f − 1, f, f + 1, according to the partition
edges. The dependence on f can be a problem if one wants to compare FPs
of various sizes. To address this issue and achieve a better commensurability
between the different terms, normalization is proposed. The general formula
becomes

dP (x, y) =
d∗(x, y)

f − 1 + d0(0, K1) + d0(Kf , 1)
(5)

where f is the number of fuzzy sets and P stands for a given FP. In the
equation, d0(0, K1) and d0(Kf , 1) may take 0 or 1 values.

This normalization may hide the level of granularity chosen by the ex-
pert. If no comparison is required between FPs of various sizes, d∗ should be
preferred.
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The properties of dissimilarities, semi-distances and distances are now
recalled before demonstrating which of the properties are satisfied by the
proposed function dP .

2.5. Distance properties

A function d is a dissimilarity if

∀ x, y ∈ U,











d(x, y) ≥ 0

d(x, x) = 0

d(x, y) = d(y, x)

A dissimilarity is semi-proper if d(x, y) = 0 ⇒ ∀ w, d(x, w) = d(y, w),
and it is proper if d(x, y) = 0 ⇒ x = y.

A semi-distance is a dissimilarity that verifies the triangle inequality:

∀ x, y, z ∈ U, d(x, y) ≤ d(x, z) + d(z, y) (6)

A proper semi-distance is called a distance. In this paper, the goal is not
to ensure the proper character because all kernel elements must be indistin-
guishable. The expected properties are those of a semi-distance.

2.6. Checking properties

Let us examine the cases that correspond to the different areas, where
Equations (1), (2), (3), (4) or (5) are applicable.

1. Properties of the function dn on restricted overlapping areas
Let us prove that dn is a distance.

Proposition 2.2. The function dn is a distance. It is symmetric by
construction.

Proof: dn is obviously a dissimilarity. We have to prove that dn is
proper and satisfies the triangle inequality.
(i) dn is proper: if we assume dn(x, y) = 0, then µi(x)µi+1(y) = µi(y)µi+1(x).
As µi(x) ≥ µi(y) and µi+1(y) ≥ µi+1(x), we deduce that µi(x) = µi(y)
and µi+1(y) = µi+1(x). Therefore, x = y.
(ii) dn satisfies the triangle inequality:

Let a = Si+1 and b = Si. Because the MFs are linear functions, µi(x) =
si(b−x), where si is a positive coefficient. Similarly, µi+1(x) = si+1(x−
a), where si+1 > 0. We consider three cases:
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(iia) z < x < y. It is sufficient to show that dn(x, y) ≤ dn(z, y):

dn(z, y)− dn(x, y) = (µi(z)− µi(x))µi+1(y)− µi(y)(µi+1(z)− µi+1(x))

= sisi+1[(x− z)(y − a)− (z − x)(b− y)]

= sisi+1(x− z)(b− a) ≥ 0

(iib) x < z < y. The inequality (6) to be verified becomes

∀x, y, z ∈ Ri, µi(x)µi+1(y)− µi(y)µi+1(x) ≤ µi(x)µi+1(z)− µi(z)µi+1(x)

+ µi(z)µi+1(y)− µi(y)µi+1(z)

which can be rewritten as

(µi(y)− µi(z))(µi+1(y)− µi+1(x)) ≤ (µi(x)− µi(y))(µi+1(z)− µi+1(y))

Therefore, using µi, the previous inequality becomes

(z − y)(y − x) ≤ (y − x)(z − y).

Thus, the triangle inequality is proven.
(iic) x < y < z, which has the same proof as that for case a.

2. Properties of the d0 function on embedded overlapping areas.
The definition of d0 is based on the addition of the Euclidean distance
and the distance dn on disjoint intervals. Therefore, d0 is a distance.

3. Properties of the d1 function on extended overlapping areas
In the case of kernels reduced to a single point, the definition of d1
reduces to the distance d0. Therefore, d1 is a distance. Otherwise, d1
is not proper but is only semi-proper. Therefore, in general, d1 is a
semi-distance.

4. Properties of the d∗ function (and then dP )
The definition of d∗ is based on the addition of the numerical semi
-distance d1 and the symbolic distance ds on disjoint intervals. There-
fore, d∗ (and therefore dp) is a semi-distance.

3. The particular case of strong fuzzy partitions

A SFP, described by f membership functions on the universe U , fulfills
the following condition:

∀x ∈ U,

f
∑

i=1

µi(x) = 1 (7)
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Figure 5: Example of a SFP

An example of SFP is shown in Figure 5.
Because of the SFP structure, the following relationship always holds:

∀i ∈ [1, f − 1], ∀x ∈ U, µi(x) + µi+1(x) = 1

Equation (1) becomes:

dn(x, y) = µi(x)− µi(y)

Thus, for SFPs, the numerical component is defined only by the mem-
bership degrees to a single MF, the first MF in the partition order. For the
example shown in Figure 5, dn(x, y) = α− β.

Within the restricted overlapping area,

∀x ∈ Ri, µi(x) = 1−
x− Si+1

Si − Si+1

Thus, given two points in Ri, dn(x, y) =
|y − x|
Si − Si+1

is directly proportional

to the Euclidean distance between the two points.
Because of the SFP structure, Ri ≡ Ei, and the corresponding function

satisfies d0 ≡ dn.
After further simplification, Equation (4) becomes

∀x, y ∈ U, d∗(x, y) = |µI(x)(x)− µI(y)(y) + I(y)− I(x)|
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The P-based univariate pseudo metric is:

∀x, y ∈ U, dP (x, y) =
|µI(x)(x)− µI(y)(y) + I(y)− I(x)|

f − 1
(8)

Equivalent definition from a function

The SFP-based proposed pseudo-metric can also be designed using a func-
tion.

Let us introduce the function P:

P (x) = I(x)− µI(x)(x) (9)

P is a positive non-decreasing function of x and is increasing in overlapping
zones.

dP (x, y) can then be written as

dP (x, y) =
|P (y)− P (x)|

f − 1
(10)

This formulation, which shows that the use of SFPs is an elegant alternative
to data transformation, also makes it easier to check the properties of SFP-
based pseudo-metrics.

The quality of SFPs has been previously highlighted in the past. Pedrycz
[22] noted that SFPs are error-free reconstructions for Sugeno-type systems
using centroid defuzzification:

∀x ∈ U, ψ[φ(x)] = x

where φ is the input space transform and ψ is the output space transform.

Euclidean distance and regular fuzzy partitions

Definition 3.1. A regular fuzzy partition is composed of triangular MFs,
with equidistributed kernel centers K1 . . . Kf , with Ki = Si−1 = Si+1.

A regular fuzzy partition with six MFs is shown in Figure 6.
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Figure 6: A regular fuzzy partition

For this particular case, we show that the proposed pseudo-metric is a metric
and that it yields the same result as the Euclidean distance, regardless of the
number of terms in the partition.

The regular distribution of the fuzzy set centers allows for the simplifica-
tion of Equation (3) because data are normalized in the unit interval:

K1 = S1 = 0 and ∀i > 1, Ki = Si+1 = Si =
i− 1

f − 1

which yields Si − Si+1 =
1

f − 1
.

The function P, defined in Equation (9), becomes P (x) = (f − 1)x, and
finally, d(x, y) = |y − x|.

The Euclidean distance and the regular SFP-based metric are identical
when the data are in the unit interval.

This equivalence results because the distance proposed in Equation (5)
distorts the Euclidean distance according to the two following points: the
symbolic distance between concepts and the indistinguishability of the kernel
elements. In the case of a regular SFP, these two characteristics disappear
because all kernels are reduced to single points and are equidistant.

4. Behavior and illustration in the univariate case

This section investigates the univariate pseudo-metric behavior and illus-
trates its utility. This section compares the univariate pseudo-metric with
the Euclidean distance and provides two examples of use of the univariate
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pseudo-metric: synthetic experiments using hierarchical clustering and a real-
world case study with a segmentation algorithm.

4.1. Comparison with the Euclidean distance

Let us highlight two important properties of the proposed FP-based
pseudo-metric.

First, the FP-based pseudo-metric value is always zero for any two points
that belong to the same fuzzy set kernel.

Second, the dP pseudo-metric is typically different from the Euclidean
distance, and the deviations depend on the fuzzy set slope and kernel width.
These deviations may produce a different ranking compared with the Eu-
clidean distance, as shown in Figure 7. The three points x, y, z have co-
ordinates 0.2, 0.3, 0.5. According to the Euclidean distance, denoted by
dE,

dE(x, y) = 0.1 < dE(y, z) = 0.2

and when the FP -based pseudo-metric is used,

dP (y, z) = 0.067 < dP (x, y) = 0.133

0 1

x y z

0.2 0.50.3

U

Figure 7: An example of an inversion compared to the Euclidean distance

4.2. General behavior

The proposed pseudo-metric behavior is likely to depend on two main
characteristics of the FP: the number of linguistic concepts, which affects
the symbolic component, and the size of the different kernels, with the wider
the kernels having more numerous indistinguishable values.

It would be difficult to conduct a separate study of the influence of the
various parameters because the parameters influence one another. Therefore,
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Algorithm 1: The partition generation algorithm

1 Input Number of MFs, NMF ; Cumulative kernel size, K
2 Output FP kernel bounds, Kbounds

3 Initialize cumulative kernel size: k = 0.
4 Random setting of NMF − 2 centers.
c = {c1 = 0, c2, . . . , cNMF−1, cNMF

= 1}
5 The centers are used to initialize kernel bounds.
Kbounds = {c1, c1, . . . , cNMF

, cNMF
}

6 while k ≤ K do

7 m = Random[1, NMF ] // Select MF to be modified

8 s = Random[0, 1] // Generate a new kernel size

9 if ((k + s ≤ K) & (MFs still distinguishable)) then

10 Kbounds[m] = {cm − s/2, cm + s/2}
11 k = k + s

12 end

13 end

14 a = K − k // Update the last MF kernel size

15 Kbounds[m] = {cm + a/2, cm − a/2}
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numerical simulations have been undertaken to investigate the general behav-
ior of the distance. Various SFPs have been randomly generated according
to Algorithm 1.

The two input parameters of the generation algorithm are NMF (> 2), the
number of MFs, and K, the cumulative kernel width over the partition. The
first and last MF centers are set to 0 and 1 to address the case in which the
cumulative size of kernels is zero, i.e., when all MFs are triangular in shape.
The distinguishability constraints mentioned in Algorithm 1 are such that
when an MF is modified, its new lower (upper) kernel bound is still higher
(lower) than the upper (lower) kernel bound of the previous MF.

The partitions are characterized using a regularity index, defined as follows:

Definition 4.1. Let P be any partition composed of NMF trapezoidal or tri-
angular MFs over the same definition domain D. The ith MF kernel of P
is denoted by [Ki, Ki].

The regularity index of P is defined by comparison with a regular fuzzy
partition RP of size NMF (see Definition 3.1). The ith MF kernel of RP is
denoted by ci.

RI(P ) =
1√

NMF − 2

NMF
∑

i=1

di(ci, P ), with

di(c, P ) =

{

0, if c ∈ [Ki, Ki]
min(dE(c,Ki), dE(c,Ki)), otherwise

(11)

The FP is designed to distort the Euclidean distance. To evaluate the
impact of a given partition on this distortion, N points are equally spaced
in the unit interval, and the following distortion estimation is computed over
all pairs of points.

DDE(P ) =
1

√

1
2
(N2 −N)

√

√

√

√

N
∑

j=1

N
∑

k=j+1

(dE(xj, xk)− dP (xj, xk))2 (12)

The random partition generation is performed according to Algorithm 1
for all combinations ofNMF from 4 to 10 andK ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3};
the number of points N is set to 100, and the entire procedure is repeated 100
times. Numerical experiments showed that RI(P ) has a similar expectation,
independent of the value of NMF , calculated over the sample experiments
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Figure 8: Illustration of the general behavior
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(0.268 < E[RI(P )] < 0.297 for NMF between 5 to 10). This justifies the
chosen normalization in Equation (11).

Figure 8 shows the results of the 100 experiments for each of the config-
urations, with the regularity index RI(P ) as the abscissa and the distance
distortion estimation DDE(P ) as the ordinate. The color and shape of the
points correspond to a given number of MFs, regardless of the cumulative
size of the kernels.

The linear regressions of DDE versus RI, calculated independently for a
given number of MFs, yield similar results: the slope, which varies between
0.202 and 0.238 for NMF between 5 and 10, and the R2 coefficient are similar.
The model that predicts the distance distortion according to the partition
regularity index explains half of the variance (R2 ≈ 0.5, for NMF between 5
and 10), meaning that because of proper normalization, the distance behavior
is not significantly influenced by the number of MFs in the partition. Instead,
the distance behavior is influenced mostly by its regularity. The proposed
index is one way to estimate this regularity and could certainly be improved.
The case of NMF = 4 differs slightly, with a lower slope of 0.155, a greater
expectation (0.332) and a smaller R2 = 0.279.

These numerical experiments illustrate a general trend because the par-
titions are randomly generated with little constraint and therefore vary sig-
nificantly. The next section highlights the influence of the kernel size for
partitions in which the deformation is more limited.

4.3. Synthetic case study

We will now examine the pseudo-metric behavior using a synthetic case
study with univariate hierarchical clustering. A bottom up approach is used:
each observation begins in its own cluster, and pairs of clusters are merged
as we move up the hierarchy. At each step, the selected pair of clusters
to be merged is the pair that yields the minimum increase of within-group
variance. The dendrogram can be analyzed to determine the composition of
the clusters at a given hierarchical level.

The considered synthetic variable is wind speed. The speed, measured
in either mph or km/h, is usually expressed through a partition endowed
with natural semantics: the Beaufort scale1. Thirteen degrees are defined
in the range of [0 − 120] km/h. Higher degrees have wider ranges of speed.

1http://en.wikipedia.org/wiki/Beaufort scale
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For example, the range of degree 2, labeled Light Breeze, is [5.6− 11] km/h,
whereas the range of degree 5, Fresh Breeze, is [29− 38] km/h.

To simplify the study, the degrees are placed in four groups, each of
which consists of approximately three degrees. The group characteristics are
summarized in Table 1.

Table 1: The four groups of Beaufort degrees

Groups 1 2 3 4
Label Calm Breeze Wind Storm
Degrees 0-2 3-5 6-9 10-12
Interval (km/h) 0-11 12-38 39-88 89-∞
Center (km/h) 5 25 64 120

The impact of the pseudo-metric behavior on the hierarchical clustering
procedure, implemented as hclust in the R environment[23], is analyzed. The
results are highly sensitive to two factors: the choice of the metric between
individuals and the method chosen for agglomerating the clusters. In the
present study, the centroid agglomeration method is used as the method
for agglomerating the clusters, and the metric used between individuals is a
series of several metrics or pseudo-metrics that are Euclidean or FP-based.
The hierarchical clustering results change accordingly and are studied at the
hierarchical level corresponding to the four clusters and for various sample
sizes: 100, 200, 500 and 1000.

For each sample size, ten samples have been randomly generated accor-
ding to a Gamma law with parameters 3 (shape) and 12 (scale), and five
pseudo-metrics are studied.

These FPs have been designed as SFPs and have been built with triangu-
lar or trapezoidal MF shapes. A triangular MF-based FP is designed, with
kernel locations given in row 4 of Table 1, and trapezoidal MFs are added
at the partition edges to form an SFP. Various trapezoidal MF-based FPs
are studied, in which each MF kernel is built with a width corresponding to
a given fraction: 25, 50 and 95% of the Wind speed interval reported in the
third row of Table 1. All of the FPs are SFPs.

Let us first examine the results obtained with a sample size equal to 500.
Comments about the behavior with other sample sizes are presented at the
end of the section.
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Figure 9: The ten distributions of size 500 samples (top) and the Euclidean cluster ranges
(bottom)
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(a) TRI (b) K25

(c) K50 (d) K95 (e) K95 (size 100 sample)

Figure 10: The FPs and cluster ranges for sample size 500: (a), (b), (c), (d), (e) cluster
ranges for sample size 100 and the K95 FP
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The ten sample distributions are plotted at the top of Figure 9, and the
extrema of the cluster ranges, calculated over the ten runs, are plotted at
the bottom. The five pseudo-metrics include the Euclidean distance and four
FP-based pseudo-metrics corresponding to the FP shown in Figure 10. The
cluster ranges are also plotted in Figure 10 below each corresponding FP.

We discuss these plots as follows. When the Euclidean distance is used
in the hierarchical clustering, the process is completely unsupervised. The
cluster bounds depend only on the number of groups and the data distribu-
tion for each run, and it is difficult to interpret them. With the FP-based
pseudo-metrics, the results are different. The cluster composition reflects the
knowledge represented by the FP, almost strictly for the K95 partition, and
with more flexibility for the K25, K50 or TRI partitions. For all FPs, the
extrema of the cluster bounds are located within the corresponding MF sup-
port range, reflecting the constraint that individuals belonging to the same
concept are closer than those belonging to different MFs.

Table 2 summarizes the variances of the lower and upper bounds of the
four clusters for each of the five pseudo-metrics.

Table 2: Variances of min and max cluster bounds, sample size: 500

Cluster
Euclidean Partition

Tri K25 K50 K95
min-max min-max min-max min-max min-max

1 1 45 1 14 1 7 1 1 1 0
2 47 129 14 48 6 22 1 15 0 0
3 193 110 52 55 22 26 16 20 0 0
4 558 219 81 219 54 219 34 219 3 219

Table 2 exhibits a clear trend: the wider the MF kernels, the smaller is the
cluster bound variance. The K95 experiment is an extreme case. This config-
uration drastically reduces the degree of freedom of the clustering algorithm,
but it also highlights the importance of the distance parameter.

The means of the cluster counts for sample size 500 are given in Table 3.
The counts for the K95 FP may be used as a reference because this partition
is close to a crisp partition. For this partition, the groups are unbalanced;
few items fall in the first and the fourth cluster. This unbalance is logical
because the data distribution is skewed (as shown in Figure 9). To some
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extent, the use of an FP-based pseudo-metric introduces supervision into the
clustering process.

Table 3: Means of the cluster counts for sample size 500

G En Tri K25 K50 K95
1 315 130 93 63 36
2 158 259 256 279 271
3 22 102 137 147 183
4 4 10 14 12 11

In contrast, when using the Euclidean distance, the two first groups are
more numerous and the third one includes less individuals. There is no
supervising effect and the data distribution is no longer reflected in the cluster
composition.

However, we must be cautious regarding this point. This supervising
effect remains valid under the condition that the data distribution spans the
whole range of the FP. With a small sample size, certain distributions may
lack items at the edge. In this case, the fourth group range may also be
included in the third fuzzy set support, as is the case for the sample size 100,
which is shown at the bottom of Figure 10(e). Results for sample sizes 200
and 1000 are comparable to the results given for sample size 500.

We could therefore consider that we have a semi-supervised behavior,
with the FP serving as a reference only if data are available to enforce that
reference.

The study raises significant questions about the relative importance of
clustering algorithm parameters and data locations for the resulting clus-
ters. It is well known that the distance function is a key parameter for such
algorithms, including the k-means algorithm. For instance, input variables
can be weighted within the distance function, and in that case, changing the
weighting coefficient vector is likely to yield a different partition.

Furthermore, the K95 experiment illustrates the importance given to ex-
pert knowledge. In the case studies, partitions that are more realistic are
used to introduce expert knowledge into the clustering procedure. Thus, ex-
pert knowledge does not entirely define the clustering result, even more so
in a multidimensional clustering procedure. To summarize, the results are
dependent on the data and are biased by the FPs.
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4.4. Real-world case study

To demonstrate the value of the proposed univariate pseudo-metric, this
section presents a real-world application involving geographical data and ex-
pert knowledge for decision support in wine growing.

The georeferenced data are yield data [25] from an embedded sensor on a
grape-harvesting machine. The 1.4-ha field was planted with the Bourboulenc
variety and was harvested in 2001 in Provence (France). The average sam-
pling rate is approximately 2400 measurements per ha. However, because of
a data acquisition problem, some records are missing. A recurrent charac-
teristic of many agro-environmental data is their lack of regularity because
of missing data and manual measurement.

The objective of the study is to identify suitable management zones based
on the information found in the yield data and the domain knowledge. Sev-
eral operations could then be adapted, including fertilization, winter pruning
and grassing.

An algorithm that is able to process data that are not necessarily on a
regular grid is used. This algorithm is derived from a region-merging algo-
rithm, and details about the algorithm can be found in [21]. A fundamental
point is the way the spatial coordinates are used here. They are not directly
involved in any dissimilarity calculation but are only used to define point
and zone neighborhoods. The algorithm works on two spaces simultaneously
(attribute space and geographic space). The proximity criterion used for
zone merging is based on dissimilarity in the attribute space and is calcu-
lated only within a given neighborhood. Spatial interpolation of data is not
necessary for the algorithm to run, which is an asset because synthetic data
are made by interpolation, and the artificial nature of these data is often not
considered in the interpretation of the results.

The study compares the results obtained by running the algorithm with
a Euclidean distance-based merging criterion and with an FP-based distance
criterion. The FP is determined from local policy norms, and the fuzzy set
breakpoints are 7,9,11. A FisPro [12] screenshot displaying the FP together
with the data distribution is shown in Figure 11.

The algorithm yields a series of maps with a decreasing number of zones.
The six zone maps are shown in Figure 12-a and 12-b.

The main difference between the two maps is the presence of a north-south
structure in the FP-based map, which does not appear in the other map. Two
main management zones are highlighted in 12-b, one corresponding to the
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Figure 11: Histogram and FP for the yield data

northern low yield and one corresponding to the southern high yield. From
an expert point of view, this makes sense. Inversely, the absence of structure
in Figure 12-a is derived from the fact that, with the Euclidean distance,
medium-high yield data in the south-east have been associated with lower
yield data to form zone #6 (in light gray).

A few specific zones of small size appear equally in both maps. These
zones correspond to i) a zone of high yield in the center of the plot (zone #1,
in black) and ii) a few low-yield zones located along the southern edge of the
field, which correspond to border effects (beginning of the rows). Depending
on the goal and the machinery of the grower, these small zones may not be
considered for site-specific management.

The introduction of the FP-based pseudo-metric in the zoning method
provides a map that simplifies the representation of the field, according to
expert knowledge, while preserving the main trends found in the available
data.

In many real-world applications, multidimensional data are to be consi-
dered. We now propose a method for using FP-based pseudo-metrics in a
multivariate framework.
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a) Euclidean distance b) FP-based pseudo-metric

Figure 12: Zoning yield data with two types of distance
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5. The multivariate case: a pseudo-metric and a case study

The easiest way to obtain a multidimensional pseudo-metric is to per-
form a Minkowski-like combination of the univariate pseudo-metrics. Let
two multidimensional points x = (x1, . . . , xM) and y = (y1, . . . , yM) with
xi, yi ∈ [0, 1], ∀i ∈ 1, . . . ,M .

We have the following definition for the pseudo-metric:

∀x, y d(x, y) =

[

M
∑

j=1

(dj(xj, yj))
k

]

1

k

(13)

In Equation (13), each dj is a univariate distance in the jth dimension,
either dP as defined in Equation (5), which is based on a FP P , or a different
univariate distance, for instance, a univariate Euclidean distance.

Because d(x, y) is a sum of semi-distance functions, it automatically in-
herits the properties of a semi-distance.

For k=2 and regular SFPs in all dimensions, Equation (13) yields the
same result as the multidimensional Euclidean distance.

Case study

Data chosen to demonstrate the value of the approach are taken from [15]
and have been used previously to illustrate clustering procedures [7]. The
data set describes the percentages of water, protein, fat, lactose and ash in
the milk of 22 mammals. Data are given in Table 4.

The aim of our case study is to cluster the mammals, according to these
five milk components, by introducing FP-based pseudo-metrics into a clas-
sical clustering procedure. First, a dissimilarity matrix between all pairs of
items is computed. Then, the dissimilarity matrix is used as an input to
the clustering algorithm. Because the standard k-means does not give stable
results with the Euclidean distance, a robust version, called pam (partition-
ing around medoids)[17], is used. The main difference between pam and
k-means is the definition of the cluster centers: in the robust version, the
cluster centers are not computed as the mean but are necessarily data items,
in a formation called a medoid. The R implementation[23] of pam is used in
the experiments.
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Table 4: Ingredients of mammals milk

Water Protein Fat Lactose Ash

Bison 86.90 4.80 1.70 5.70 0.90
Buffalo 82.10 5.90 7.90 4.70 0.78
Camel 87.70 3.50 3.40 4.80 0.71

Cat 81.60 10.10 6.30 4.40 0.75
Deer 65.90 10.40 19.70 2.60 1.40
Dog 76.30 9.30 9.50 3.00 1.20

Dolphin 44.90 10.60 34.90 0.90 0.53
Donkey 90.30 1.70 1.40 6.20 0.40

Elephant 70.70 3.60 17.60 5.60 0.63
Fox 81.60 6.60 5.90 4.90 0.93

Guinea Pig 81.90 7.40 7.20 2.70 0.85
Hippo 90.40 0.60 4.50 4.40 0.10
Horse 90.10 2.60 1.00 6.90 0.35
Llama 86.50 3.90 3.20 5.60 0.80

Monkey 88.40 2.20 2.70 6.40 0.18
Mule 90.00 2.00 1.80 5.50 0.47

Orangutan 88.50 1.40 3.50 6.00 0.24
Pig 82.80 7.10 5.10 3.70 1.10

Rabbit 71.30 12.30 13.10 1.90 2.30
Rat 72.50 9.20 12.60 3.30 1.40

Reindeer 64.80 10.70 20.30 2.50 1.40
Seal 46.40 9.70 42.00 0.00 0.85

Sheep 82.00 5.60 6.40 4.70 0.91
Whale 64.80 11.10 21.20 1.60 0.85
Zebra 86.20 3.00 4.80 5.30 0.70
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Using the Euclidean distance
The results of the pam partitioning run on the multidimensional data are

shown in Figure 13, which is a two-dimensional plot. The three clusters are
labeled E1, E2, E3.

All observations are represented by points in the plot, and principal com-
ponents analysis (PCA) is used to reduce the dimensions to the two first
axes. An ellipse is drawn around each cluster. The first two components
of the PCA explain 94.91% of the variability, and we will study the cluster
composition on the first plane, also called the principal plane. Of course,
some individuals may be closer or farther on the other factorial planes.

The cluster composition is somewhat unexpected. Dog is included in
the cluster of sea mammals, whereas cat and pig are assigned to a different
cluster.

−4 −2 0 2

−
3

−
2

−
1

0
1

2
3

Component 1

C
om

po
ne

nt
 2

●

● ●

●

●

●

● ●

●

●

Bison

Buffalo Camel

CatDeer

Dog

Dolphin

Donkey

Elephant

Fox
Guinea Pig

Hippo

Horse

Llama

Monkey

Mule

Orangutan

Pig

Rabbit

Rat

Reindeer

Seal

Sheep

Whale

Zebra

1

2

3

E

E

E

% inertia: 76.2

%
 in

er
tia

: 1
8.

7

Figure 13: Clusters obtained with the Euclidean distance

A powerful indicator can be computed using the silhouette index [24]. To
construct the silhouettes S(i) for each item i, the following formula is used:

S(i) =
b(i)− a(i)

max(a(i), b(i))
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where a(i) is the average dissimilarity of item i to all other items in the same
cluster and b(i) is the minimum of average dissimilarity of item i to all items
in other clusters. b(i) can be seen as the dissimilarity between item i and its
neighbor cluster, i.e., the nearest cluster to which it does not belong. The
average silhouette Sc for each cluster is simply the average of the S(i) for
all items in the cth cluster. Similarly, the overall average silhouette S is the
average of the S(i) for all items in the whole data set.

Figure 14 shows the silhouette values corresponding to the clustering
using the Euclidean distance. Three of the silhouette values are negative:
llama, camel and dog. Others, like the rat-related silhouette value, are close
to zero.

The silhouette index is based on cluster tightness and separation and is
derived from the formula −1 ≤ S(i) ≤ 1. A value close to one indicates that
the observation is correctly assigned to a group; a small value, even more so
a negative one, results in a wrong assignment. The largest overall average
silhouette indicates the best clustering.

Silhouette index values resulting from the Euclidean-based clustering are
given in the second row of Table 5, Sc for each cluster and S for the overall
averaged value. The same calculations will be performed for the SFP-based
pseudo-metric.

Table 5: Averaged silhouettes for each cluster and averaged overall value, Euclidean and
FP-based pseudo-metrics

Euclidean
E1 E2 E3 Overall
0.27 0.28 0.55 0.35

FP-based
P1 P2 P3 Overall
0.62 0.30 0.57 0.48

Introducing expertise by fuzzy partitions

The proposed pseudo-metric allows for the introduction of expert know-
ledge by FPs. Two variables are considered, Water and Fat. The other three
variables are addressed using the Euclidean distance.

Figure 15(b) displays the FP corresponding to low and high Water con-
tent.
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Figure 14: Silhouettes with Euclidean distance

The Fat content variable has been partitioned into four groups as shown
in Figure 15(a). This number of groups is motivated by the dispersion of the
data distribution for the variables. The ratio of the standard deviation to
the mean is approximately 0.16 for Water content, whereas it is higher than
1 for this variable.

(a) Fat (b) Water

Figure 15: Expert FPs

Expertise in MF design consists, for instance, of considering that above 20%,
the Fat content is definitely high. It is well known that marine mammals
milk has a much higher Fat content (≥ 20%) than terrestrial mammals milk
and that variations between 20% and 42% do not have much significance.
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Figure 16: Clusters obtained with the FP-based pseudo-metric

The new silhouette indices are given in the fourth row of Table 5. These
indices also support the SFP-based partitions: all Sc values are higher, and
the overall average S has been improved to 0.48 from 0.35.

The three new clusters are shown in Figure 16 and are labeled P1, P2

and P3. As could be expected, the cluster shapes are sensitive to the metric.
When comparing Figure 16 with Figure 13, changes are present for all of
the clusters. Pig, dog and cat are now together in the central group. The
boundary between the central and right clusters has also been modified.
These two clusters are more neatly separated according to the plot. Bison,
camel and llama are now in the group on the right, together with zebra. The
new silhouettes are plotted in Figure 17 and show an improvement compared
to the silhouettes plotted in Figure 14.

6. Conclusion

In this paper, a univariate semi-distance function was introduced to reflect
the semantics of FPs defined on numerical domains to incorporate domain
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Figure 17: Silhouettes with the FP-based pseudo-metric

knowledge into the calculations. This function is called an FP-based pseudo-
metric.

To define such a pseudo-metric for a given dimension, a FP must be
specified for the corresponding linguistic variable. The pseudo-metric then
involves a combination of symbolic and numerical terms, which allows for
the pseudo-metric to distort the Euclidean distance according to the FP
structure.

The numerical term considers multiple membership in transition zones
between concepts. The symbolic term factors in the distance between con-
cepts. Each concept is associated with an MF within the partition. All
concepts are considered as equidistant, independent of the Euclidean dis-
tance between kernel points. All points within a given kernel are assumed to
have a null distance because they are prototypes of the same concept.

The proposed FP-based univariate pseudo-metric behavior has been stud-
ied with synthetic data sets to investigate its behavior and the ways it differs
from the Euclidean distance. The practical use of the proposed pseudo-metric
has been shown by introducing it into a segmentation algorithm to design
management zones in cultivated fields.

A multivariate semi-distance was proposed as a Minkowski-like combina-
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tion of univariate semi-distances that can freely use different types of univa-
riate distances or semi-distances. For instance, the multivariate semi-distance
can associate a Euclidean distance in one dimension with an FP-based semi-
distance in another dimension.

The multivariate FP-based pseudo-metric was applied to a real-world
clustering case in the field of Biology: mammals milk. The results show the
effect of the distortion of the Euclidean space on two of the five available
variables. They highlight the clusters sensitivity to the distance choice. The
new clusters are better separated and are likely to be more interpretable.

Let us point out that independent of their imprecision, real-world numer-
ical data may have some degree of imperfection because of their incomplete
representativeness for the problem to be modeled. This is often the case in
clustering and especially so in Biology because of the high variability of living
organisms. Integration of expert knowledge can overcome this difficulty, and
this is the aim of the present approach.

Targeted real-world applications include merging processes in image ana-
lysis (region growing algorithms) and statistical procedures (hierarchical clus-
tering) in any application area in which knowledge integration is important.
Using the new semi-distance in various application domains should draw
attention to its potential for incorporating expert knowledge into learning
methods. Further work could also be conducted to define pseudo-metrics on
multidimensional FPs.
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