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Abstract

Argumentation frameworks have proven to be a successful approach to for-
malizing commonsense reasoning. Recently, some argumentation frameworks
have emerged which incorporate the treatment of possibilistic uncertainty,
notably Possibilistic Defeasible Logic Programming (P-DeLP). At the same
time, modelling argument accrual has gained attention from the argumen-
tation community. Even though some preliminary formalizations have been
advanced, they do not take into account possibilistic uncertainty when accru-
ing arguments. In this paper we present a novel approach to model argument
accrual with possibilistic uncertainty in a constructive way. The formaliza-
tion proposed uses P-DeLP’s representation language and notion of argument
as a basis.

Keywords: argumentation, possibilistic uncertainty, argument accrual

1. Introduction

Argumentation frameworks have proven to be a successful approach to
formalizing qualitative, commonsense reasoning [23, 18]. Argumentation can
be abstractly defined as the interaction of different arguments for and against
some conclusion. Over the last few years, argumentation has been gain-
ing increasing importance in multi-agent systems, mainly as a vehicle for
facilitating “rational interaction” (i.e., interaction which involves the giv-
ing and receiving of reasons). This is because argumentation provides tools
for designing, implementing and analysing sophisticated forms of interaction
among rational agents. Argumentation has made solid contributions to the
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practice of multi-agent dialogues, including several application domains such
as legal disputes, business negotiation, labor disputes, team formation, sci-
entific inquiry, deliberative democracy, ontology reconciliation, risk analysis,
scheduling, and logistics. In such a setting, a single agent may also use ar-
gumentation techniques to perform its individual reasoning because it needs
to make decisions under complex preferences policies in a highly dynamic
environment.

Recently, some argumentation frameworks have emerged which incorpo-
rate the treatment of possibilistic uncertainty. Amgoud et al. have developed
argumentative approaches to decision making with uncertainty [5] and merg-
ing conflicting databases [4]). In recent work, Alsinet et al. formalized Pos-
sibilistic Defeasible Logic Programming (P-DeLP) [3, 2], an argumentation
framework based on logic programming which incorporates the treatment of
possibilistic uncertainty at the object-language level.

At the same time, the notion of argument accrual has received some
attention from the argumentation community [28, 21, 17]. This notion is
based on the intuitive idea that having more reasons or arguments for a
given conclusion makes such a conclusion more credible or stronger. Let us
consider the following example: Alice is looking for an apartment to rent,
and when she is considering one of the candidate apartments she analyzes
different arguments in favor and against renting it:

(A) the apartment is in very good location (according to her interests);
therefore, she should rent it.

(B1) the apartment is rather small; therefore, she should not rent it.

(B2) The apartment seems to have humidity problems; therefore, she should
not rent it.

(B3) building tenants are mostly students, so disorders may happen to be
usual; therefore, she should not rent it.

Suppose that Alice considers that location is more important than any
of the other features considered individually (that is, that argument A is
stronger than each of B1 − B3). However, Alice considers that the three
arguments B1 − B3 together are stronger than A (see Fig. 1). Traditional
argumentation systems (including those using possibilistic logic, such as P-
DeLP [3, 2]) only consider individual arguments, and conflicting arguments
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Figure 1: Apartment rental example

are compared pairwise, leading to counter-intuitive conclusions in situations
like this. So, accrual of arguments must be explicitly taked into account.

Moreover, although some approaches modeling argument accrual exist,
none of them proposes a concrete representation of argument strength, nor
a mechanism to explicitly aggregate the strength of individual arguments
supporting the same conclusion. As we will see later, possibilistic logic allows
us to attach necessity degrees to logical formulas at object-level language.
Such necessity degrees can be obtained from a variety of sources (e.g. in
this particular example they could correspond to user-defined values when
assessing the apartment for rent, or to ranking value obtained from apartment
rental services, etc.). Necessity degrees just provide a weight expressing
certainty or priority associated with a given logical formula.1

In this work we propose a formalization of argument accrual with possi-
bilistic uncertainty in a logic programming setting, which is partly based on

1An in-depth account of possibilistic logic and their applications in knowledge repre-
sentation and reasoning is presented in [8].
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previous research work ([16, 17]). Our proposal will be obtained by instanti-
ating and extending a generic formalization for skeptical argumentation very
similar to those well-known abstract approaches presented in [30, 19, 26].
This generic formalization characterizes a dialectical proof procedure for de-
termining which arguments are ultimately accepted or warranted. In order
to define our approach, this generic formalization is firstly instantiated with
P-DeLP’s representation language and the associated notion of (weighted)
argument, obtaining a characterization of skeptical argumentation in a logic
programming setting with possibilistic uncertainty. Secondly, the resulting
possibilistic instantiation is extended to incorporate accrual. Accrued argu-
ments will be conceptualized as weighted structures accounting for different
P-DeLP arguments supporting a given conclusion, and as we will see, defin-
ing the necessity measure associated with those accrued structures is not a
simple task. On the one hand, we want to combine the propagation of ne-
cessity degrees when performing rule-based inference (as in P-DeLP) with
a way of accumulating necessity values coming from different rules with the
same conclusion. On the other hand, we do not want to commit ourselves to
a specific way of aggregating necessity degrees; this will be abstracted away
in terms of a user-defined function. Finally, the dialectical proof procedure
of the generic formalization will also be adapted in order to take accrued
structures into account, instead of individual arguments.

The rest of this paper is structured as follows. Section 2 presents a generic
formalization for skeptical argumentation. Next, in Section 3 this generic
formalization is instantiated using P-DeLP. Section 4 presents the notion of
accrued structure, which plays a central role in our proposal. Based on this
notion, we then formalize the notions of attack and defeat among accruals in
Section 5, and present a dialectical proof procedure taking accrued structures
into account in Section 6. Then, in Section 7 we discuss related work and
describe some significant features of our approach contrasted with the other
existing formalizations. Finally, in Section 8 we present the main conclusions
obtained.

2. Argumentation: a generic formalization for skeptical semantics

In this section we present a generic formalization for skeptical argumenta-
tion. Our formalization will be based on the well-known abstract argumenta-
tion framework proposed by Dung [9], suitably adapted to capture different
flavors of skeptical semantics. In particular, we will present a dialectical

4



proof procedure for determining which arguments are ultimately accepted or
warranted. This dialectical proof procedure is very similar to those defined in
[30, 19, 26] for Dung’s (skeptical) semantics, and the resulting formalization
can be seen as generalizing other non-abstract argumentation frameworks
also based on dialectical proof procedures (e.g. [22, 3]).

Definition 1 (Abstract Argumentation Framework [9]). An abstract
argumentation framework (AAF ) is a pair (Args, def), where Args is a
set of arguments and def ⊆ Args×Args is a binary relation representing a
defeat relation between arguments.

If A1 def A2, then we will say that A1 is a defeater for A2. In order to
define the dialectical proof procedure we will distinguish blocking and proper
defeaters. Formally:

Definition 2 (Proper and Blocking defeaters). Let (Args, def) be an
AAF . Let A1, A2 ∈ Args. We will say that A1 is a blocking defeater of A2

iff A1 def A2 and A2 def A1. We will say that A1 is a proper defeater of
A2 iff A1 def A2 and it is not the case that A2 def A1.

Intuitively, we say that A1 is a blocking defeater for A2 when the defeat
relationship def is symmetric for A1 and A2 (ie., both of them are in conflict,
but none of them is “preferred” over the other).

A dialectical line represents a line of discussion about a given argument A,
and is a sequence of arguments (starting with A) where each one deafeats the
previous in the line. We will consider each element (argument) in a dialectical
line as assuming one of two roles, determined by its position in the line: pro
(in favor of the initial argument) if it appears in an odd position, or con
(against the initial argument) if it appears in an even position.

Definition 3 (Dialectical Line). Let (Args, def) be an AAF and A ∈
Args. A dialectical line about A (or just dialectical line) is a finite nonempty
sequence of arguments [A1, A2, .., An], with A1 = A, such that:

(d1) Ai def Ai−1, 1 < i ≤ n,

(d2) if Ai and Aj are pro arguments, i ̸= j, then Ai ̸= Aj,

(d3) if Ai is a pro argument, i ̸= 1, then Ai is a proper defeater of Ai−1,
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where Ai is said to be a pro argument of the line if i is odd, or a con
argument of the line if i is even.

Condition d1 states that each argument in the line (except the first)
defeats the previous one. Condition d2 avoids repetition of pro arguments
in the line. Finally, the purpose of d3 is to avoid pro to introduce blocking
defeaters.

A dialectical line about a given argument A ended with a pro argument
represents a line of discussion justifying A, while one ending with a con
argument represents a line of discussion not justifying A. In this context,
condition d2 can be considered a skeptical solution to cope with cycles in
the arguments graph (the graph of arguments and defeats associated with
the AAF ). A cycle in the arguments graph may lead to an infinite “dia-
logue line”, and so to indecision about its result (justifying or not justifying
the initial argument). By avoiding the repetition of pro arguments (cond.
d2) while allowing repetition of con arguments, an infinite line of dialogue
consequence of a cycle will prompt to a finite dialectical line ending with a
con argument, and then not justifying the initial argument. Thus, d2 causes
that ties between pro and con consequence of graph cycles to be skeptically
broken in favor of con.

The purpose of condition d3 is analogous to that of d2, but for the specific
case of two length cycles (blocking defeat situations): by not allowing pro
to introduce blocking defeaters, while con is indeed allowed to introduce
them, blocking cycles are broken in favor of con. Although d2 is sufficient
to skeptically break blocking cycle ties, condition d3 allows to detect and
break them more efficiently, that is, without the necessity of repeating con
arguments. Fig. 2b shows a dialectical line about A with respect to the AAF
in Fig. 2a according to definition 3 (requiring condition d3), whereas Fig. 2c
shows the corresponding sequence of arguments if condition d3 would not be
required.

The following proposition formally states that consecutive con argument
repetition never occurs in a dialectical line, and as can be realized from the
associated proof, this is consequence of condition d3.

Proposition 1. Let [A1, A2, .., An] be a dialectical line. If Ai and Ai+2 are
con arguments, then Ai ̸= Ai+2.

Proof. Suppose by contradiction that Ai = Ai+2. Consider the pro argu-
ment Ai+1. As Ai+1 defeats Ai and is defeated by Ai+2 = Ai (condition d1),
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(a) (b) (c)

Figure 2: Effect of condition d3.

then Ai+1 is a blocking defeater for Ai, violating condition d3 of definition 3.
Therefore Ai ̸= Ai+2 �

Definition 4 (Exhaustive Dialectical Line). Let Λ = [A1, A2, .., An] be
a dialectical line. We will say that Λ is exhaustive if there exists no argument
B such that [A1, A2, .., An, B] is a dialectical line.

The set of all exhaustive dialectical lines about a given argument A can
be represented as a tree structure, where every line corresponds to a branch
in the tree.

Definition 5 (Dialectical Tree). Let A ∈ Args. A dialectical tree about
A, denoted TA, is defined as follows:

1. Nodes are labeled with arguments of Args.
2. Λ = [A1, A2, .., An] is the sequence of labels of a branch of the tree (path

from the root to a leave) iff Λ is an exhaustive dialectical line about A.
3. There exist no sibling nodes (children of the same node) M and M ′ in

the tree labeled with the same argument.

The purpose of condition 3 is to factor out as much as possible in the tree
the common prefixes of dialectical lines about A.

Definition 6 (Evaluated Dialectical Tree). Let TA be a dialectical tree.
The corresponding evaluated dialectical tree, denoted T∗

A, will be obtained by
marking every node N in TA as ‘U’ (undefeated) or ‘D’ (defeated) according
to the following rules:
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1. if N is a leaf, then N is marked as ‘U’.

2. if all children Mi of N are marked as ‘D’, then N is marked as ‘U’.

3. if there exists a child Mi of N marked as ‘U’, then N is marked as ‘D’.

Clearly, this procedure resembles the one applied for computing well-
founded semantics in a logic programming setting ([13]).

Definition 7 (Warranted argument). Let Γ = (Args, def) be an AAF .
Let A ∈ Args such that the root of T∗

A is marked as ‘U’. Then we say that A
is a warranted argument w.r.t. Γ.

3. An Instantiation using Necessity Degrees in a Logic Program-
ming Setting

In this section we will present an instantiation of the argumentation
framework given in the previous section in a logic programming setting. It
must be noted that logic programming has proven to be a flexible formal-
ization for argumentation systems (e.g. [22, 12], among others). In order to
incorporate uncertainty in our formalization we will make use of possibilistic
logic for incorporating necessity degrees attached to formulas at the object
level. Our approach for knowledge representation is the same as the one used
in Possibilistic DeLP ([3]).

3.1. Knowledge representation and argumentation in P-DeLP

A weighted clause is a pair (φ, α), where φ is a rule q ← p1 ∧ . . . ∧ pk or
a fact q (i.e., a rule with empty antecedent), where q, p1, . . . , pk are literals,
and α ∈ (0, 1] expresses a lower bound for the necessity degree of φ. We
distinguish between certain and uncertain clauses. A clause (φ, α) is referred
as certain if α = 1 and uncertain, otherwise. Given a set ∆ of weighted
clauses we will distinguish the set CC(∆) of all the certain clauses in ∆, and
the set UC(∆) of all the uncertain clauses in ∆.

A set of weighted clauses ∆ will be deemed as contradictory, denoted
∆ ⊢ ⊥, if, for some atom a, ∆ ⊢ (a, α) and ∆ ⊢ (∼a, β), with α > 0 and
β > 0, where ⊢ stands for deduction by means of the following particular
instance of the generalized modus ponens rule:

(q ← p1 ∧ · · · ∧ pk, α)
(p1, β1), . . . , (pk, βk)

(q, min(α, β1, . . . , βk))
[GMP]
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A possibilistic knowledge base (or just possibilistic KB) K is a finite set
of weighted clauses such that CC(K) is non-contradictory.

Definition 8 (Argument). Let K be a possibilistic KB. We say that a set
A ⊆ K is an argument for a literal h with necessity degree α > 0, denoted
⟨A, h, α⟩, iff:

1. A ⊢ (h, α),

2. CC(K) ∪A is non-contradictory,

3. A is minimal w.r.t. set inclusion, i.e. there is no A1 ⊂ A s.t. A1 ⊢
(h, α).

Remark: Logic programs, and therefore defeasible logic programs, may con-
tain unintended cycles in the rules, implying that from them it is possible to
build cyclic derivations from particular programs. Nevertheless, the represen-
tation of arguments as sets together with the minimality condition contained
in the definition above preclude that these cycles will come into play in the
non-pathological cases; for these unwanted cases defeasible logic programs
are in the same situation as standard logic programs [25].

Definition 9 (Subargument). An argument ⟨S, k, γ⟩ is a sub-argument of
⟨A, h, α⟩ iff S ⊆ A.

In what follows, for a given literal h, we will write h to denote “∼ a” if
h ≡ a, and “a” if h ≡ ∼a.

Definition 10 (Attack). Let K be a possibilistic KB, and let ⟨A, h, α⟩ and
⟨B, k, β⟩ be two arguments w.r.t. K. We say that ⟨B, k, β⟩ attacks ⟨A, h, α⟩
(at literal k) iff there exists a subargument (called disagreement subargu-
ment) ⟨S, k, γ⟩ of ⟨A, h, α⟩.

Definition 11 (Defeat). Let ⟨A, h, α⟩ and ⟨B, k, β⟩ be two arguments. Then
we say that ⟨B, k, β⟩ defeats ⟨A, h, α⟩ (or equivalently that ⟨B, k, β⟩ is a de-
feater of ⟨A, h, α⟩) if ⟨B, k, β⟩ attacks ⟨A, h, α⟩, where 1) ⟨S, k, γ⟩ is the dis-
agreement subargument, and 2) β ≥ γ.

In order to define the warranted arguments w.r.t. a given possibilistic
KB K we have just to instantiate the abstract argumentation framework
presented in Section 2 by making Args be the set of all arguments w.r.t.
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K and by defining def relation as follows: ⟨A1, h1, α1⟩ def ⟨A2, h2, α2⟩ iff
⟨A1, h1, α1⟩ defeats ⟨A2, h2, α2⟩.

Finally we introduce the notion of warranted conclusion with necessity
degree α, which is based on that of warranted argument.

Definition 12 (Warranted conclusions). Let K be a possibistic KB and
let ⟨A, h, α⟩ be a warranted argument w.r.t. K such that there exist no other
warranted argument ⟨A′, h, α′⟩ where α′ > α. Then we say that h is war-
ranted w.r.t. K with necessity α.

3.2. Refining the notion of warranted arguments: taking subarguments into
account

Next we will refine the previous formalization by taking advantage of
the notion of subargument associated with the definition of defeat. Recent
research ([24]) has shown the importance of this notion when carrying out
the dialectical analysis of the status of arguments.

The following definition refines the distinction between proper and block-
ing defeaters by considering that a defeater is blocking if it is reciprocally
defeated by the disagreement subargument. This refinement is a natural
consequence of instantiating the def relation with the particular notion of
defeat introduced in definition 11, which states that a given attack consti-
tutes or does not constitute a defeat depending on the comparison between
the attacking argument and the disagreement subargument.

Definition 13 (Proper and Blocking Defeaters, refined). Let ⟨A, h, α⟩
and ⟨B, k, β⟩ be two arguments. We will say that ⟨B, k, β⟩ is a blocking de-
feater of ⟨A, h, α⟩ if ⟨B, k, β⟩ defeats ⟨A, h, α⟩, with ⟨S, k, γ⟩ as the associated
disagreement subargument, and ⟨S, k, γ⟩ defeats ⟨B, k, β⟩. We will say that
⟨B, k, β⟩ is a proper defeater of ⟨A, h, α⟩ if ⟨B, k, β⟩ defeats ⟨A, h, α⟩, with
⟨S, k, γ⟩ as the associated disagreement subargument, and it is not the case
that ⟨S, k, γ⟩ defeats ⟨B, k, β⟩2.

By considering this refined notion of blocking defeat (instead of the origi-
nal one) in the context of condition d3, some blocking tie situations between
pro and con are detected and resolved sooner, resulting in shorter dialectical

2Notice that, in particular, in this possibilistic instantiation of the AAF presented in
Section 2 the defeater ⟨B, k, β⟩ will be proper iff β > γ, and blocking iff β = γ.

10



lines. That is because the refined blocking defeat notion captures some de-
feats that are not blocking according to the original one, but which anticipate
a reciprocal defeat between the defeater and the disagreement subargument.
For the sake of example, consider the arguments and defeat relation shown
in Fig. 3 for a given KB. The defeat of ⟨A3, h3, α3⟩ against ⟨A2, h2, α2⟩ is
blocking according to the refined notion, but not according to the original.
As consequence, the sequence [⟨A1, h1, α1⟩, ⟨A2, h2, α2⟩] is an exhaustive di-
alectical line if the refined blocking definition is considered in condition d3,
whereas [⟨A1, h1, α1⟩, ⟨A2, h2, α2⟩, ⟨A3, h3, α3⟩, ⟨S, k, γ⟩] is the corresponding
exhaustive dialectical line if the original one is considered.

Figure 3: Graph of defeats and refined blocking defeat

Definition 14 (Dialectical Line, refined). Let ⟨A, h, α⟩ ∈ Args. A di-
alectical line about ⟨A, h, α⟩ (or just dialectical line) is a finite nonempty se-
quence of arguments [⟨A1, h1, α1⟩, ⟨A2, h2, α2⟩, ..., ⟨An, hn, αn⟩], with
⟨A1, h1, α1⟩ = ⟨A, h, α⟩, such that:

(d1’) ⟨Ai, hi, αi⟩ defeats ⟨Ai−1, hi−1, αi−1⟩, 1 < i ≤ n,

(d2’) if ⟨Ai, hi, αi⟩ is pro and Σ is the set of all disagreement subargu-
ments associated with the attacks against pro arguments appearing
before ⟨Ai, hi, αi⟩ in the line, then no argument in Σ is a subargument
of ⟨Ai, hi, αi⟩,
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(d3’) if ⟨Ai, hi, αi⟩ is a pro argument and i ̸= 1, then ⟨Ai, hi, αi⟩ is a
(refined) proper defeater of ⟨Ai−1, hi−1, αi−1⟩,

where ⟨Ai, hi, αi⟩ is said to be a pro argument in the line if i is odd, or a
con argument in the line if i is even3.

Notice that condition d1’ is just an instantiation of condition d1 in defi-
nition 3. Condition d2’ avoids the occurrence of a pro argument ⟨Ai, hi, αi⟩
if it involves the disagreement subargument of a previous pro argument
⟨Aj, hj, αj⟩ in the line (j < i). Notice that if such an argument ⟨Ai, hi, αi⟩
exists, then the defeater ⟨Aj+1, hj+1, αj+1⟩ (con argument) of ⟨Aj, hj, αj⟩
will also be a defeater of ⟨Ai, hi, αi⟩, implying a cycle in the graph of defeats.
By avoiding ⟨Ai, hi, αi⟩, the cycle is broken in favor of con, and without
introducing ⟨Ai, hi, αi⟩, nor reintroducing ⟨Aj+1, hj+1, αj+1⟩. It can also be
noted that d2’ avoids pro repetition, as d2 does, just by taking ⟨Aj, hj, αj⟩
as the previous occurrence of ⟨Ai, hi, αi⟩ in the line. Finally, condition d3’ is
analogous to d3 but considers refined definition of proper defeater.
Observation: In a possibilistic context (like this), condition d2’ (/d2) is
redundant in presence of condition d3’ (/d3). It can be proven that all the
arguments and disagreement subarguments involved in a given graph cycle
will have the same associated necessity value, and then all the defeats in-
volved in the cycle will be blocking, causing cycles to be always broken by
condition d3’ before condition d2’ is violated. However, we include condition
d2’ for two reasons. First, in a general (non-possibilistic) rule based formal-
ization, condition d2’ is necessary despite the existence of d3’. Second, and

3Although this definition is different from the one presented in [2] for P-DeLP, both
capture the same notion, as we will try to intuitively expose next. Firstly, dialectical line
definition in [2] requires concordance among the arguments proposed by each player, thus
avoiding players to advance conflicting arguments. Although this is a natural policy to
adopt, in our approach (and Dung’s one) an alternative (also natural) strategy is taken: a
player (pro or con) is indeed allowed to advance an argument ⟨Aj , hj , αj⟩ first, and later
in the line an argument ⟨Ak, hk, αk⟩ that is in conflict with ⟨Aj , hj , αj⟩, in other words,
a player is allowed to be incoherent, but then its opponent will put this incoherence in
evidence by advancing ⟨Aj , hj , αj⟩ against ⟨Ak, hk, αk⟩, and finally winning the dispute
(line). Secondly, definition in [2] requires the line to be “progressive”, that is that every
blocking defeater must be defeated by a proper one, forcing the line to progress towards
greater valued arguments, and thus in particular to avoid cycles. In our formalization,
condition d3’ in Def. 14 requires pro arguments to be always proper, making in particular
the line to be progressive (the intuition behind this condition was explained in Section 2).
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most important, condition d2’ (with some refinements) is also necessary for
our formalization of accrual.

Proposition 2. Let [⟨A1, h1, α1⟩, ⟨A2, h2, α2⟩, .., ⟨An, hn, αn⟩] be a (refined)
dialectical line. If ⟨Ai, hi, αi⟩ and ⟨Ai+2, hi+2, αi+2⟩ are con arguments,
and ⟨S, k, γ⟩ is the disagreement subargument associated with the attack of
⟨Ai+1, hi+1, αi+1⟩ against ⟨Ai, hi, αi⟩, then ⟨S, k, γ⟩ ̸= ⟨Ai+2, hi+2, αi+2⟩.

Proof. Suppose by contradiction that ⟨S, k, γ⟩ = ⟨Ai+2, hi+2, αi+2⟩. Con-
sider the pro argument ⟨Ai+1, hi+1, αi+1⟩. As ⟨Ai+1, hi+1, αi+1⟩ defeats
⟨Ai, hi, αi⟩, with disagreement subargument ⟨S, k, γ⟩, and is defeated by
⟨Ai+2, hi+2, αi+2⟩ = ⟨S, k, γ⟩ (condition d1), then ⟨Ai+1, hi+1, αi+1⟩ is a block-
ing defeater for ⟨Ai, hi, αi⟩, violating condition d3’. Therefore ⟨S, k, γ⟩ ̸=
⟨Ai+2, hi+2, αi+2⟩.

4. Modelling Argument Accrual with Possibilistic Uncertainty

As stated in the introduction, our goal is to model argument accrual in
a possibilistic setting taking into account several issues. In P-DeLP, the
GMP inference rule allows us to propagate necessity degrees; however, given
different arguments supporting the same conclusion, we want to be able to
accumulate their strength in terms of possibilistic values. To do this we will
define the notion of accrued structure, which will account for several argu-
ments supporting the same conclusion, and whose necessity degree is defined
in terms of two mutually recursive functions: fMP

Φ (·) (which propagates ne-
cessity degrees through individual rules, as GMP) and f+

Φ (·) (the accruing
function, combining the necessity degrees of individual reasons supporting
the same conclusion). As we do not want to commit ourselves to a specific
way of calculating the aggregated value from a given set of necessity degrees
we will assume that f+

Φ (·) is parameterized w.r.t. a user-specified function
ACC : [0, 1]2 −→ [0, 1], satisfying the following (desirable) conditions4:

1. ACC(x, y) = ACC(y, x) (commutativity)

2. ACC(x,ACC(y, z)) = ACC(ACC(x, y), z) (associativity)

3. ACC(x, y) ≤ ACC(x, z) whenever y ≤ z (monotonicity)

4We consider that these conditions are necessary to ensure a sound election of the
accruing function
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4. ACC(x, 0) = x (boundary condition)

5. ACC(x, y) ≥ max(x, y) (non-depreciation5)

6. ACC(x, y) = 1 only if x = 1 or y = 1 (maximality)

Intuitively, we require commutativity and associativity since we want a unique
way of aggregating a given set of possibilistic values, monotonicity since oth-
erwise it would be unnatural that ACC(x, y) < ACC(x, z) with y > z,
boundary condition since ACC(x, 0) > 0 would allow for artificial accruals,
non-depreciation since by accruing two arguments we should never obtain a
weaker argument, and maximality since we consider that total certainty (ne-
cessity value 1) cannot be reached by accruing two uncertainty arguments.
Moreover, it is interesting to note that conditions 1-4 characterize a well
known class of aggregation functions known as triangular co-norms ([15]).

Definition 15 (Accrued Structure). Let K be a possibilistic KB, and let
Ω be a set of arguments in K supporting the same conclusion h, i.e., Ω =
{⟨A1, h, α1⟩, ..., ⟨An, h, αn⟩}6. We define the accrued structure for h (or just
a-structure) from the set Ω (denoted Accrual(Ω)) as a 3-uple [Φ, h, α], where
Φ = A1 ∪ ... ∪An and α is obtained using two mutually recursive functions,
f+
Φ (·) and fMP

Φ (·), defined as follows. Let q be a literal appearing in Φ and
let (φ1, β1), ..., (φn, βn) be all the weighted clauses in Φ with head q. Then

f+
Φ (q) =def ACC(fMP

Φ (φ1), ..., ACC(fMP
Φ (φn−1), fMP

Φ (φn))...)

Let (φ, β) be a weighted clause in Φ and let Φ′ = Φ \ {(φ, β)}. Then

fMP
Φ (φ) =def


β if φ is a fact q;

min(f+
Φ′(p1), ..., f

+
Φ′(pn), β) if φ = q ← p1, ..., pn

Finally, α = f+
Φ (h). When Ω = ∅ we get the special accrued structure [∅, ϵ, 0],

representing the accrual of no argument7.

5Non-depreciation is implied by conditions 1, 3 and 4, nonetheless we consider valuable
to make this condition explicit.

6P-DeLP Possibilistic Knowledge Bases, as presented in Section 3, are finite and ground
(do not involve variables), so that the number of subsets of a given possibilistic KB is also
finite, as well as the number of arguments supporting a given conclusion h.

7Notice that this sentence is not a remark, but states a particular case of the definition
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Although by definition the support set of an argument cannot be a re-
cursive logic program, the support set of an accrual, defined as the union of
the support sets of individual arguments, may indeed turn out to be recur-
sive. To avoid a cyclic definition of the necessity measure α, the function
fMP
Φ (φ) considers the set Φ′ = Φ \ {(φ, β)} for the (indirectly) recursive
case, avoiding in this way to subsequently reconsider the current rule φ.

Next we will present the function ACC1′ (one-complement accrual) as
a possible instantiation for ACC, which will be used in the examples that
follow. Formally:

ACC1′(α1, α2) = 1− ((1− α1) ∗ (1− α2))

It can be shown that ACC1′ satisfies conditions 1-6.

Example 1. Consider a possibilistic KB K where:

K =



(x← z, k, 0.7) (w ← r, 0.5) (∼o← d, 0.9) (p, 1)
(x← y, 1) (s← p, 0.7) (∼y ← e, 1) (q, 1)
(z ← t, 0.6) (∼w ← u, 0.75) (e← f, 0.4) (r, 1)
(z ← v, 0.5) (∼w ← z, 1) (∼e← d, 0.2) (f, 1)
(y ← u, 0.3) (∼s← o, 1) (∼x← q, 0.45) (d, 1)
(∼z ← w, 0.4) (∼s← t, 0.7) (t, 1) (u, 1) (k, 1)
(∼z ← s, 0.65) (o← q, 0.6) (v, 1) (w, 1)


Let ⟨A1, x, 0.6⟩ = ⟨{(x← z, k, 0.7), (z ← t, 0.6), (t, 1), (k, 1)}, x, 0.6⟩,
⟨A2, x, 0.5⟩ = ⟨{(x← z, k, 0.7), (z ← v, 0.5), (v, 1), (k, 1)}, x, 0.5⟩ and
⟨A3, x, 0.3⟩ = ⟨{(x← y, 1), (y ← u, 0.3), (u, 1)}, x, 0.3⟩ be arguments in K.
Then Accrual({⟨A1, x, 0.6⟩, ⟨A3, x, 0.3⟩}) = [Φ1, z, 0.72] where
Φ1 = {(x← z, k, 0.7), (z ← t, 0.6), (t, 1), (k, 1), (x← y, 1), (y ← u, 0.3), (u, 1)}
(Fig. 4a)

Accrual({⟨A1, x, 0.6⟩, ⟨A2, x, 0.5⟩}) = [Φ2, x, 0.7] where
Φ2 = {(x← z, k, 0.7), (z ← t, 0.6), (t, 1), (k, 1), (z ← v, 0.5), (v, 1)} (Fig.
4b)

of a-structure, that is, when Ω = ∅. [∅, ϵ, 0] is a special accrued structure representing the
accrual of no argument and was introduced for uniformity purposes, as will be appreciated
later on in the article. The reason to use a distinguished special conclusion ϵ is that since
no argument is accrued, then no particular conclusion is involved. Although from the
definition it happens that α > 0 for any “none empty” accrued structure, we considered
natural to adopt α = 0 for the particular case of the a-structure representing the accrual
of the empty set of arguments.
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Accrual({⟨A1, x, 0.6⟩, ⟨A2, x, 0.5⟩, ⟨A3, x, 0.3⟩}) = [Φ3, x, 0.79] where
Φ3 = {(x← z, k, 0.7), (z ← t, 0.6), (t, 1), (k, 1), (z ← v, 0.5), (v, 1),
(x← y, 1), (y ← u, 0.3), (u, 1)} (Fig. 4c).

An a-structure for a conclusion h can be seen as a special kind of argument
which subsumes different chains of reasoning which provide support for h. For
instance, the a-structure [Φ1, x, 0.72] (see Fig. 4a) provides two alternative
chains of reasoning supporting x, both coming from each of the arguments
accrued. The case of [Φ2, x, 0.7] in Ex. 1 (see Fig. 4b) illustrates a situation
similar to the previous one, but in this case the arguments involved share their
topmost parts (more precisely the weighted clause (x← z, k, 0.7)), differing
in the reasons supporting the (shared) intermediate conclusion z. Figure 4
also shows how the possibilistic values associated with the depicted a-struc-
tures are obtained from the weighted clauses conforming them, using the
functions f+

Φ (·) and fMP
Φ (·). Notice that weighted clauses were represented

as black arrows labeled with their associated necessity measures. The values
in gray ovals are computed using the mutually recursive functions.

An important question that naturally emerges when considering the way
we accrue arguments is what happens if we accrue two arguments that are in
conflict (for instance because they have contradictory intermediate conclu-
sions.) This issue will be dealt at the end of Section 6, where some consistency
results regarding accrual acceptability are presented.

Definition 16. Let [Φ, h, α] be an a-structure. Then the set of arguments in
[Φ, h, α], denoted as Args([Φ, h, α]), is the set of all arguments ⟨Ai, h, αi⟩ s.t.
Ai ⊆ Φ. Note that Args([∅, ϵ, 0]) = ∅.

Example 2. Consider the arguments and a-structures presented in Ex. 1.
Then Args([Φ1, x, 0.72]) = {⟨A1, x, 0.6⟩, ⟨A3, x, 0.3⟩} and

Args([Φ3, x, 0.79]) = {⟨A1, x, 0.6⟩, ⟨A2, x, 0.5⟩, ⟨A3, x, 0.3⟩}.

Among all the a-structures w.r.t. a KB K, we will distinguish maximal
a-structures, which are those (non-empty) a-structures obtained by accruing
all the arguments supporting a given conclusion.

Definition 17 (Maximal a-structure). Let K be a possibilistic KB and
let Ωh be the set of all arguments in K supporting a given conclusion h,
Ωh ̸= ∅. We say that the a-structure [Φ, h, α] = Accrual(Ωh) is a maximal
a-structure.
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[Φ1, x, 0.72] (a) [Φ2, x, 0.7] (b)

[Φ3, x, 0.79] (c)

Figure 4: Accrued Structures
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From the definition of maximal a-structure it trivially follows that, given a
literal h, there exist at most one maximal a-structure supporting h. The set
of individual arguments accounted by the maximal a-structure is finite (this
trivially follows from the analysis in footnote 6), and then the support set Φ
is also finite.

Example 3. Consider the possibilistic KB K and the a-structures in Ex. 1.
Then [Φ3, x, 0.79] is a maximal a-structure in K, whereas [Φ1, x, 0.72] and
[Φ2, x, 0.7] are not.

Next we will introduce the notion of narrowing of an a-structure, which
is analogous to the notion of narrowing in [28]. Intuitively, a narrowing of
an a-structure [Φ, h, α] is an a-structure [Θ, h, β] accounting for a subset of
Args([Φ, h, α]).

Definition 18 (Narrowing of an a-structure). Let [Φ, h, α] and [Θ, h, β]
be two a-structures. We say that [Θ, h, β] is a narrowing of [Φ, h, α], denoted
as [Θ, h, β] ⊑ [Φ, h, α], iff Args([Θ, h, β]) ⊆ Args([Φ, h, α]).

Example 4. Consider the a-structures in Ex. 1. Then [Φ1, x, 0.72],
[Φ2, x, 0.7] and [Φ3, x, 0.79] are narrowings of [Φ3, x, 0.79].

Next we introduce the notion of accrued sub-structure, that is analogous
to the notion of subargument but for a-structures. Intuitively, an accrued
sub-structure of an a-structure [Φ, h, α] is an a-structure supporting an inter-
mediate conclusion k of [Φ, h, α] and accounting for a subset of the reasons
that support k in [Φ, h, α]. The one that accounts for all the reasons sup-
porting k in [Φ, h, α] is called complete.

Definition 19 (a-substructure and complete a-substructure). Let
[Φ, h, α] and [Θ, k, γ] be two a-structures. Then we say that [Θ, k, γ] is an
accrued sub-structure (or a-substructure) of [Φ, h, α] iff Θ ⊆ Φ. We also
say that [Θ, k, γ] is a complete a-substructure of [Φ, h, α] iff for any other
a-substructure [Θ′, k, γ′] of [Φ, h, α] it holds that Θ′ ⊂ Θ.

Example 5. Consider the a-structure [Φ2, x, 0.7] in Ex. 1. Then
the a-structures [{(z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)}, z, 0.8],
[{(z ← t, 0.6), (t, 1)}, z, 0.6], and [Φ2, x, 0.7] itself are a-substructures of
[Φ2, x, 0.7]. Moreover, the two latter are complete.
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5. Modelling Conflict and Defeat in Accrued Structures

Next we will formalize the notion of attack between a-structures, which
differs from the notion of attack in argumentation frameworks in several re-
spects. First, an a-structure [Φ, h, α] stands for (possibly) several chains of
reasoning (arguments) supporting the conclusion h. Besides, some interme-
diate conclusions in [Φ, h, α] could be shared by some, but not necessarily
all the arguments in [Φ, h, α]. Thus, given two a-structures [Φ, h, α] and
[Ψ, k, β], if [Φ, h, α] involves k as intermediate conclusion, and then [Ψ, k, β]
contradicts [Φ, h, α] at this literal, only those arguments in Args([Φ, h, α])
involving k will be affected by the conflict.

Next we will define the notion of partial attack, where the attacking a-
structure generally affects only a narrowing of the attacked one (that one
containing exactly the arguments in the attacked a-structure affected by the
conflict), and we will refer to this narrowing as the attacked narrowing.

Definition 20 (Partial Attack and Attacked Narrowing). Let [Φ, h, α]
and [Ψ, k, β] be two a-structures. We say that [Ψ, k, β] partially attacks
[Φ, h, α] (at literal k), iff there exists a complete a-substructure [Θ, k, γ] of
[Φ, h, α]. The a-substructure [Θ, k, γ] will be called the disagreement
a-substructure. We will also say that [Λ, h, δ] ⊑ [Φ, h, α] is the attacked
narrowing of [Φ, h, α] associated with the partial attack iff [Λ, h, δ] =
Accrual({⟨A, h, αi⟩ ∈ Args([Φ, h, α]) | there exists a subargument ⟨S, k, γi⟩
of ⟨A, h, αi⟩}) 8.

Example 6. Consider the a-structures [Φ3, x, 0.79] and [Ψ1,∼z, 0.82] in Fig. 5.
Then [Ψ1,∼z, 0.82] partially attacks [Φ3, x, 0.79] with disagreement
a-substructure [Θ, z, 0.8] = [{(z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)}, z, 0.8].
The attacked narrowing of [Φ3, x, 0.79] is [{(x← z, k, 0.7), (z ← t, 0.6), (t, 1),
(z ← v, 0.5), (v, 1)}, x, 0.7]. Graphically, this partial attack relation will be
depicted with a dotted arrow (see Fig. 5).

5.1. Accrued Structures: Evaluation and Defeat

As in P-DeLP, we will use the necessity measures associated with a-struc-
tures in order to decide if a partial attack really succeeds and constitutes a
defeat.

8For simplicity, we will often say just attack instead of partial attack when it is clear
we are referring to a-structures.
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Figure 5: Partial Attack

Definition 21 (Partial Defeater). Let [Φ, h, α] and [Ψ, k, β] be two a-struc-
tures. Then we say that [Ψ, k, β] is a partial defeater of [Φ, h, α] (or equiva-
lently that [Ψ, k, β] is a successful attack on [Φ, h, α]) iff 1) [Ψ, k, β] partially
attacks [Φ, h, α], where [Θ, k, γ] is the disagreement a-substructure, and 2)
β ≥ γ.

Example 7. Consider the partial attack from [Ψ1,∼z, 0.82] against [Φ3, x, 0.79]
with disagreement a-substructure [Θ, z, 0.8] in Ex. 6 (Fig. 5). As the neces-
sity measure associated with the attacking a-structure (0.82) is greater than
the one associated with the disagreement a-substructure (0.8), then the at-
tack succeeds, constituting a defeat. Graphically, this defeat relation will be
depicted with a continuous arrow (see Fig. 6).

Figure 6: Defeated and Undefeated Narrowings

Given an attack relation, we will identify two complementary narrowings as-
sociated with the attacked a-structure: the narrowing that becomes defeated
as a consequence of the attack, and the narrowing that remains undefeated.

Definition 22 (U/D-Narrowings). Let [Φ, h, α] and [Ψ, k, β] be two a-
structures such that [Ψ, k, β] attacks [Φ, h, α]. Let [Λ, h, δ] be the attacked nar-
rowing of [Φ, h, α]. Then the D-narrowing (defeated narrowing) of [Φ, h, α]
associated with the attack, denoted as DNwg([Φ, h, α], [Ψ, k, β]), is defined
by cases as follows:

• DNwg([Φ, h, α], [Ψ, k, β]) =def [Λ, h, δ], if [Ψ, k, β] is a partial defeater
of [Φ, h, α], or
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• DNwg([Φ, h, α], [Ψ, k, β]) =def [∅, ϵ, 0], otherwise.

The U-narrowing (undefeated narrowing) of [Φ, h, α] associated with
the attack, denoted as UNwg([Φ, h, α], [Ψ, k, β]), is the a-structure
Accrual(Args([Φ, h, α]) \ Args(DNwg([Φ, h, α], [Ψ, k, β]))).

Example 8. Fig. 6 illustrates a successful attack from [Ψ1,∼z, 0.82] against
[Φ3, x, 0.79], as well as the associated defeated and undefeated narrowings of
[Φ3, x, 0.79]. As another example, consider the attack from [Ψ2,∼x, 0.45] =
[{(∼x← q, 0.45), (q, 1)},∼x, 0.45] against [Φ3, x, 0.79], with [Φ3, x, 0.79] it-
self as disagreement a-substructure. In this case the attack does not succeed,
and then [∅, ϵ, 0] is the defeated narrowing and [Φ3, x, 0.79] is the undefeated
narrowing.

Definition 23 (Proper and Blocking partial defeaters). Let [Φ, h, α]
and [Ψ, k, β] be two a-structures. We will say that [Ψ, k, β] is a blocking (par-
tial) defeater of [Φ, h, α] if [Ψ, k, β] partially defeats [Φ, h, α], with [Θ, k, γ]
as the associated disagreement a-substructure, and [Θ, k, γ] (partially) defeats
[Ψ, k, β]. We will say that [Ψ, k, β] is a proper (partial) defeater of [Φ, h, α]
if [Ψ, k, β] partially defeats [Φ, h, α], but it is not the case that [Θ, k, γ] (par-
tially) defeats [Ψ, k, β]9.

5.2. Combined Attack

Until now we have considered only single attacks. When a single at-
tack succeeds, a nonempty narrowing of the attacked a-structure becomes
defeated. But two or more a-structures could simultaneously attack another,
possibly affecting different narrowings of the target a-structure, and thus
causing a bigger narrowing to become defeated (compared with the defeated
narrowings associated with the individual attacks). Fig. 7a illustrates a com-
bined attack from the a-structures [Ψ1,∼z, 0.82] and [Ψ3,∼y, 0.4] against
[Φ3, x, 0.79]. Even though each attacking a-structure defeats only a proper
narrowing of [Φ3, x, 0.79], the whole [Φ3, x, 0.79] becomes defeated after ap-
plying both attacks.

Consider now the combined attack against [Φ3, x, 0.79] shown in Fig. 7b.
One of the attacking a-structures ([Ψ1,∼z, 0.82]) defeats a narrowing of

9Equivalently, the partial defeater [Ψ, k, β] will be proper iff β > γ, and blocking iff
β = γ.
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(a) (c)

(b)

Figure 7: Combined Defeat

[Φ3, x, 0.79] on its own, whereas the other ([Ψ2,∼x, 0.45]) only attacks
[Φ3, x, 0.79]. Note also that, although [Φ3, x, 0.79] is stronger than
[Ψ2,∼x, 0.45], [Ψ2,∼x, 0.45] is stronger than [Φ′, x, 0.3] =
[{(x← y, 1), (y ← u, 0.3), (u, 1)}, x, 0.3], a proper narrowing of [Φ3, x, 0.79].
Then, as shown in Fig. 7b, when the a-structures [Ψ1,∼z, 0.82] and
[Ψ2,∼x, 0.45] combine their attacks, they cause the whole [Φ3, x, 0.79] to be-
come defeated. The reason is that the successful attack of [Ψ1,∼z, 0.82] weak-
ens the target a-structure, allowing the attack of [Ψ2,∼x, 0.45] to succeed.
Figure 7c illustrates a combined attack from [Ψ2,∼x, 0.45] and [Ψ3,∼y, 0.4]
against [Φ3, x, 0.79]. In this case, a nonempty narrowing of the attacked
a-structure remains undefeated.

Figures 7a, 7b and 7c suggests the following algorithmic procedure for
computing the undefeated narrowing associated with a combined attack from
a set Σ against an a-structure [Φ, h, α]:
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1. Pick a defeater in Σ of [Φ, h, α] (if any) and apply it, obtaining an
undefeated narrowing [Θ, h, β] of [Φ, h, α].

2. Repeat step 1 taking the resulting a-structure [Θ, h, β] as the new target
for defeaters, until there is no more defeaters for [Θ, h, β] in Σ.

Notice that, according to this procedure, defeaters of [Φ, h, α] are applied
in sequence (in some order), and each defeater application causes a narrowing
of the target a-structure to become defeated. In other words, the a-structure
[Φ, h, α] is sequentially degraded through defeater applications. The following
definitions provide a formal characterization of the procedure presented.

Definition 24 (Sequential Degradation). Let [Φ, h, α] be an a-structure
and let Σ be a set of a-structures attacking [Φ, h, α]. A sequential degrada-
tion of [Φ, h, α] associated with the combined attack of the a-structures in Σ,
consists of a finite sequence Υ of narrowings of [Φ, h, α]:

Υ = [Φ1, h, α1], [Φ2, h, α2], . . . , [Φm+1, h, αm+1]

provided there exists a finite sequence of a-structures in Σ:

[Ψ1, k1, β1], [Ψ2, k2, β2], . . . , [Ψm, km, βm]

where [Φ1, h, α1] = [Φ, h, α], for each i, 1 ≤ i ≤ m, [Ψi, ki, βi] is a (partial)
defeater of [Φi, h, αi] with associated undefeated narrowing [Φi+1, h, αi+1] and
[Φm+1, h, αm+1] has no defeaters in Σ.

Given a combined attack against an a-structure [Φ, h, α], there could exist
several possible orders of defeater applications, and hence, more than one
sequential degradation associated with the combined attack. Interestingly,
it can be shown that all sequential degradations associated with a given
combined attack converge to the same a-structure, provided that the function
ACC satisfies non-depreciation.

Theorem 1 (Convergence). Let [Φ, h, α] be an a-structure and let Σ be a
set of a-structures attacking [Φ, h, α]. Let Υ = [Φ1, h, α1], . . . , [Φm, h, αm] and
Υ′ = [Φ′

1, h, α
′
1], . . . , [Φ

′
n, h, α

′
n] be two sequential degradations of [Φ, h, α] as-

sociated with the combined attack of the a-structures in Σ. Then [Φm, h, αm] =
[Φ′

n, h, α
′
n], provided that the ACC function satisfies non-depreciation 10.

10Proofs of theorems and lemmas are included in the appendix.
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Definition 25 (Narrowings associated with a Combined Attack). Let
[Φ, h, α] be an a-structure and let Σ be a set of a-structures attacking [Φ, h, α].
Let [Φ1, h, α1], ..., [Φm+1, h, αm+1] be a sequential degradation of [Φ, h, α] asso-
ciated with the combined attack of the a-structures in Σ. Then [Φm+1, h, αm+1]
is the U-narrowing of [Φ, h, α] (noted UNwg([Φ, h, α], Σ)) associated with the
combined attack, and Accrual(Args([Φ, h, α]) \Args([Φm+1, h, αm+1])) is its
D-narrowing (noted DNwg([Φ, h, α], Σ)).

Example 9. Consider the combined attack of [Ψ1,∼z, 0.82] and [Ψ2,∼x, 0.45]
against [Φ3, x, 0.79] (Fig. 7b). The associated undefeated narrowing of
[Φ3, x, 0.79] is [∅, ϵ, 0], i.e., the whole [Φ3, x, 0.79] results defeated. On the
other hand, when [Ψ2,∼x, 0.45] and [Ψ3,∼y, 0.4] attack [Φ3, x, 0.79] (Fig. 7c),
its associated undefeated narrowing is [{(x← z, k, 0.7), (z ← t, 0.6), (t, 1),
(z ← v, 0.5), (v, 1)}, x, 0.7].

5.2.1. Proper-defeating U-narrowings

According to definitions 24 and 25, both kinds of defeaters (proper and
blocking) are taken into account in order to obtain the U-narrowing of a
given a-structure. The following definitions are “proper-defeating” versions
of definitions 24 and 25, i.e., where only proper defeaters are considered.
These notions will be used to impose, in our formalization of accrual, a skep-
tical restriction similar to those for the abstract and possibilistic frameworks,
requiring proper defeat for pro.

Definition 26 (proper-defeating Sequential Degradation). Let
[Φ, h, α] be an a-structure and let Σ be a set of a-structures attacking [Φ, h, α].
A proper-defeating sequential degradation of [Φ, h, α] associated with the
combined attack of the a-structures in Σ, consists of a finite sequence Υ
of narrowings of [Φ, h, α]:

Υ = [Φ1, h, α1], [Φ2, h, α2], . . . , [Φm+1, h, αm+1]

provided there exists a finite sequence of a-structures in Σ:

[Ψ1, k1, β1], [Ψ2, k2, β2], . . . , [Ψm, km, βm]

where [Φ1, h, α1] = [Φ, h, α], for each i, 1 ≤ i ≤ m, [Ψi, ki, βi] is a (partial)
proper defeater of [Φi, h, αi] with associated undefeated narrowing [Φi+1, h, αi+1]
and [Φm+1, h, αm+1] has no proper defeaters in Σ.
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Definition 27 (proper-defeating Narrowings for Combined Attack).
Let [Φ, h, α] be an a-structure and let Σ be a set of a-structures attacking
[Φ, h, α]. Let [Φ1, h, α1], ..., [Φm+1, h, αm+1] be a proper defeating sequential
degradation of [Φ, h, α] associated with the combined attack of the a-struc-
tures in Σ. Then [Φm+1, h, αm+1] is the proper defeating U-narrowing of
[Φ, h, α] (noted UNwgP ([Φ, h, α], Σ)) associated with the combined attack,
and Accrual(Args([Φ, h, α]) \ Args([Φm+1, h, αm+1])) is its proper defeating
D-narrowing (noted DNwgP ([Φ, h, α], Σ)).

It must be remarked that convergence (theorem 1) also holds for proper-
defeating sequential degradations. The proof is the same as for sequential
degradation, but replacing the notions of defeat and defeater by proper de-
feat and proper defeater, respectively 11. The following theorem states that
the undefeated narrowing emerging as a result of a sequential degradation
is always a narrowing of the one emerging of a proper-defeating sequential
degradation, and the reason is that blocking defeaters (if any) are applied
only in the former, causing a ‘smaller’ narrowing to remain undefeated.

Theorem 2. Let [Φ, h, α] be an a-structure and let Σ be a set of a-structures
attacking [Φ, h, α]. Then UNwg([Φ, h, α], Σ) ⊑ UNwgP ([Φ, h, α], Σ)

6. Dialectical Analysis for Accrued Structures

Given a possibilistic KB K and a literal h, we are interested in deter-
mining if h is ultimately accepted (or warranted), and if so, with which
necessity degree, but this time, by taking accrual of arguments into account.
With this purpose, in this section we present a dialectical analysis that has
a strong correspondence with the one presented in section 3.2 involving in-
dividual (possibilistic) arguments. This analysis is also formalized through a
dialectical tree, but where nodes stand for a-structures instead of individual
arguments. Next we present the notion of accrued dialectical line, which is a
sequence of a-structures with certain restrictions, each one related with one
of the conditions of the notion of dialectical line presented in section 3.2.

11In addition, a new proper-defeating version of lemma 1 (see section Appendix A) of
theorem 1 will be needed, and the associated proof can be obtained by changing defeat by
proper defeat and ‘≥’ by ‘>’ in the original proof.
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Definition 28 (Accrued Dialectical Line). Let [Φ, h, α] ∈ Args. An ac-
crued dialectical line about [Φ, h, α] (or just accrued dialectical line) is a finite
nonempty sequence of a-structures [ [Φ1, h1, α1], [Φ2, h2, α2], ..., [Φn, hn, αn] ],
with [Φ1, h1, α1] = [Φ, h, α], such that:

(a1) [Φi, hi, αi] partially attacks [Φi−1, hi−1, αi−1], 1 < i ≤ n,

(a2) if [Φi, hi, αi] is pro and Σ is the set of all disagreement a-substruc-
tures associated with the attacks against pro a-structures appearing
before [Φi, hi, αi] in the line, then [Φi, hi, αi] is maximal (w.r.t. ⊑) ver-
ifying that no narrowing of an a-structure in Σ is an a-substructure of
[Φi, hi, αi],

(a3) if [Φi, hi, αi] is con, then it is a maximal a-structure,

(a4) If [Φi, hi, αi] and [Φi+2, hi+2, αi+2] are con a-structures, and [Θ, k, β] is
the disagreement a-substructure associated with the attack of
[Φi+1, hi+1, αi+1] against [Φi, hi, αi], then [Θ, k, β] ̸= [Φi+2, hi+2, αi+2],

where [Φi, hi, αi] is said to be a pro a-structure of the line if i is odd, or a
con a-structure of the line if i is even.

Observation: as every a-structure [Φi, hi, αi] in the line attacks or is at-
tacked (or both) by another a-structure in the line (condition a1), then
[Φi, hi, αi] ̸= [∅, ϵ, 0].

Next we will analyze each condition a1-a4 in definition 28, comparing
them with conditions d1’-d3’ in definition 14. Whereas condition d1’ re-
quires each argument in the line to defeat the argument appearing imme-
diately before, condition a1 requires each a-structure in a line to partially
attack its previous a-structure. The reason to consider partial attacks, and
not just partial defeats, is that as shown in section 5.2, an a-structure that
partially attacks a given target a-structure [Φ, h, α], but does not defeat it,
may become a defeater when considering other a-structures attacking [Φ, h, α]
(combined defeat).

Condition a2 is the natural adaptation for a-structures of d2’. Condition
d2’ avoids the inclusion of a given pro argument when it contains a disagree-
ment subargument of a previous pro argument. Since a given a-structure
generally stands for several arguments for a given conclusion, each of them
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involving different subarguments, we want to include in the line the maximal
pro a-structure such that none of the arguments it accounts for has as a
subargument (an element of) a previous pro disagreement a-substructure.

Condition a3, which has not corresponding condition in definition 14,
states that con a-structures are maximal, reflecting that con has no restric-
tion regarding other con a-structures appearing before in the line.

Since partial attacks may become defeats when considering combined
attacks, when defining accrued dialectical lines we do not know if a given
attack will become a defeat, and even less if it will be proper or blocking.
For this reason condition d3’ has not corresponding condition in definition 28,
but its purpose is fulfilled in the dialectical evaluation analysis we present
next, where defeats are revealed.

Finally, the purpose of condition a4 is to retain the indirect effect of
conditions d3 and d3’ (as specified by propositions 1 and 2, respectively) of
avoiding consecutive con repetition, despite the impossibility of enforcing a
condition equivalent to d3 or d3’ when defining accrued dialectical line.

Example 10. Figure 8a shows an accrued dialectical line about [Φ3, x, 0.79],
distinguishing pro and con a-structures. It is easy to see that conditions a1
and a3 are satisfied. Consider now condition a2. The first a-structure (pro)
in the sequence, [Φ3, x, 0.79], is a maximal a-structure w.r.t. K. According
to condition a2, the first a-structure in a given accrued dialectical line is
always a maximal a-structure, since Σ = ∅. Let us see that [Ψ4,∼w, 0.75]
(the other pro a-structure in the line) satisfies a2. Consider [Θ, z, 0.8],
with Θ = {(z ← t, 0.6), (z ← v, 0.5), (t, 1), (v, 1)}, the unique disagree-
ment a-substructure of a pro argument appearing before [Ψ4,∼w, 0.75] ( i.e.,
Σ = {[Θ, z, 0.8]}). First, no narrowing of [Θ, z, 0.8] is an a-substructure
of [Ψ4,∼w, 0.75]. Second, [Ψ4,∼w, 0.75] is maximal verifying such a restric-
tion, since all the a-structures in K that are “greater” (according to ‘⊑’) than
[Ψ4,∼w, 0.75] ([Ψ′

4,∼w, 0.95], [Ψ′′
4,∼w, 0.9] and [Ψ

(3)
4 ,∼w, 0.87] in Fig. 8b)

have a narrowing of [Θ, z, 0.8] as an a-substructure. Finally, note that a4
is also satisfied, since no disagreement a-substructure of a con a-structure
appears in the next consecutive con position in the line.

Figure 9 shows two sequences of a-structures that are not accrued di-
alectical lines. The sequence in Figure 9a illustrates a general restriction of
dialectical lines consequence of condition a2: a disagreement a-substructure
of a given pro argument (in this case [Θ, z, 0.8]) cannot be introduced later
in the sequence. In this particular case, note that the last a-structure in the
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(a) (b)

Figure 8: Accrued Dialectical Line

sequence, [Θ, z, 0.8], violates condition a2, since it has as an a-substructure
a narrowing of a previous pro disagreement a-substructure ([Θ, z, 0.8] it-
self). The sequence of a-structures in Fig. 9b violates condition a4, since the
disagreement a-substructure [{(w ← r, 0.5), (r, 1)}, w, 0.5] of con a-struc-
ture [Ψ1,∼z, 0.82] appears as the con a-structure that consecutively follows
[Ψ1,∼z, 0.82] in the sequence.

Next we introduce the notions of exhaustive accrued dialectical line and
accrued dialectical tree, which are direct instantiations of the corresponding
notions for the AAF presented in Section 2.

Definition 29 (Exhaustive Accrued Dialectical Line). Let Λ =
[ [Φ1, h1, α1], [Φ2, h2, α2], ..., [Φn, hn, αn] ] be an accrued dialectical line. We
will say that Λ is exhaustive if there exist no a-structure [Θ, q, δ] such that
[ [Φ1, h1, α1], [Φ2, h2, α2], ..., [Φn, hn, αn], [Θ, q, δ] ] is an accrued dialectical line.

Definition 30 (Accrued Dialectical Tree). Let [Φ, h, α] be an a-struc-
ture. An accrued dialectical tree (of just ADT ) for [Φ, h, α], denoted T[Φ,h,α],
is defined as follows:

1. Nodes are labeled with a-structures.

2. Λ = [ [Φ1, h1, α1], [Φ2, h2, α2], .., [Φn, hn, αn] ] is the sequence of labels of
a branch of the tree (path from the root to a leave) iff Λ is an exhaustive
accrued dialectical line about [Φ, h, α].

28



(a) (b)

Figure 9: Sequences that are not Accrued Dialectical Lines

3. There exist no sibling nodes (children of the same node) M and M ′ in
the tree labeled with the same a-structure.

Once the ADT has been constructed, it must be evaluated in order to
determine the final undefeated narrowing of its root. Concretely, each com-
bined attack is analyzed, from the deepest ones to the one against the root,
in order to determine the undefeated narrowing of each node in the tree.

Definition 31 (Evaluated Accrued Dialectical Tree). Let T[Φ,h,α] be an
ADT . The corresponding evaluated ADT , denoted T∗

[Φ,h,α], will be obtained

by associating to every node N in T[Φ,h,α], labeled with an a-structure [Θ, k, β],
a (possibly empty) narrowing of [Θ, k, β] that will be called the U-narrowing
of N (written UNwg(N)), and is defined as follows:

1. If N is a leaf, then UNwg(N) = [Θ, k, β].

2. Otherwise, let M1,...,Mn be the children of N , and let Σ = {UNwg(Mi) |
UNwg(Mi) ̸= [∅, ϵ, 0], 1 ≤ i ≤ n}. If N is con ( i.e., M1,...,Mn are
pro), then UNwg(N) = UNwgP ([Θ, k, β], Σ). If N is pro ( i.e.,
M1,...,Mn are con), then UNwg(N) = UNwg([Θ, k, β], Σ).
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Figure 10: Accrued Dialectical Tree

Note that the purpose of condition d3 for the AAF , requiring pro defeats
to be proper, is fulfilled in the accrual framework by using UNwgP ([Θ, k, β], Σ)
when evaluating pro partial attacks.

Example 11. Fig. 10 shows the ADT for [Φ3, x, 0.79] w.r.t. knowledge base
K (Ex. 1). Fig. 11 shows the evaluated ADT for [Φ3, x, 0.79], where the
undefeated narrowings of each node are highlighted.

Definition 32 (Warranted a-structures and conclusions). Let K be a
possibilistic KB. Let [Φ, h, α] be a maximal a-structure of K such that the un-
defeated narrowing of the root of T∗

[Φ,h,α] is a nonempty a-structure [Φ′, h, α′].

Then we say that [Φ′, h, α′] is a warranted a-structure and that h is war-
ranted with necessity α′ w.r.t. K.

Returning to our motivating example, we specify next a P-DeLP program
modeling the different reasons posed by Alice in favor and against renting
an apartment. The program considers additional information with respect
to the original example, viz. the testimony of a neighbor of the building,
called John (j), stating that there are not disorders. For this particular
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Figure 11: Evaluated Accrued Dialectical Tree

example, the possibilistic value associated to each program rule represents a
quantitative measure of the strength, according to Alice criteria, with which
the rule’s premisses entails its conclusion.

(rent← g loc, 1) (g loc, 1)
(∼rent← small, 0.5) (small, 1)
(∼rent← humidity, 0.2) (humidity, 1)
(∼rent← disorder, 0.4) (stud tenants, 1)
(disorder ← stud tenants, 0.8) (testj, 1)
(∼disorder ← testj, 0.7)

Fig. 12 shows the evaluated ADT for the maximal a-structure support-
ing rent ([Φ, rent, 0.7]). Notice that the testimony of John supporting the
absence of disorders (0.7) is not strong enough to defeat the a-substructure
of [Ψ,∼rent, 0.76] stating that there exist disorders given that there are stu-
dent tenants (0.8). Then [Ψ,∼rent, 0.76] remains completely undefeated,
making the a-structure for rent to become defeated, and so, the conclusion
rent is not warranted. The evaluated ADT in Fig. 13 corresponds to the
new situation where a testimony of another neighbor (Paul) is considered,
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Figure 12: Evaluated Accrued Dialectical Tree

Figure 13: Evaluated Accrued Dialectical Tree
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stating also that there are not disorders in the building (either with neces-
sity degree 0.7). In this case, the accrual of both testimonies defeats the
a-substructure of [Ψ,∼rent, 0.76] supporting disorder. Then the remaining
undefeated narrowing of [Ψ,∼rent, 0.76] (with necessity 0.6) is not able to
defeat [Φ, rent, 0.7], and so the conclusion rent results warranted with ne-
cessity degree 0.7.

Let us now consider some desirable results about our formalization. The
U-narrowings associated with pro nodes in an evaluated ADT can be seen
as the a-structures effectively supporting (or defending) the warranted a-
structure labeling the root of the tree. Therefore, it is desirable that those
supporting a-structures do not conflict with each other. The following theo-
rem states that the U-narrowings associated with the pro nodes of a given
evaluated ADT are concordant pairwise.

Theorem 3 (Pairwise pro concordance). Let K be a possibilistic KB,
and let T[Φ,h,α] be an ADT for a given a-structure [Φ, h, α] of K. Let N1 and
N2 be pro-nodes in T[Φ,h,α]. Then there exist no literal q such that q appears
in UNwg(N1) and q appears in UNwg(N2).

Corollary 1 (Internal pro concordance). Let K be a possibilistic KB,
and let T[Φ,h,α] be an ADT for a given a-structure [Φ, h, α] of K. Let N be
pro-node in T[Φ,h,α]. Then there exist no literal q such that q and q appear
in UNwg(N).

The following corollary establishes that the a-structures emerging as a
result of the dialectical process presented in this section cannot involve con-
tradictory literals.

Corollary 2 (Internal concordance for Warranted a-structures). Let
K be a possibilistic KB, and let [Φ, h, α] be a warranted a-structure w.r.t. K.
Then there exist no literal q such that q and q appear in [Φ, h, α].

Finally we present a pseudocode algorithm (the UNarrowing function)
allowing to determine if a given conclusion h is warranted, and if so, the
associated necessity degree α′, according to Def. 32. Firstly the maximal
a-structure [Φ, h, α] for h must be obtained12. Then the proposed function

12A procedure for constructing a P-DeLP argument for a given conclusion a was already
developed as part of the implementation [1]. Then, the maximal a-structure for h can be
obtained by considering the set of all arguments for h as the set Ω in Def. 15 of accrued
structure.

33



UNarrowing must be called, with ([Φ, h, α],pro) as N (representing the
root node of the ADT we are going to construct), the ∅ as OutSetPRO and
[∅, ϵ, 0] as OutCON . The function result is the U-narrowing [Φ′, h, α′] of N ,
which if none empty constitutes a warranted a-structure, and in this case a
is warranted with necessity degree α′. Next is the UNarrowing function:

function UNarrowing

Arguments:

N : a node, represented as a pair ([Φ, h, α], Role), where Role ∈ {pro,con}.

OutSetPRO: the set of disagreement a-substructures of pro nodes in the
path from the root to N (to check condition a2 in Def. 28).

OutCON : the disagreement a-substructure of the last con node previous to
N (to check condition a4 in Def. 28).

Result: The undefeated narrowing of N .

\* Obtain the child nodes of N *\

Childs← ∅
for each [Ψ, k, β] ∈ partialAttackersOf([Φ, h, α]) do

if RoleN = CON then \*child will be pro*\
[Ψ′, k, β′] ← Accrual({⟨B, k, βi⟩ ∈ Args([Ψ, k, β]) | @ ⟨C, q, δj⟩ ∈
Args([Θ, q, δ]), with [Θ, q, δ] ∈ OutSetPRO, such that ⟨C, q, δj⟩
is a subargument of ⟨B, k, βi⟩}) \*enforcing condition a2*\
Childs← Childs ∪ {([Ψ′, k, β′], PRO)}
NewOutSetPRO ← OutSetPRO

NewOutCON ← [Φ, h, α]

else if [Ψ, k, β] ̸= OutCON then \*child CON and verifies a4*\
Childs← Childs ∪ {([Ψ, k, β], CON)}
NewOutSetPRO ← OutSetPRO ∪ {disagreement([Φ, h, α], [Ψ, k, β])}
NewOutCON ← OutCON
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end if

end for each

\* Obtain the UNwg of N from (recursively) the UNwgs of its childs*\

if Childs = ∅ then \* base case *\
UNwgN ← [Φ, h, α]

else \* recursive case *\
UNwgsOfChilds← ∅
for each M ∈ Childs do

UNwgsOfChilds← UNwgsOfChilds ∪
{UNarrowing(M,NewOutSetPRO,NewOutCON)}

end for each

if Role = pro then

UNwgN ← UNwg([Φ, h, α], UNwgsOfChilds) \* Def. 25 *\
else

UNwgN ← UNwgP ([Φ, h, α], UNwgsOfChilds) \* Def. 27 *\
end if

end if

return UNwgN

7. Related work and salient features of our approach: discussion

There has been some previous research in argumentation concerning the
treatment of accrual of reasons. In [21], Prakken enunciates three desir-
able principles that “any formal treatment of accrual should satisfy”. The
first principle says that “accruals are sometimes weaker than their elements”
due to the possibility of accruing reasons are not independent. The second
principle states that “any ‘larger’ accrual that applies, makes all its ‘lesser’
versions inapplicable”. Intuitively, that means that we should always accrue
as many arguments as possible, even if in the end the accrual is outweighed
by a conflicting accrual. The third principle states that “flawed reasons or
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arguments may not accrue”. That means that when an individual argument
turns out to be flawed, it should not take part in the accrual. This principle
induces a two-stage argumentation process. First all the individual reasons
for a certain claim are tested to see whether they may enter the accrual, then
all the reasons that pass this test are accrued and compared to all accruing
reasons for the opposite claim.

Next we will analyze the three principles in the context of our formal-
ization. The first principle is not verified. Indeed, we explicitly require the
possibilistic accruing function (ACC) to satisfy non-depreciation in order
to prove convergence of sequential degradations. We recognize that in very
rare situations (like the one presented by Prakken in [21]) accruals can be
weaker than their elements, and therefore we consider an extension of our
approach in this direction as one of the future lines to be pursued. The
second principle is trivially verified since the dialectical acceptance analysis
only considers maximal a-structures. Although this principle is vacuous if ac-
cruals are never weaker than their elements (as stated by Prakken), it would
become valuable if eventually the framework is extended to satisfy the first
principle. Finally, the third principle is also verified. The idea behind this
principle is that when evaluating two accruals supporting opposite conclu-
sions in order to determine which one prevails (i.e., is accepted), the conflict-
ing accruals evaluated should not contain flawed reasons. In our framework,
this evaluation and comparison of conflicting accruals occurs when applying
the notion of sequential degradation in order to determine the U-narrowing
of a given node in an ADT, given the U-narrowings of its children (conflict-
ing a-structures). First, notice that U-narrowings of child nodes considered
in the sequential degradation do not contain flawed reasons, since flawed
reasons were already defeated by their own children. Second, notice that
in the sequential degradation, in order to determine if a given attack con-
stitutes a defeat, the attacking a-structure is compared with the associated
disagreement a-substructure, which is the “accrual supporting the opposite
conclusion” we mentioned before. Finally, although defeaters are applied at
any time in a sequential degradation, even if the disagreement a-substruc-
ture associated with the defeat contains flawed reasons, we can ensure that
those defeat applications are safe. That is because due to non-depreciation
of the evaluation function (ACC), the disagreement a-substructure cannot
be weaker than the corresponding a-substructure not containing the flawed
reasons, and then the defeat would be applied anyway.

In [21], Prakken also presents a formalization of accrual associated with
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the principles enunciated, that adapts the way of modeling accrual of reasons
in Reason-Based Logic [14] to an argument-based setting. This formalization
is based on a combination of two widely recognized argument-based logics:
Dung’s abstract approach to argumentation [9] instantiated with Pollock’s
approach to the structure of arguments [20]. Prakken defines accrued argu-
ments (or just accruals) as a special kind of defeasible derivations involving
labels. For the acceptability analysis, all the accruals are constructed (not
only maximal) and conflicting accruals are evaluated according to a selected
evaluation criterion to determine defeat relation. A special kind of ‘con-
structions’ called accrual undercutters are introduced as additional nodes in
the graph, stating that when a given set of reasons for the same conclusion
accrues, no proper subset accrues. The resulting graph of defeats is then an-
alyzed under the selected Dung’s semantics in order to determine the status
of accruals.

Fig. 14 shows a KB, together with some labeled derivations and the asso-
ciated graph of defeats according to Prakken’s approach for this KB. For the
comparison criterion it was assumed that the accrual for ∼b is preferred to
the accrual for b, and then the attacks of the former constitute defeats. For
this graph, Dung’s grounded extension coincides with the unique preferred
extension, and it is the set containing the accrual for ∼b and the accrual for
a involving only A2.

r1 : b⇒ a r3 : c⇒ b c f
r2 : d⇒ a r4 : f ⇒ ∼b d

Figure 14: Prakken’s graph of defeats

In Verheij’s CumulA system [28, 27], arguments are tree like (recursive)
structures, similar to Pollock’s tree-based approach, but which can represent
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coordination (accrual) of reasons. Arguments are constructed from rules
and individual sentences defined over an unstructured language. Conflicts
among arguments is modeled through the notion of compound defeat, which
in its more general version allows to state that a certain set of arguments
defeats another set of arguments. The defeat relation is explicitly specified
through a compound defeater construct with the following syntax:

A1, ..., An[B1, ..., Bm],

representing that if arguments A1, ..., An (challenging arguments) are unde-
feated, they cause arguments B1, ..., Bm (challenged arguments) to be collec-
tively defeated.

Figure 15: CumulA status assignment

Consider the set of defeaters and the associated status assignment in
Fig. 15 (notice that the defeated and undefeated arguments are indicated
with marks ‘D’ and ‘U ’, respectively). This case models the situation where,
although each of the individual arguments A1 → a and A2 → a are on their
own defeated by C → no a, the accrual A1;A2 → a defeats C → no a.
As A1;A2 → a has no defeaters, then it is trivially undefeated, causing the
defeat of C → no a through defeater A1;A2 → a[C → no a]. As C → no a
becomes defeated, then the defeaters with C → no a on their left-hand side
are not triggered, causing A1 → a and A2 → a to remain undefeated.

Next we will summarize the most valuable features of our approach, con-
trasting it with Prakken’s and Verheij’s approaches.

7.1. Accrual evaluation: determining defeat relation
Prakken’s formalization abstracts from the evaluation of accrual, assum-

ing they are compared in some way in order to determine if a given conflict
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constitutes a defeat. Verheij’s CumulA also abstracts from accrual evalua-
tion, requiring defeat relation to be explicitly specified, instead of defining
it in terms of a notion of conflict together with an evaluation phase. Our
formalization of accrual advances in this sense by proposing a mechanism
that takes possibilistic information into account to explicitly deal with the
evaluation and comparison of accrual.

7.2. Complexity of the argumentative analysis

In the literature, complexity analysis for different argument-based dialec-
tical proof procedures has been performed (see e.g. [11, 10]). In particular,
Cecchi et al.[6] analyzed different complexity issues in DeLP, which resem-
bles in many aspects the possibilistic approach to skeptical argumentation
presented in Section 2,13 establishing that the proof procedure of DeLP is
NP. Although a detailed complexity analysis of our formalization will be
left as future work, we will outline next why this complexity is not harder
than the one associated with traditional argumentation systems. Concerning
complexity issues, dialectical analysis for accruals differs from the one used
traditionally in DeLP in two respects: 1) the structures labeling tree nodes,
being single arguments for dialectical trees (DT/s) and maximal a-structures
for ADT/s, and 2) the dialectical line conditions, that must be tested each
time a tree node is added (those for accrual being direct extensions of those
for arguments). With respect to 1, although constructing a maximal accrual
for a given conclusion a implies obtaining all the arguments supporting a,
only one accrual for a will be constructed in a given ADT line, whereas po-
tentially all the arguments for a could appear in the same line and/or as
sibling nodes (giving rise to alternative lines) in a DT, resulting in deeper
and broader trees. Moreover, as a particular case, only one ADT must be
constructed for the entire acceptability analysis of a, whereas possibly sev-
eral DT/s for the same analysis (one per argument supporting a). With
respect to 2 (dialectical conditions), the extra computation required to test
ADT conditions (given that they are applied to accruals, encompassing sets
of arguments) is partially compensated by the larger amount of DT lines and
nodes on each DT line, where in fact DT/s can be seen as unfolded versions
of the corresponding ADT .

13The argument construction procedure for P-DeLP is similar to its counterpart in
DeLP, where no necessity degrees are taken into account.
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Let us now consider Prakken’ s formalization. Unlike our approach, in
Prakken’s not only maximal accruals, but also all the lesser ones are con-
sidered. Then, if there exist n different individual reasons for a given con-
clusion a, Prakken’s system will construct one accrual supporting a for each
nonempty subset of this n reasons. As consequence, the number of accrual
undercutters is also exponential on the number of individual reasons for the
associated conclusion, and the number of defeats (arrows) grows consider-
ably. With respect to the acceptability analysis, Prakken’s approach defines
the status of accruals by using Dung’s semantics on the graphs of defeats
constructed, then any dialectical proof procedure of those defined in [26] can
be used to determine if a given argument A (node in the graph) is accepted.
However, they must be used in a rather inefficient way in order to obtain a
useful answer, and this is even more evident when a skeptical semantics is
selected, as will be explained next. According to Prakken’s formalization all
the accruals for a given conclusion a are considered as alternative potential
justifications for a, that is, at most one of the accruals for a can be present
in a given acceptability extension (the ‘largest’ not containing flawed reasons
according to the extension). Therefore, although at most one of the accruals
for a will be accepted (if a skeptical semantics is used), in the worst case, we
have to apply the dialectical proof procedure for each accrual supporting a
in order to discover which is the one (if any) that is accepted.

Similar to Prakken’s approach, in CumulA system all possible accruals
for each conclusion (and not only maximal) need to be considered, and then
the number of defeats (either explicit or implicit) that must be taken into
account when analyzing the status of arguments becomes also considerable.
Finally, no proof procedure was presented associated with CumulA system.

7.3. Explanations of answers

A very valuable advantage of argumentation based frameworks is the idea
of explanation of answers obtained. Most argument based frameworks gen-
erate structures or define representations in order to formalize the argumen-
tative analysis that determines the status of arguments (the most popular
are the graphs of arguments and defeats and dialectical trees/proofs). As
humans are generally very familiar with the notion of argumentation, those
representations constructed, resembling in some way the argumentative anal-
ysis performed, can be considered as human understandable explanations (or
justifications) of the obtained answers.
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Although both Prakken’s and our approaches exhibits the previously men-
tioned feature, the complexity of the graph of defeats defined by Prakken
limits its use as a human readable explanation of the answers obtained. No-
tice that Prakken’s graphs not only considers all accruals for each conclusion
(which also increases the number of defeats), but also includes a consider-
able number of artificial arguments called accrual undercutters. In the case
of CumulA, no structure (like a graph or a dialectical tree) is defined in
order to formalize the status of arguments. Although in this work we graph-
ically represent CumulA’s analysis as graphs, that is not enough to represent
compound defeat.

8. Conclusions

In this paper we have proposed a novel approach to model argument
accrual in a possibilistic setting. Our proposal was based on an generic for-
malization for skeptical semantics (Section 2), in which a dialectical proof
procedure was characterized for determining which arguments are ultimately
accepted (warranted). We instantiated this framework using P-DeLP (Sec-
tion 3): necessity degrees were attached to formulas at the object-level, and
propagated to arguments through the GMP inference rule. The warrant
status of P-DeLP arguments was defined as an instance of our dialectical
proof procedure. Thus, a logic programming setting for argumentation with
possibilistic uncertainty was characterized.

In Sections 4 and 5 we presented our proposal for modelling argument
accrual in the context of this setting. We defined our notion of accrued
structure, which accounts for different P-DeLP arguments supporting a given
conclusion, and associates a necessity measure with its conclusion obtained
as an aggregation of the necessity measures of the individual arguments it
accounts for. We have shown how accrued structures can be in conflict in
terms of the notion of partial attack, and how possibilistic information is
used to determine if a given attack succeeds, becoming a defeat. The notions
of combined attack and sequential degradation were also defined, allowing us
to characterize a dialectical process (Section 6) in which all accrued struc-
tures in favor and against a given conclusion are taken into account in order
to determine if the conclusion is warranted, and if so, with which necessity
degree. Additionally, we provided formal results characterizing convergence
for sequential degradation of a-structures (theorem 1), as well as consistency
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properties associated with the computation of accrued dialectical trees (the-
orem 3).

As stated in Section 1, the formalization presented in this paper is partly
based on previous research work in similar directions ([16] and [17]). How-
ever, our proposal presents significant improvements concerning the dialec-
tical analysis of accrual in argumentation, namely: 1) direct correspondence
with traditional, broadly recognized, Dung’s skeptical argumentation seman-
tics, which intuitively supports the soundness of our formalization; 2) con-
sistency properties of the dialectical analysis, and 3) a refinement of the
notion of accrued dialectical line, which takes advantage of the notion of
a-substructure to shorten the dialectical analysis.

As discussed in Section 7, our approach presents several valuable fea-
tures when contrasted with Prakken’s [21] and Verheij’s [27, 28], such as
the incorporation of explicit treatment of possibilistic uncertainty in order
to evaluate and compare accruals, the simplicity of the formalization, sug-
gesting accrued dialectical trees as human understandable explanations (or
justifications) of the obtained answers, and the operational conceptualization
of our approach, which leads to directly implementable and efficient compu-
tation. Additionally, our formalization satisfies two of the three principles of
accrual proposed by Prakken in [21], and also satisfies an interesting property
(corollary 2) which suggests an additional principle: accrued structures which
are ultimately accepted as justified should not involve conflicting arguments.

In order to test the applicability of our proposal we are developing an
implementation of our formalization using the DeLP system [29, 12] as a
basis. A detailed complexity analysis of our formalization is left as future
work, and we are studying different theoretical results emerging from our
proposal which could help to speed up the computation of accrued dialectical
trees, in a similar fashion as done in [7]. Research in this direction is currently
being pursued.
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Appendix A. Appendix: Proofs of Lemmas and Theorems

Lemma 1. Let [Φ, h, α] be an a-structure and let Σ be a set of a-structures attack-
ing [Φ, h, α]. Let Υ = [Φ1, h, α1], . . . , [Φm+1, h, αm+1] be a sequential degradation
of [Φ, h, α] associated with the combined attack of the a-structures in Σ, and let
[Ψ1, k1, β1], [Ψ2, k2, β2], . . . , [Ψm, km, βm] be the sequence of defeaters associated
with Υ by the definition of sequential degradation. Let [Φ′, h, α′] ⊑ [Φ, h, α] such
that [Φ′, h, α′] ̸⊑ [Φm+1, h, αm+1]. Then [Ψj , kj , βj ] is a partial defeater of [Φ′, h, α′]
for some j, 1 ≤ j ≤ m, provided that the function ACC satisfies non-depreciation.

Proof. Let us show first that [Ψi, ki, βi] attacks [Φ
′, h, α′] for some i, 1 ≤ i ≤ n.

As [Φ′, h, α′] ⊑ [Φ, h, α] and [Φ′, h, α′] ̸⊑ [Φm+1, h, αm+1] (hypothesis), then there
exists ⟨A, h, δ⟩ ∈ Args([Φ, h, α]) such that
⟨A, h, δ⟩ ∈ Args([Φ′, h, α′]) and ⟨A, h, δ⟩ /∈ Args([Φm+1, h, αm+1]).
As [Φ, h, α] = [Φ1, h, α1] ⊒ ...⊒ [Φm+1, h, αm+1], then there exists i, 1 ≤ i ≤ m,
such that ⟨A, h, δ⟩ ∈ Args([Φi, h, αi]) and ⟨A, h, δ⟩ /∈ Args([Φi+1, h, αi+1]). (that
is, [Φi, h, αi] is the last narrowing of [Φ, h, α] in Υ containing ⟨A, h, δ⟩). Consider
the a-structure (defeater) [Ψi, ki, βi] ([Ψi, ki, βi] is the defeater responsible for the
ultimate defeat of ⟨A, h, δ⟩ in Υ). Then we can ensure that ki is an intermediate
conclusion in ⟨A, h, δ⟩. Moreover, as ⟨A, h, δ⟩ ∈ Args([Φ′, h, α′]), ki will be also
an intermediate conclusion of [Φ′, h, α′], and hence, [Φ′, h, α′] will be attacked by
[Ψi, ki, βi].

Consider now the smaller j, 1 ≤ j ≤ m, such that [Ψj , kj , βj ] attacks [Φ
′, h, α′].

We will prove that [Ψj , kj , βj ] is a defeater for [Φ′, h, α′]. Let [Λ, kj , γ] [[Λ
′, kj , γ

′]]
be the disagreement a-substructure associated with the attack of [Ψj , kj , βj ] against
[Φj , h, αj ] [[Φ

′, h, α′]]. Let us prove that [Λ′, kj , γ
′] ⊑ [Λ, kj , γ].

Suppose by contradiction that [Λ′, kj , γ
′] ̸⊑ [Λ, kj , γ]. Then as [Λ′, kj , γ

′] is an
a-substructure of [Φ′, h, α′] and [Λ, kj , γ] is an a-substructure of [Φj , h, αj ], it holds
that [Φ′, h, α′] ̸⊑ [Φj , h, αj ]. Then there exists ⟨B, h, µ⟩ ∈ Args([Φ, h, α]) such that
⟨B, h, µ⟩ ∈ Args([Φ′, h, α′]) and ⟨B, h, µ⟩ /∈ Args([Φj , h, αj ]). Analogous to the
analysis involving ⟨A, h, δ⟩ and i, we can ensure that there exists r, 1 ≤ r ≤ j, such
that ⟨B, h, µ⟩ ∈ Args([Φr, h, αr]) and ⟨B, h, µ⟩ /∈ Args([Φr+1, h, αr+1]). Moreover,
it holds that the defeater [Ψr, kr, βr], responsible for the ultimate defeat of ⟨B, h, µ⟩
in Υ, attacks [Φ′, h, α′] (which involves ⟨B, h, µ⟩). We arrived to a contradiction,
since r < j and we had previously considered the subindex j as the smallest one
such that [Ψj , kj , βj ] attacks [Φ

′, h, α′]. Therefore [Λ′, kj , γ
′] ⊑ [Λ, kj , γ].

As the attack of [Ψj , kj , βj ] against [Φj , h, αj ] with disagreement a-substructure
[Λ, kj , γ] constitutes a defeat, then βj ≥ γ. As the disagreement a-substructure
[Λ′, kj , γ

′] associated with the attack of [Ψj , kj , βj ] against [Φ
′, h, α′] is a narrowing

of [Λ, kj , γ], and the ACC function satisfies non-depreciation, then γ ≥ γ′. Finally
βj ≥ γ′ and therefore [Ψj , kj , βj ] is a defeater of [Φ′, h, α′] �
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Theorem 1 (Convergence). Let [Φ, h, α] be an a-structure and let Σ be
a set of a-structures attacking [Φ, h, α]. Let Υ = [Φ1, h, α1], . . . , [Φm, h, αm] and
Υ′ = [Φ′

1, h, α
′
1], . . . , [Φ

′
n, h, α

′
n] be two sequential degradations of [Φ, h, α] asso-

ciated with the combined attack of the a-structures in Σ. Then [Φm, h, αm] =
[Φ′

n, h, α
′
n], provided that the ACC function satisfies non-depreciation.

Proof. Suppose by contradiction that [Φm, h, αm] ̸= [Φ′
n, h, α

′
n]. Then, ei-

ther [Φm, h, αm] ̸⊑ [Φ′
n, h, α

′
n] or [Φ′

n, h, α
′
n] ̸⊑ [Φm, h, αm], or both. Let us sup-

pose, without loss of generality, that [Φ′
n, h, α

′
n] ̸⊑ [Φm, h, αm]. Let [Ψ1, k1, β1],

[Ψ2, k2, β2], . . . , [Ψm, km, βm] be the sequence of defeaters associated with Υ by
the definition of sequential degradation. Then, by lemma 1, [Ψj , kj , βj ] is a partial
defeater of [Φ′

n, h, α
′
n] for some j, 1 ≤ j ≤ m. But by definition of sequential

degradation, [Φ′
n, h, α

′
n] does not have defeaters in Σ, arriving to a contradiction.

Therefore [Φm, h, αm] = [Φ′
n, h, α

′
n] �

Theorem 2. Let [Φ, h, α] be an a-structure and let Σ be a set of a-structures
attacking [Φ, h, α]. Then UNwg([Φ, h, α], Σ) ⊑ UNwgP ([Φ, h, α], Σ)

Proof. Let Υ = [Φ1, h, α1], . . . , [Φm+1, h, αm+1] = UNwgP ([Φ, h, α], Σ) be a
proper-defeating sequential degradation associated with the attack of Σ against
[Φ, h, α]. We will consider two cases. If [Φm+1, h, αm+1] has no defeaters in Σ
(case 1), then Υ is also a sequential degradation, and then UNwg([Φ, h, α], Σ) =
[Φm+1, h, αm+1] = UNwgP ([Φ, h, α], Σ). On the other hand, if [Φm+1, h, αm+1]
has at least one defeater in Σ (case 2), then Υ can be extended by applying de-
featers as much as possible, arriving to a sequence
Υ′ = [Φ1, h, α1], . . . , [Φm+1, h, αm+1], . . . , [Φm+n, h, αm+n], with n > 1, where
[Φm+n, h, αm+n] has no defeaters in Σ. Then Υ′ constitutes a sequential degrada-
tion associated with the attack of Σ against [Φ, h, α], and so [Φm+n, h, αm+n] =
UNwg([Φ, h, α], Σ). Since [Φm+n, h, αm+n] was obtained from [Φm+1, h, αm+1] by
applying defeaters (at least one), then [Φm+n, h, αm+n] ⊑ [Φm+1, h, αm+1]. Finally,
in both cases (1 and 2) it holds that UNwg([Φ, h, α], Σ) ⊑ UNwgP ([Φ, h, α], Σ)
�

Lemma 2. Let K be a possibilistic KB, and let T[Φ, h, α] be an ADT for a given

a-structure [Φ, h, α] of K. Let N and N ′ be nodes in T[Φ, h, α], where N is pro

and is labelled with [Θ, q, δ], and N ′ is con and is labelled with [Θ′, q, δ′]. Let M ′
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be a child of N ′ labelled with [Ψ′, k, β′], such that [Ψ′, k, β′] attacks [Θ, q, δ]. Then
there exists a child M of N labelled with an a-structure [Ψ, k, β].

Proof. Suppose by contradiction that such a node M does not exist. Let
[Ψ, k, β] be the maximal a-structure for k in K. Then, as N is pro, the only
reason causing that there does not exist a node M labeled with [Ψ, k, β] must be
condition (a5) in definition 28. That is, there exists a parent (con) node P of
N labelled with [Θ0, q0, δ0] such that [Ψ, k, β] is the disagreement a-substructure
associated with the attack of [Θ, q, δ] against [Θ0, q0, δ0]. Then k = q. Consider
the parent (pro) node P ′ of N ′ (P ′ always exists since a con node always has
a parent). Note that the disagreement a-structure associated with the attack of
[Θ′, q, δ′] (the a-structure labelling N ′) against the a-structure labelling P ′ is an
a-structure [Ψ′′, k, β′′] supporting k (= q). But then the existence of pro node M ′,
labelled with [Ψ′, k, β′], violates condition a4, since [Ψ′′, k, β′′] ∈ Σ, arriving to a
contradiction. Therefore there exists a child M of N labelled with an a-structure
[Ψ, k, β] �

Lemma 3. Let [Θ, q, δ] and [Θ′, q, δ′] be a-structures such that [Θ, q, δ] ⊑ [Θ′, q, δ′].
Let Σ [Σ′] be a set of a-structures attacking [Θ, q, δ] [[Θ′, q, δ′]], s.t. for every
[Ψ′, k, β′] ∈ Σ′, it holds that either: 1) [Ψ′, k, β′] does not attack [Θ, q, δ], or
2) there exists [Ψ, k, β] ∈ Σ such that [Ψ′, k, β′] ⊑ [Ψ, k, β]. Then
UNwg([Θ, q, δ],Σ) ⊑ UNwg([Θ′, q, δ′],Σ′).

Proof. Suppose by contradiction that UNwg([Θ, q, δ],Σ) ̸⊑ UNwg([Θ′, q, δ′],Σ′).
Let Υ′ = [Θ′

1, q, δ
′
1], . . . , [Θ

′
m+1, q, δ

′
m+1] (= UNwg([Θ′, q, δ′],Σ′)) be a sequen-

tial degradation of [Θ′, q, δ′] associated with the combined attack of the a-struc-
tures in Σ′, and let [Ψ′

1, k1, β
′
1], [Ψ′

2, k2, β
′
2], . . . , [Ψ′

m, km, β′
m] be the sequence

of defeaters associated with Υ′ by the definition of sequential degradation. As
UNwg([Θ, q, δ],Σ) ⊑ [Θ, q, δ] (def. of undefeated narrowing) and
[Θ, q, δ] ⊑ [Θ′, q, δ′] (hypothesis), then UNwg([Θ, q, δ],Σ) ⊑ [Θ′, q, δ′]. Then by
lemma 1 it holds that [Ψ′

j , kj , β
′
j ] is a partial defeater of UNwg([Θ, q, δ],Σ) for

some j, 1 ≤ j ≤ m (taking [Θ′, q, δ′] as [Φ, h, α] and UNwg([Θ, q, δ],Σ) as [Φ′, h, α′]
in lemma 1).

In particular, since UNwg([Θ, q, δ],Σ)⊑ [Θ, q, δ], we can ensure that [Ψ′
j , kj , β

′
j ]

attacks [Θ, q, δ]. Then, by hypothesis, (as [Ψ′
j , kj , β

′
j ] ∈ Σ′ and [Ψ′

j , kj , β
′
j ] attacks

[Θ, q, δ]), there exists [Ψ, kj , β] ∈ Σ such that [Ψ′
j , kj , β

′
j ] ⊑ [Ψ, kj , β]. Finally,

as ACC satisfies non-depreciation, β ≥ β′
j , and then [Ψ, kj , β] is also a partial

defeater for UNwg([Θ, q, δ],Σ). We arrived to a contradiction, since by definition
of sequential degradation of an a-structure [Θ, q, δ] associated with the attack of
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a-structures in Σ, the last element in the sequence (UNwg([Θ, q, δ],Σ)) has no
defeaters in Σ. Therefore UNwg([Θ, q, δ],Σ) ⊑ UNwg([Θ′, q, δ′],Σ′) �

Lemma 4. Let K be a possibilistic KB, and let T[Φ, h, α] be an ADT for a given

a-structure [Φ, h, α] of K. Let N and N ′ be nodes in T[Φ, h, α], where N is pro

and is labelled with [Θ, q, δ], and N ′ is con and is labelled with [Θ′, q, δ′]. Then
UNwg(N) ⊑ UNwg(N ′).

Proof. Let n = min(HN,HN ′), where HN and HN ′ are the heights of N
and N ′ in T[Φ, h, α], respectively. We will prove that UNwg(N) ⊑ UNwg(N ′) by

induction on n.
Basis Case: n = 0.
Case 1: n = HN = 0. Then N has not children, and hence, by definition of

evaluated ADT , it holds that UNwg(N) = [Θ, q, δ]. As N ′ is con, then [Θ′, q, δ′]
is maximal, and then [Θ, q, δ] ⊑ [Θ′, q, δ′]. Finally, as N has not children and by
lemma 2, we can ensure that none of the a-structures labelling the children of
N ′ attacks [Θ, q, δ] (since if there would exist a child M ′ of N ′ attacking [Θ, q, δ],
lemma 2 ensures that there exists a child M of N). Therefore we can ensure that
UNwg(N) = [Θ, q, δ] ⊑ UNwg(N ′).

Case 2: n = HN ′ = 0.
As N ′ is con, then the a-structure labelling N ′, [Θ′, q, δ′], is maximal. Since

HN ′ = 0, and by definition of evaluated ADT , it holds that UNwg(N ′) =
[Θ′, q, δ′]. Finally, UNwg(N) ⊑ UNwg(N ′).

Inductive Case: n > 0.
Assume that the property holds for i < n (Inductive Hypothesis).
According to def. 31, UNwg(N) = UNwg([Θ, q, δ],Σ), where

Σ = {UNwg(M) | M is a child of N, and UNwg(M) ̸= [∅, ϵ, 0]}, and
UNwg(N ′) = UNwgP ([Θ′, q, δ′],Σ′), where Σ′ = {UNwg(M ′) | M ′ is a child
of N ′, and UNwg(M) ̸= [∅, ϵ, 0]}. We will apply lemma 3 in order to prove that
UNwg([Θ, q, δ],Σ) ⊑ UNwg([Θ′, q, δ′],Σ′). In order to apply lemma 3 we need
first to show that [Θ, q, δ] ⊑ [Θ′, q, δ′]. That holds trivially, since [Θ′, q, δ′] is the a-
structure labelling the con-node N ′, and then [Θ′, q, δ′] is maximal. Additionally,
we need to show that for each element UNwg(M ′) ∈ Σ′ (where M ′ is a child of
N ′) it holds that either: 1) UNwg(M ′) does not attack [Θ, q, δ], or 2) there exists
UNwg(M) ∈ Σ (where M is a child of N) such that UNwg(M ′) ⊑ UNwg(M).
Suppose that UNwg(M ′) does attack [Θ, q, δ]. Then the a-structure labelling
M ′, [Ψ′, k, β′], also attacks [Θ, q, δ]. By applying lemma 2 we can ensure that
there exists a child node M (con) of N labelled with an a-structure [Ψ, k, β].
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As M (con-node) and M ′ (pro-node) are children of N and N ′, respectively,
then min(HM,HM ′) < min(HN,HN ′) = n. Therefore, by inductive hypoth-
esis, UNwg(M ′) ⊑ UNwg(M). Now we can apply lemma 3, obtaining that
UNwg([Θ, q, δ],Σ) (= UNwg(N)) ⊑ UNwg([Θ′, q, δ′],Σ′). Finally, by proposi-
tion 2, UNwg([Θ′, q, δ′],Σ′) ⊑ UNwgP ([Θ′, q, δ′],Σ′) (= UNwg(N ′)), and then
UNwg(N) ⊑ UNwg(N ′) �

Lemma 5. Let K be a possibilistic KB, and let T[Φ, h, α] be an ADT for a given

a-structure [Φ, h, α] of K. Let N1 and N2 be nodes in T[Φ, h, α], where N1 is pro

and there exists an a-structure [Θ1, q, δ1] that is a complete a-substructure of the a-
structure labelling N1, and N2 is con and is labelled with [Θ2, q, δ2]. Let [Θ′

1, q, δ
′
1]

be the complete a-substructure of UNwg(N1) supporting q. Then [Θ′
1, q, δ

′
1] ⊑

UNwg(N2).

Proof. Suppose by contrary that [Θ′
1, q, δ

′
1] ̸⊑ UNwg(N2). By definition

of undefeated narrowing of a given node, UNwg(N2) = UNwgP ([Θ2, q, δ2],Σ),
where Σ = {UNwg(M) | M is a child of N2, and UNwg(M) ̸= [∅, ϵ, 0]},

Let Υ = [Θ′
21, q, δ

′
21], . . . , [Θ

′
2m+1, q, δ

′
2m+1] (= UNwg(N2)) be a sequential

degradation of [Θ2, q, δ2] associated with the combined attack of the a-structures
in Σ, and let [Ψ1, k1, β1], [Ψ2, k2, β2], . . . , [Ψm, km, βm] be the sequence of de-
featers associated with Υ by the definition of sequential degradation. As N2 is
con, then its label, [Θ2, q, δ2], is maximal, and then it holds that [Θ′

1, q, δ
′
1] ⊑

[Θ2, q, δ2]. It also holds that [Θ′
1, q, δ

′
1] ̸⊑ UNwg(N2) (hypothesis). Then by

lemma 1 it holds that [Ψj , kj , βj ] is a partial defeater of [Θ′
1, q, δ

′
1] for some j,

1 ≤ j ≤ m (taking [Θ2, q, δ2] as [Φ, h, α] in lemma 1 and [Θ′
1, q, δ

′
1] as [Φ′, h, α′]

in lemma 1). As [Ψj , kj , βj ] ∈ Σ, then there exists a child node M2 (pro) of N2

such that [Ψj , kj , βj ] = UNwg(M2). Since [Ψj , kj , βj ] = UNwg(M2) is a partial
defeater of [Θ′

1, q, δ
′
1], in particular the a-structure [Ψ′

j , kj , β
′
j ] labelling M2 does

attack [Θ′
1, q, δ

′
1], and since [Θ′

1, q, δ
′
1] is a complete a-substructure of UNwg(N1)

(hypothesis), then [Ψ′
j , kj , β

′
j ] also attacks the a-structure labelling N1 (lets call

it [Θ, q, δ]). By applying lemma 2 we can ensure that there exists a (con) child
node M1 of N1 labelled with an a-structure [Ψ, kj , β] (supporting kj). Finally, by
applying lemma 4 we get that UNwg(M2) ⊑ UNwg(M1) (taking M2 as N in the
lemma, and M1 as the N ′ in the lemma). As UNwg(M2) is a partial defeater of
[Θ′

1, q, δ
′
1] and ACC function satisfies non-depreciation, then UNwg(M1) is also a

defeater for [Θ′
1, q, δ

′
1], and hence for UNwg(N1). We arrived to a contradiction,

since the undefeated narrowing of a given node N cannot have defeaters among
the undefeated narrowings of its children (by definition of undefeated narrowing
of a node and of sequential degradation) �
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Theorem 3 (Pairwise pro concordancy). Let K be a possibilistic KB,
and let T[Φ,h,α] be an ADT for a given a-structure [Φ, h, α] of K. Let N1 and
N2 be pro-nodes in T[Φ,h,α]. Then there exist no literal q such that q appears in
UNwg(N1) and q appears in UNwg(N2).

Proof. Suppose by contrary that there exists such a literal q. Let [Θ1, q, δ1]
be the complete a-substructure of N1 supporting q. Let [Λ2, q, γ2] be the complete
a-substructure of N2 supporting q. We can ensure that there exists a con child
node M1 of N1 labelled with a maximal a-structure [Λ1, q, γ1], and that there ex-
ists a con child node M2 of N2 labelled with a maximal a-structure [Θ2, q, δ2].
Let [Θ′

1, q, δ
′
1] be the complete a-substructure of UNwg(N1) supporting q. Let

[Λ′
2, q, γ

′
2] be the complete a-substructure of UNwg(N2) supporting q. By applying

lemma 5 for nodes N1 and M2 we get that [Θ′
1, q, δ

′
1] ⊑ UNwg(M2) = [Θ′

2, q, δ
′
2].

Similarly, by applying lemma 5 for nodes N2 and M1 we get that [Λ′
2, q, γ

′
2] ⊑

UNwg(M1) = [Λ′
1, q, γ

′
1]. As ACC function satisfies non-depreciation, it holds

that δ′2 ≥ δ′1 and that γ′1 ≥ γ′2. Finally, note that (according to definition of
partial attack) UNwg(M1) = [Λ′

1, q, γ
′
1] partially attacks UNwg(N1) with at-

tacked narrowing [Θ′
1, q, δ

′
1]. However, such an attack does not constitute a de-

feat (since M1 is a child of N1, and by definition of undefeated narrowing of a
node and sequential degradation), and then we can ensure that δ′1 > γ′1. Simi-
larly, UNwg(M2) = [Θ′

2, q, δ
′
2] partially attacks UNwg(N2) with attacked narrow-

ing [Λ′
2, q, γ

′
2], and such an attack does not constitute a defeat, concluding that

γ′2 > δ′2. Since we have shown that δ′2 ≥ δ′1 > γ′1 ≥ γ′2 > δ′2, we get that δ′2 > δ′2,
arriving to a contradiction. Therefore, there exist no literal q such that q appears
in UNwg(N1) and q appears in UNwg(N2) �
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