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Abstract

We propose a new method to project n-dimensional data onto two dimensions,
for visualization purposes. Our goal is to produce a bi-dimensional representa-
tion that better separate existing clusters. Accordingly, to generate this pro-
jection we apply Differential Evolution as a meta-heuristic to optimize a diver-
gence measure of the projected data. This divergence measure is based on the
Cauchy-Schwartz Divergence, extended for multiple classes. It accounts for the
separability of the clusters in the projected space using the Renyi entropy and
Information Theoretical Clustering analysis. We test the proposed method on
two synthetic and five real world data sets, obtaining well separated projected
clusters in two dimensions. These results were compared with results generated
by PCA and a recent likelihood based visualization method.

Keywords: Visualization, Pattern Analysis, Information Theoretical
Learning, Parameter Learning, Evolutionary Computation

1. Introduction

The problem of Data Visualization consists of generating a bi-dimensional
projection of a high-dimensional data set. One of its aims is to make the different
classes in the original data set be shown as distinct clusters in a bi-dimensional
projection. In this sense, a good projection will have two desirable characteris-
tics: no instances of a certain class in the original data set will be placed in the
cluster of a different class in the projection, and the clusters for the different
classes should be well defined and separated from each other.

An optimized (concerning classification) bi-dimensional projection of the
data may allow a visual inspection of the data sets, retrieving information about
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shape and separation of the clusters. When new data instances are presented
to this calculated projection, it is possible to easily assess how strongly the new
data points are associated to the classes by looking at their location in the pro-
jected space. Even in case a data point lays far away from all the clusters, this
may lead the professional examining the data to suspect the existence of a new
class not previously considered, or that this data point does not in fact belong
to any of the groups. In other words, a good projection is a tool for increasing
the understanding of a data set.

Data visualization is very important for medical applications. One such
example is flow cytometry, a widely used technique essential to the diagnosis
and follow-up of a wide spectrum of diseases, including HIV-infection and clonal
hematological disorders such as acute and chronic leukemias and non-Hodgkin’s
lymphomas [16]. Flow cytometry data sets contain from tens of thousands to
millions of observations, with dozens of attributes. Due to the unique way in
which a disease presents itself in different patients, it is important not only
to classify a particular data point as one of multiple sub-classes, but also to
observe how far it deviates from the known clusters. For this task, observation
of projected data sets by experienced practitioners is essential. There is a lot of
interest in applying computational methods for the analysis of flow cytometry
problems [3, 17, 18].

An early proposal of the use of projections to visualize multidimensional
data was the Grand Tour [1]. The Grand Tour uses a series of rotations of
an orthogonal bi-dimensional projection to provide multiple views of the same
data. However, it does not include a criterion for choosing one projection over
another. One such criterion is the PCA [11], where the two directions with
greatest variance are used as the bi-dimensional projection. Supervised criteria
have also been used to choose the best projection for visualization. We mention
among these the LDA [8], and the LF [30].

A different family of visualization methods includes multidimensional scaling
(MDS) [22] and its variations, such as the supervised MDS [27]. These methods
are essentially different from the previous ones in that they calculate the bi-
dimensional data points based on the distances among the observations, instead
of making a linear transformation of the original attributes.

In this paper, we propose a new method for generating bi-dimensional pro-
jections for data visualization, aiming at better cluster separation on ℜ2. A
Differential Evolution algorithm is used to generate projections with an optimal
value for the Cauchy-Schwartz divergence measure.

Differential Evolution (DE) is a meta-heuristic for parameter optimization [19,
23]. Based on Evolutionary Algorithms, the DE creates a random set of can-
didate solutions to the optimization problem, and mixes the best performing
solutions through a set of genetics-based operations (mutation and crossover).

Recently, DE has seen a lot of use in the fields of data clustering [6, 14] and
classification [5]. The problem of Data Visualization is closely related to the
clustering and classification problems, in that it is important to define a measure
of divergence between data points, and determine whether data clusters contain
points of a single label. Because of this, DE success in these field is of special
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interest to us. In particular, DE has been shown to be robust regarding noise
in the classification domain [12], something that is also hinted at in the results
of this work.

The proposed method is tested on a number of experiments, both from syn-
thetic and real world data sets. The results of these experiments are compared
with those of the classic PCA and a newer visualization method based on the
optimization of a likelihood measure.

The results indicate that the proposed method is able to generate projections
with good cluster separation. The proposed method is robust regarding initial
conditions and noisy attributes.

2. Methodology

Let X be a sample of size n comprised of a set of m-dimensional observations
{x1, x2, ..., xn;xi ∈ ℜm, i = 1, ...n}. To each observation xi we assign one out of
k possible labels, L1, L2, ...Lk.

The problem of visualization as described in this paper consists of finding
a function P (x) = x′, P : ℜm → ℜ2, where m is the number of dimensions in
the original data set. In other words, a “projection function” that transforms a
point x in ℜm into a point x′ in ℜ2.

A successful projection function P is one that, given a point x ∈ ℜm belong-
ing to class Li, then P (x) ∈ ℜ2 will be close to other points labeled as Li and
distant from points labeled as Lj , i 6= j. Such a projection is said to have well
separated clusters corresponding to each label.

A key issue when addressing this problem is how to define “well separated
clusters”[10]. Divergence measures allow the quantification of the difference
between two probability distributions [4]. Let us consider a divergence measure
D(X ′) that increases as the clusters in X ′ are well separated. In this case,
the visualization problem turns into finding the projection function P (X) that
maximizes D(P (X)).

To solve this problem we propose the use of a Differential Evolution algo-
rithm to generate bi-dimensional projections that maximize the Cauchy-Schwartz
divergence measure among the projected clusters. Each component will be de-
tailed in the following subsections.

2.1. Cauchy-Schwartz Divergence Measure

We use the distance between probability distribution functions to quantify
how far one cluster is from another. Accordingly, we propose the use of the
Cauchy-Schwartz divergence DC−S [28] as a measure of the distance between
clusters in the projected space where X ′ lays. For two probability distribution
functions (pdf’s) p and q, DC−S is calculated as

DC−S(l1, l2) = − log
(
∫
p(x)q(x)dx)2∫

p2(x)dx
∫
q2(x)dx

= log

∫
p2(x)dx+ log

∫
q2(x)dx− 2 log

∫
p(x)q(x)dx.

(1)
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In this equation, log
∫
p2(x)dx is the estimation for the quadratic density of

p. This is equivalent to the negative of the Renyi quadratic entropy of p. In the
same way, −2 log

∫
p(x)q(x)dx measures the interaction between the two pdf’s

p and q.
Note that, clearly, DC−S(p, p) = 0 and DC−S(p, q) = DC−S(q, p) for any

pdf’s p and q. Besides, DC−S(p, q) ≥ 0 [21, 28]. Nevertheless, it is worth
noting that the DC−S is not a metric, since it does not satisfy the triangle
inequality [28].

Let us consider a data set with two associated labels, L1 and L2, as having
been generated by two pdf’s p and q resulting in the projected observations X ′

1

and X ′

2, respectively. It follows that the distance between clusters associated to
L1 and L2 may be measured through DC−S(p, q). Therefore, if there are two
projections where the DC−S value calculated for the second projection is greater
than the one calculated for the first, then the clusters in the second projection
are better separated than those in the first one.

The divergence calculation implies, in general, the necessity of estimating
the involved pdf’s. This can be especially hard for continuous problems, due to
the need of some sort of discretization procedure. The Information Theoretic
Learning (ITL) approach overcomes this setback. It was proposed in [20], and
is briefly described below.

Let N1 and N2 be the sizes of the samples generated by pdf’s p and q, respec-
tively. These pdf’s may be estimated through a Parzen Windows approach [7].
Accordingly, let Gσ2(x) be the Gaussian probability function with zero mean
and variance σ2

Gσ2 =
1√
2σ2π

exp(− x2

2σ2
). (2)

An estimate p̂ of the pdf p, using Gσ2
p
as kernel, is given by

p̂ =
1

N1

N1∑
i=1

Gσ2
p
(x− xi). (3)

It follows that ∫
p̂(x)q̂(x)dx =

=

∫
1

N1

N1∑
i=1

Gσ2
p
(x− xi)

1

N2

N2∑
j=1

Gσ2
q
(x− xj)dx

=
1

N1N2

N1∑
i=1

N2∑
j=1

∫
Gσ2

p
(x− xi)Gσ2

q
(x− xj)dx

=
1

N1N2

N1∑
i=1

N2∑
j=1

Gσ2
p+σ2

q
(xi − xj).

(4)

The last equality in eq. 4 results from the convolution theorem for Gaussians [21,
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25]. It is quite interesting to note that the final expression of eq. 4 depends
exclusively on the observations xi and the kernel width (σ2

p + σ2
q ).

In a similar manner we have

∫
p̂2(x)dx =

1

N2
1

N1∑
i=1

N1∑
j=1

G2σ2
p
(xi − xj) (5)

and ∫
q̂2(x)dx =

1

N2
2

N2∑
i=1

N2∑
j=1

G2σ2
q
(xi − xj). (6)

By applying eqs. 4, 5, and 6 in eq. 1, the C-S divergence between pdf’s p and q
can be calculated as

DC−S(p̂, q̂) = log
1

N2
1

N1∑
i=1

N1∑
j=1

G2σ2
p
(xi − xj)

+ log
1

N2
2

N2∑
i=1

N2∑
j=1

G2σ2
q
(xi − xj)

− 2 log
1

N1N2

N1∑
i=1

N2∑
j=1

Gσ2
p+σ2

q
(xi − xj).

(7)

The DC−S was originally proposed for cases with two labels. We define
a simple extension of the DC−S measure for k pdf’s p1, p2, ...pk. Each pdf is
associated to one of k, and the number of observations in X associated with
each label is ni (

∑k

i ni = n).
Let us divide eq. 7 in two parts, the first where we calculate the estimation

of the quadratic density for each pdf (composed of eqs. 5 and 6), and the second
where we calculate the interaction between the pdf’s (eq. 4).

We can extend the first part for k labels by adding the estimation of the
quadratic density of the pdf’s associated to every label. First, let’s define xli

as the i-th element in X with label l. Now, for each label l ∈ 1, 2, ..., k, we
calculate

H(l) = log
1

n2
l

nl∑
i=1

nl∑
j=1

G2σ2

l
(xli − xlj). (8)

The second part of eq. 7 calculates the Clustering Evaluation Function
(CEF), as defined in [9]. The CEF measures the distance between the clus-
ters using an information theoretic approach. In [9], a generalization of the
CEF is defined for multiple clusters. If one associates each of the k labels to a
cluster, the CEF can be written as

CEF (X ′) =
1

2N1N2...Nk

n∑
i=1

n∑
j=1

M(xi, xj)Gσ2

li
+σ2

lj

(xi − xj), (9)
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where M(xi, xj) is a membership function, the value of which is 0 if xi and xj

have the same label, and 1 if they have different labels.
Equations 8 and 9 together lead to the generalized C-S divergence for mul-

tiple labels

DC−S(X
′) =

k∑
l=1

H(l)− 2 logCEF (X ′). (10)

2.1.1. Computational Complexity of the DCS

In any optimization algorithm based on a utility measure, such as the Dif-
ferential Evolution (DE), the computational complexity of the utility measure
is of great concern.

By close inspection of equations 8, 9 and 10, we can deduce that the com-
putational cost of DCS is quadratic on the number of data points (n).

Let’s assume a constant cost for the calculation of Gσ(xi − xj) (this can be
assumed because we know that x′

i ∈ ℜ2). Because of the membership function
M(xi, xj) in 9, we can calculate the sum of both equations 8 and 9 in one double
pass of the observations.

As shown in the Algorithm 1, M implies that when xi and xj have the same
label k, then the algorithm adds to the calculation of H(k), else the algorithm
adds to the calculation of CEF (X ′).

Algorithm 1 Pseudo code for the calculation of DCS

for i = 1 to n do

for j = 1 to n do

if label(xi) is equal to label(xj) then
H(label(xi) = H(label(xi) + G2σ2

l
(xi − xj))

else

CEF = CEF + Gσ2

li
+σ2

lj

(xi − xj),

end if

end for

end for

N = 2
for i = 1 to k do

N = N ∗ ni

H = H + 1
n2

i

H(i)

end for

DCS = H − 2 ∗ log CEF
N

2.2. Differential Evolution

Having defined a quality measure for the class separation of a projection,
the next goal is to build a routine to search the projection that maximizes this
measure.
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In this work, we will search for a linear projection. This linear projection is
defined by two parameter vectorsA1 andA2, whereAi = ai1, ai2, ..., aim|aij ∈ ℜ.
The projection function is then defined as P (x) = [xi×A1, xi×A2]. Therefore,
We want to find A1 and A2 that maximize DC−S for the projection.

We use Differential Evolution (DE) [19, 23] to search for these parameter vec-
tors. DE is a simple and powerful populational optimization heuristic inspired
by biological evolutionary processes. Its main steps can be briefly described as
follows.

DE starts with a set P of p candidate solutions, each generated randomly.
Each candidate solution Ai ∈ P is represented as array of parameters Ai =
ai1, ai2...aim |aij ∈ ℜ, where m is the number of dimensions (attributes) given
by the data set. The values of a1, ..., am for each Ai in the initial set P are
randomly drawn from a uniform distribution from −1 to 1. In DE literature,
the set P is sometimes called a population, and each candidate solution Ai an
individual.

The next step is to iterate this candidate set. At every iteration (sometimes
called a generation), each candidate Ai ∈ P is evaluated using the DCS . The
resulting utility value is stored as V (Ai).

After the evaluation step, each candidate solution Ai tries to create a new
candidate solution A′

i using a procedure called “differential crossover”. This
procedure takes three steps. First, three solutions Aa, AbandAc ∈ P |a 6= b 6= c,
are randomly selected. Then, a temporary individual At is generated as

At = Aa + F (Ab −Ac), (11)

where F is the differential weight parameter. The third step is to generate A′

i

from At and Ai as follows. For each j ∈ 1..m, the value of a′ij in A′

i is taken
from either At (with probability CR) or from Ai (with probability 1 − CR).
The parameter CR is called the Crossover Probability.

After A′

i is generated, its utility value V (A′

i) is calculated. If V (A′

i) > A(Ai),
then A′

i replaces Ai in P . Else, it is discarded.
The evaluation and differential crossover step composes one iteration of the

DE algorithm. Iterations are repeated until a certain stop criterion, such as a
fixed number of iterations or a fixed number of evaluations, is reached. At that
moment, the candidate solution in P with the highest utility value is chosen as
the projection generated by the algorithm.

By using the differential crossover operator, DE is able to sample the solu-
tion space at promising locations. This operator, allied with a large number of
solutions in the initial set, allows DE to avoid getting stuck in local optima [15].
This makes DE particularly useful for real-valued, multi modal parameter opti-
mization domains.

In this work, the values used for the DE parameters are: Size of the initial
set p = 50, F = 0.8, CR = 0.9, and maximum number of iterations = 20. These
values follow the suggestions defined by Storn and Price [23].
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2.3. Data Transformation

The DE Optimization method generates an array of values in ℜ. These
values are weights for the attributes in the data set, and define a one-dimensional
projection of the data set that maximizes the DC−S measure.

In order to acquire a second projection, allowing for a bi-dimensional visual-
ization, we execute the DE optimization of DC−S a second time. Furthermore,
we force the second projection to be orthogonal to the first. Some ways to do
this are described by Zhu [29]. In this work we use a transformation on the data
based on the first projection.

To calculate this transformation for solution A given by DE, we find the
matrix T such that

T = At(AAt)−1A. (12)

T is used to transform the original data X

Y = (I − T )X, (13)

where I is the identity matrix of the same order as T . A second run of the
DE algorithm is executed, using Y from eq. 13 as the data set. We take the
projection A2 generated by this run as the second dimension of the desired
bi-dimensional projection. When performing the visualization, this second pro-
jection must be applied to the transformed data set ((I −P )X) to generate the
second dimension of the projected data.

3. Experimental Setup

To analyze and validate the performance of the proposed method, we exe-
cuted two sets of experiments. In the first set of experiments, synthetic data
sets were used to test the robustness of the optimization heuristic to its initial
conditions and the robustness of the method to very noisy dimensions, respec-
tively. In the second set of experiments, the proposed method was exposed to
real world data sets.

3.1. Synthetic data sets

The first data set is composed of 600 ℜ2 observations. For each observation,
2 values, x1 and x2, were drawn from a uniform distribution between 0 and 1
inclusive. Each observation where 1

3
< x1 < 2

3
was assigned to class 1, and the

other observations assigned to class 2. The resulting data set can be seen in
Figure 2(a), where the circles represent class 1, and the triangles represent class
2.

The two classes in this data set are in fact separable in just one dimension.
The purpose of this experiment was to test how reliably the different methods
were able to pick this dimension as the optimal projection.

The following 5 data sets were designed to test the robustness of the meth-
ods to noise. Each data set has 600 observations belonging to 3 classes (200
observations for each class). Each data set has 3,4,7,12 and 22 dimensions. For
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Figure 1: The separable part of the data for experiment 2. To this data, a number of noise
dimensions is added. Circles, crosses and stars represent the three different labels.

each data set, the observations were generated as follows: x1 was drawn from a
Normal distribution with standard deviation 1 and mean 0 for classes 1 and 3,
and mean -6 or 6 (equal probability) for class 2; x2 was drawn from a Normal
distribution with standard deviation 1 and mean 0 for classes 1 and 2, and mean
-6 or 6 (equal probability) for class 3; all the other dimensions xi|i > 2 were
drawn from a uniform distribution from -10 to 10.

In other words, the first two dimensions are the same for all sets, and then
each set has an increasing number of noise dimensions (1, 2, 5, 10 and 20,
respectively). A plot of the first two dimensions can be seen in Figure 1.

3.2. Real world data sets

The third and fourth data sets are the “Pen Digits” and the “Lung Cancer”
data sets, taken from the UCI Machine Learning Repository.

The “Pen Digits” data set consists of 16 features (attributes) extracted from
samples of hand written digits from 0 to 9. The goal was to recognize the
difference between these digits. For ease of visualization, we select three digits
at a time. In this paper we report the results for the following digit groups:
(0,6,9), (1,3,7), (1,4,7) and (2,5,8). The data set was separated into a training
and a validation subset. The projection was generated from the training subset,
and then it was applied to the validation subset for analysis of the results.

The “Lung Cancer” data set has 27 observations (removing those with miss-
ing attributes) and 56 attributes. They are divided into three classes, represent-
ing three different kinds of lung cancer. Because of the low number of observa-
tions, all of them were used both for calculating the projection and analyzing
the results.

The fifth, sixth and seventh data sets are flow cytometry data sets. These
data sets correspond to normal peripheral blood samples containing several sub-
sets of cells, and the goal was to separate different cell types. Each observation
corresponds to one cell. All data sets have 10 attributes obtained from the flow
cytometry test. These attributes correspond to the expression of 8 different
proteins and 2 parameters of light dispersion.

The fifth data set compares monocytes-related dendritic cells, plasmocytoid
dendritic cells and B-lymphocytes (classes 1, 2 and 3). These classes have 824,
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140 and 259 observations, respectively. Because of the relatively low number of
observations in class 2 with relation to the sixth and seventh data sets, all of
the observations were used both for generating the projection and visualizing
the results.

The sixth data set compares monocytes and neutrophils (classes 1 and 2)
These classes have 5582 and 8989 observations, respectively. We took 300 ob-
servations from each class (600 total), and used these as the training set. The
optimal projection was calculated from the training set. The remaining obser-
vations were used as the validation data to display the results.

The seventh data set compares plasmocytoid dendritic cells and neutrophils
(classes 1 and 2) These classes have 140 and 8989 observations, respectively. We
took all 140 observations from class 1 and 200 observations from class 2 for the
training data set. All the observations are used for the validation set.

3.3. Two Methods for Comparison

We compared the results of our method in the described experiments with
those of two methods for data visualization: the classical Principal Component
Analysis (PCA) [11] and the Zhu-Hastie method (ZH) [30].

To generate two projection dimensions with the PCA, we used the first and
the second principal components as the first and the second dimensions in the
projection.

The Zhu-Hastie method is a recently proposed method for data visualiza-
tion based on the maximization of a likelihood measure through an optimization
algorithm [30]. This method uses a Log-likelihood Ratio (LR) statistic as its
utility function, based on the estimation of density functions using a local like-
lihood method. To maximize the LR measure, a gradient descent algorithm
was used. The stopping criterion was when the distance between the previous
projection vector and the current one was equal or lower than 0.05.

3.4. Kernel Width

The LR measure used by the Zhu-Hastie method, and the Dcs measure used
in the proposed method both depend on the kernel width parameter. The choice
of kernel width has a significant impact on results [13, 24], and is a hard problem
in general for divergence measures that compare pdfs.

We used a grid search methodology to find the best kernel value for each
method. In each experiment, we execute both methods using the following
values as the kernel width for each label l: {σl, σl/20, σl/40, σl/60, σl/80 and
σl/100}. The best result for each method is reported here (along with its re-
spective kernel value).

As a general trend, we found out that smaller kernel values (larger denomina-
tors) produced less reliable results for the proposed method. For the Zhu-Hastie
method, on the other hand, we couldn’t find such a noticeable trend. Table 1
illustrates this findings.

It is important to note that on Table 1, higher divergence values don’t nec-
essarily represent better solutions. While we are interested in maximizing the
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Kernel value Proposed Method Zhu-Hastie Method
σ 4.98 (4.82, 5,13) 100.99 (89.98, 111.99)

σ/20 12.71 (11.90, 13.53) 38.70 (37.79, 39.60)
σ/40 24.81 (20.43, 29.20) 47.95 (47.25, 48.65)
σ/60 30.65 (24.23, 37.06) 52.74 (52.03, 53.46)
σ/80 34.17 (28.85, 39.49) 55.49 (54.73, 56.25)
σ/100 50.60 (40.29, 60.92) 57.45 (56.69, 58.20)

Table 1: Divergence value for the lung cancer experiment. The values within parenthesis are
the 95% confidence interval calculated on 50 repetitions.

(a) Data Set 1

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

(b) Zhu-Hastie

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

(c) Proposed Method

Figure 2: Results for experiment 1. The histograms in 2(b) and 2(c) show the cosine values
between the projections found for each method, and the horizontal axis.

divergence value for a given projection, decreasing the kernel width usually re-
sults in an overall increase of divergence values, for both “good” and “bad”
projections. It is important to compare these values within a single run of the
algorithm.

4. Results

4.1. Synthetic Data Sets

In the first experiment we evaluated the robustness of the optimization
heuristic to random initialization. The goal of each run was to find the one-
dimensional projection that best separates the two classes in the data set. Fig-
ure 2(a) shows the original data. For this data set, the ideal projection is to
simply take the value in the horizontal axis.

We executed a hundred runs with the ZH method and with the proposed
method. To evaluate the results, we calculated the distance between the projec-
tions found by each method and the ideal projection. This distance is calculated
as the cosine between the projection and the horizontal axis. An optimal pro-
jection would have a cosine value of 1.

Figures 2(b) and 2(c) shows the distances of the projections found by each
method as a histogram of cosine values. The ZH method turned out to be quite

11



Table 2: Results for experiment 1: Cosine between projection and X-axis.

Method Mean (100 runs) std
Proposed Method 0.9991 0.0024

Zhu-Hastie 0.7548 0.2933
PCA 0.4532 -

sensitive to initialization, reaching a number of non-optimal solutions. The
proposed method was able to find the optimal projection in almost all the runs.

In Table 2 we see the average cosine value for the solutions generated by
two methods, and its standard deviation. We also added the cosine value of the
projection found by the PCA which does not depend on initial conditions. We
can see that the PCA was not able to separate well in this experiment, since the
direction with greatest variance of the data set is the diagonal of the rectangle
described by the data.

In the second experiment the three methods (the proposed method, PCA,
and ZH) were requested to find a bi-dimensional projection for a data set com-
posed of 2 dimensions with actual data (as shown in Figure 1), and 1,2,5,10 or
20 noise dimensions. The results can be seen in Figure 3.

The results can be seen in Figure 3.
For the instance with only 1 noise dimension, the PCA was not able to

separate two of the three classes. This is expected, since the variance in the
noise dimension is much higher than the variance of the other two dimensions.
The ZH Method performed better than the PCA, but two of the three clusters
were still very mixed. The proposed method found a bi-dimensional projection
of the data with well separated clusters.

For the instance with 2 noise dimensions, the PCA is no longer able to
separate the classes at all. The ZH method also fails to separate the classes,
but a sort of “layer” structure is kept. The proposed method still manages to
generate a well separated projection.

For 5 and 10 noise dimensions, both the PCA and the ZH are unable to
separate the data, and show similar results. The proposed method is still able
to separate the classes, but for 10 noise dimensions the clusters start to mix.
For 20 noise dimensions, all three methods show the same mixed result (not
shown in the figure).

4.2. Real World Data Sets

To examine the performance of the proposed method in practice, we made
projections of five data sets based on real problems. For each data set, we
visually examined the obtained projections. The resulting projections from
each method are shown in Figures 4 to 8.

Figure 4 shows the results for the UCI Pen Digits data set. The results here
are not as clear cut as in the artificial data set. In the data sets including the
digits 1 and 7, the proposed method has a slightly better separation of these

12



(a) 1 Noise Dimension

(b) 2 Noise Dimensions

(c) 5 Noise Dimensions

(d) 10 Noise Dimensions

Figure 3: Results for experiment 2. The left column corresponds to the PCA, the middle
column to the ZH (σ/40), and the right column to the proposed method (σ).

two clusters than the ZH and the PCA. In the “0, 3 and 9” and the “2, 5 and
8”, it is harder to tell which is the better projection.

Figure 5 shows the results for the Lung Cancer. Here, the PCA and the ZH
methods did not separate the clusters at all (although the PCA roughly ordered
the cases by cluster in the X axis). The proposed method managed to separate
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Figure 4: Projections found for the UCI Pen Digits data set. The left column corresponds to
the PCA, the middle column to the ZH (σ), and the right column to the proposed method
(σ/80).

the classes, but a few elements of class 2 fell in the wrong cluster.
Figures 6, 7, and 8 show the results for the flow cytometry data sets. In

the first cytometry data set (Fig. 6), with three classes, the PCA was not able
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Figure 5: Projections found for the UCI Lung Cancer data set.
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Figure 6: Projections found for monocytes-related dendritic cells (dend mono), plasmocytoid
dendritic cells (dend plasm) and B-lymphocytes (linf B).

to separate the monocytes-related dendritic cluster from the plasmocytoid den-
dritic cluster, and barely managed to separate these two clusters from the B-
lymphocytes class. The ZH method generated different clusters for the three
classes, but the clusters were too close to each other, and there was a confu-
sion region in the borders. The proposed method, on the other hand, clearly
separated the three classes into visually different clusters.

For the other two cytometry data sets (Fig. 7 and 8) all methods created
well defined clusters, but the projections of the ZH and the proposed method
were more compact than those of the PCA. This is desirable, since it suggests
that out-of-sample points are less likely to be placed in the wrong cluster. Also,
the distance between the two clusters is much larger in the proposed method
than in the ZH or PCA.

5. Discussion and Conclusion

In this paper, we have introduced a new system for the visualization of multi-
dimensional data as a bi dimensional image. This system uses an extension of
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Figure 7: Projections found for monocytes-related dendritic cells (mono) and neutrophils
(neutro)
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Figure 8: Projections found for plasmocytoid dendritic cells (dend plasm) and neutrophils
(neutrofilos).

the Cauchy-Schwartz divergence measure for multiple clusters as the measure
of the projection’s quality, and Differential Evolution to generate a projection
function that maximizes this measure. Using this method, we promote the bi-
dimensional visualization of high-dimensional data sets with optimized cluster
separation.

Using experiments with synthetic data, we have shown that our method
is generally robust, specially regarding the addition of noise to the data set.
We compared this result with the PCA, a well established and broadly used
method for data visualization, and a recently proposed method that also uses a
divergence measure as its metric.

It is worth mentioning that very good results were recently published using
the PCA for flow cytometry data [2]. The proposed method produced clearly
better results than the PCA for some of the cytometry data sets (Figs. 6(a)
and 6(c)). This shows a promising perspective concerning its application in this
area.

On the experiments with real world data sets, the proposed method was
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generally competent at generating informative projections of the data. For
these experiments, it is harder to set an objective measure of cluster separation:
each method optimizes a different divergence measure, so their value can’t be
used to compare the methods directly.

Still, we can observe that the Cauchy-Schwartz divergence measure was able
to define projections where the clusters are well separated. The sum of the
quadratic densities of the labels promotes compact clusters, while the use of the
Cluster Evaluation Function (CEF) promotes the separation between them.

Differential Evolution showed to be a good method for optimizing a projec-
tion based on DC−S as a utility measure. Further improvement can probably
be achieved by the use of more recent DE techniques such as [26].

5.1. Future Works

The findings on this work suggest a number of ways that research can take
place in order to improve available solutions to the Data Visualization problem.

Firstly, there is a concern regarding the time complexity of the DCS . While
the method as is has performed well on current problems, it may be slower to
train on data sets with a larger number of cases. However, population-based
meta-heuristic optimization methods, such as DE, are “embarrassingly parallel”
algorithms. We are currently concentrating our efforts on the development of a
parallel version of the DE-DCS system.

Also, we observe that the two parts of theDC−S , the CEF and the Quadratic
Density, measure essentially different things. Because of this, it would be in-
teresting to try and treat them as different objectives in a multi-objective op-
timization system. This would generate a Pareto set of solutions, allowing for
the selection of the most appropriate ones, depending on the priorities for the
visualization of a particular data set.

Another interesting topic is how to evaluate the quality of bi-dimensional
data projections for human consumption. For two different divergence criteria,
how to determine which one, when optimized, produces the better image? In
this case “better” is heavily dependent on the context of the problem being
approached, and a careful selection of human judges or comparison metrics is
necessary.

Acknowledgment

Carlos E. Pedreira was partially supported by research grants from CNPq
(Brazilian National Research Council) and FAPERJ (Rio de Janeiro Research
Foundation). Claus Aranha was supported by a Pst-Doc grant from CNPq.
Rodrigo Peres was supported by a Post-Doc grant from FAPERJ/CAPES.

The authors would like to thank Kathleen Gonçalves and Elaine S. Costa
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