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Belief rule based (BRB) system provides a generic inference framework for approximating
complicated nonlinear causal relationships between antecedent inputs and output. It has
been successfully applied to a wide range of areas, such as fault diagnosis, system identi-
fication and decision analysis. In this paper, we provide analytical and theoretical analyses
on the inference and approximation properties of BRB systems. We first investigate the
unified multi-model decomposition structure of BRB systems, under which the input space
is partitioned into different local regions. Then we analyse the distributed approximation
process of BRB systems. These analysis results unveil the underlying inference mechanisms
that enable BRB systems to have superior approximation performances. Furthermore, by
using the Stone–Weierstrass theorem, we constructively prove that BRB systems can
approximate any continuous function on a compact set with arbitrary accuracy. This result
provides a theoretical foundation for using and training BRB systems in practical applica-
tions. Finally, a numerical simulation study on the well-known benchmark nonlinear sys-
tem identification problem of Box–Jenkins gas furnace is conducted to illustrate the
validity of a BRB system and show its inference and approximation capability.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Belief rule based (BRB) system, as an extension of traditional IF–THEN rule based system, has been successfully applied in
various areas, such as fault diagnosis, system identification and decision analysis [1,18,27,31,32,35,36]. When applying a BRB
system, the input of each antecedent attribute is transformed into a belief distribution over a set of referential values. The
belief distribution is further used to calculate the activation weights of belief rules in the belief rule base. Subsequently, the
inference output is generated through the aggregation of all activated belief rules using the evidential reasoning (ER) ap-
proach [28,30]. This methodology is developed on the basis of the Dempster-Shafer theory of evidence [6,20], the decision
theory [9,33], rule-based systems [12,17] and relevant artificial intelligence and information techniques [8,16,22]. Compared
with traditional rule based systems, BRB systems provide a more informative knowledge representation scheme for both
quantitative data and qualitative information with uncertainties, and it is capable of approximating complicated nonlinear
causal relationships between antecedent inputs and output [31]. In a BRB system, belief rule base is one of the most impor-
tant components, in which belief rules can be established initially by human experts with domain-specific knowledge and
facts. However, by using experts’ subjective knowledge alone, it is difficult to determine the parameters of a belief rule base
Inform.
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accurately, in particular for practical rule bases with many rules. Consequently, optimal learning models and relevant opti-
misation techniques have also been proposed for training the parameters of BRB systems [5,32,35].

The main purpose to construct a BRB system is to approximate a real system as accurately as possible, and also to avoid
overfitting the training data. The following two fundamental theoretical questions on the inference and approximation prop-
erties of BRB systems therefore need to be studied thoroughly for supporting practical applications.

(1) What are the underlying inference mechanisms which enable BRB systems to have the superior approximation per-
formances as claimed in the literatures in a range of applications?

(2) Are BRB systems universal approximators? In other words, are BRB systems capable of approximating any continuous
function on a compact set with arbitrary accuracy?

Similar theoretical questions were investigated in the development of artificial neural networks (ANN) and fuzzy systems
[3,11,13,23,24,34]. In this paper we investigate these issues to underpin the theoretical foundation of using and training BRB
systems in practical applications. First of all, we analyse the multi-model decomposition structure and the distributed
approximation process of BRB systems. By utilising the Stone–Weierstrass theorem [4,21], we then constructively prove that
BRB systems can approximate any continuous function on a compact set with arbitrary accuracy. Finally, a numerical sim-
ulation study on the well-known benchmark nonlinear system identification problem of Box–Jenkins gas furnace [2] is con-
ducted to demonstrate the validity of a BRB system and show its inference and approximation capability.

The rest of this paper is organised as follows. In the following section, the inference process of BRB systems is briefly dis-
cussed. In Section 3, a unified multi-model decomposition structure for partitioning input space into different local regions is
investigated and the distributed approximation in the process of inferring output is analysed. Based on the Stone–Weierst-
rass theorem, the universal approximation property of BRB systems is proved in Section 4. In Section 5, a numerical simu-
lation study is conducted on the nonlinear system identification problem of Box–Jenkins gas furnace. The paper is concluded
and comparisons with some state-of-the-art methodologies and further research are discussed in Section 6.
2. Description of belief rule based systems

In this paper we consider a numerical multi-input single-output system f: U � RM ? R, whilst a multi-output system can
always be separated into a set of single-output systems [10,24].
2.1. Belief rule base

For a multi-input system, suppose the following M antecedent attributes are a complete set of factors influencing the sys-
tem’s output, i.e.,
Please
Sci. (2
X ¼ fxi; i ¼ 1; . . . ;Mg ð1Þ
In order to represent the behaviours of the multi-input system, a finite number of belief rules can be constructed, which con-
stitute a belief rule base. Formally, a belief rule is defined as follows:
Rk :

IF x1 is Ak
1 ^ x2 is Ak

2 ^ � � � ^ xMk
is Ak

Mk

THEN fðD1; b1;kÞ; ðD2;b2;kÞ; . . . ; ðDN; bN;kÞg;
XN

n¼1

bn;k 6 1

 !

with rule weight hk

and attribute weight d1;k; d2;k; . . . ; dMk ;k; k 2 f1; . . . ;Kg

ð2Þ
where x1; x2; . . . ; xMk
denote the antecedent attributes in the kth rule, and these attributes can be a subset of all the ante-

cedent attributes X = {xi; i = 1, . . ., M}. Ak
i ði ¼ 1; . . . ;MkÞ is the referential value taken by the ith antecedent attribute in the kth

rule and Ak
i 2 Ai. Ai = {Ai,j; j = 1, . . ., Ji} denotes the set of referential values for the ith antecedent attribute and Ji is the number

of the referential values. In BRB systems, the referential values can also be labelled as linguistic terms, such as ‘‘small’’, ‘‘med-
ium’’, ‘‘large’’ and so forth. bn,k (n = 1, . . ., N; k = 1, . . ., K) represents the belief degree to which the consequent element Dn is
believed to be the consequent, given the logical relationship of the kth rule IF x1 is Ak

1 ^ x2 is Ak
2 ^ � � � ^ xMk

is Ak
Mk

. Note that
the element Dn in the set of consequent elements D = {Dn; n = 1, . . ., N} can either be a conclusion or an action and a subset of
elements can also be part of the consequent [26]. If

PN
n¼1bn;k ¼ 1, the kth rule is said to be complete; otherwise, it is incom-

plete. hk is the relative weight of the kth rule, and dMk ;k represents the relative weight of attributes in the kth rule.
Under the unified scheme as defined above, a belief rule can represent a functional mapping between antecedent inputs

and output possibly with uncertainties. It provides a more informative and realistic scheme than a traditional IF–THEN rule.
Here, it is worth noting that human knowledge representation forms can always be transformed into IF–THEN rule-based
schemes [22]. Once a belief rule base is established, the knowledge embedded in all belief rules can be used to perform infer-
ence for a specific input vector.
cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
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2.2. Inference using the Evidential Reasoning (ER) approach

Suppose we have an input vector x(t) = {xi(t), i = 1, . . ., M} at the sampling time t in a complex nonlinear system. For sim-
plicity, xi is used to represent xi(t) afterwards. Using the referential values defined for the ith antecedent attribute xi, the in-
put xi can be transformed to the following belief distribution [29].
Please
Sci. (2
SðxiÞ ¼ fðAi;j;ai;jÞ; j ¼ 1; . . . ; Jig ð3Þ
where
ai;j ¼
Ai;jþ1 � xi

Ai;jþ1 � Ai;j
and ai;jþ1 ¼ 1� ai;j; if Ai;j 6 xi 6 Ai;jþ1

ai;j0 ¼ 0; for j0 ¼ 1; . . . ; Ji and j0 – j; jþ 1
Here, ai,j represents the similarity degree to which the input value xi matches the referential value Ai,j. After all the inputs are
transformed into belief distributions, the activation weight of the kth belief rule can be calculated as follows [31].
wkðxÞ ¼
hk
QMk

i¼1 ak
i;j

� ��di

PK
l¼1 hl

QMl
i¼1ðal

i;jÞ
�di

h i ; and �di ¼
di

maxi¼1;...;Mk
fdig

ð4Þ
Note that in Eq. (4) the attribute weights are assumed to be identical in all belief rules. Further, the belief degrees on the
inference output can be generated through the aggregation of all activated belief rules using the following analytical ER ap-
proach [25].
bnðxÞ ¼
QK

k¼1 wkðxÞbn;k þ 1�wkðxÞ
PN

i¼1bi;k

� �
�
QK

k¼1 1�wkðxÞ
PN

i¼1bi;k

� �
PN

j¼1

QK
k¼1 wkðxÞbj;k þ 1�wkðxÞ

PN
i¼1bi;k

� �
� ðN � 1Þ

QK
k¼1 1�wkðxÞ

PN
i¼1bi;k

� �
�
QK

k¼1ð1�wkðxÞÞ
ð5Þ
As a result, the inference output can be represented as the following belief distribution.
Sðf ðxÞÞ ¼ fðDn; bnðxÞÞ; n ¼ 1; . . . ;Ng ð6Þ
If we know the utility u(Dn) for each consequent element Dn, the numerical inference output can be calculated by
f ðxÞ ¼
XN

n¼1

uðDnÞbnðxÞ ð7Þ
It is worth noting that the utility u(Dn) is also adjustable according to experts’ preferences and/or observed output data.
In summary, a BRB system has the following design parameters:

(1) The number of rules K, which is equal to
QM

i¼1Ji for a complete belief rule base including all the possible combinations
of referential values for all antecedent attributes;

(2) Adjustable parameters, including referential value Ai,j, the number of referential values Ji, belief degree bn,k, the utility
u(Dn) of each consequent element Dn, the number of consequent elements N, rule weight hk and attribute weight di.

Note that all the design parameters in a BRB system can be associated with physical meanings in specific applications. For
example, the number of referential values for antecedent attributes determines the dimensionality of a complete rule base.
These design parameters provide BRB systems with a high degree of flexibility. The values of these parameters can be as-
signed initially by domain experts. However, if observed input–output data pairs ðxðtÞ; f̂ ðxðtÞÞÞ are available, optimal learning
methods can be designed to train the parameters for minimising the difference between the inference output of a BRB sys-
tem and the observed output. The following mean squared error (MSE) can be used to measure the difference between infer-
ence output and observed output.
nðPÞ ¼ 1
T

XT

t¼1

ðf ðxðtÞÞ � f̂ ðxðtÞÞÞ2 ð8Þ
where P = hAi,j, Ji, bn,k, hk, di, u(Dn), Ni denotes the vector of design parameters. According to their physical meanings and func-
tional requirements, all parameters must satisfy certain equality and inequality constraints [5,32].

3. Inference mechanisms of BRB systems

In terms of mathematical modelling, a BRB inference system formulates a nonlinear functional mapping between ante-
cedent input space and output. In this section, the kernel of the modelling and inference mechanisms of a BRB system is ana-
lysed both analytically and graphically.
cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
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3.1. Multi-model decomposition of input space

To construct a BRB system, a number of referential values need to be defined first for each antecedent attribute, and the
antecedents in a belief rule are the combination of the referential values of antecedent attributes. As such, the input space U
can be decomposed into multiple local regions by the referential values, which can be represented by the hyperspace
½A1;1;A1;J1 � � � � � � ½AM;1;A1;JM

�. Take a two-dimensional input space for example. The referential values can decompose the in-
put space x1 � x2 into (J1 � 1)(J2 � 1) rectangular local regions as shown in Fig. 1.

The number of referential values on antecedent attributes decides the granularity and interpretability of the local regions.
Generally speaking, antecedent inputs which result in a high degree of variation on output require more referential values
than otherwise. The intersection points of adjacent local regions are the belief rule points at which the combinations of ref-
erential values are the antecedents of belief rules. If a numerical input vector x(t) falls into a specific local region formed by a
set of belief rule points, as shown by the solid points in Fig. 1, these belief rules will be activated to infer the estimated output
f(x(t)).

Under this structure, a BRB system is in essence a multi-model approximator in which the local regions represent decom-
posed sub-models that are combined to describe the global behaviour of the desired system. For each local model, the
relationship between antecedent inputs and output is formulated by the unified inference scheme as defined by Eqs. (3)–
(5), (3), (7). To demonstrate the local inference and global approximation capability of BRB systems, the inference mecha-
nisms need to be studied thoroughly. In a numerical BRB system, we have

PN
n¼1bn;k ¼ 1, and then Eq. (5) can be transformed

as follows:
Please
Sci. (2
bnðxÞ ¼
QK

k¼1ðwkðxÞbn;k þ 1�wkðxÞÞ �
QK

k¼1ð1�wkðxÞÞPN
j¼1

QK
k¼1ðwkðxÞbj;k þ 1�wkðxÞÞ �

QK
k¼1ð1�wkðxÞÞ

h i ð9Þ
Due to the recursive nature of the ER approach, we only need to consider two typical belief rules Rk and Rl in the following
theoretical analysis, and the belief rule Rk is assumed to be an intermediate belief rule generated by aggregating all other
activated belief rules except for Rl. Suppose the belief distributions of the two belief rules Rk and Rl are given as follows:
Rk : fðDn; bn;kÞ;n ¼ 1; . . . ;Ng with
XN

n¼1

bn;k ¼ 1

Rl : fðDn; bn;lÞ;n ¼ 1; . . . ;Ng with
XN

n¼1

bn;l ¼ 1
In what follows, we study the properties of BRB systems, including continuity, boundedness, derivability and monotonicity.

Lemma 1. Continuity property:The output of a BRB system is continuous.
Proof. In a BRB system, each input falls into a specific local region or on the boundary of adjacent local regions. According to
the analytical reasoning model given in Eqs. (3)–(7), it is obvious that the inference output of a BRB system is continuous
within a local region. As a result, we only need to prove the continuity at the intersection rule points.

To calculate the limit of bn(x) at the intersection rule point Rl from any direction, assume wl(x) = w(x), and so wk

(x) = 1 � w(x), given that Rk is an intermediate belief rule aggregated from all activated belief rules adjacent to Rl. We then
have
Fig. 1. Input space decomposition and belief rule points.

cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
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Please
Sci. (2
bnðxÞ ¼
ðbn;l þ bn;k � bn;lbn;kÞw2ðxÞ þ ðbn;lbn;k � 2bn;kÞwðxÞ þ bn;k

2�
PN

j¼1ðbj;lbj;kÞ
� �

w2ðxÞ � 2�
PN

j¼1ðbj;lbj;kÞ
� �

wðxÞ þ 1
ð10Þ
According to Eq. (4), we have w(x) ? 1� if the input x(t) approaches the antecedents of the intersection rule point Rl infinitely
from any direction. Furthermore, from Eq. (10) we then have
limwðxÞ!1�bnðxÞ ¼ bn;l ð11Þ
The above result shows that the limits of the belief degrees in the consequent of the estimated output f(x) are independent of
any activated belief rule adjacent to Rl (i.e. Rk) while the input x(t) approaches the antecedents of Rl infinitely. A BRB system is
thus continuous at any intersection rule point. Therefore, we prove that a BRB system is a continuous system.
Corollary 1. Uniform continuity property:The output of a BRB system is uniformly continuous.
Proof. It has been proved in Lemma 1 that a BRB system is a continuous system. In addition, we know that the input space of
a BRB system is actually defined on a compact metric space ½A1;1;A1;Ji

� � � � � � ½AM;1;A1;JM
�. According to the Heine-Cantor the-

orem in mathematics, a continuous function on a compact set is uniformly continuous [37]. Thus we prove that a BRB system
is a uniformly continuous system.
Lemma 2 (Boundedness property). The output of a BRB system is always bounded.
Proof. According to the analytical ER algorithm in Eq. (5), we have
bnðxÞ 6 1;8xðtÞ 2 U; and f ðxÞ ¼
XN

n¼1

uðDnÞbnðxÞ
As discussed above, we also define a set of bounded utilities to measure the individual consequent element Dn. Without loss
of generality, we suppose that D1 is the least preferred consequent element having the lowest utility and DN is the most pre-
ferred consequent element having the highest utility, i.e., u(D1) < � � � < u(DN). Thus we have u(D1) 6 f(x) 6 u(DN), and we prove
that a BRB system is a bounded system.
Lemma 3. The output of a BRB system is not necessarily derivable.
Proof. We can calculate the partial first order-derivatives of a BRB system at the intersection rule point Rl as follows:
@bnðxÞ
@wðxÞ

����
wðxÞ¼!1�

¼ bn;l

XN

j¼1

ðbj;lbj;kÞ � bn;k

 !
ð12Þ
It shows that the first order-derivatives of a BRB system at the intersection rule point Rl are dependent on the parameters of
both the belief rule Rl and the intermediate aggregated belief rule Rk. Since different belief rules may be activated when the
input approaches the intersection rule point Rl from different directions, there is no guarantee that the partial first-order
derivatives at the intersection rule point Rl from all directions would be equal. This means that the output of a BRB system
is not necessarily derivable at intersection rule points, although it is obvious from Eqs. (3)–(7) that the output is derivable
within a local region. Thus we can conclude that a BRB system is not necessarily a derivable system.
Remark 1. Although the output of a general BRB system is not necessarily derivable and provides no information about the
gradients of the approximated hyper-surfaces at intersection rule points, an application-specific BRB system can be designed
to be derivable if constraints are added to ensure that the first order-derivatives from all directions are equal at any inter-
section rule point.
Lemma 4. The output of a BRB system is not necessarily monotonic.
Proof. Without loss of generality, we consider a single input system. It is obvious from Eq. (4) that the activation weight w(x)
of the belief rule Rl is monotonic with respect to the input value x which falls between the two referential values of Rk and Rl.
Further, the first-order derivative of the inference output f(x) with respect to the activation weight w(x) can be calculated by
cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
013), http://dx.doi.org/10.1016/j.ins.2013.01.022
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Please
Sci. (2
@f ðxÞ
@wðxÞ ¼

XN

n¼1

un
@bnðxÞ
@wðxÞ ð13Þ
Since it was proven that @bnðxÞ
@wðxÞ is not necessarily nonnegative [5], their linear combination is not necessarily nonnegative

either. This means that the output of a BRB system is not necessarily monotonic.
According to Lemmas 1–4, we can conclude that a BRB system is uniformly continuous and always bounded but not

necessarily derivable or monotonic.
3.2. Distributed approximation process of BRB systems

A BRB system is a distributed approximation process, with its inference output represented by a belief distribution {(Dn,
bn(x)), n = 1, . . ., N}. Eq. (7) shows that the numerical output of a BRB system is the linear combination of the products of the
combined belief degree bn(x) and the utility u(Dn). Utility can be defined using experts’ subjective judgements and/or ob-
served output data. The combined belief degree bn(x) is generated by aggregating the belief distributions of consequents
in all activated rules. In the following, we use two simple examples to illustrate and explain the BRB distributed approxima-
tion process.

Example 1. Suppose there is a single-input system, whose input x is bounded in the interval [0, 1] and whose output g(x) is a
monotonically increasing function of x and is bounded by g(0) = 0 and g(1) = 1. To construct a BRB system, the referential
utilities of five consequent elements in belief rules are defined as follows:
fD1;D2;D3;D4;D5g ¼ f�0:5;0; 0:5;1;1:5g
We demonstrate that a BRB system with only two belief rules can have remarkable approximation power to simulate a
monotonically increasing system that can be linear, convex or concave with high degrees of accuracy. An initial BRB system
is shown in Table 1.

To illustrate the distributed approximation process in the interval [0, 1], we use a collection of power functions, i.e.
g(x) = xs with the exponent parameter s set to 6, 4, 2, 1, 1/2, 1/4 and 1/6 respectively, to generate observed input–output data
pairs. For each s, a set of 101 data pairs in the interval is generated uniformly. The data sets are used to train the parameters
in the BRB system shown in Table 1, and the 7 trained approximation curves are shown in Fig. 2.

In Fig. 2, the dotted line is the output of the initial BRB system shown in Table 1, and the solid lines from bottom are the
approximation curves from 1 to 7 respectively. The MSEs calculated for the seven sets of data pairs are 2.95 � 10�4,
2.55 � 10�4, 9.70 � 10�5, 1.62 � 10�7, 1.27 � 10�4, 3.48 � 10�4, and 3.14 � 10�4 respectively. Note that the MSEs can be
reduced further if more consequent elements are used. It is evident from the figure and the MSEs that the BRB system has
superior approximation capability through adjusting its design parameters. Table 2 lists the parameter values of the seven
trained BRB systems.

It is clear from Eq. (4) that rule weights hk and attribute weights di have direct influences on activation weights. One can
see in Table 2 that the attribute weight is changed considerably, updated to be monotonically decreasing for generating the
seven approximation curves from convex, linear to concave as shown in Fig. 2. From the convex curves 1 to 3, the weight of
rule 2 is updated to be monotonically increasing, with the weight of rule 1 kept almost constant; from the concave curves 5
to 7, the weight of rule 1 is updated to be monotonically decreasing, with the weight of rule 2 kept almost constant; for the
line 4, the weights of both rules 1 and 2 are equal. These simulation results show that the change of rule weights has
significant effects on the approximation patterns. For example, curve 1 has a high degree of convexity, and the output is
closer to the consequent of rule 1 in a large range of the input interval [0, 1]. Thus the updated weight of rule 2 is small, and
rule 1 plays a more important role in the aggregation of the inference output. On the other hand, curve 7 has a high degree of
concavity, and the output is closer to the consequent of rule 2 in a large range of the input interval [0, 1]. Thus the updated
weight of rule 1 is small, and rule 2 plays a more important role in the aggregation of inference output.

Also note that the belief distributions of consequents in all trained belief rules are updated as well. In the initial BRB
system, only one consequent element in each belief rule is associated with nonzero belief degree. In the trained BRB systems,
however, the belief distributions are more widely distributed and most of the consequent elements are associated with
nonzero belief degrees. In general, a more widely distributed belief distribution will be generated for aggregating the
inference output of a trained BRB system if a system exhibits more complicated patterns. In this example, for instance,
suppose we aggregate the desired output f(x) = 0.5 from the 7 approximation curves. It is worth noting that the actual inputs
for generating the desired output from curves 1 to 7 are 0.8909, 0.8409, 0.7071, 0.5000, 0.2500, 0.0625, and 0.0156,
RB system for Example 1.

no. Rule weight x f(x) Consequents {D1, D2, D3, D4, D5} = {�0.5, 0, 0.5, 1, 1.5}

1 0 0 {(D1, 0), (D2, 1), (D3, 0), (D4, 0), (D5, 0)}
1 1 1 {(D1, 0), (D2, 0), (D3, 0), (D4, 1), (D5, 0)}

cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
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Fig. 2. Illustration of the distributed approximation process of BRB systems.

Table 2
Trained BRB systems for Example 1.

Approx. Attribute weight Rule no. Rule weight x g(x) Belief degrees on {D1, D2, D3, D4, D5}

1 (s = 6) 0.7595 1 0.9847 0 0 (0.0056, 0.9918, 0.0005, 0.0011, 0.0010)
2 0.1948 1 1 (0.0000, 0.0101, 0.0000, 0.9696, 0.0203)

2(s = 4) 0.7208 1 0.9942 0 0 (0.0000, 1.0000, 0.0000, 0.0000, 0.0000)
2 0.2968 1 1 (0.0000, 0.0385, 0.0052, 0.8742, 0.0821)

3 (s = 2) 0.6314 1 1.0000 0 0 (0.0080, 0.9893, 0.0000, 0.0000, 0.0027)
2 0.5806 1 1 (0.0000, 0.0628, 0.0000, 0.8116, 0.1256)

4 (s = 1) 0.5101 1 1.0000 0 0 (0.0429, 0.9359, 0.0001, 0.0205, 0.0006)
2 1.0000 1 1 (0.0006, 0.0205, 0.0001, 0.9359, 0.0429)

5 (s = 1/2) 0.4049 1 0.6476 0 0 (0.1283, 0.8068, 0.0014, 0.0635, 0.0000)
2 0.9978 1 1 (0.0002, 0.0003, 0.0002, 0.9981, 0.0012)

6 (s = 1/4) 0.3218 1 0.4111 0 0 (0.0734, 0.8902, 0.0002, 0.0355, 0.0007)
2 0.9643 1 1 (0.0018, 0.0312, 0.0010, 0.8970, 0.0690)

7 (s = 1/6) 0.2863 1 0.3371 0 0 (0.0425, 0.9362, 0.0000, 0.0213, 0.0000)
2 0.9780 1 1 (0.0002, 0.0301, 0.0001, 0.9086, 0.0610)

Table 3
Aggregated belief distributions for representing the desired output f(x) = 0.5.

Approx. Real input Desired output Aggregated belief degrees on {D1, D2, D3, D4, D5} Estimated output

1 (s = 6) 0.8909 0.5 (0.0029, 0.5157, 0.0003, 0.4709, 0.0104) 0.4852
2 (s = 4) 0.8409 0.5 (0.0000, 0.5325, 0.0025, 0.4251, 0.0399) 0.4862
3 (s = 2) 0.7071 0.5 (0.0038, 0.5345, 0.0000, 0.3985, 0.0632) 0.4914
4 (s = 1) 0.5000 0.5 (0.0214, 0.4786, 0.0000, 0.4786, 0.0214) 0.5000
5 (s = 1/2) 0.2500 0.5 (0.0631, 0.3961, 0.0008, 0.5395, 0.0006) 0.5091
6 (s = 1/4) 0.0625 0.5 (0.0372, 0.4686, 0.0006, 0.4604, 0.0332) 0.4918
7 (s = 1/6) 0.0156 0.5 (0.0233, 0.5389, 0.0000, 0.4115, 0.0263) 0.4393
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respectively. In the initial BRB system, the belief distribution (0, 0.5, 0, 0.5, 0) is aggregated to represent the desired output. In
the trained BRB system, however, the inference outputs for approximation curves 1–7 are represented by the following more
distributed belief distributions as listed in Table 3.

It is obvious that the above seven belief distributions are quite different, although they are aggregated to represent the
same desired output f(x) = 0.5. This is because in different curves the input and the belief rules used to aggregate the same
desired output are different. Furthermore, according to the synthesis axioms of the ER approach [30], if the consequents in all
activated belief rules are completely assessed to a subset of consequent elements, then the aggregated consequent should be
completely assessed to the same subset as well. This implies that a more distributed belief distribution will be generated by
the ER approach if the belief distributions of consequents in all activated belief rules are updated to be more widely
distributed in trained BRB systems. It is evident from Fig. 2 that the trained BRB systems with more distributed belief
Please cite this article in press as: Y.-W. Chen et al., On the inference and approximation properties of belief rule based systems, Inform.
Sci. (2013), http://dx.doi.org/10.1016/j.ins.2013.01.022
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Fig. 3. Illustration on multi-model decomposition and distributed approximation in Example 2.
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distributions of consequents in all belief rules have higher approximation flexibility. Thus, it can be concluded that a BRB
system is a distributed approximation process, which enables it to have superior approximation capability as illustrated in
this example.
Remark 2. One of the strengths of this distributed approximation process is that only a small number of belief rules may be
needed to approximate a complex nonlinear system, which may have complicated behaviours but from which only a limited
number of data sets may be sampled.

In the following, we use a multi-extremal function to illustrate how a BRB system with a small number of dedicated belief
rules can be constructed to approximate a complicated nonlinear system if some behaviours of the system are known a
priori.
Example 2. A multi-extremal function is given by
Table 4
Initial b

Rule

1
2
3
4
5

Please
Sci. (2
gðxÞ ¼ e�ðx�2Þ2 þ 0:5e�ðxþ2Þ2 ; �5 6 x 6 5
For this function, we know that approximately g(x) has a local minimum at point x = 0, a local maximum at point x = �2 and a
global maximum at point x = 2. Based on the observed outputs on these critical points, the following referential utilities can
be defined for the consequents of belief rules.
fD1;D2;D3;D4;D5g ¼ f�0:5;0; 0:5;1;1:5g
As shown in Fig. 3, g(x) roughly has four monotonic regions in the interval �5 6 x 6 5, i.e. �5 6 x 6 � 2, �2 6 x 6 0, 0 6 x 6 2
and 2 6 x 6 5 with five end points. The analyses as conducted in Section 3.1 and Example 1 suggest that it should be suffi-
cient to use five belief rules to approximate this seemingly complicated nonlinear function. The initial belief rules are listed
in Table 4 by calculating the values of g(x) at the five end points of the four approximately monotonic regions.

In Fig. 3, one can see that the initial BRB system, although capable of capturing the main changing patterns of the
function, is not accurate to simulate the functional model. We can employ the optimal learning method as discussed in
Section 2.2 to train the parameters for minimising the difference between inference output and actual output. 101 data sets
are uniformly sampled from the interval [�5, 5]. In Fig. 3 the actual output and the inference output of the trained belief rule
system are compared.
elief rules for Example 2.

no. Rule weight x g(x) Consequents {D1, D2, D3, D4, D5} = {-0.5, 0, 0.5, 1, 1.5}

1 �5 0.0001 {(D1, 0), (D2, 0.9999), (D3, 0.0001), (D4, 0), (D5, 0)}
1 �2 0.5000 {(D1, 0), (D2, 0), (D3, 1), (D4, 0), (D5, 0)}
1 0 0.0275 {(D1, 0), (D2, 0.9725), (D3, 0.0275), (D4, 0), (D5, 0)}
1 2 1.0000 {(D1, 0), (D2, 0), (D3, 0), (D4, 1), (D5, 0)}
1 5 0.0001 {(D1, 0), (D2, 0.9998), (D3, 0.0002), (D4, 0), (D5, 0)}
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Table 5
Trained belief rules for Example 2.

Rule no. Rule weight x g(x) Belief degrees on {D1, D2, D3, D4, D5}

1 0.9998 �5 �0.0035 (0.1411, 0.8037, 0.0000, 0.0320, 0.0233)
2 0.3860 �2.0012 0.4986 (0.1067, 0.0414, 0.7016, 0.0486, 0.1017)
3 0.5463 0.0532 0.0365 (0.0396, 0.8852, 0.0377, 0.0375, 0.0000)
4 0.3798 2.0314 0.9897 (0.0653, 0.0325, 0.0109, 0.6402, 0.2511)
5 1.0000 5 �0.0119 (0.1280, 0.8112, 0.0391, 0.0000, 0.0217)

Y.-W. Chen et al. / Information Sciences xxx (2013) xxx–xxx 9
As shown in Fig. 3, it looks that the inference output generated by the trained belief rules can closely replicate the
nonlinear relationship of the multi-extremal function. In fact, the MSE between the actual output and the inference output is
only 6.32 � 10�5. The attribute weight keeps constant at 1, and the locally decomposed regions are slightly updated to
�5 6 x 6 �2.0012, �2.0012 6 x 6 0.0532, 0.0532 6 x 6 2.0314 and 2.0314 6 x 6 5. Table 5 lists the trained belief rules in
detail.

The analytical and numerical analyses of this section reveal the inference mechanisms of BRB systems, leading to a
conclusion that a BRB system combines a multi-model decomposition modelling structure with a distributed approximation
process, and can approximate complex nonlinear causal relationships between antecedent inputs and output.
4. Universal approximation of BRB systems

In this section, we further prove that BRB systems are universal approximators. In other words, BRB systems can approx-
imate any real continuous function on a compact set with arbitrary accuracy.

To demonstrate that BRB systems are capable of providing close approximation to any continuous systems, we first give a
brief introduction to a new universal approximation theorem for BRB systems. In the following, let F(x) be the set of analyt-
ical models produced by the unified inference structure of BRB systems given in Eqs. (3)–(7), and U # Rm be a compact set of
input variables denoted by ½A1;1;A1;J1

� � � � � � ½AM;1;A1;JM
�.

Theorem 1. Universal approximation theoremFor any given real continuous function g(x) on a compact domain U # Rm and
arbitrary e > 0, there exists a BRB system f(x) 2 F(x) with F(x) being the set of all BRB systems, such that
Please
Sci. (2
supx2U jgðxÞ � f ðxÞj < e
The proof of the universal approximation theorem using Stone–Weierstrass theorem will be presented later. First of all, we
provide an intuitive discussion on the approximation capability of BRB systems. Since the continuity of g(x) on the compact
domain U guarantees its uniform continuity, there exists a fixed distance d or a set of di, i = 1, . . ., M such that, for all x and x0

in U, jg(x) � g(x0)j < e if jx � x0 j < d or xi � x0i
�� �� < di;8i ¼ 1; . . . ;M. Thus we can construct a BRB system in which the referential

values of antecedent input xi can be defined as Ai;j ¼ Ai;1 þ ðj� 1Þ � ðAi;Ji
� Ai;1Þ=Ji with Ji ¼ bðAi;Ji

� Ai;1Þ=dic. It means that we
can make the approximation error arbitrarily small by choosing a large number of referential values, i.e. increasing Ji. From
the discussion in Section 3.2, a small number of dedicated belief rules can actually have the power of approximating com-
plicated nonlinear systems.

Strictly, the following Stone–Weierstrass theorem [4] is used to prove the universal approximation property of BRB
systems.

Theorem 2. (Stone–Weierstrass theorem). Let F(x) be a set of real continuous functions on a compact domain U # Rm. If (1) F is
an algebra, i.e., the set F is closed under addition, multiplication, and scalar multiplication, (2) vanishes at no point ofU, i.e., for each
x 2 U there exists f 2 F such that f(x) – 0, and (3) F separates points on U, i.e., for every x, x0 2 U, x – x0, there exists f 2 F such that
f(x) – f(x0), then the uniform closure of F consists of all real continuous functions on U.

First of all, we study the necessary preconditions of the Stone–Weierstrass theorem. To simplify expressions, an interme-
diate variable is defined as follows:
vnðxÞ ¼
YK

k¼1

ðwkðxÞbn;k þ 1�wkðxÞÞ �
YK

k¼1

ð1�wkðxÞÞ ð14Þ
The numerical output of a BRB system can then be represented as
f ðxÞ ¼
PN

n¼1uðDnÞvnðxÞPN
n¼1vnðxÞ

ð15Þ
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Lemma 5. The set of all BRB systems F(x) is an algebra. In other words, F(x) is closed under addition, multiplication, and scalar
multiplication.
Proof. Let f1, f2 2 F, so that we can calculate their sum and product as follows:
Please
Sci. (2
f1ðxÞ þ f2ðxÞ ¼
PN1

n1¼1u1ðDn1Þv1
n1ðxÞPN1

n1¼1v1
n1ðxÞ

þ
PN2

n2¼1u2ðDn2Þv2
n2ðxÞPN2

n2¼1v2
n2ðxÞ

¼
PN1

n1¼1

PN2
n2¼1 u1ðDn1Þ þ u2ðDn2Þ

� �
v1

n1ðxÞv2
n2ðxÞPN1

n1¼1

PN2
n2¼1v1

n1ðxÞv2
n2ðxÞ

ð16Þ

f1ðxÞf2ðxÞ ¼
PN1

n1¼1

PN2
n2¼1u1ðDn1Þu2ðDn2Þv1

n1ðxÞv2
n2ðxÞPN1

n1¼1

PN2
n2¼1v1

n1ðxÞv2
n2ðxÞ

ð17Þ
It is clear from Eq. (14) that vn(x) can be represented as a polynomial form of the activation weight wk(x). Therefore, the
product v1

n1ðxÞv2
n2ðxÞ can also be presented as a polynomial form of the activation weight product w1

k1ðxÞw2
k2ðxÞ. Since the acti-

vation weights w1
k1ðxÞ and w2

k2ðxÞ are calculated by the normalised multiplicative matching function in Eq. (4), their product
w1

k1ðxÞw2
k2ðxÞ also have the same form as Eq. (4). In fact, if the attribute weights of all antecedent attributes are set to be 1, Eq.

(14) can be represented by a polynomial form of the input x. Allowing attribute weights to be adjustable further enhances
the approximation capability of BRB systems. As a conclusion, Eqs. (16) and (17) can be transformed to the same form as Eq.
(15), which proves that f1 + f2 2 F and f1f2 2 F.

In addition, for arbitrary c 2 R,
cf ðxÞ ¼
PN

n¼1c � uðDnÞvnðxÞPN
n¼1vnðxÞ

ð18Þ
which is in the same form as Eq. (15), which proves that cf 2 F.
Therefore, we can conclude that F(x) is closed under addition, multiplication, and scalar multiplication.
Lemma 6. .For each x 2 U, there exists a BRB system f 2 F such that f(x) – 0.
Proof. By analysing Eqs. (5) and (7), we can simply construct a BRB system in which u(DN) > 0, bN,k = 1, k = 1, . . ., K, and
bn,k = 0, "n – N. The output of the BRB system will be equal to u(DN) for each x 2 U.
Lemma 7. For every x,x0 2 U, x – x0, there exists a BRB system f 2 F such that f(x) – f(x0).
Proof. This can be proved by constructing a required BRB system. For simplicity and without loss of generality, we construct
a BRB system with two rules to model a single input system, represented as follows:
Rk : fðDn; bn;kÞ;n ¼ 1; . . . ;Ng with b1;k ¼ 1

Rl : fðDn; bn;lÞ;n ¼ 1; :::;Ng with bN;l ¼ 1
Suppose the antecedent of Rk is the lower bound A1 of the input variable x, and that of Rk is the upper bound A2. Without loss
of generality, we assume that x < x0 for every x, x0 2 U, x – x0, and u(DN) > u(D1). According to Eqs. (3) and (4), we can get wk(-
x) > wk(x0). It is also straightforward to prove that df ðxÞ

dwkðxÞ
< 0 on the basis of Eq. (5). Hence, we conclude that f(x) < f(x0) for this

designed BRB system, or f(x) – f(x0).
By using the Stone–Weierstrass theorem together with Lemmas 5–7, we prove that a BRB system possesses the universal

approximation capability.
Remark 3. The universal approximation theorem shows that a BRB system can approximate any real continuous function
over a compact subset of Rm if it decomposes input space using a sufficiently large number of referential values for anteced-
ent attributes. For example, for complex system identification problems, this means that a BRB system can uniformly
approximate any given continuous output trajectory y(t) of any nonlinear dynamic system over any compact time-interval
t 2 [t0, T] with arbitrarily high accuracy. In addition, the proof also shows that the change of parameters may lead to signif-
icant changes in the approximation capability of a BRB system. However, this universal approximation theorem just guar-
antees the existence of a BRB system which is capable of approximating a given continuous system with arbitrary
accuracy. In designing a practical BRB system, however, we still have to exploit experts’ knowledge and historical data,
and make tradeoffs between approximation accuracy and complexity for training and inference.
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5. A numerical simulation study

In this section, a numerical simulation study is conducted on the system identification of Box–Jenkins gas furnace [2]. It is
a well-known benchmark system identification problem, and many researchers have used the data set to demonstrate their
nonlinear identification methods [7,14,15,19]. The original data set was recorded from a combustion process of a methane-
air mixture, and consists of 296 data pairs {(u(t), y(t)); t = 1, . . ., 296}, where u(t) is the input gas flow rate, and y(t) is the
observed output CO2 concentration at the sampling time t [2]. In this paper, the following series parallel model is employed
to formulate the system dynamics [14].
Please
Sci. (2
yðtÞ ¼ f ðyðt � 1Þ;uðt � 4ÞÞ ð19Þ
Thus there will be 292 input–output data pairs. To construct a BRB system for this system identification problem, we use five
linguistic terms to define u(t), which are negative large (NL), negative small (NS), zero (Z), positive small (PS), and positive
large (PL). These linguistic terms are associated with numerical referential values, which are given by
Ak
1 2 fNL;NS;Z;PS;PLg ¼ f�3;�1:5;0;1:5;3g
Similarly, we also use 5 linguistic terms to define y(t), which are Very Low (VL), Low (L), Medium (M), High (H), and Very
High (VH) and are associated with the following referential values.
Ak
2 2 fVL; L;M;H;VHg ¼ f45;49;53;57;61g
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Given the above definition of the referential values, there are 25 referential combinations of the two antecedent inputs
y(t � 1) and u(t � 4), leading to 25 belief rules in total in the belief rule base. As discussed in Section 3.1, the referential val-
ues decompose the input space into a set of 16 local regions. All the 292 input–output data pairs fall into the 16 different
local regions as shown in Fig. 4.

By examining these historical data and using experts’ knowledge that the output CO2 concentration decreases with a time
delay if the input gas flow rate increases, the initial belief rules can be constructed to model the nonlinear causal relation-
ships between the antecedent inputs (u(t � 4),y(t � 1)) and the output y(t). Table A-I lists the initial belief rules. The output
y(t) is characterised by a belief distribution {D1, D2, D3, D4, D5} = {45, 49, 53, 57, 61} in each rule. As discussed in Section 2, we
can use the constructed belief rules to infer the estimated output for each sampling input data (u(t � 4), y(t � 1)). Fig. 5
shows the comparison of the actual output and the estimated output inferred by the initial BRB system.

It can be said from Fig. 5 that the estimated output using the initial BRB system without training is not too bad but the
approximation error is relatively large in some areas. This is because the parameters in the initial rule base are not very accu-
rate. It is therefore necessary to train the parameters of the initial BRB system. In our simulation, the first portion of the time-
series dataset consisting of 200 data pairs is used to train the BRB system, and the remaining part of the dataset is used to
test the training effects for validation purpose. The MSE defined in Eq. (8) is used to be the optimal learning objective, and
constraints are discussed in Refs. [5,32]. Note that in Fig. 5 the MSE between the actual output and the initial BRB output is
0.5942. By using the nonlinear optimisation solver fmincon in the Optimisation Toolbox of Matlab, we can further obtain the
trained belief rule base with the rule weights as listed in Table A-II. The trained attribute weights of u(t � 4) and y(t � 1) are
equal to 0.85 and 0.77. The referential values are updated slightly, given by {-3, �1.5, 0, 1.5, 3} and {45, 49.17, 53.15, 57.07,
61} respectively. Fig. 6 shows the estimated output of the trained BRB system for both the training and testing datasets.

As shown in Fig. 6, the trained BRB system has much better inference performance than the initial BRB system, and the
relative error has been reduced significantly with the optimal MSE of 0.0864. We can see from Table A-II that the belief de-
grees and rule weights are also updated for improving the approximation accuracy of the BRB system. Table 6 reports the
approximation results using the BRB systems with different numbers of referential values. Note that for each BRB system
the initial referential values of the two antecedent inputs are uniformly sampled from the intervals [-3, 3] and [45, 61]
respectively.

As one can see in Table 6, the MSE of the training data set is monotonically decreasing with the increase of the number of
referential values. This is consistent with the theoretical analysis in Section 4. The MSE of the testing data set depends on the
generalisation capability of each trained BRB system. Even for the BRB system with the number of 2 � 2 referential values,
the approximation errors of both the training data set and the testing data set are as small as or smaller than those reported
in [7,15,19]. It should be pointed out that the experimental settings, such as the number of parameters and the number of
Table 6
Approximation results using the BRB systems with different numbers of referential values.

Approx. No. of referential values MSE (training data set) MSE (testing data set)

1 2 � 2 0.1190 0.2403
2 3 � 3 0.1042 0.2262
3 4 � 4 0.1032 0.2284
4 5 � 5 0.0864 0.2131
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Table A-I
Initial belief rule base ({D1, D2, D3, D4, D5} = {45, 49, 53, 57, 61}).

Rule no. Rule weight u(t � 4) AND y(t � 1) Consequents {D1, D2, D3, D4, D5}

1 1 NL ^ VL {(D1, 0.1), (D2, 0.9), (D3, 0), (D4, 0), (D5, 0)}
2 1 NL ^ L {(D1, 0), (D2, 0.5), (D3, 0.5), (D4, 0), (D5, 0)}
3 1 NL ^ M {(D1, 0), (D2, 0), (D3, 0.5), (D4, 0.5), (D5, 0)}
4 1 NL ^ H {(D1, 0), (D2, 0), (D3, 0), (D4, 0.3), (D5, 0.7)}
5 1 NL ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4, 0), (D5, 1)}
6 1 NS ^ VL {(D1, 0.25), (D2, 0.75), (D3, 0), (D4, 0), (D5, 0)}
7 1 NS ^ L {(D1, 0), (D2, 0.75), (D3, 0.25), (D4, 0), (D5, 0)}
8 1 NS ^ M {(D1, 0), (D2, 0), (D3, 0.5), (D4, 0.5), (D5, 0)}
9 1 NS ^ H {(D1, 0), (D2, 0), (D3, 0), (D4, 0.7), (D5, 0.3)}

10 1 NS ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4, 0.25), (D5, 0.75)}
11 1 Z ^ VL {(D1, 0.5), (D2, 0.5), (D3, 0), (D4, 0), (D5, 0)}
12 1 Z ^ L {(D1, 0), (D2, 0.9), (D3, 0.1), (D4, 0), (D5, 0)}
13 1 Z ^ M {(D1, 0), (D2, 0), (D3, 0.95), (D4, 0.05), (D5, 0)}
14 1 Z ^ H {(D1, 0), (D2, 0), (D3, 0), (D4,1), (D5, 0)}
15 1 Z ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4, 0.5), (D5, 0.5)}
16 1 PS ^ VL {(D1, 0.75), (D2, 0.25), (D3, 0), (D4, 0), (D5, 0)}
17 1 PS ^ L {(D1, 0.3), (D2, 0.7), (D3, 0), (D4, 0), (D5, 0)}
18 1 PS ^ M {(D1, 0), (D2, 0.35), (D3, 0.65), (D4, 0), (D5, 0)}
19 1 PS ^ H {(D1, 0), (D2, 0), (D3, 0.5), (D4, 0.5), (D5, 0)}
20 1 PS ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4, 0.75), (D5, 0.25)}
21 1 PL ^ VL {(D1,1), (D2, 0), (D3, 0), (D4, 0), (D5, 0)}
22 1 PL ^ L {(D1, 0.75), (D2, 0.25), (D3, 0), (D4, 0), (D5, 0)}
23 1 PL ^ M {(D1, 0), (D2, 0.75), (D3, 0.25), (D4, 0), (D5, 0)}
24 1 PL ^ H {(D1, 0), (D2, 0), (D3, 0.75), (D4, 0.25), (D5, 0)}
25 1 PL ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4,1), (D5, 0)}

Table A-II
Trained belief rule base ({D1, D2, D3, D4, D5} = {45, 49.17, 53.15, 57.07, 61}).

Rule no. Rule weight u(t � 4) AND y(t � 1) Consequents {D1, D2, D3, D4, D5}

1 1 NL ^ VL {(D1, 0.1), (D2, 0.9), (D3, 0), (D4, 0), (D5, 0)}
2 1 NL ^ L {(D1, 0), (D2, 0.5), (D3, 0.5), (D4, 0), (D5, 0)}
3 0.84 NL ^ M {(D1, 0.26), (D2, 0.12), (D3, 0.27), (D4, 0.11), (D5, 0.24)}
4 0.99 NL ^ H {(D1, 0), (D2, 0.13), (D3, 0), (D4, 0.1), (D5, 0.77)}
5 1.00 NL ^ VH {(D1, 0.04), (D2, 0), (D3, 0), (D4, 0), (D5, 0.96)}
6 1.00 NS ^ VL {(D1, 0.25), (D2, 0.75), (D3, 0), (D4, 0), (D5, 0)}
7 1.00 NS ^ L {(D1, 0.24), (D2, 0.18), (D3, 0.35), (D4, 0.13), (D5, 0.1)}
8 0.31 NS ^ M {(D1, 0.08), (D2, 0.2), (D3, 0), (D4, 0.72), (D5, 0)}
9 0.51 NS ^ H {(D1, 0.04), (D2, 0), (D3, 0.01), (D4, 0.89), (D5, 0.06)}

10 0.62 NS ^ VH {(D1, 0.08), (D2, 0.01), (D3, 0.07), (D4, 0.01), (D5, 0.83)}
11 0.84 Z ^ VL {(D1, 0.55), (D2, 0.32), (D3, 0.01), (D4, 0.07), (D5, 0.05)}
12 0.57 Z ^ L {(D1, 0), (D2, 0.77), (D3, 0.03), (D4, 0.2), (D5, 0)}
13 0.39 Z ^ M {(D1, 0.31), (D2, 0), (D3, 0), (D4, 0.68), (D5, 0.01)}
14 0.27 Z ^ H {(D1, 0.28), (D2, 0.09), (D3, 0), (D4, 0), (D5, 0.63)}
15 1.00 Z ^ VH {(D1, 0.06), (D2, 0.03), (D3, 0), (D4, 0.25), (D5, 0.66)}
16 0.84 PS ^ VL {(D1, 0.65), (D2, 0.15), (D3, 0), (D4, 0.2), (D5, 0)}
17 0.61 PS ^ L {(D1, 0.58), (D2, 0.16), (D3, 0), (D4, 0.26), (D5, 0)}
18 0.66 PS ^ M {(D1, 0.19), (D2, 0), (D3, 0.81), (D4, 0), (D5, 0)}
19 0.40 PS ^ H {(D1, 0), (D2, 0), (D3, 0), (D4, 0.46), (D5, 0.54)}
20 1.00 PS ^ VH {(D1, 0.49), (D2, 0.17), (D3, 0.02), (D4, 0.3), (D5, 0.02)}
21 1.00 PL ^ VL {(D1, 0.95), (D2, 0.03), (D3, 0), (D4, 0.02), (D5, 0)}
22 0.40 PL ^ L {(D1, 0.77), (D2, 0.01), (D3, 0), (D4, 0.04), (D5, 0.18)}
23 0.99 PL ^ M {(D1, 0.22), (D2, 0.72), (D3, 0.06), (D4, 0), (D5, 0)}
24 1 PL ^ H {(D1, 0), (D2, 0), (D3, 0.75), (D4, 0.25), (D5, 0)}
25 1 PL ^ VH {(D1, 0), (D2, 0), (D3, 0), (D4,1), (D5, 0)}
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data samples used for testing, are different in each paper. As the BRB system and fuzzy neural models have different struc-
tures, it is difficult to conduct a numerical comparison under the same experiment setting, but it can be an advantage to use
more training samples.
6. Conclusion and discussion

In this paper, theoretical, analytical and numerical analyses were conducted about the inference and approximation prop-
erties of BRB systems. Firstly of all, the unified multi-model decomposition structure of BRB systems was analysed. In a spe-
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cific BRB system, its referential values for antecedent attributes decompose the input space into different local regions. In a
local region, its inference output is generated by the distributed approximation process. These underlying inference mech-
anisms enable BRB systems to have superior approximation capability in practical applications. Furthermore, a constructive
proof was given that a BRB system is capable of approximating any continuous function on a compact set with arbitrary
accuracy. This universal approximation property ensures that a BRB system with adaptively learning parameters can be ap-
plied to approximate complex nonlinear systems.

In comparison with some state-of-the-art methodologies, such as statistical methods, fuzzy rule-based systems, ANN and
support vector machine (SVM), which can also be used to model complex nonlinear systems, the BRB methodology has the
following features [31,32,38]:

(1) BRB models are transparent and their input–output relationships characterised by belief rules are interpretable, while
ANN and SVM models are black boxes in nature and their input–output relationships are difficult to be interpreted;

(2) Expert knowledge can be incorporated into BRB models as belief rules or constraints explicitly. In addition, the initial
values of the training parameters in BRB models can be set by experts intuitively whenever possible, leading to an
expert-data driven BRB system. However, statistical methods, ANN and SVM models have no such capability. Fuzzy
rule-based systems can also be used to model expert knowledge, but it is not always clear how to construct appropri-
ate membership functions for type-1 fuzzy systems and how to interpret various fuzzy aggregation operators for both
type-1 and type-2 fuzzy systems [39,40]. But it worth noting that interval type-2 fuzzy sets are useful to solve the
problem when defining the membership functions.

(3) In BRB models, the output can be either a single value or a belief distribution, while statistical methods, ANN and SVM
models can only use average values as outputs and have no way to model a belief distribution;

(4) BRB models can be used to handle uncertainty such as incomplete information and also set targets for antecedent
inputs and intermediate variables, while statistical methods, ANN and SVM models do not have such capability;

(5) BRB models can identify what belief rules cannot be learned and what samples cannot be predicted with confidence if
any, but other existing models cannot provide such information and may provide false predictions that cannot be
learned from the training samples.

However, BRB system is not developed to compete against these methodologies in situations where a complete range of
high-quality data samples is available. It has greater potential to be applied to more general approximation situations with
various uncertainties, and has shown the capability of capturing complicated nonlinear causal relationships between ante-
cedent attributes and consequents and also incorporating expert’s subjective knowledge in several real-world applications
[5,27,36,38].

Finally, in the paper a numerical simulation study on the well-known nonlinear system identification problem of Box–
Jenkins gas furnace was conducted, which illustrates that the trained BRB system has superior knowledge representation
and inference capability. This investigation serves to promote the further development of knowledge-based systems for solv-
ing various identification and decision problems in complex nonlinear systems. However, further study is needed in the fol-
lowing aspects.

(1) Although BRB systems are proved to be general approximators, the universal approximation theorem does not show
how to construct a BRB system to approximate a specific complex nonlinear system and how many belief rules would
be needed to achieve given approximation accuracy. The optimal design of BRB systems needs to be studied.

(2) In this paper the inference and approximation properties of single-layer BRB systems were analysed. In single-layer
BRB systems, the total number of rules increases exponentially with the increase of the number of input variables.
In practice, hierarchical BRB systems have been used to deal with the ‘‘curse of dimensionality’’. The inference mech-
anisms and approximation capability of hierarchical BRB systems need to be studied.

(3) With the universal approximation capability, any lack of success in the applications of BRB systems can be attributed
to inadequate learning, an insufficient number of rules, or the lack of a deterministic relationship between antecedent
inputs and output. Therefore, the ways of properly constructing belief rule bases and effectively learning design
parameters should be considered carefully in real-world applications.
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Appendix A. Belief rule bases of Box–Jenkins gas furnace

Tables A-I and A-II.
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